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ABSTRACT

Malware, a persistent cybersecurity threat, increasingly targets interconnected digital systems such
as desktop, mobile, and IoT platforms through sophisticated attack vectors. By exploiting these
vulnerabilities, attackers compromise the integrity and resilience of modern digital ecosystems.
To address this risk, security experts actively employ Machine Learning or Deep Learning-based
strategies, integrating static, dynamic, or hybrid approaches to categorize malware instances. Despite
their advantages, these methods have inherent drawbacks and malware variants persistently evolve
with increased sophistication, necessitating advancements in detection strategies. Visualization-based
techniques are emerging as scalable and interpretable solutions for detecting and understanding
malicious behaviors across diverse platforms including desktop, mobile, IoT, and distributed systems
as well as through analysis of network packet capture files. In this comprehensive survey of more
than 100 high-quality research articles, we evaluate existing visualization-based approaches applied
to malware detection and classification. As a first contribution, we propose a new all-encompassing
framework to study the landscape of visualization-based malware detection techniques. Within this
framework, we systematically analyze state-of-the-art approaches across the critical stages of the
malware detection pipeline. By analyzing not only the single techniques but also how they are
combined to produce the final solution, we shed light on the main challenges in visualization-based
approaches and provide insights into the advancements and potential future directions in this critical
field.

https://arxiv.org/abs/2505.07574v3
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1 Introduction

Malware samples are becoming increasingly sophisticated, often employing obfuscation and polymorphic techniques to
evade traditional signature-based and behavior-based detection. Moreover, due to the increase in reliance on technology
and connectivity, malware analysts have noted an expansion in the scope and strength of attacks against various types of
infrastructure. Windows malware, in particular, has become a critical area of concern due to its prevalence and the
potential for significant financial losses, as well as the threat it poses to the security of sovereign nations. Windows
remains the operating system most targeted for malware, with ransomware attacks increasing 2.75 times in 2024, and
92% of these attacks affecting Windows devices[99]. Additionally, threat actors in 2025 are increasingly exploiting
Windows vulnerabilities through AI-driven malware[110]. The widespread use of Windows-based systems in personal,
enterprise, and government environments has made them a prime target for attackers seeking to exploit vulnerabilities
in the operating system and associated software [41].

Other platforms, such as Android, are not safe either, and an increase in Android malware has also been observed in
recent years after the widespread adoption of mobile phones [25]. The threats against Android devices differ in some
aspects from those of their Windows counterparts. Firstly, the popularity and widespread adoption of Android mobile
devices make them an attractive target for cyber-criminals, whereas Windows malware has historically targeted desktop
computers. Additionally, the open nature of the Android platform allows for easier distribution of malicious apps.
Furthermore, Android malware often uses different techniques and vulnerabilities specific to the mobile environment.
Malware propagates across desktop and mobile platforms through various means. On desktops, it can infiltrate systems
via malevolent email attachments, compromised websites, or tainted software downloads. Once present, malware
exploits vulnerabilities, self-replicates, and extends its reach to connected devices and networks [8]. On mobile
platforms, malware commonly disguises itself as legitimate apps or leverages third-party app stores. Users unknowingly
install these pernicious apps, thus granting access to sensitive data or device control. Additional dissemination routes
encompass text messages, phishing links, and compromised Wi-Fi networks, accentuating the substantial risk posed to
users on both PC and mobile platforms [70].

Another fertile ground for malware is the IoT landscape. Malware spreads in IoT devices through the exploitation of
vulnerabilities in interconnected systems, allowing it to quickly infiltrate and compromise a multitude of smart devices.
The interconnected nature of IoT ecosystems provides a fertile ground for the swift propagation of malicious software,
thus fostering the need for robust security measures to mitigate these risks [141].

In this context, security researchers face the challenge of combating widespread malware campaigns and safeguarding
against both new and familiar strains. However, traditional approaches that rely on signatures are inadequate in the face
of ever-evolving threats. Attackers employ sophisticated methods, such as polymorphic and metamorphic malware, to
avoid detection by altering their code. Consequently, there is an increasing demand for innovative techniques such as
behavioral analysis, Machine Learning, and dynamic analysis. These methods provide deeper insights into malware
behavior, enabling analysts to better detect and respond to threats.

In this paper, we focus on one particular aspect, namely the use of malware visualization for the classification of malware,
which is a novel and advanced method for malware analysis. With the integration of Deep Learning and image-based
analysis, visualization methods have shown great promise in recent years for creating interpretable results for a variety
of machine learning tasks, including malware classification [144]. In particular, Convolutional Neural Networks (CNNs)
are effective in malware classification due to their ability to extract features from binary representations of samples
without the help of domain experts.

We survey the state-of-the-art in machine learning-based malware classification across various platforms, focusing
on high-quality works published over the past seven years, from 2018 to 2025. We categorize the research literature
according to the fundamental steps of the visualization-based malware classification, namely: Dataset Collection,
Image Generation, Feature Extraction, Classification, Evaluation, Model Robustness, and Adaptation. Furthermore,
we explore the challenges associated with this approach, including the need for large and diverse datasets as well as
the potential for adversarial attacks, and the most important technique for interpretability. Despite growing interest,
visualization-based malware detection remains a relatively young field. Hence, by gaining a deeper understanding of
the strengths and limitations of Machine Learning-based approaches to malware classification, we can better evaluate
their potential for improving the accuracy and efficiency of malware analysis. Through our survey of the literature, we
provide a comprehensive overview of the current state of the art in this area, propose best practices, and help unify
future research identifying areas for forthcoming development.

In summary, the main contributions of this survey are as follows.
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1. To the best of our knowledge, we are the first to have a comprehensive and methodologically rigorous survey
on existing studies that employ visualization-based techniques in malware detection, structured around the
proposed unified framework that captures key characteristics of existing approaches and enables systematic
comparison, trend analysis, and identification of research gaps.

2. We distill the entire pipeline of visualization-based malware detection from numerous concrete image-
based approaches. This provides readers with an overview, aiding in understanding the general process of
visualization-based methods. The overview covers the datasets used, image representation, feature processing
techniques, model generation, performance evaluation, and considerations about robustness and model
adaptation.

3. We explore the aspects of explainability in various visualization techniques applied to malware detection,
providing valuable insights.

4. To gain a deeper understanding of adversarial attacks in visualization-based malware detection and of the
existing defenses against them, we systematically survey various state-of-the-art approaches. This includes
exploring adversarial attack methods on ML-based malware classifiers, DL classifiers, and defensive strategies
to enhance the adversarial robustness of visualization-based malware classifiers.

5. We delve deeper into the gaps present in current studies and thoroughly explore future research challenges and
directions within the domain of visualization-based malware analysis and detection. This discussion presents
readers with potential avenues for developing innovative solutions.

This survey is organized as follows. Section2 introduces related surveys, while Section 3 outlines the approach adopted
to carry out this survey. In section 4, we present an overview of the main background concepts about malware detection
and classification techniques. Section 5 describes the current literature classified according to the steps of visualization-
based malware classification, namely Dataset Collection, Image Generation, Feature Extraction, Classification, and
Evaluation. In particular, in Section 5.1 we examine the most used dataset about malware. Section 5.2 deals with
the techniques employed to convert a malware file into an image, utilizing diverse file extensions acquired through
static and dynamic analysis approaches. In Section 5.3, we explore how researchers have approached the processing of
features, which they subsequently use as input for classifiers. Section 5.4 is devoted to the description of the various
Machine Learning methods used to classify images through their extracted features. Section 5.5 provides a discussion of
how authors decided to evaluate their classifiers, compare their results with those of other researchers, consider relevant
parameters, and assess whether the choices made are fair. Section 5.6 provides a description of model robustness and
adaptation, specifically targeting adversarial attacks targeting visualization-based malware detectors. In Section 6, we
explore the issue of interpretability in the context of malware classification, examining how authors have addressed
the problem and suggesting potential improvements for the situation. Section 8 lists the lessons learned from our
investigation. Section 9 examines several open challenges and offers perspectives on possible directions for future
research. Finally, Section 10 gives some general considerations on the state of research in the field of image-based
malware classification and tries to advise to move forward.

2 Related Work

This section offers an overview of surveys that explore visual malware classification. For each survey, we describe
along with its advantages and disadvantages. It is worth noting that most of the surveys dealt with general techniques in
malware detection and only a few others addressed the visualization of visual malware images despite brief mentions of
the concept in surveys with broader scopes. Table 1 offers a summary of the reviewed surveys, in which we consider the
year of publication, the number of analyzed papers, and the main scope of the work (i.e., image generation technique
analysis, feature extractors analysis, classifiers analysis, interpretability analysis, sustainability analysis, different
training methods analysis, dataset coverage, adversarial attacks analysis, few-shot analysis, metrics analysis.

2.1 General Machine Learning and Malware Detection Surveys

In [77] the authors provides an extensive examination of ML models applied to malware classification and detection.
The survey’s main focus is not specifically on visualization methods. Emerging and popular challenges, such as
interpretability and sustainability are briefly mentioned. Despite these limitations, this survey serves as a valuable
starting point, providing an overview of traditional Machine Learning and Deep Learning workflows used in malware
classification and detection. Ucci et al. in [207] give a thorough analysis of the Machine Learning techniques. They
provide a well-thought taxonomy to categorize the different Machine Learning methods. The section on feature
extraction techniques covers the subject in great depth. This survey excels in analyzing Machine Learning techniques
broadly, but it falls short in giving adequate attention to recent advancements, such as Deep Learning, and specifically,
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Table 1: Comparison with existing survey papers

Ref. Year Literature #Papers
Paper Scope

timeline DC IG FE Class Inter S Diff_TM AA FS M

[77] 2020 2008-2019 67 #  G#  G# G# # G# # G#

[155] 2021 2009-2020 20 G# G# G# G# # # # G# G# G#

[249] 2021 2009-2019 - # # G# G# # # # # # #

[207] 2019 2001-2017 64 G#  G# G# # # # # # #

[186] 2022 2016-2020 4 # # G# # # # # # # #

[138] 2022 - 10 # G# G# G# # # # # # #

[139] 2023 - - # G# G# G# # # # G# # #

[60] 2023 - - G# G# G# G# # G# #  G# G#

[32] 2024 2018-2023 - G# G# G# G# G# G# G# G# G# G#

Our 2025 2018-2025 103           

#- Topic not covered or minimally analyzed; G#- Topic addressed to a reasonable extent;  - Topic covered in depth.
DC: Dataset Coverage, IG: Image generation technique analysis, FE: Feature extractors analysis, Class: Classifiers analysis,
Inter: Interpretability analysis, S: Sustainability analysis, Diff_TM : Different training methods analysis, AA: Adversarial

attacks analysis, Fs: Few-shot analysis, M : Metrics analysis.

the utilization of CNNs. Additionally, the survey lacks sufficient emphasis on the contemporary challenges researchers
face today. Naik et al. in [155] provide a general overview of image-based malware analysis. The authors discuss the
main steps of the workflow from the dataset to the evaluation. The inclusion of 20 analyzed papers also highlights the
study’s significance. However, it is essential to acknowledge the limitations of this study, such as the lack of in-depth
analysis regarding datasets and feature extraction. Moreover, it is noteworthy that there is no discussion on current
issues like interpretability and sustainability. Gopinath et al. [139] present a comprehensive survey encompassing a
broad range of papers that employ Machine Learning and Deep Learning techniques. The survey primarily examines
various approaches to developing classifiers rather than focusing on image-based visualization methods. The authors
explain each paper with due detail, characterizing each model well. The survey divides the publications based on the
approach used for the classifier, therefore each paper is named and explained just once. For this reason, it is hard to
abstract the information received and categorize the different approaches to feature extraction and image generation.
Furthermore, the authors do not extensively delve into contemporary challenges encountered in the field, aside from
brief tangential discussions.

2.2 Visualization-Based Malware Detection Surveys

Ahmad et al. [138] survey visualization-based malware detection and classification. The authors present a detailed
review of existing malware detection methods, leveraging both ML and DL techniques, and outline the implementation of
eleven distinct models. This survey effectively identifies the essential components of each model and employs a concise
listing approach, facilitating comparisons between them. However, It is worth mentioning that we have conducted a
thorough analysis of the entire pipeline of visualization approaches. Shah et al. in [186] analyze visualization-based
malware classification models. We particularly focus on the computational performance of the model. However, it is
crucial to emphasize that the number of models considered in this survey is limited. Therefore, the authors cannot
provide extensive insights into the broader landscape of visualization-based malware analysis. Deldar et al. [60] provide
a survey specifically on the detection of zero-day malware. The taxonomy employed neatly divides the models and
enables the reader to identify the possible choices at each step of the classification pipeline. However, the survey does
not delve into the different possibilities in depth; instead, it merely presents or briefly discusses them. Remarkable is
exploring the subject of most interest for zero-day classification, meaning adversarial attacks and few-shot learning. The
authors do not directly deal with modern problems in Machine Learning malware visual classification, like sustainability
and interpretability. The researchers in [249] apply computer vision to network security, broadly covering phishing
detection, malware detection, and traffic anomaly detection. They highlight its broader cybersecurity implications,
including applications in physical security and critical infrastructure protection, and bridge computer vision, machine
learning, and network security. However, their study lacks an in-depth focus on visualization-based malware detection.
In contrast, our study provides a detailed analysis of visualization techniques, starting from dataset collection, image
types, feature extraction, classification methods, interpretability, robustness evaluation, and adaptation in malware
detection.
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3 Methodology

In this study, we design a structured search strategy to gather relevant research on visualization-based malware detection
according to the objective of our survey article. Initially, we explore academic databases such as Google Scholar and
Web of Science and review reputable repositories such as SpringerLink, IEEE Xplore, ScienceDirect, and ACM Digital
Library. The search focuses on publications from 2018 to 2025 to ensure a comprehensive examination of recent
advancements. An initial global scan reveals that, before 2018 research on visualization-driven malware detection
remains limited, with only a few notable publications. As a result, we select a seven-year time frame for analysis to
capture the most relevant and recent works. Recently, research on visualization-based malware detection has expanded
rapidly, driving significant innovation in the field.

We ensure comprehensive coverage by formulating search queries using specific keywords. The primary search terms
include “malware visualization” and “image-based malware detection”. To refine our search, we incorporate additional
terms such as “Deep Learning”, “feature extraction from malware images”, “Machine Learning”, “Vision Transformers”,
“adversarial robustness in malware images”, “obfuscation”, “interpretability”, and “sustainability”. This approach
captures a broad spectrum of studies related to malware visualization and classification. Figure 1 visually represents our
study selection process in the PRISMA flow diagram, detailing the number of studies we identify, screen, exclude, and
include in our final review.

# of records after
duplicates removed

213

# of records screened
192

# of full-text articles
accessed for eligibility

148

# of studies included
103

# of records excluded
46

# of records is identified
through database searching

238

# of additional records identified
through other sources

20
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Figure 1: PRISMA Diagram

3.1 Selection and Filtering Criteria

This section explains the methodology we use to evaluate the quality and relevance of the academic papers considered
in this survey on visualization-based malware detection. Articles are selected when they fulfill at least one inclusion
criterion and are not disqualified by any exclusion criteria. We evaluate the suitability of the paper through the following
selection criteria.

3.1.1 Inclusion Guidelines

We evaluate a paper’s suitability for this survey article based on the following selection criteria

• The significance and credibility of the publication venue according to Scimago and Core.edu rankings.
• The citation impact through rankings on Google Scholar and Scopus.
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• The publication date. In particular, we prioritize recent research, especially studies published in the last six
years.

• Significance of the contribution to malware visualization.

3.1.2 Exclusion Guidelines

We also exclude studies that meet any of the following conditions.

• Publication date before 2018, as the article would fall outside the seven-year review period.
• Lack of focus on visualization-based malware detection.
• Lack of peer review and/or publication in a language other than English.

Table 2 provides a summary of the acronyms used throughout the paper.

Table 2: List of the acronyms used in the paper
Acronyms Description
CNN Convolutional Neural Network
DL Deep Learning
DT Decision Tree
ELM Extreme Learning Machine
GAN Generative Adversarial Network
IoT Internet of Things
KNN K-Nearest Neighbors
ML Machine Learning
RF Random Forest
RNN Recurrent Neural Network
SFC Space-Filling Curve
SVM Support Vector

4 Background

An important task in cybersecurity is the categorization of malware in families. This task is crucial for categorizing
malware based on characteristics and behavior, enabling researchers to understand its functionality and develop
effective countermeasures. It also reveals trends in attacker techniques, guiding proactive prevention strategies.
Malware classification differs from malware detection, which identifies the presence of malware in a system. Malware
classification categorizes and organizes various types of malware. In contrast, malware detection directly identifies
specific malware instances, allowing timely intervention to prevent or minimize their impact. When analyzing malware,
researchers can use different techniques to help explore the structure and behavior of the malicious code. These
techniques broadly fall into two macro-categories: (i) dynamic analysis and (ii) static analysis. Security researchers
must tackle the challenge of widespread malware campaigns and identify and protect from new and old malware strains.
However, traditional signature-based approaches to malware analysis are no longer enough in the face of constantly
evolving malware [13]. Attackers use increasingly sophisticated techniques to evade detection, such as polymorphic
and metamorphic malware, which can alter their code to avoid signature detection. As a result, there is a growing
need for novel and advanced methods to analyze malware, including behavioral analysis, and integrating (i) Machine
Learning and Deep Learning. These techniques allow for a more in-depth understanding of the behavior of malware
and its impact on systems, enabling analysts to identify and respond to threats more effectively.

4.1 Static Analysis

Static analysis is a technique employed in malware analysis that involves examining the binary or code of a malicious
program without executing it. This approach focuses on analyzing the structural and content aspects of malware samples
to identify potential malicious behaviors and understand their operational mechanisms without direct execution. Widely
used tools for static analysis include disassemblers, decompilers, and debuggers, which facilitate the extraction of the
instructions used by malware to execute malicious actions, such as data theft, system modification, or propagation. In
addition, static analysis enables the identification of indicators of compromise (IOCs), such as file names, network
traffic patterns, registry keys, and other attributes associated with malware. By examining the code or binary, researchers
can extract signatures or behavioral patterns that aid in detecting the presence of malware on a system [158]. These
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signatures can detect malware in a system by identifying matching patterns [219]. A convenient approach explored in
this survey is to represent information extracted through static analysis by visualizing it in images, primarily due to
visual similarity among variants of the same malware. Using images helps researchers to have a global view of the
entire malware without losing local details. Combining feature extractors and Machine Learning models can use this
characteristic to achieve accurate classification and detection results.

4.2 Dynamic Analysis

Dynamic analysis is a technique for examining malware behavior by executing it in a secure controlled environment, such
as a sandbox or virtual machine. Unlike static analysis, which inspects code without running it, dynamic analysis allows
direct observation of malware interactions with the operating system and network resources. Online sandbox platforms,
including Any.Run [73], VirusTotal [194], Joe Sandbox [104], Cuckoo Sandbox [51], and Hybrid Analysis [10] provide
automated environments for the safe execution of malware and the generation of detailed behavioral reports. Security
analysts employ monitoring tools, such as system monitors, network analyzers, and debuggers, to detect malicious
activities such as file creation, system modification, or communication with command-and-control (C2) servers.
Furthermore, dynamic analysis reveals evasion techniques, such as anti-debugging or antivirtualization strategies [45],
improving the understanding of sophisticated malware. By analyzing malware behavior within an isolated environment,
analysts can more accurately assess the nature and potential threat of malicious code. Moreover, dynamic analysis
can be augmented through visualization techniques, where run-time behavioral data is transformed into image-based
representations, facilitating clearer interpretation and efficient handling of emerging malware variants.

4.3 Machine Learning

Machine learning has become a fundamental approach in malware analysis, enabling automated classification and
detection of malicious software based on its inherent characteristics and behavior [207]. By examining various features,
including file attributes (such as size and type), system interactions, network activity, and other indicators, machine
learning algorithms can effectively distinguish between benign and malicious software. ML models monitor the runtime
behavior of malware during dynamic analysis, detecting malicious patterns by examining its interactions with system
components and network communications. In static analysis, these algorithms assess code structure and binaries to
detect malicious patterns. The adoption of deep learning, particularly Deep Neural Networks (DNNs), represents a
significant advancement in this domain. Over the past decade, deep learning techniques have gained prominence due
to their remarkable performance across various fields, including image recognition and natural language processing.
Convolutional neural networks (CNNs) excel in malware analysis by providing superior performance in malware
visualization compared to traditional machine learning models. Despite their reliance on substantial computational
resources and extensive datasets, DNNs have significant potential to improve malware detection and classification.

4.4 Malware Visualization

Malware visualization is an analytical technique that transforms the behavior and characteristics of malicious
software into visual representations, facilitating its analysis and classification. Visualization provides a clear view
of system and network activities, helping analysts identify patterns, uncover connections, and detect possible attack
pathways. Visualization techniques generate graphical representations of different malware attributes, including network
interactions, file operations, and system calls. By examining these visual representations, analysts can gain insights into
the malware’s operational techniques, such as evasion strategies and exploited vulnerabilities. In addition to aiding
malware detection and analysis, visualization can also enhance classification tasks by depicting malware samples as
images, facilitating the differentiation between various strains. Furthermore, malware visualization is instrumental in
identifying minor variations among related malware samples. As malware authors frequently produce new variants
with slight code modifications, visualization effectively captures these differences, aiding in the detection of related
strains. By leveraging visual representations of malware behavior in combination with machine learning techniques,
experts can efficiently identify similar and distinct patterns in malware samples, facilitating the classification of new or
previously unknown threats.

5 Unified Framework for Visualization-based Malware Detection

This paper presents a unified framework for visualization-based malware detection. This framework aims to
comprehensively survey various state-of-the-art research in the visualization domain and to identify future research
directions to improve security. We outline the fundamental process of visualization-based malware classification
into five phases: Dataset Collection, Image Generation, Feature Extraction, Classification, Evaluation, and Model
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Figure 2: An End-to-End Framework for Visualization-Based Malware Detection Across Diverse and Evolving Threat
Landscapes.

Robustness and Adaptation. These steps form the pipeline as seen in Figure 2. Figure 4 provides a more detailed
taxonomy of the first part of the pipeline, from the selection of the file type to the feature extraction step.

1. Dataset Collection. Researchers collect datasets of malware and benign samples in row form or image format
in this step. Some benchmark datasets are designed explicitly for visualization-based malware detection, such
as MalImg.

2. Image Transformation. This phase distinguishes visualization-based malware detection approaches from
other methods of malware detection. During this phase, researchers generate several images for each malware,
employing various algorithms such as B2IMG and Word2Vec.

3. Feature Processing. In this phase, high-level features are extracted from malware images to highlight essential
patterns, reduce dimensionality, and generate meaningful input for the classification model. Techniques
such as Local Binary Patterns (LBP), GIST descriptors, and dimensionality reduction methods like Principal
Component Analysis (PCA) can be employed to enhance feature quality and efficiency.

4. Classification. For predicting input features, we opt for Machine Learning (ML) and Deep Learning (DL)
models as malware classifiers. Basic ML models like Support Vector Machine(SVM), Random Forest(RF),
XGBoost, etc., and DL models such as Convolutional Neural Networks(CNN), Deep Neural Networks(DNN),
etc., can serve as effective malware classifiers.

5. Evaluation. Visualization-based methods quantitatively evaluate the predictions of individual classifiers
using accuracy measures and qualitatively assess them using explainability and interpretable terms. Binary
classification methods provide probabilities for malicious or benign samples, and multi-classification methods
offer probabilities for various malware families.

6. Model Robustness and Adaptation. This phase involves techniques to enhance the resilience of the
model against adversarial attacks, obfuscation techniques, and concept drift. Additionally, adaptive learning
techniques ensure that the model remains effective against evolving malware patterns.

5.1 Dataset Collection

Researchers have extensively explored a wide range of datasets in their experimental investigations. The selection of
appropriate datasets is paramount, as it forms the foundation for conducting rigorous and reliable research. Consequently,
it is crucial to identify and prioritize datasets that are most prevalent and widely used within the domain.

When researchers seek malware samples, they can adopt two distinct approaches. The most common approach involves
selecting a malware dataset explicitly designed for classification tasks[236, 159, 200, 227, 117, 52]. These datasets
provide readily available information that other researchers can easily leverage to construct image representations.
However, these datasets have limitations regarding the flexibility of the available information and their overall size.
An alternative approach is to create a dataset by utilizing expansive malware databases such as Malware Bazaar,
Virus Share, or VX Heaven[93, 152, 21, 111, 102]. This approach offers authors more freedom in selecting modern
malware families to consider and determining the type of information to gather. However, it comes with the trade-off
of increased complexity in collecting the data and the opportunity to benchmark their model against services such
as VirusTotal(VT). Researchers often tailor datasets created using malware repositories(MalwareBazaar, VirusShare,
VX-Underground, etc.) to the specific use cases presented in their respective research papers, resulting in significant
variations in content [222, 48].
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The MalImg and BIG2015 datasets have gained significant attention in studies focusing on executable malware, as
highlighted in Table 3. These datasets collectively account for a substantial percentage of citations among the datasets.
Among them, the MalImg dataset [157] is the most frequently cited dataset for visualization-based malware detection
using PE malware. It is a publicly available image dataset comprising 9, 339 malware executables from 25 families.
The dataset derives its executables from the Anubis analysis system, converting each into a grayscale image by mapping
individual bytes to pixels. This dataset comprises a mixture of packed and unpacked malwaanging from e, with specific
malware families such as Yuner.A, VB.AT, Malex.genJ, Autorun.K, and Rbotgen being packed using UPX [175].
Additionally, the dataset exhibits a high level of imbalance, spanning from 2, 949 samples belonging to the Allaple.A
family to merely 80 samples associated with the Skintrim.N family.

The second most cited dataset, the Microsoft Malware Classification Challenge Dataset (BIG 2015 or MMCC) [178],
comprises 10, 860 malware executables belonging to 9 distinct families. Each malware executable in the dataset has
a unique identifier consisting of a 20-character hash value paired with an integer denoting the malware family name.
In addition, the dataset includes metadata that collects various information, such as function calls, strings, and more,
from the binaries. It also provides assembly files associated with each binary. Similar to MalImg, the dataset exhibits
imbalanced distribution among the malware families. Furthermore, the Dumpware10 dataset [29] consists of 3, 686
malware executable samples belonging to 10 different families. The dataset also includes 608 benign samples. The
images in this dataset are in PNG format and available in dimensions 224, 300, and 4096.

The Malevis dataset [28] is an RGB-based dataset specifically designed for multi-class malware categorization. It
comprises 9, 100 training samples and 5, 126 validation samples, with images distributed across 26 classes. Among
these classes, 25 correspond to different types of malware, while one class represents benign samples. The dataset was
constructed by extracting binary images from malware files provided by Comodo Inc. The images are available in two
square resolutions, namely 224× 224 and 300× 300 pixels. Additionally, the Malheur dataset [177], contributed by a
security research team at the University of Erlangen, encompasses 3, 131 samples from 24 malware families. Among the
research papers considered, samples from the VirusShare repository rank third in terms of usage. The authors of these
papers generated their dataset by randomly selecting samples from VirusShare, resulting in variations in the number of
families considered. Another frequently referenced dataset in the literature is the MALICIA dataset introduced in [156].
This dataset comprises samples collected by analyzing servers responsible for distributing drive-by malware downloads.
In addition to these datasets containing raw executable malware samples, researchers have provided datasets consisting
solely of pre-extracted feature vectors from the binaries. Notable examples include the EMBER dataset [12] and the
more recent BODMAS dataset [240]. Such datasets typically offer a more significant number of samples and malware
families, but the absence of actual binary files limits them.

Most of the research conducted on visualization-based Android malware has mainly focused on two datasets, Drebin
and MalGenome, as visible in Table 3. The Drebin dataset holds significance in Android malware analysis as it contains
5, 560 malware samples and 123, 453 benign applications collected between August 2010 and October 2012. Similarly,
the MalGenome dataset [252], collected between 2010 and 2011, consists of 1, 260 malware applications. It is important
to note that these datasets are relatively old and, as technology advances, the samples they contain become outdated and
less representative. The authors of [7] introduced a novel Android malware dataset for binary classification, comprising
16, 868 samples (14, 285 malware, 2, 583 benign). This dataset, derived from the Drebin and Androzoo repositories,
is publicly available, along with the accompanying code, to facilitate reproducibility and future research. Table 3
provides a comprehensive overview of the frequently used datasets for visualization-based malware detection. For each
benchmark dataset listed, we provide accompanying details, namely the title of the dataset, the year of publication, the
number of malware and benign samples, the number of families (identified by #Fam), the time duration for which the
samples are collected (identified as POT ), the type of file identified as TOF (e.g., an image, apk, executable, elf, or
another file extensions), the availability status of each dataset (i.e., whether it is publicly accessible or not), the total
number of citations for the dataset identified as #Cit., the references leveraging the dataset. All datasets listed in Table
3, except AMD and Malgenome, are publicly available, facilitating further analysis and comparison. MalImg, Malheur,
and Dumpware10 are image datasets, while all other datasets are available in their original .exe or .apk format. However,
it is worth noting that AMD and MalGenome are no longer active projects, rendering their data inaccessible. As a
result, the MalImg and Drebin datasets remain the primary choice for obtaining malware samples. Hence, researchers
commonly use these datasets for visualization-based malware detection. However, specific datasets like BIG2015 have
limitations, such as the unavailability of PE files and the absence of benign samples. These limitations hinder the
comprehensive extraction of features and make these datasets more suitable for close-set inference tasks focused on
identifying known malicious files rather than general malware detection.

Regarding Android malware, Drebin stands out as the most widely used dataset in numerous studies. However,
[98] observed that the Drebin dataset may contain duplicate files, limiting access to genuine APKs and reducing the
amount of usable malware data. Despite these limitations, researchers continue to extensively utilize Drebin and the
aforementioned PE malware datasets, even in recent research, as the primary sources of malware data for developing
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Table 3: The most used datasets for visualization-based malware detection

Dataset Name Year #Malicious
Samples

#Benign
Samples

#Fam. POT TOF Avail. #Cit. Ref.

VX-Heaven 1990 0 0 0 1990-2010 any ✓ 217 [233, 90, 129, 228, 91]

VirusTotal 2004 0 0 42 2004-2025 any ✓ 0 [161, 102]

Leopard Mobile 2009 14,733 2,486 0 - apk ✓ 217 [154]

MalImg 2011 9,339 0 25 - Grayscale ✗ 1,089 [117, 52, 227, 78, 134, 6, 215, 154, 212, 29,
100, 211, 180, 80, 216, 168, 24, 15, 199, 11,
67, 251, 118, 143, 48, 162, 172, 183, 113,
190, 86, 245, 241, 213, 9, 7, 247, 189, 120]

Malheur 2011 3,131 0 24 2006-2009 .exe ✗ 890 [152, 195]

VirusSign 2011 0 0 0 2020-2025 any ✓ 0 [127]

Contagio Mobile 2011 0 0 0 2011-2025 apk ✓ 0 [146, 24]

Malgenome 2012 1260 0 69 2010-2011 apk ✗ 2,842 [66]

VirusShare 2012 61,455,426 0 0 2012-2025 any ✓ 1,041 [93, 152, 21, 93, 212, 176, 221, 24, 129, 223,
67, 253, 190, 241, 105]

Drebin 2014 5,560 123,453 4 2010-2012 apk ✓ 2,359 [192, 174, 62, 145, 238]

BIG2015 2015 10,860 0 9 2006-2015 .exe ✓ 327 [236, 159, 200, 227, 133, 78, 112, 171, 250,
215, 29, 63, 180, 204, 168, 76, 57, 2, 199, 11,
228, 26, 101, 79, 118, 143, 48, 162, 37, 169,
61, 113, 190, 86, 241, 213, 7, 247, 243, 65]

AndroZoo 2017 22,707,999 0 42 2011-2025 apk ✓ 0 [111]

AMD 2017 24, 553 0 71 2010-2016 apk ✗ 440 [229, 146, 97]

CICAndMal 2017 2018 426 5, 065 42 2015-2017 apk ✓ 217 [127]

Ember2018 2018 300, 000 300, 000 0 2012-2018 .exe ✓ 338 [217, 134]

MaleVis 2019 8, 750 5, 476 25 2017-2018 RGB-
image

✓ 24 [67, 180, 241, 9, 7]

CICInvesAnd
Mal2019

2019 426 5, 065 42 2017-2019 apk ✓ 143 [62]

MDA 2019 500 500 10 2019-2025 csv ✓ 23 [241]

SOREL-20M 2020 10, 000, 000 10, 000, 000 0 2020-2020 .exe ✓ 122 [245]

CICMalDroid
2020

2020 17, 341 0 0 2017-2018 apk ✓ 94 [174, 238]

MalwareBazaar 2020 0 0 0 2020-2025 any ✓ 217 [222, 48]

Dumpware10 2021 3, 686 608 10 - RGB
image

✓ 44 [29, 204]

BODMAS 2021 57, 293 7, 142 0 2019-2020 .exe ✓ 45 [39, 113, 145]

Android Malware 2025 14, 285 2, 583 2 2025 Grayscale ✓ 2 [7]

visualization-based algorithms targeting modern malware detection. The AMD, BIG2015, and Ember datasets are
the exceptions to the rule, as they cover only short periods and do not account for the significant transformation and
progression of malware over time. Neglecting this aspect can substantially impact the effectiveness of malware detectors,
as the significance of features in effectively distinguishing malware may vary over time. Furthermore, many recent
detection methods rely on outdated malware data sets to develop and evaluate solutions. This approach poses a potential
risk to the models’ ability to generalize to new and emerging malware.

For robust and accurate malware detection, it’s essential to consider malware’s dynamic nature and use up-to-date
datasets reflecting the current threat landscape. Due to differing objectives and methodologies in sample collection, many
datasets lack balance in the number of samples per family, with only a few authors addressing this issue. Commonly
used techniques are oversampling families with fewer samples or undersampling families with the most samples [52]
[26]. Other authors group different family variations in a single family with similar content to show a coarse-grained
classification [78]. An alternative to these solutions proposed in [100] employs a weighted linear system to solve the
weights of the output layer of the convolution neural network (CNN) to correct the bias of the Neural Network toward
more common families.

Figure 3 illustrates the percentage of datasets used in the articles considered during the years 2018-2025. When
researchers assess models, they face choices like how to partition datasets into training, validation, and test sets. The
different approaches vary substantially, even on the same dataset. Often, clarification is needed on how the test set
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integrates with training. Some authors repurpose the test set for validation during training, reporting its metrics as final
results. Others follow a similar process but assess the model across the entire dataset.

Figure 3: The percentage of datasets used in the considered papers during the year 2018-2025

Few reserve the test set exclusively for model evaluation. Moreover, specific datasets pose unique challenges. For
instance, Big2015 comprises 10, 000 samples in both its training and test sets. Many articles only utilize the 10, 000
samples allocated for training in their experiments. Another problem is related to the issue of imbalance that we have
discussed before. Different ways of addressing this issue may cause some models to outperform others simply because
they oversampled or undersampled their dataset more effectively. Researchers must consider these problems because
they limit the ability to confront and explain models and might generate results that are not representative of the model’s
real power. In the last few years, the accuracy of the best models reached almost 100% [61, 212].

5.2 Image Generation

This section defines the methods used in the literature to visualize malware files in image form. First, we introduce
which characteristics, dynamic or static, are usually employed to generate images. After this, we explore the techniques
used to translate the data into a graphical form.

5.2.1 Image Visualization Techniques

Our observations on the types of features utilized in visualization have led us to identify three distinct approaches: static
visualization, dynamic visualization, and hybrid visualization.

Static visualization of malware entails representing the content of malicious software, either in the form of hexadecimal
binary code or source code written in assembly format, as images without executing them. The hexadecimal view
displays the machine code as a series of hexadecimal values. Analysts can examine and graphically represent various
pieces of information within the machine code, such as instruction code data structures, starting at a memory address.
Additionally, we can visualize the entropy information derived from the hexadecimal code. Conversely, the assembly
language source code encompasses not only the symbolic machine code instructions but also details about memory
allocation, function calls, and variables.

Dynamic-based visualization techniques involve the execution of files in a sandbox environment, such as the Cuckoo
sandbox, to extract relevant features representing malware behavior. These features are then processed to generate
grayscale or color images based on the experimental requirements. However, compared to static visualization, we
have observed a relatively limited amount of effort dedicated to dynamic visualization approaches (see Table 4). Static
visualizations lack real-time and interactive features and cannot depict temporal changes. Dynamic visualization
techniques are essential to capture the evolving patterns and trends that unfold over time in malware utilizing
polymorphic and obfuscation techniques. Dynamic features such as API calls [223], memory dumps [29], network
traffic [230] [191], system calls [35], are widely used for malware visualization.
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Figure 4: Taxonomy of visualization-based malware detection

Hybrid visualization aims to harness the advantages of static and dynamic techniques. Static features are adept at
capturing the structural organization and composition of the underlying binary, thereby uncovering commonalities among
different malware variants. Conversely, researchers specifically consider dynamic features to model the behavioral
aspects of malware. Within the framework of hybrid visualization, these two feature types can be amalgamated and
consolidated into a unified image [95] [161] [38] [109]. In particular, Huang et al. [95] used static analysis to generate
an RGB representation of the static code using the byte sequence. Then, they used dynamic analysis to extract the API
call sequence of the samples and generated malware images by assigning RGB values to each call. Finally, one can
produce a hybrid image for classification by placing the dynamic and static representations one below the other.

We can visualize malware files as images using various techniques, including (i) raw bytes, (ii) meta-data information,
or (iii) runtime data. In the following, we will dive into the details of these visualization approaches.

Raw Bytecode Images. Malware often appears as executable files[205]. Raw byte visualization converts these files
into images by mapping their binary content, enabling analysis of structure, obfuscation patterns, and hidden data. This
technique helps reveal embedded functionality and highlights similarities or differences between malware samples.
Several studies have investigated the conversion of raw bytes from executable formats (e.g., EXE, APK, ELF) to
grayscale or RGB images for visualization-based malware detection [157, 229, 173]. Nataraj et al. [157] proposed a
technique known as grayscale image conversion for visualization-based malware detection. This approach has gained
widespread adoption in academic research for malware detection [142, 46, 132]. They generate grayscale images by
utilizing the byte values from the binary representation of executables or applications, mapping them to a range of 0 to
255, representing various levels of gray. These images consist exclusively of shades of gray, with black representing the
lowest intensity and white representing the highest intensity. Many researchers divide binary executables into 8-bit
substrings and convert each substring into a 1-D vector of decimal numbers, regardless of the image type or color
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map, before generating the grayscale image. However, some researchers have chosen different substring lengths, such
as 16-bit [147], or calculated fixed lengths [115], based on their specific requirements. Since the authors might not
have access to the samples in binary form, they need to adapt the algorithm to transform the malware into an image to
suit the specific format of the samples. The B2IMG conversion algorithm offers a variant of the standard bytecode
image technique, suitable for cases where we use the sample’s hex dump [204]. We can apply a similar procedure with
opcodes instead of directly on the binaries by interpreting opcodes as integers and selecting only the most common ones
[101] [76] [129] [200]. The values at each position can then be interpreted as bytes and transformed into grayscale
images. Qiao et al. [171] presented another method that utilizes the Word2Vec model to compute a fixed-length vector
representation for each assembly instruction in every malware sample. The word vectors are combined, generating a
matrix of values for each sample, which can be interpreted as a grayscale image. Although researchers widely use and
find it relatively easy to implement the bytecode method, which makes it the standard technique in most research papers.
However, they often limit its utilization due to the potential violation of the locality principle during the translation
from binary to image. Directly converting non-image data to pixel values may fail to preserve the spatial relationships
or visual coherence, leading to inaccuracies in representing the original data distribution within the resulting images.
Advanced methods employ techniques such as hashing[159] and space-filling curves [21] to tackle this issue. By
large, the bytecode method excels in its versatility, as it can process different types of information from a malware file,
regardless of whether it is dynamic or static. It processes the information as a sequence of bytes, transforming it into a
visual image for effective visualization.

Metadata Information Images. The metadata of malware files encompasses supplementary information linked to
the file, which extends beyond the binary code of the malware. Metadata can help analyze and understand malware
because it provides additional context and information that can help identify and classify the malware. Various types of
metadata information can be used in different ways to create visual elements that aid malware analysis. For example,
metadata from the Portable Executable (PE) header, such as the address of entry points, sections, and optional header
details, can be transformed into visual elements to help understand the structural aspects of the files. The PE header
contains valuable content, including the file structure description and other information that researchers can exploit to
identify and classify malware. Moreira et al. [149] used this technique to classify 25 ransomware families. In their
paper, the authors used the raw PE header without assuming the length of the fields or requiring expert knowledge to
extract features. The PE header has a fixed length of 1024 bytes, which researchers can easily interpret as a 32× 32
matrix with the application of an SFC. Researchers have also experimented with the use of boundaries on executables
sections. In particular, Xiao et al. [228] used the section seizes extracted from the malware PE header to mark the limits
of each section with a different color to facilitate visual distinction between each part. Metadata related to imported
and exported functions or modules, including their relationships and dependencies, can also be visualized to provide
insights into the code’s functionality and the interactions between different components. Metadata pertaining to digital
signatures can be overlaid on the images of the binaries to visually depict the trustworthiness or authenticity of the file,
aiding in the identification of potentially malicious executables. In addition, metadata like file size, creation date, and
file extensions can be encoded as visual features and incorporated into the visualization to provide additional context
and information about malware samples. The technique of utilizing metadata for malware visualization is particularly
prevalent in analyzing Android malware, owing to the abundance of useful metadata information available in the
APK files. Application signatures, certificates, and information in the AndroidManifest.xml file serve as valuable
metadata sources for the analysis and comprehension of Android malware. In [20], Bakir et al. use the classes.dex
file as the basis for their analysis. This file can be read as an integer array and resized to form a 2-D matrix. Singh et
al. [192] use the classes.dex, resources.arsc, AndroidManifest.xml files, and the content of the META-INF
folder in order to generate the visualization representation of the malware. These files are interpreted as an array of
bytes, resized in a matrix, and combined to represent the final 2-D grayscale image. Metadata information provides
crucial details that aid researchers in understanding the characteristics and behaviors of Android malware.

Run-time Information for Image Generation. Another approach for generating an image from malicious binaries
involves gathering features obtained through behavioral or runtime analysis. This method executes the malware within a
secure environment or sandbox and uses the collected data to create images. This data includes network communications
logs, file access, API calls, return values, call times, call process numbers, system calls, resource consumption, registry
keys, memory artifacts, and more. The most commonly adopted technique is to monitor system calls [223]. Different
approaches exist in terms of interpreting the extracted information. For instance, [195] assigns a hexadecimal code
to each extracted API call, resulting in a byte sequence that can interpreted as a grayscale image. Conversely, [76]
models the image as a matrix, where each value corresponds to an API call, and it assigns a value of 0 if the malware
does not use the API call or 1 if it does. Another method to interpret dynamically extracted information as images
is achieved by substituting the dynamic analysis report with the malware sample’s original binary and generating a
grayscale image from that [140]. In this case, the report file itself is used instead of the malware file to represent the
sample in further analysis steps. The dynamic analysis data is gathered from .json files and converted into images
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(a) Line-by-line (b) Gray-code (c) Hilbert (d) Z-order (e) Wrap around

Figure 5: The figure shows a representation of the most common SFC used in the literature. The line-by-line method is
the most common way grayscale bytecode images are generated.

using the standard grayscale method. This way, the techniques usually applied on the binary file for extracting static
features can be applied on a .json file that contains the representation of dynamic information.

In their study, Bozkir et al. [29] employed memory forensics techniques to extract temporary data from the computer’s
physical and virtual memory. They utilized tools such as “Procdump” (reference missing) to dump this data while
executing the malware sample in a virtual environment. Due to the substantial file sizes produced by this method,
researchers adopted RGB images. In this approach, each image pixel represents three sequential bytes, allowing for the
inclusion of color, in contrast to the traditional grayscale method that relies on bytecode. The approach used by Xu
et al. [230] involves the use of network-captured packets as the foundation for image generation. Concatenating the
captured PCAP files for each sample, researchers interpret their bytes as a grayscale image. Agrafiotis et al. [3] have
more recently explored using PCAP files in conjunction with transformers.

In summary, dynamic information visualization has excellent potential for malware analysts [203]. However, most
of the research focuses on the static feature-based image generation technique (see Table 4. The emphasis on static
feature-based image generation arises from the challenges and diverse approaches associated with dynamic analysis,
which become more complex with larger datasets, making testing challenging. Additional experimentation is needed to
explore the real potential of dynamic analysis and compare it with more established static analysis techniques.

5.2.2 Image Representation

This section elucidates the methodologies employed in existing literature to convert extracted dataset information into
visual images. The utmost importance lies in choosing an optimal technique for image representation because it defines
how to organize the data visually. These approaches represent data in a visual format, maintaining essential features
such as relational structures and interconnections. Researchers must balance creating an effective image layout for
feature extractors and classifiers while minimizing information loss during data transformation.

Space Filling Curves. The conventional bytecode method for translating a binary file into an image leads to information
loss, including a partial degradation of locality. This implies that arranging bytes in rows will cause line breaks
to separate bytes originally adjacent in the code. In an attempt to address this issue, researchers have conducted
experiments on the byte layout of the image, which refers to the order in which the pixels are generated and arranged
within the image. Several studies, including those by Rustam et al.[183], Tekerek et al.[204], Qiu et al.[172], Pratama
et al.[169], and Chaganti et al. [37], discuss the most commonly used and straightforward approach, known as the
“line-by-line” or “carriage return” method. In this method, pixels are arranged in a specific order, placing each pixel
after the previous one until reaching the preferred line width. Subsequently, the next pixel moves to the start of the
following line. However, this method overlooks the issue of locality.

In addition, researchers have explored the utilization of various Space-Filling Curves (SFC) to generate grayscale
images. Space-filling curves are mathematical constructs that traverse and fill a given space continuously. In malware
visualization, one can use these curves to fill a matrix of dimensions N × M , where each pixel represents a value
derived from the original malware sample. This approach allows for the generation of the corresponding image of the
sample.

In [161], O’Shaughnessy et al. use three different SFC techniques: Z-order, Gray-code, and Hilbert curves. Similarly,
in the study conducted by the authors in [221], the wrap-around and H-curve approaches are utilized in addition to the
standard line-by-line method. Hashemi et al. [90] also adopt the wrap-around method, among others, to generate the
images. Another study by authors in [21] leverages the website binvis.io [49] to generate the images. This website
offers various ways to represent ASCII printable characters by assigning each a distinct color and arranging the pixels
using an SFC of choice, including line-by-line, Z-order, and Hilbert. The Figure5 illustrates the most commonly used
SFC in the literature.
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Markov Images. In various studies, [61, 39, 168, 90] researchers explored the assumption that the order of instructions
in an executable file is not random but based on the locality principle. Their experiments employed Markov chains to
generate information-rich images, recognizing that the preceding attribute influences each attribute (bytes, mnemonics,
opcodes, etc.) in the file. To represent files visually, one approach is to treat each byte in the byte stream as a state,
with 256 possible states for each element. By assuming that the next state depends only on the current state, we
can conceptualize the byte sequence as a Markov chain, such that P (si+1|s0, ..., si) = P (si+1|si) if si represents
the attribute in position i. The formula in Equation 1 expresses the probability of transitioning from state m to the
subsequent state n.

Pm,n = P (n|m) =
f(m,n)∑256
n=0 f(m,n)

(1)

Where f(m,n) is the frequency of the transition from state m to state n. In contrast, the denominator
∑256

n=0 f(m,n)
signifies the sum of frequencies for all possible transitions from state m. This approach allows for the extraction of
a matrix of dimensions 256 × 256. The resulting matrix, often called a Markov image, encapsulates the transition
probabilities and can visually represent the underlying malware characteristics.

Hashing Schemes. Researchers have used different hashing algorithms to generate images, allowing them to extract
locality-sensitive information and combine local and visualization data in feature images. One particular algorithm,
“Minhash”, can create a concise visual summary or fingerprint of malware samples. Minhash [31] is a prominent
hashing algorithm employed for estimating the similarity between sets. It finds extensive utilization across diverse
domains, including document similarity analysis, recommendation systems, and clustering. In the context of malware
visualization, we represent each sample using a set of opcodes or opcode groups, applying the minhash hashing function
to them. This method produces a fixed-size image that can be used in the following steps of the pipeline. In malware
visualization, researchers extract relevant attributes or characteristics from the samples, such as opcode sequences,
API calls, byte-level n-grams, or other suitable representations of the malware file. Next, researchers extract specific
elements(i.e., shingles) of a fixed length contiguous subsequences and apply the hashing algorithm to the resulting
set. This procedure culminates in the creation of grayscale images [200]. Charikar et al. [40] presented Simhash
as a locality-sensitive hashing scheme primarily used for recognizing similar text and identifying duplicated web
pages. The idea behind Simhash is the use of rounding algorithms to maintain the locality principle while hashing. A
rounding algorithm converts numerical values to a specified level of precision or rounding interval. This procedure
maintains locality in its output by ensuring that nearby values in the input remain close to each other in the rounded
result, preserving the proximity of data. Common hashing algorithms have the desirable property of low collision rate,
Simhash, similar to Minhash, instead aiming to make the hashes of two similar inputs similar themselves. In [159], [57]
and [61]. The technique of Simhash involves representing a document as a vector with a specified number of bits. Each
bit in the vector corresponds to a hash value calculated from the document’s keywords. To be more specific, the value
of the n-th bit of the vector is determined by computing the hash value of all the keywords present in the document. We
can determine the value of the n-th bit as 1 or 0 based on whether the count of hash values with the n-th bit (for all
keywords) set to 1 is greater than the count of hash values with the n-th bit set to 0 or not.

Entropy Images. Entropy is a concept derived from information theory and statistics [187]. It measures the randomness
or uncertainty of a system or data. Experts in malware analysis primarily utilize it to study the techniques employed
by malware authors to obfuscate or conceal their malicious intentions. Calculating entropy values involves dividing
malware binaries into segments [72] and then determining the entropy value for each segment. Subsequently, these
entropy values are converted into pixels to create an image representation. Another approach, proposed by [253], [227]
and [39], involves using entropy graphs where the entropy of the entire binary serves as the image itself. This method
utilizes entropy time series to capture the content of local discriminative features in each file. Employing this approach
proves beneficial for the classifier in accurately distinguishing the samples into their respective malware classes.

Colored Images. Researchers have recently embraced the use of RGB and other colored images in malware detection
due to their ability to convey more texture information compared to grayscale images, resulting in improved detection
rates [154, 101, 61]. However, the true advantage of RGB images lies in their capability to incorporate different
representations within the three color channels. There are two primary approaches to generating RGB images. The first
approach involves utilizing the three RGB channels to represent three distinct characteristics [231], while the second
approach involves directly extracting the three channels from the attributes of malware binaries [211]. In the first case,
we create three grayscale images using different techniques, and we use their output as each of the three channels of
RGB [61, 168]. For example, in [48], the authors introduce a novel image variant referred to as the GEM image. It is a
3-channel image combining the gray-level matrix, Markov, and entropy graph images.

Authors can utilize a combination of dynamic and static data to create more accurate representations of malware and
its unique characteristics in generated images. Another approach involves reducing image dimensions and overlaying
various binary sections, as described in [67]. Although this approach does not provide additional information to feature
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extractors and classifiers using RGB images, it can be useful for resizing images to a fixed dimension. In [211],
researchers utilized a color map to convert grayscale images into colored images, which improved classifier accuracy.
Additionally, researchers have used RGB images to incorporate specific information extracted from executable headers.
For instance, Xiao et al. [228] used different colors to highlight the PE sections, improving classifier performance.

5.3 Feature Processing Methods

This section describes the data preprocessing phase utilized in the literature. This phase entails crafting a more
manageable and informative dataset suitable for training and evaluating the models. Here, we examine the techniques
for (i) extracting, (ii) selecting, and (ii) reducing features’ dimensionality. Table 4 describes for each analyzed paper,

5.3.1 Feature Extractors

This section addresses the use of different feature extractors usually employed in combination with Machine Learning
techniques. The algorithms presented here provide an explainable methodology to extract valuable characteristics
from images and extrapolate discriminating features. In the following section we will analyze the literature related
to Gabor-based Image Segmentation Technique (GIST), Local Binary Pattern method (LBP), Scale-Invariant Feature
Transform (SIFT), Gray-Level Co-occurrence Matrix (GLCM), Histogram, Neural Network (NN), and the integration
of more than one techniques.

Gabor-based Image Segmentation Technique (GIST). The Gabor-based Image Segmentation Technique (GIST)
[84] was explicitly designed to segment and represent images by analyzing the spatial distribution of local spatial
frequencies and orientations. Gabor filters imitate the functioning of the human visual cortex and consist of sinusoidal
signals that detect texture variations in an image based on their frequency and orientation. These filters act as local
bandpass filters, capturing localization properties in both the spatial and frequency domains. A set of Gabor filters
with various orientations and frequencies ensures spatial localization, extracting precise features by applying them to
the image. Gabor filters possess the capability to identify distinctive textural characteristics that differentiate malware
from benign files or distinguish among different families of malware as state in [157, 11, 168, 188, 152]. Tuning the
parameters of these filters requires careful attention, and selecting suitable values can be challenging. Moreover, since
GIST features depend on the global structure of an image, an adversary with knowledge of the method could potentially
evade detection by rearranging different sections of the code, as mentioned in [78, 132].

In [50] the authors effectively distinguished between benign and malicious PDF samples by transforming the files into
images by utilizing byte and Markov plots. Subsequently, distinctive visual attributes of the images were extracted using
Keypoint descriptors such as SIFT (Scale-Invariant Feature Transform), Oriented FAST, and Rotated BRIEF, along
with texture features like LBP (Local Binary Patterns), Gabor Filter, and Local Entropy. Remarkably, they achieved an
impressive F1-score of 99.48% in Random Forest (RF) classification by employing a byte plot with Gabor Filter.
Local Binary Pattern method (LBP). Researchers widely employ the Local Binary Pattern method (LBP) [160, 137,
90, 226, 151, 222] as a feature extractor in malware visualization approaches. This method generates a new LBP image
by comparing neighboring pixels and assigning them binary values (0 or 1), resulting in an 8-bit binary array. Afterward,
these arrays are converted into decimal values by traversing either clockwise or anti-clockwise. Finally, store these
decimal values in the LBP image at their respective pixel locations. To calculate the LBP value for each center pixel
(LBPc), researchers utilize Equation 2.

LBPc =

n−1∑
n=0

L(gn − gc))2
n (2)

Where n is the number of neighborhood pixels, gn and gc are the gray levels of the neighborhood pixel and center pixel,
respectively. We compute L(x) by using Equation 3 and then combine the resulting LBPc values to generate the LBP
image.

L(x) =

{
0 if x < 0

1 if x >= 0
(3)

In [206], the authors propose a novel method for malware recognition based on byte code. The method incorporates
several steps, including feature extraction using local neighborhood binary pattern (LNBP), concatenation of features,
feature selection utilizing Neighborhood Component Analysis (NCA), feature reduction through Principal Component
Analysis (PCA), and classification using Linear Discriminant Analysis. The LBP feature is known for its stability
and noise resistance but is limited to focusing solely on local features[74]. In [226], researchers have introduced an
approach that utilizes Local Binary Patterns and Principal Component Analysis to detect Android malware. Notably,
their method achieved an impressive accuracy rate of 90%.
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Scale-Invariant Feature Transform (SIFT). SIFT descriptors can increase detection accuracy [135]. This method
extracts features by computing gradient magnitude histograms in eight orientations of bins. Splitting the image into
small sections generates these bins. A sliding window executes the computations, computing the gradient histograms
of each image locality. Cascaded connection functions obtain the final image feature descriptors[134, 152] [154]. To
classify Android malware images, DeepVisDroid [18] utilizes four distinct image-based local features and three diverse
image-based global features. These features are employed to train a lightweight 1d-convolutional Neural Network
model. Recently, the author in [119] converted the malicious file into grayscale images to extract local and global
textural features. They employed SIFT and other descriptors for local feature extraction. GIST and other methods for
global feature extraction. The author also developed a BoVW algorithm to construct a local feature map by selecting
low-dimensional features from the grayscale images. These feature maps were combined to train K-NN, SVM, RF, NB,
and ExtraTree classifiers.

Gray-Level Co-occurrence Matrix (GLCM). Gray-Level Co-occurrence Matrix-based feature extraction
(GLCM) [193] is a popular method to extract texture information from images. Extracting GLCM features involves
considering the spatial relationship of distance and orientation between pixels. A GLCM matrix is created by estimating
the probability density function of gray-level pairs with a predetermined spatial relationship, usually a distance of one
in the four cardinal directions. From that, we calculate relevant statistics to represent the initial image. These statistics
can vary from one research work to another. Table 4 contains, for each analyzed paper, the year of publication; the
information used to create the image (i.e., [S] for static information, [M] for metadata, [D] for dynamic information);
the technique used for the binary representation of the image (i.e, [LbyL] if the paper uses the classic line by line binary
representation, [Others] if the paper uses other Space-Filling Curve (SFC) techniques to lay the pixel in the image other
than LbyL); the image generation technique (i.e., [Markov] if the Markov technique is used to generate the images;
[Hashing] if hashing schemes have been used to generate the images; [Entropy] if Entropy Analysis have been used to
generate images; [Original] if the image generation technique employed are original); the information about the image
color (i.e., [A] for colored images that use the color to add information, [B] for the colored images that do not add
information); the used feature extraction technique (i.e, [G/GIST] for GIST or Gabor filters, [LBP] for Local Binary
Pattern; [SIFT] for Scale-Invariant Feature Transform, [H/GLCM] for Gray-Level Co-occurrence Matrix or Haralick
features, [Hist] if the paper uses histrograms of any type to extract features, [NN] - if the paper uses a Neural Network
to extract feature. The specific architecture of the NN will be specified if possible and a Greek letter will indicate if
[α] the model is trained from scratch, [β] transfer learning has been applied, or [γ] if fine-tuning has been applied,
[Original] if the feature extraction technique is original); if the model uses a fusion technique. Karanja et al.

[108] also utilized GLCM to extract features from a grayscale image. In particular, researchers used only five of the
proposed statistical measures of texture features to extract the relevant data. The selected features are Entropy, Contrast,
Correlation, Angular Second Moment (ASM), and Inverse Differential Moment (IDM). The authors in [216] combines
first-order and GLCM-based second-order statistical texture features with ensemble learning techniques to classify
malware images. Recently, in [192], the authors selected nineteen statistics that measured with the previously described
method, resulting in 76 features.

Haralick textures [88] evaluate image texture properties like coarseness, smoothness, and regularity using a co-
occurrence matrix and equations for contrast, correlation, and angular moment. The authors in [4] conducted experiments
that focused on global properties using Haralick features, but modern techniques have now surpassed them. Unver
et al.[209] transformed Android apps into grayscale images and used Haralick texture and Hu Moments to achieve
over 98% accuracy on malware classification. Karanja et al. [108] proposed an approach to classify IoT malware using
Haralick image features and classifiers like naïve Bayes, K-Nearest Neighbor, and Random Forest. The method involves
converting a binary file into a grayscale image, computing GLCM for each image, and deriving five Haralick features.

Histogram. The histogram captures the color distribution within an image by comprising multiple bins, each
representing the frequency of pixels at specific intensity levels [19]. For grayscale images, histogram construction
involves 255 bins, which correspond to intensity values ranging from 0 to 255. One can employ contrast-limited
adaptive histogram equalization algorithms to enhance the local contrast of each region in a malware image and
shift the focus from identifying similar codes to identifying similar image regions within a malware family. These
algorithms adjust the pixel intensities within individual regions of the image, effectively improving the distinction
between different regions [251]. The evaluation of VisMal demonstrates an impressive accuracy rate of 96%. Kumar et
al. [116] demonstrate the effectiveness of the HOG feature descriptor in extracting texture statistics from grayscale
images. The experiments highlighted the HOG descriptor’s efficacy, achieving remarkable accuracy and outperforming
the Gabor filter and LBP analysis techniques. The researchers in [29] endeavored to generate RGB images from
memory dumps to capture visual patterns. They create feature vectors using GIST and HOG descriptors, which were
subsequently classified using various classifiers. Notably, the SMO algorithm achieved an impressive accuracy of
96.39% when utilizing GIST and HOG feature vectors. Another similar approach, as discussed in [54], involves
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extracting a memory dump file and converting it into a grayscale image. Subsequently, features are extracted from the
image using the histogram of gradients technique.

Neural Networks (NN). The use of Neural Networks as feature extractors in visualization-based malware detection is
gaining popularity due to its ability to automate the analysis and categorization of malware images [211, 59, 227]. By
training NN on a large dataset of malware images, they can automatically identify crucial characteristics indicative of
malicious behavior or traits. These features encompass shapes, textures, visual patterns, and other visual properties that
distinguish malware images. Convolutional Neural Networks, in particular, are capable of detecting code modifications
resulting from code reallocation by learning spatially invariant patterns [78]. Hence, researchers often prefer the
simplicity and utility of using NN as feature extractors. In the study [228], a fine-tuned VGG16 model, specifically
the first five convolution blocks, was employed as the feature extractor for images. Binary texture analysis has shown
improved accuracy and reduced time consumption, making it effective in addressing obfuscation issues. However,
the computational cost of extracting complex texture features from malware images remains high [211]. In contrast,
the authors in [105] utilized the full set of convolutional layers from the pre-trained VGG16 (prior to fully connected
layers). This choice allows the model to utilize rich features without the loss of spatial resolution that would occur
in fully connected layers. The study[241] utilizes a deep residual network (ResNet) as the primary model for feature
extraction. ResNet is known for its capability to learn complex patterns in data due to its deep architecture and residual
learning mechanism. The network can effectively capture both local and global features of malware images after the
enhancement process, improving the overall accuracy of the detection model. One significant advantage of feature
extraction through Neural Networks is that it does not require human intervention or description during the extraction
process.

Feature Integration. Various feature extraction methodologies can ensure a more faithful representation of the original
data. Authors have experimented with using local and global feature extractors to get information about the general
features of the malware without losing focus on local peculiarities. Naeem et al. in [152] designed an original feature
extractor, LGMP, by fusing D-SIFT as the local feature extractor and GIST as the global feature extractor. Their test
demonstrated a significant improvement in the accuracy of the classifier when using LGMP instead of just local (5.4%
increase) or just global (9.2% increase) feature extractors. Feature integration, which involves synthesizing local and
global features, achieves a balance in the influence of local and global features using Gaussian weights. Several authors
have also experimented with the fusion of features extracted from different CNNs [212] [76][64], showing sensible
improvements from the best results of a single CNN. The most used technique in feature integration among different
CNNs is the simple concatenation of the first flattened layer, usually with previous dimensionality reduction, to make
the ensemble flattened layer manageable. Gibert et al. [76] specifically use different generated images to extract
features from the CNNs, all originating from the same binary file. Meng et al. [145] integrates features through a deep
Neural Network model that combines local and global information from these distinct perspectives, allowing for a more
comprehensive analysis of app behaviors. By leveraging multi-view vectorial fusion, LensDroid enhances the detection
capabilities by capturing high-level semantics that are not inherently linked. The authors of [238] proposed the SAC
framework that integrates malware features from DEX files by collaboratively modeling image and graph data. It uses a
task-oriented CNN (IFNeXt) for local image features and a dual-channel GCN for global bytecode structure, capturing
both content and structural malware characteristics. Yu et al. [243] proposed a lossless feature extraction and integration
method that transforms malicious code into semantically intact images. This technique preserves bytecode information
and code text correlations through strategic pixel arrangement and interleaved encoding, mitigating semantic truncation.
A multi-scale feature extraction module ensures uniform embedding of variable-length samples into fixed-size feature
maps, capturing both local and global contextual features as long-text sequences within a matrix. By integrating these
features, this approach overcomes information loss inherent in traditional resizing and cropping, enhancing malware
classification accuracy.

Recent advances in malware detection have explored integrating multiple visual modalities to enhance classification
performance. One prominent approach is presented in [105], they propose a multimodal deep learning fusion framework
that leverages grayscale images, entropy graphs, and simhash images generated from malware binaries. Using separate
VGG16 models trained on each modality, the authors explored feature-level fusion using common operators such as
addition, average, maximum, and concatenation. This study highlights the effectiveness of fusion in malware detection
and the critical role of selecting suitable fusion operators for robust multimodal learning.

5.3.2 Feature selection

An encoding-based technique is mentioned in [153] to reduce the dimensions of D-SIFT and GIST features. During
the local feature reduction phase, they employed D-SIFT to identify interest points in the malware image and extract
128-dimensional features from each patch obtained from a dense grid of patches. Subsequently, they applied the Bag of
Features (BOF) model to perform dimensionality reduction. The BOF model consisted of multiple steps, including
identifying salient local points and creating a dictionary of local features using Fisher vector encoding.
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Table 4: Techniques used to extract features from the starting malware.

Ref. Year Info Binary Repr. Image Gen. Technique Color Feature Extraction Technique Fusion
Technique

Fu et al. [72] 2018 S LbyL SimHash ✓ H/GLCM, Others ✗
Yakura et al. [233] 2018 S LbyL - ✓ NN, Others ✗
Yang et al. [236] 2018 S LbyL - ✗ NN ✗
Darus et al.[58] 2018 S LbyL - ✗ G/GIST ✗
Kumar et al. [117] 2018 S LbyL - ✗ NN ✗
Su et al. [198] 2018 S LbyL - ✗ NN ✗
Cui et al. [52] 2018 S LbyL - ✗ Original ✗
Ni et al. [159] 2018 S ✗ Simhash ✗ NN ✗
Shiva et al. [195] 2018 D Original Original ✗
Xiao et al. [229] 2019 S LbyL Original ✓ NN ✗
Vinayakumar et al. [217] 2019 S LbyL - ✗ NN, Others ✗
Liu et al. [133] 2019 S LbyL - ✗ G/GIST, NN ✗
Hsiao et al. [93] 2019 S LbyL Average Hash ✗ NN ✗
Gibert et al. [78] 2019 S LbyL - ✗ NN ✗
Khormali et al. [112] 2019 S LbyL - ✗ NN ✗
Naeem et al. [152] 2019 S LbyL - ✗ G/GIST, SIFT ✗
Liu et al. [134] 2019 S LbyL - ✗ LBP, SIFT ✗
Akarsh et al. [6] 2019 S LbyL - ✗ NN ✗
Venkatraman et al. [215] 2019 S LbyL Entropy ✗ NN ✗
Hashemi et al. [90] 2019 S Others Markov ✗ LBP ✗
Baptista et al. [21] 2019 S Others - ✓ Original ✗
Yang et al. [237] 2019 M,D ✗ Original ✗ Original ✗
Chen et al. [42] 2019 S Original NN ✗
Qiao et al. [171] 2019 S Original NN ✗
Mercaldo et al. [146] 2020 S LbyL - NN(FFNN) ✗
Lekssays et al. [127] 2020 S LbyL G/GIST NN ✗
Naeem et al. [154] 2020 S LbyL - ✓ NN ✗
Vasan et al. [212] 2020 S LbyL - NN ✗
Liu et al. [132] 2020 S LbyL - ✗ NN ✗
Karanja et al. [108] 2020 S LbyL - ✗ H/GLCM ✗
Xiao et al. [227] 2020 S ✗ Entropy ✓ NN ✗
Jain et al. [100] 2020 S LbyL Original NN ✗
Vasan et al. [211] 2020 S LbyL - ✓ NN
Zhao et al. [250] 2020 S LbyL - ✓ NN ✗
Roseline et al. [180] 2020 S LbyL - Original ✗
Go et al. [80] 2020 S LbyL - NN
Verma et al. [216] 2020 S LbyL - H/GLCM, Hist ✗
Ren et al. [176] 2020 S LbyL Original NN ✗
Vu et al. [221] 2020 S Others Entropy ✓ H/GLCM, NN ✗
Girbert et al. [76] 2020 S LbyL - NN, Others ✗
Iadarola et al. [97] 2021 S LbyL - NN ✗
Singh et al. [192] 2021 S LbyL - G/GIST, LBP, H/GLCM, NN ✗
Dib et al. [64] 2021 S LbyL - NN (CNNα) ✓
Darem et al. [57] 2021 S LbyL Original NN, Others ✗
Sun et al. [200] 2021 S ✗ MinHash ✗ ✗ ✗
Bozkir et al. [29] 2021 D LbyL - ✓ G/GIST, Hist ✗
Pinhero et al. [168] 2021 S LbyL Markov, Entropy ✓ G/GIST, NN ✗
Bagane et al. [15] 2021 S LbyL - NN ✗
Li et al. [129] 2021 S LbyL - ✓ NN (CNNα) ✗
Acharya et al. [2] 2021 S LbyL - NN (EfficientNet- B1β) ✗
Sudhakar et al. [199] 2021 S LbyL - NN (MCFT-CNNγ) ✗
Anandhi et al. [11] 2021 S Markov B G/GIST, NN (VGG3γ, DenseNetγ) ✗
Xiao et al. [228] 2021 S,M LbyL - A NN (VGG16γ) ✗
Wang et al. [223] 2021 D LbyL - N (BiLSTM) ✗
Jian et al. [101] 2021 S LbyL - A NN

(SEResNet50α, BiLSTM, Attention)
✓

Bouchaib et al. [26] 2021 S LbyL - NN (VGG16γ) ✗
Zhu et al. [253] 2022 S ✗ Entropy ✗ ✗ ✗
Chai et al. [39] 2022 S ✗ Entropy ✗ ✗ ✗
Dharmalaksana et al. [63] 2022 S LbyL - ✓ NN ✗
Tekerek et al. [204] 2022 S LbyL - ✓ NN ✗
Bensaoud et al. [24] 2022 S LbyL - ✓ NN ✗
Wang et al. [222] 2022 S LbyL - G/GIST, LBP, NN (ResNet50β) ✓
Olorunjube et al. [67] 2022 S LbyL Original B NN ✗
O’Shaughnessy et al. [161] 2022 S,D Others - ✓ G/GIST, LBP, Hist ✗
Zhong et al. [251] 2022 S LbyL - Hist, NN (CNNα), Other ✗
Kumar et al. [118] 2022 S LbyL - NN (VGG16β, VGG19β, Inception

V3β, ResNet50β)
✗

Mallik et al. [143] 2022 S LbyL - NN (VGG16, BiLSTM) VGG16-
BiLSTM

Conti et al. [48] 2022 S LbyL Markov, Entropy, GEM
Image

H/GLCM, NN (Shallow-CNN,
Siamese)

GEM

Paardekooper et al. [162] 2022 S LbyL - NN (Fast-CNN GA) ✗
Girbert et al. [79] 2022 S,M LbyL Entropy LBP, H/GLCM, NN (CNN) ✗

19



Survey on Visualization-based Malware Detection

Ref. Year Info Binary Repr. Image Gen. Technique Color Feature Extraction Technique Fusion
Technique

Zhu et al. [253] 2022 S LbyL Entropy NN (Siamese, VGG16γ, VGG16β,
Inception V3γ, Xceptionγ, DNN,
RNN)

✗

Vinayakumar et al. [174] 2022 S LbyL - B NN (EfficientNetγ, various pre-
trained networks)

Features from
EfficientNet B0
to B7

Chai et al. [39] 2022 S LbyL Markov, Original A NN (CNN), Others ✗
Chaganti et al. [37] 2022 S LbyL - NN (EfficientNet, B1γ) ✗
Pratama et al. [169] 2022 S LbyL - B NN (EfficientNet, B0-B7γ) ✗
Qui et al. [172] 2022 S LbyL - NN (ShuffleNetα) ✗
Ma et al. [140] 2022 S,D LbyL - NN (CNNα) ✗
Huaxin et al. [61] 2023 S LbyL, Others Simhash A NN (custom-CNNα) ✗
Hashemi et al. [91] 2023 S Others Original A NN (AlexNetβ), Others ✗
Rustam et al. [183] 2023 S LbyL - NN (VGG16β, ResNet50β) VGG16 +

ResNet50
Kim et al. [113] 2023 S LbyL Entropy, Original NN (CNN α) ✓
Lee et al. [125] 2023 S Original Original ✗
Karbab et al. [109] 2023 S,D LbyL Original - NN (HNN), Others ✗
Chaganti et al. [38] 2023 S,D - NN (CNNα), Others ✓
Guo et al. [86] 2023 S,D - NN (CNN) ✗
Jiang et al. [102] 2023 S LbyL - NN (Stripe Pooling-CNNα,

Pyramid Stripe Pooling-CNNα)
✗

Shaukat et al. [190] 2023 S LbyL - B NN (15 CNNsγ) ✗
Moreira et al. [149] 2023 S,M LbyL, Others - B NN (Xceptionα) ✗
Zhan et al. [245] 2023 S LbyL - ✗ LeNet, VGGNet, ResNet, DenseNet,

SqueezeNet
✗

Dhanya et al. [62] 2023 S others Markov ✗ NN ✗
Xuan et al. [231] 2024 S LbyL Original A NN Multi-Feature

Fusion
Vasan et al. [213] 2024 S Others Original ✗ Original ✗
Sharma et al. [189] 2024 S Lbyl Original A NN ✗
Kumar et al. [120] 2024 S Others Original B NN(CNN) ✓
Yang et al. [241] 2025 S LbyL Original A NN(ResNet) ✗
Johnny et al.[105] 2025 S Others Original A NN(VGG16) ✓
Meng et al. [145] 2025 S,D,M Others Original A NN(CNN) ✓
Yang et al.[238] 2025 S Others Original A NN(CNN)) ✓
Ambekar et al.[9] 2025 S Others Original A NN(Siamese Network) ✗
Alam et al.[7] 2025 S LbyL Original A NN(Sp-CNN) ✗
Zhang et al.[247] 2025 S Others Original A GIST,NN(CNN) ✗
Yu et al.[243] 2025 S Others Original B Original ✓

They accomplished Fisher vector encoding by training a Gaussian mixture model (GMM) to estimate the Fisher vector
of dimension 2DK for D-SIFT features. Additionally, they employed PCA to further optimize the results by reducing
the dimensionality of the feature vector to 100. In the second stage, they extracted global features from the malware
image using the GIST feature description and reduced the dimension of these global features to 256.

5.3.3 Feature Dimensionality Reduction

Feature reduction plays a crucial role in image-based approaches, specifically in the context of image-based malware
detection. It encompasses reducing the dimensionality of image data while retaining pertinent information. This section
will explore the feature-reduction and selection techniques in image-based malware detection approaches.

Principal Component Analysis (PCA) [92] is a statistical technique that can extract texture from an image through
dimensionality reduction. When applying PCA to an image, it aims to identify a set of orthogonal axes, termed principal
components, that effectively represent the highest variation in the image data. Consider these fundamental components
as representative patterns of texture. The first principal component captures the direction of maximum variance, while
subsequent components record decreasing variance. [212] provides another example of dimensionality reduction.
The authors apply PCA to reduce the features considered in their ensemble model. Once the features are extracted
from the fine-tuned ResNet50 and VGG16 models, they were further reduced from 2048 to 205 and 6144 to 615,
respectively. The resulting feature vectors from both models retained the component that explains 90% of the data
variation. Consequently, by employing this technique, the feature vector of the ensemble model was condensed to a
mere 815 features.

PCA is utilized in the study by Naeem et al. [152] to extract the most pertinent features obtained through GIST. Similar
to the approach in Vasan et al. [212], the authors employ PCA to merge the remaining features with others extracted
using alternative methods. This capability of reducing the feature count without sacrificing representation power
facilitates researchers in calibrating the number of features required for their experiments, thereby simplifying the
combination of different techniques. Additionally, in the work by Karbab et al.[109], PCA is directly applied to the
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generated image to reduce dimensionality prior to the feature extraction step. The authors in [213] introduce IMCBL, a
malware classification method that transforms malware binaries into grayscale images and applies Truncated Singular
Value Decomposition (SVD) to reduce dimensionality, improving computational efficiency while preserving essential
features. The article [153] introduces an encoding-based approach to decrease the dimensions of D-SIFT and GIST
features. Firstly, they used D-SIFT to identify interest points in the malware image. The Bag of Features (BOF) model
was used for dimensionality reduction, followed by PCA to reduce the feature vector to 100 dimensions. In the second
stage, global features are extracted from the malware image using GIST.

5.4 Classification

In this section, we explore the classification models presented by researchers for visualization-based techniques in
malware detection and classification. The analysis primarily focuses on two key aspects of modeling techniques found
in current literature: (i) Conventional ML-based approaches and (ii) DL-based approaches. Furthermore, we discuss
work related to transformers and attention models, model fusion, data augmentation, and Few-shot Learning.

Table 5 presents a summary of the state-of-the-art literature about classification models and explored methodologies
during the classification phase. Each entry represents the primary contribution of the paper. The columns denote
the following information: the paper reference; if the classification type is malware detection [D] or classification
into families [C]); the type of classifier (i.e., [DT] for Decision Tree, [RF] for Random Forest, [KNN] for K-Nearest
Neighbors, [SVM] for Support Vector Machine, [CNN] for Convolutional Neural Network classifier and specific
architecture if applicable, [RNN] for Recurrent Neural Network classifier and specific architecture if available, [Other
ML] for other Machine Learning techniques, [Other DL] other Deep Learning techniques; the split notation, that is
the proportion of data allocated to training, validation, and testing, or the indication of k-fold cross-validation or of
leave-one-out; if there are some consideration of explainability and interpretability issues (identified by “Explain.”);
if there is the use of data augmentation and specified architecture (identified by “Aug”); if there is an exploration of
adversarial attacks, obfuscation, or packing (identified by “Adv”); if there is an exploration of few-shot learning; if
the paper considers sustainability and concept drift issues (identified by “Sust.”); if the model used is an ensemble of
classifiers(identified by "Ensemble").

5.4.1 Conventional Machine Learning Classifiers

Machine Learning algorithms play a vital role in malware image visualization by classifying and labeling various
categories of malware based on their visual characteristics. These algorithms utilize image recognition techniques to
identify distinct patterns and features specific to each malware type, achieving high accuracy by being paired with
proper feature extraction techniques and training on extensive datasets of malware images. Below, we briefly introduce
some of the algorithms widely employed in a substantial body of literature. One important advantage of classic ML
approaches is that they are easy to implement and inherently explainable.

The most commonly used Machine Learning classifiers in the literature are KNN, SVM, and Random Forests. The
K-nearest neighbor (KNN) model uses proximity to predict sample classes. The algorithm identifies the k-labeled data
points in the sample space that are closest to the example to be classified. If the majority of these k-nearest instances
belong to a specific category, then the data sample to be classified is also assigned to that category. The algorithm
possesses specific advantageous characteristics. Firstly, it does not assume any specific distribution of the underlying
data, making it highly flexible and adaptable to various datasets. Secondly, KNN does not require a dedicated training
phase. Instead, it compares new instances with the labeled instances in the training dataset during the prediction
phase, enabling quick and efficient decision-making. Another key strength of KNN is its robustness to outliers. Unlike
linear models and other algorithms, KNN’s decision boundaries are less affected by outliers. This resilience arises
from the fact that class assignment in KNN is determined by the majority of neighbors, minimizing the impact of
individual instances and preserving the overall integrity of the predictions. KNN models have been the classifier of
choice for numerous models and serve as a benchmark technique against more complex classifiers [72, 237, 152].
Machine Learning algorithms like SVMs can perform regression or classification tasks. These algorithms utilize
an n-dimensional space to classify samples, representing each data object as a point with n attribute features. The
categorization process involves identifying the hyperplane that effectively separates the class labels, enabling accurate
classification. SVM performs well in high-dimensional spaces, making it suitable for problems with many features
preventing overfitting. A negative characteristic of SVM, compared to other classifiers, like KNNs, is that they are
computationally expensive, especially with large datasets. The use of SVMs has found some success in the past but has
been largely overshadowed by better-performing machine-learning algorithms. Despite this, it has been used in recent
papers as a benchmark but, more importantly, as an integral part of hybrid models based mainly on Deep Learning and
CNNs [212] with great success, achieving better results than the softmax classifiers of the standard CNNs. Decision
Trees (DT) and Random Forests (RF) have been among the best-performing Machine Learning algorithms across

21



Survey on Visualization-based Malware Detection

different feature extractors and datasets [72, 237]. Roseline et al. [180] demonstrated that a variation of the Random
Forest model, known as Completely Random Forest (CRF), outperforms the classic RF model. Random Forest and
Random Trees are known for their strong predictive power because they harness the combined knowledge of multiple
decision trees, resulting in more accurate predictions than individual trees. Their ability to handle high-dimensional data
stems from their feature subsampling technique, which allows them to focus on relevant attributes while mitigating the
curse of dimensionality. However, the computational expense arises from training multiple trees, and the interpretability
trade-off occurs in Random Forests as the ensemble nature makes it harder to attribute decisions to individual features.
Traditional machine-learning classifiers have been dominating the field of malware image visualization. However, a
shift in preference increasingly relegates them to a supporting role in favor of Deep Learning models. Deep learning
models typically outperform Machine Learning models when resource constraints are not a limiting factor. In particular,
the advancements in hardware have been a big help in launching Deep Learning models among researchers. Another
advantage is that Deep Learning allows for end-to-end learning, where the model learns to extract relevant features
and make predictions without relying on manual feature engineering. This eliminates the need for domain-specific
knowledge and simplifies the overall workflow. With a focus on visualization, the domain often involves working with
large-scale datasets, such as image collections. Deep learning excels at processing and learning from massive amounts
of data, leveraging techniques like mini-batch training and parallel computing to handle such datasets efficiently.

5.4.2 Deep Learning

Recently, interest in Deep Learning and malware image-based classification techniques has grown significantly. This
is because these approaches can alleviate the necessity for extensive feature engineering tasks, typically required in
Machine Learning-based malware detection methods. This streamlines the classification process [244, 218]. In this
section, we provide a summary of the significance of various designs, including convolutional Neural Networks (CNN),
recurrent Neural Networks (RNN), long short-term memory (LSTM), and others, in addressing visualization-based
malware detection or classification challenges.

Convolutional Neural Networks (CNNs). Convolutional Neural Networks (CNNs) are the most widely used
architecture for malware image classification and general image-based analysis due to their effectiveness in processing
spatially structured data. Introduced by LeCun et al. [53], CNNs utilize local connectivity and weight sharing
to efficiently capture spatial correlations. Through convolutional and pooling layers, they learn hierarchical and
discriminative feature representations, enabling robust performance in image recognition and classification tasks. A
CNN typically consists of several layers, each serving a specific purpose in the learning process:

• Convolutional Layer: This layer applies a set of learnable filters to the input data, performing convolutional
operations. It extracts local features and learns spatial hierarchies;

• Activation Layer: Typically following convolutional layers, activation functions (e.g., ReLU, sigmoid)
introduce non-linearity, enabling the network to learn complex patterns and relationships;

• Pooling Layer: This layer downsamples the input, reducing spatial dimensions and summarizing information
using operations like max or average pooling;

• Fully Connected Layer: Also called a dense layer, it connects all neurons between layers to learn global
patterns in the extracted features;

• Dropout Layer: Dropout prevents overfitting by randomly setting a fraction of input units to zero during
training, promoting robust feature learning;

• Batch Normalization Layer: This layer normalizes the activations of the previous layer, making the network
more stable and accelerating convergence.

Researchers must tune hyperparameters, such as learning rate, batch size, epochs, optimizer, weight initialization, kernel
size, filter count, and stride, to optimize CNN performance without overfitting or underfitting for a specific dataset.
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Table 5: Summary of classification models and explored methodologies.

Ref. Year Classif.
Type

Classifier Split Explain. Aug Adv Few Shot Sust. Ensemble

Fu et al. [72] 2018 C RF, KNN, SVM 90:10 ✗ ✓ ✗ ✗ ✗ ✗
Yakura et al.
[233]

2018 C CNN 5f ✓ ✓ ✓ ✗ ✗ ✗

Yang et al.
[236]

2018 C CNN 50/-/50 ✗ ✗ ✗ ✗ ✗ ✗

Darus et al.
[58]

2018 D KNN, SVM 70:30 ✗ ✗ ✗ ✗ ✗ ✗

Kurmar et al.
[117]

2018 D CNN 90:10 ✗ ✗ ✗ ✗ ✗ ✗

Su et al. [198] 2018 C CNN - ✗ ✗ ✗ ✗ ✗ ✗
Cui et al. [52] 2018 C CNN - ✗ ✓ ✗ ✗ ✗ ✗
Ni et al. [159] 2018 C KNN, SVM, CNN 80:20 ✗ ✗ ✗ ✗ ✗ ✓
Shiva et al.
[195]

2018 D CNN 10f ✗ ✗ ✗ ✗ ✗ ✗

Xiao et al.
[229]

2019 D CNN 68:12:20 ✗ ✗ ✗ ✗ ✗ ✗

Vinayakumar
et al. [217]

2019 C RF, DT, KNN, SVM,
CNN, RNN (LSTM),
Other ML

10f ✗ ✗ ✓ ✗ ✗ ✓

Liu et al. [133] 2019 D, C RF, SVM, CNN - ✗ ✗ ✓ ✗ ✗ ✗
Hsiao et al.
[93]

2019 C CNN(Siamese), KNN - ✗ ✗ ✗ Siamese ✗ ✗

Girbert et al.
[78]

2019 C CNN 10f ✗ ✗ ✗ ✗ ✗ ✗

Khormali et al.
[112]

2019 D CNN - ✗ ✗ ✓ ✗ ✗ ✗

Naeem et al.
[152]

2019 C KNN, SVM 10:90,20:80,
30:70,40:60,
50:50,60:40,
70:30,80:20

✗ ✗ ✗ ✗ ✗ ✗

Liu et al. [134] 2019 C RF, KNN 10f ✗ ✗ ✗ ✗ ✗ ✗
Akarsh et al.
[6]

2019 C CNN, RNN (LSTM) 70:30 ✗ ✗ ✗ ✗ ✗ ✓

Venkatraman et
al. [215]

2019 D, C CNN, RNN (LSTM) 90:10 ✗ ✗ ✗ ✗ ✗ ✓

Hashemi et al.
[90]

2019 D KNN 10f ✗ ✗ ✗ ✗ ✗ ✗

Baptista et al.
[21]

2019 D Other ML - ✗ ✗ ✗ ✗ ✗ ✗

Yang et al.
[237]

2019 C RF, KNN, Other ML 5f ✗ ✗ ✗ ✗ ✗ ✗

Chen et al. [42] 2019 D CNN (InceptionV3) - ✗ ✗ ✓ ✗ ✗ ✗
Qiao et al.
[171]

2019 C CNN (LeNet5) 50:50 ✗ ✓ ✗ ✗ ✗

Liu et al. [132] 2020 D RF, SVM, CNN 10f, 5f ✗ ✗ ✓ ✗ ✓ ✗
Karanja et al.
[108]

2020 D, C RF, KNN - ✗ ✗ ✗ ✗ ✗ ✗

Xiao et al.
[227]

2020 C SVM, CNN 50:50 ✗ ✗ ✗ ✗ ✗ ✗

Mercaldo et al.
[146]

2020 D, C RF, DT, Other DL 50:50 ✗ ✗ ✗ ✗ ✓ ✗

Lekssays et al.
[127]

2020 D, C KNN, CNN (3
Conv+2 Dense)

- ✗ ✗ ✗ ✗ ✗ ✗

Naeem et al.
[154]

2020 D, C CNN 70:30 ✗ ✗ ✗ ✗ ✗ ✗

Vasan et al.
[212]

2020 C CNN 70:30:- ✗ ✗ ✓ ✗ ✗ VGG16+
ResNet50

Jain et al. [100] 2020 C CNN, ELM - ✗ ✗ ✗ ✗ ✗ 50 ELM
models

Vasan et al.
[211]

2020 C Fine-tuned CNN 70:30 - ✓ ✗ ✗ ✗ ✗

Zhao et al.
[250]

2020 C Region-CNN 70:30 ✗ ✗ ✗ ✗ ✗ ✗

Roseline et al.
[180]

2020 C Deep RF 80:20:- ✗ ✗ ✗ ✗ ✗ Complete-
RF

Go et al. [80] 2020 C Other DL (ResNeXt) 10f ✗ ✗ ✗ ✗ ✗ ✗
Verma et al.
[216]

2020 C RF 10f/ leave/
one out

✗ ✗ ✗ ✗ ✗ ✗

Ren et al. [176] 2020 D CNN (Dex-CNN),
Other DL (DexCRNN)

80:10:10 ✗ ✗ ✗ ✗ ✗ ✗

Vu et al. [221] 2020 C CNN, Other ML
(XGBoost)

80:10:- ✗ ✗ ✗ ✗ ✗ ✗

Gibert et al.
[76]

2020 D, C CNN 80:20 ✗ ✗ ✗ ✗ ✗ ✗

Iadarola et al.
[97]

2021 C CNN 80:20,
80:20:-

Grad-
CAM

✗ ✗ ✗ ✗ ✗
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Ref. Year Classif.
Type

Classifier Split Explain. Aug Adv Few Shot Sust. Ensemble

Singh et al.
[192]

2021 C Random Forest, KNN,
SVM, CNN

- ✗ ✗ ✗ ✗ ✗ ✗

Dib et al. [64] 2021 C CNN,LSTM 10f ✗ ✗ ✗ ✗ ✗ ✗
Bozkir et al.
[29]

2021 D, C RF, DT, SVM, Other
ML

80:20:-, 3f ✗ ✗ ✗ ✗ ✗ ✗

Sun et al. [200] 2021 C CNN, RNN - ✗ ✗ ✗ ✗ ✗ ✗
Darem et al.
[57]

2021 D CNN, Other ML
(XGBoost)

f ✗ ✗ Obfuscation
Detection

✗ ✗ CNN,
XGBoost

Pinhero et al.
[168]

2021 D, C CNN (VGG3,
ResNet50)

70:30 ✗ ✗ ✗ ✗ ✗ ✗

Bagane et al.
[15]

2021 C CNN (LSTM,
BiLSTM)

80:20 ✗ ✗ ✗ ✗ ✗ ✗

Li et al. [129] 2021 C CNN (Attention, SPP) 80:20 ✗ ✗ ✗ ✗ ✗ ✗
Acharya et al.
[2]

2021 C CNN (EfficientNet-
B1)

75:25 ✗ ✗ ✗ ✗ ✗ ✗

Sudhakar et al.
[199]

2021 C CNN (ResNet50) 75:25 ✗ ✗ ✗ ✗ ✗ ✗

Anandhi et al.
[11]

2021 D, C CNN (DenseNet201) 70:30 ✗ ✗ Additive
Noise

✗ ✗ ✗

Xiao et al.
[228]

2021 C Linear-SVM, CNN
(VGG16)

10f ✗ ✗ ✗ ✗ ✗ ✗

Wang et al.
[223]

2021 C RNN (BiLSTM) 73:20:20,
62:20:20

✓ ✗ ✗ ✓ ✗ ✗

Jian et al. [101] 2021 D CNN (SEResNet50),
RNN (BiLSTM)

80:10:10,
70:15:15,
60:20:20

✓ ✓ ✗ ✗ ✗ SEResNet50,
BiLSTM

Bouchaib et al.
[26]

2021 C CNN (VGG16) 50:50 ✗ ✓ ✗ ✗ ✗ ✗

Zhu et al. [253] 2022 C CNN (VGG16,
Xception,
InceptionV3)

80:20 ✓ ✗ ✗ Siamese ✗ ✗

Chai et al. [39] 2022 C CNN, Other ML,
Other DL

- ✗ ✗ ✗ ✓ ✗ ✗

Dharmalaksana
et al. [63]

2022 C CNN - ✗ ✗ ✗ ✗ ✗ ✗

Tekerek et al.
[204]

2022 C CNN (DenseNet121) 80:20, 10f ✗ Cycle
GAN

✗ ✗ ✗ ✗

Bensaoud et al.
[24]

2022 D, C CNN 5f ✗ Cycle
GAN

Obfuscation ✗ ✗ ✗

Wang et al.
[222]

2022 C Random Forest, Other
ML

Stratified
KFold

✗ ✗ ✗ ✗ ✗ MLP, RF,
XGBoost

O’Shaughnessy
et al. [161]

2022 C RF, KNN, SVM 5f ✗ ✗ ✗ ✗ ✗ ✗

Zhong et al.
[251]

2022 C CNN (3conv, 3FC) 10f ✗ ✗ ✗ ✗ ✗ ✗

Gibert et al.
[79]

2022 D Other ML (XGBoost,
GBT)

10f ✗ ✗ ✗ ✗ ✗ ✗

Olorunjube et
al. [67]

2022 D, C RF, DT, KNN, SVM,
CNN (ResNet50),
Other ML (Extra Tree
Classifier, XGBoost,
Bagging, Naïve
Bayes)

- ✗ ✓ DGAN ✗ ✗ ✗

Kumar et al.
[118]

2022 C Random Forest, KNN,
SVM, CNN (Fine-
tuned VGG16 + FC,
VGG19, Inception V3,
ResNet50)

90:10 ✗ ✗ ✗ ✗ ✗ ✗

Mallik et al.
[143]

2022 C Decision Tree, KNN,
RNN (BiLSTM),
Other DL

80:20 ✗ Rotation
shifting
flipping

✗ ✗ ✗ DCNN,
BiLSTM

Conti et al.
[48]

2022 C Shallow CNN 70:30 ✗ ✗ ✗ Siamese ✗ ✗

Chaganti et al.
[37]

2022 C CNN (EfficientNetB1) 70:30 ✓ ✗ ✗ ✗ ✗ ✗

Pratama et al.
[169]

2022 C CNN (EfficientNetB7) 70:20 ✗ ✗ ✗ ✗ ✗ ✗

Zhu et al. [253] 2022 C CNN (InceptionV3,
ResNet50, VGG16,
Xception)

80:20 t-SNE ✓ ✗ Siamese ✗ ✗

Paardekooper
et al. [162]

2022 C CNN (2Conv, 1 FC) 90:10 ✗ ✗ ✗ ✗ ✗ ✗

Chai et al. [39] 2022 C CNN 65:20:20,
few-shot

Ablation
study

Random
Rotation

✗ ✓ ✗ ✗

Qiu et al. [172] 2022 C CNN (ShuffleNet) 70:30 ✗ ✗ ✗ ✗ ✗ ✗
Ma et al. [140] 2022 C CNN 80:20 ✗ ✗ ✗ ✗ ✗ ✗
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Ref. Year Classif.
Type

Classifier Split Explain. Aug Adv Few Shot Sust. Ensemble

Vinayakumar
et al. [174]

2022 D CNN (Variants
of DenseNet,
EfficientNet,
Inception, MobileNet,
ResNet, VGG)

75:25 t-SNE ✗ ✗ ✗ ✗ Stacked
SVM, RF,
LR

Hashemi et al.
[91]

2023 D CNN (AlexNet) 50:50 ✗ ✗ ✗ ✗ ✗ ✗

Huaxin et al. [61] 2023 C CNN (MCTVD) 10f ✗ ✗ ✗ ✗ ✗ ✗
Rustam et al.
[183]

2023 C RF, KNN, SVM, Other
ML

80:20 ✓ ✗ ✗ ✗ ✗ ✗

Kim et al.
[113]

2023 C CNN 10f ✗ ✗ ✗ ✗ ✗ ✗

Jiang et al.
[102]

2023 D, C CNN (VGG, Stripe
Pooling-CNN,
Pyramid Stripe
Pooling-CNN)

80:20 ✗ ✗ ✗ ✗ ✗ ✗

Lee et al. [125] 2023 D, C RF, DT, Other ML - ✓ ✗ ✗ ✗ ✗ RF, MLP
Shaukat et al. [190] 2023 D, C SVM 60:20:20, 10f ✗ ✓ ✗ ✗ ✗ ✗
Guo et al. [86] 2023 C CNN 80:20 ✗ ✗ ✗ ✗ ✗ ✗
Chaganti et al.
[38]

2023 D CNN (1conv+
2Dense), RNN
(LSTM), Other DL (4
DNN)

73:27 ✓ ✗ ✗ ✗ ✗ ✗

Moreira et al.
[149]

2023 D RF, KNN, SVM,
CNN (Xception,
Inception-ResNetV2
EfficientNetV2S),
Other ML (NB, LR,
SGD)

10f ✓ ✗ ✗ ✗ ✗ ✗

Karbab et al.
[109]

2023 D, C Other ML 5f Compressed
Byte
Entropy
Matrix
Visualization

✗ ✗ ✗ ✗ ✗

Zhan et al.
[245]

2023 D CNN 80:10:10 Grad- ✗ ✓ ✗ ✗ ✗

Dhanya et al.
[62]

2023 D CNN 50:50,
60:40,
70:30,
80:20,
90:10

✗ ✗ ✗ ✗ ✓ ✗

Xuan et al.
[231]

2024 C BiTCN-TA
EfficientNet

5f ✗ ✗ ✓ ✗ ✗ ✗

Vasan et al.
[213]

2024 C BLS-RVFLNN 10f ✗ ✗ ✓ ✗ ✗ ✗

Sharma et al. [189] 2024 C CNN 80:10:10 GradCAM GAN ✗ ✗ ✗ ✗
Dong et al. [65] 2024 D CNN-GRU, VAE,

CAE, Vanilla AE
70:30 ✗ ✓ ✗ ✗ ✗ ✗

Kumar et al. [120] 2024 C CNN, KNN, SVM, RF - ✗ ✗ ✓ ✗ ✗ Soft voting
Yang et al. [241] 2025 D CNN, RNN - ✗ ✓ ✗ ✗ ✗ ✗
Meng et al. [145] 2025 D DNN - GNN

Explainer,
GradCAM

✗ ✗ ✗ ✗ ✗

Yang et al. [238] 2025 D CNN,GCN 10f ✗ ✗ ✗ ✗ ✗ ✗
Johnny et al. [105] 2025 D,C CNN(VGG-16) - GradCAM,

SHAP,
t-SNE

✓ ✓ ✗ ✗ ✗

Ambekar et al. [9] 2025 D Other DL (Siamese) KFold ✗ ✓ ✓ Siamese ✗ ✗
Alam et al. [7] 2025 C CNN(spatial) - ✗ ✓ ✗ ✗ ✗ ✗
Zhang et al. [247] 2025 C CNN 90:10 ✗ ✓ ✓ ✗ ✗ ✗
Yu et al. [243] 2025 C CNN 60:40 ✗ ✗ ✓ ✗ ✗ ✗

The authors experimented with the design of CNN architecture from scratch to better fit the problem of visual malware
classification. With this method, researchers are not bound by the designers’ choices of other commonly used CNNs and
can better select the best parameters for their CNN. In [159], the authors adapted the original multi-layer CNN by LeCun
et al. The Neural Network architecture consists of a sequence of two convolutional layers, two subsampling layers,
and three fully connected layers. They applied 32 filters of size 2x2 for the convolution process, and for subsampling,
they utilized max pooling with a size of 2x2. In their study, the authors employed the BIG2015 dataset and obtained a
classification accuracy of 99.260%. Cui et al.[52] presented a Deep Learning-based model that utilized 2D malware
images from the Malimg dataset. They applied a custom algorithm to balance the dataset and achieved an accuracy
of 94.5% using CNN. The authors of [154] introduced an architecture that integrates malware visualization with a
DCNN model, enabling the detection of malicious activities within the IIoT environment. They achieved a detection
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accuracy rate of 97.81% on the Leopard Mobile Malware Dataset and 98.47%on the MalImg dataset. In [78], Gibert et
al. implemented an original convolutional Neural Network (CNN) comprising three convolutional layers, followed by a
fully-connected layer. The model proficiently classified samples from the MalImg and BIG2015 datasets, achieving
accuracies of 98.48% and 97.49%, respectively. Recent studies have also been performed by integrating Bi-Directional
Temporal Convolutional Networks (BiTCN), which process input sequences in both directions to capture contextual
dependencies, transfer learning with EfficientNet for feature adaptation, and Atrous Spatial Pyramid Pooling(ASPP)
for multi-scale feature extraction. The authors improved the classification accuracy. In [213], the authors integrate a
Broad Learning System (BLS), based on the Random Vector Functional Neural Network (RVFLNN), allowing dynamic
model expansion without retraining, distinguishing it from traditional CNN-based methods.

Researchers have used 1D-CNN [89] [81] [56] as well as 2D-CNN for malware classification. However, some
researchers argue that the large number of parameters in 2D CNN adversely affects training speed [248]. Additionally,
standard convolution methods need to be improved for extracting features from bytecode sequences, as it is essential to
take into account the sequential nature of the bytecode, which determines the intensity of successive pixels. Representing
this sequential data as a 2D image introduces distortions and disrupts the original sequence. Furthermore, 2D CNN is
ineffective for analyzing sequentially structured data, as the convolutional operations consider neighboring pixels in a 2D
space, even when they are not inherently related. The Researchers of [7] proposed a novel Spatial Convolutional Neural
Network (Sp-CNN). In contrast to conventional CNNs employing uniform symmetric kernels, Sp-CNN introduces
a partitioning strategy along the height dimension. This enables the network to focus on distinct input slices for
individualized feature extraction. The iterative and independent processing of these slices facilitates the preservation of
unique characteristics across malware classes and effectively captures nuanced spatial relationships between pixels.
Furthermore, Sp-CNN operates on high-dimensional features generated by preceding conventional CNN layers, ensuring
the retention of critical spatial information throughout the classification pipeline. This architecture demonstrates a
significant enhancement in the accurate identification and categorization of diverse malware types, particularly in the
context of imbalanced datasets.

In [247], the authors presented Image-based Malware Classification with Multi-scale Kernels (IMCMK), a variant
Convolutional Neural Network. Unlike standard CNN architectures that leverage stacked layers of small convolutional
kernels to increase the receptive field, IMCMK introduces a Multi-scale Kernel (MK) block. This block combines the
benefits of both large and small kernels, enabling the model to extract both detailed and broad contextual information
from malware binary images. Additionally, an improved Squeeze-and-Excitation (SE) block is integrated to capture
channel dependencies, allowing for enhanced feature selection and representation. The IMCMK architecture also
employs efficient multi-scale kernel fusion strategies to mitigate the parameter overhead associated with larger kernels,
thereby improving computational efficiency while preserving high classification performance. In [243], the authors
employed Spatial Pyramid Pooling (SPP) within a CNN framework to mitigate the challenge of varying input image
dimensions inherent in malicious code representations. SPP addresses this issue by performing pooling operations
across multiple spatial scales, producing fixed-size outputs irrespective of input image dimensions. This process divides
feature maps into progressively finer sub-regions, capturing essential visual information at different spatial hierarchies.
Consequently, the model achieves enhanced robustness and preserves semantic coherence within feature representations,
leading to more accurate malware family classification by ensuring uniform input dimensions for subsequent processing
stages. This is particularly advantageous for malicious code analysis, where input image sizes exhibit significant
variability due to code complexity.

In most of the research, CNNs have shown high accuracy (98-99.9%) in detecting malware based on visual features
extracted. They can learn to differentiate between benign and malicious visual patterns, leading to reliable detection
results[211, 132, 204]. Compared to traditional ML techniques, CNNs have the capability of hierarchical representation
learning, where they can capture low-level features and more abstract and complex features in different layers, which
allows the network to learn progressively and combine features at different levels of abstraction.

Recurrent Neural Networks (RNN). Researchers have extensively explored the application of Recurrent Neural
Networks (RNNs) for image-based malware detection, capitalizing on their remarkable ability to handle sequential data.
RNN analyzes the images, pixel by pixel or via extracted feature vectors, to identify malware-indicative patterns. It
remembers past inputs through internal states, enhancing pattern recognition when context matters. Precisely, RNN
architectures like Long Short-Term Memory LSTM) effectively capture spatial dependencies within images through
sequential processing. By transforming image data into sequences of vectors, RNNs empower the network to discern
and recognize patterns indicative of malware during the training process. The significant advantage of RNNs lies in
their capability to capture essential sequential information, such as pixel arrangement, contributing to highly effective
malware detection.

Transfer Learning and Fine Tuning. In the field of transfer learning, pre-trained Neural Networks are employed for
tasks that differ from their original training domains. This approach harnesses knowledge gained from various tasks,
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enhancing the effectiveness of visualization-based malware detection. Rather than training powerful and deep Neural
Networks from scratch on malware images, transfer learning allows researchers to utilize existing models, saving time
and resources. Fine-tuning is an additional technique to improve Neural Network performance in the specific domain of
malware image classification. This method leverages the pre-trained model’s knowledge from the larger dataset and
adapts it to the smaller, task-specific dataset. During fine-tuning, the earlier layers of the pre-trained model are often
frozen, while the later layers are updated to accommodate the new dataset. Transfer learning is particularly beneficial for
limited or imbalanced datasets, which is common in malware detection. Researchers have developed a middle-ground
approach that combines creating a convolutional Neural Network (CNN) from scratch with a known architecture. This
method involves starting with a general CNN structure and then adapting the Neural Network to achieve an optimal
balance between power and simplicity. This technique is commonly employed to facilitate transfer-learning with a
simplified CNN, as demonstrated in studies [61] and [118].

Kalash et al. [107] utilized a deep Convolutional Neural Network (D-CNN) model to categorize malware binaries in
grayscale image format, where the images had dimensions 224x224. Their study introduced a CNN model architecture
based on VGG-16. They achieved an accuracy of 98.52% on the MalImg dataset and 99.97% for the BIG2015 dataset.
Vasan et al. proposed IMCFN [211], a malware classification algorithm that utilized malware visualization with a
pre-trained VGG-16 model. Subsequently, they compared the performance of their proposed solution with ResNet50
and Inception V3, achieving an accuracy of 98.82% and 97.35% for the Malimg malware dataset and IoT-android
mobile dataset, respectively. The authors proposed an alternative approach and conducted experiments with ResNet
models in [183] [199]. The enhanced model obtained an accuracy of 99.18% on the MalImg malware dataset and
98.63% on the BIG2015 malware dataset by modifying the final layer of ResNet50 in [199]. Another commonly
used Neural Network archetype is the EfficientNet family of CNNs developed in 2019 [202]. These networks have
demonstrated superiority over older counterparts in both the ImageNet challenge and the realm of malware analysis, as
evident in studies by [169] [37] [2].

Researchers in [204] opted for the family of DenseNet CNNs [94]. DenseNet-based CNNs exploit their dense
connectivity, which allows each layer to access and utilize information from all preceding layers. DenseNet promotes
feature reuse, reduces vanishing gradient issues, and enhances overall network performance. The authors in [5]
employed InceptionV3 to obtain a classification accuracy of 98.76% on the BIG15 dataset. In addition, the author
in [42] also experimented using InceptionV3 and obtained 90% accuracy for a self-created dataset of 10, 849 malware.
The research detailed in [172] delves into ShuffleNet, an alternative CNN-based model. ShuffleNet divides filters
into groups, allowing for feature map shuffling within each layer. This approach promotes cross-channel interactions
and facilitates streamlined information flow for improved efficiency. The customized ShuffleNet V2 model was
employed in the Malimg dataset, achieving an accuracy of 99.03%. The study [120] introduced Intelligent Malware
Classification using Deep Convolutional Neural Networks (IMCNN), a novel approach leveraging pre-trained CNN
models (VGG16, VGG19, InceptionV3, and ResNet50) for efficient malware image feature extraction. Unlike traditional
CNN methods, IMCNN customizes these models specifically for malware detection, enhancing feature relevance and
reducing complexity to achieve effective and high-performing classification. This targeted application highlights the
adaptability of pre-trained CNN architectures in malware analysis.

5.4.3 Transformers and Attention

Attention mechanisms, autoencoders, and transformers have emerged as pivotal advancements, drawing considerable
interest due to their capacity to process and represent information proficiently. These cutting-edge techniques have
sparked new avenues of research and application, particularly in domains such as natural language processing and
computer vision. Attention [16] is a mechanism that allows models to focus on relevant parts of input when processing
an element. Transformers [214] is a Neural Network architecture mainly used in the field of NLP that extensively
employs attention. It can be used as an explainability tool for black-box Neural Networks or exploited to generate novel
malware classification models. Transformers in computer vision actively assign importance to various image regions
through self-attention, enabling them to capture complex spatial structures and extended dependencies. By analyzing
the entire input sequence at once, self-attention equips the model with access to global context. This contrasts with
traditional sequential models like RNNs, where the fixed processing order limits information flow.

Authors in [86] employ an encoder with a multi-scale CNN structure to generate malware images and organize tokenized
malware features into sentences. It then leverages language models as textual encoders. This model obtained an accuracy
of 99.32% on the MalImg dataset, which is equal to the state of the art. Chen et al. [44] use a combination of a
transformer with a lambda layer which replaces the original attention mechanism to calculate the potential association
information between different tokens by substituting it with a quicker single linear function. The outcomes achieved
using this method showcase state-of-the-art performance, reaching an accuracy of 99.30% on the Big2015 dataset.
An alternative method employed by [126] involves employing distinct autoencoders, each fine-tuned to recognize a
specific malware family. In this approach, every autoencoder undergoes exclusive training solely with samples from a
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particular class. The fundamental concept lies in the premise that if an input image corresponds to the family a specific
autoencoder is specialized in, the reconstruction error—indicating the distinction between the original and reconstructed
images—will be minimal. Researchers leverage this reconstruction error observation to determine the family or class to
which an input image pertains. Lately, researchers in [3] applied both CNN and Vision Transformer (ViT) to analyze
images derived from data within PCAP files.

5.4.4 Model Fusion

Enhancing malware visualization systems involves leveraging model fusion, integrating feature representations from
multiple models, or combining predictions made by individual models, as explored in studies by Lad et al. [123], Vasan
et al. [212], and Jian et al. [101]. Ensembling strategies, such as weighted voting, majority voting, stacking, or boosting,
stand out for their ability to generate robust and accurate outcomes. In a related contribution detailed in [181], authors
introduced a unique approach to ensembling known as the hybrid stacked sequential flow. This method intertwines
the cascade process with representation learning using ensembled tree forests, achieving an accuracy of 98.91% on
the MalImg dataset and 96.84% on the Big2015 dataset. The approach, as proposed in [130, 36], entails constructing
an ensemble of multiple CNNs and subsequently combining the outputs of these networks to address the malware
classification problem. In [123], the authors aimed to explore the feature extraction capabilities of CNNs and harness
the classification power of SVMs. The proposed hybrid CNN + L2-SVM model achieved an accuracy of 99.59%.
Quan Le et al. [124] employed Deep Learning on raw input images and transformed them into 1D vectors using a
generic image scaling algorithm. The resulting CNN-BiLSTM classification model achieved an accuracy of 98% on the
BIG2015 dataset. However, a drawback of this approach was the considerable conversion time of the generic image
scaling algorithm, which took approximately 191.2 seconds. More recently, researchers in [183] explored models
created using the VGG family, and they introduced a bi-model architecture wherein they sequentially stacked the same
models to achieve improved performance. They utilized the output of the first model to train the second one, resulting
in 100% accuracy for the MalImg dataset.

5.4.5 Augmentation

The effectiveness of detection models heavily relies on the availability of a sufficient number of training samples.
Unfortunately, this is a common issue with many datasets today, as there often aren’t enough training samples. This
presents a significant challenge for Deep Learning models, where the quality and quantity of data are critical to
their effectiveness. For instance, the BIG2015 dataset, as shown in Table 3, has a high level of imbalance, with the
Kelihos_ver3 malware family consisting of 2942 samples, while the Simda malware family has only 42 samples.
This imbalance adversely affects both the training process and classification performance. A trivial solution is using
oversampling or undersampling. Inevitably, this technique discards some of the initial information, and researchers
will experience a trade-off between achieving a good classifier and utilizing all possible information. The problem of
imbalanced datasets has pushed authors to consider alternative ways to use the information found in the samples. Data
augmentation techniques are frequently employed to tackle the issue of imbalanced datasets in image-based malware
detection. These techniques generate additional training data by applying a broader range of data variations to the
original images. These variations can generate similar but different images from the available sample information.
The new images will not represent actual malware found in the wild but can be helpful for the classifiers to generalize
features and patterns found in the images. Different methods can achieve these variations, with the most straightforward
involving spatial transformations such as rotation, scaling, flipping, color adjustments, and noise injection. MIGAN[189]
integrates image synthesis with classification using a generative adversarial network (GAN). The authors claim that they
enhance malware detection by generating high-quality synthetic images, addressing class imbalance, and improving
classification accuracy. Another two-phase framework uses autoencoders (vanilla, variational, and conditional) to
reconstruct and enhance malware representations, then applies a CNN-GRU hybrid classifier to address class imbalance
in greyscale and RGB IoT datasets[65]. According to the authors of [211], properly implementing data augmentation
methods can mitigate overfitting problems and enhance the model’s robustness. They utilized techniques such as
rescaling and shearing, resulting in a modest 1.01% improvement compared to the absence of data augmentation on the
MalImg dataset. In their work, as discussed in [26], the authors utilize the Synthetic Minority Oversampling Technique
(SMOTE) algorithm, drawing from the principles of the K minority class nearest neighbors model, as outlined in the
source [27]. This technique entails creating extra images for families with fewer samples while reducing the sample
size of families with excess samples, addressing dataset balance issues.

Unsupervised learning becomes increasingly important when labeled data is scarce, and knowledge extraction is
essential. Autoencoders use principles from data compression algorithms to capture the core features of the original
data in a compressed feature set. Unlike traditional Neural Networks, autoencoders aim to approximate the input
closely using fewer data without explicit input/output pairs or supervision. This autonomous approach effectively
addresses the issue of dataset size in learning processes. D’Angelo et al. [66] converted the sequences of API calls
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invoked by apps into sparse image-like matrices called API images. They utilized autoencoders to extract the most
informative features from these images. They subsequently presented the extracted features into an artificial Neural
Network (ANN)-based classifier for detection. They obtained an accuracy of 0.95 on a customized dataset created using
samples from Malgenome and contagio mobile datasets.

Another approach involves the utilization of the Variational Auto Encoders(VAE) [114], which comprises an encoder
and decoder structure. While an Autoencoder primarily focuses on data compression and encoding, the VAE emphasizes
the creation of a latent vector by estimating the probability distribution of input data through its encoder. In particular,
VAE functions as a statistical probability distribution model that learns the distribution of the dataset and facilitates
the generation of novel data samples. This capability enables the generation of new data samples using the decoder.
Similarly, the Conditional Variational Autoencoder (CVAE)[196] follows the same structure and objectives as the VAE.
However, in contrast to the VAE, the CVAE incorporates condition information and input data during the learning
process. In [210], the authors introduce an attention mechanism to selectively assess weights in the VAE, facilitating the
acquisition of crucial features in the latent space. Additionally, they integrate a lightweight CNN to capture lower-level
features, ensuring a diverse representation of features. They obtained an accuracy of 99.40% using RandomForest on
the MalImg dataset.

Another solution is to leverage Generative Adversarial Networks (GANs) [82], which consists of a generator and a
discriminator Neural Network. Y. Lu and J. Li employed DCGAN [136], a GAN-based approach utilizing convolutional
Neural Networks, which led to a 6% increase in accuracy. Using GAN-generated samples, they trained an 18-layer
deep residual network as the malware classifier. The training process included multiple convolutional transpose layers,
generating 2,250 synthetic samples for each class. The deep residual network achieved an overall average testing
accuracy of 84%, with improved performance in all other metrics for classes with larger sample sizes. Researchers
utilize a Cycle GAN to generate novel training samples in their study detailed in [204]. This GAN learns the distinctive
features between input and output images, employing these feature maps to execute image-to-image transformations and
create new samples. This approach aims to produce images closely resembling realistic malware images. Augmenting
datasets with such authentic-looking images could significantly benefit the development of an improved classifier.
However, it remains crucial to rigorously test the model on unseen test samples to ensure it doesn’t erroneously
generalize by relying on features absent in real malware. In a related investigation by Burks et al. [33], researchers
compare a VAE model and a GAN model using a ResNet18 classifier. In the MalImg dataset, using GAN led to a
performance increase of 6%, while the integration of VAE-generated samples resulted in a 2% improvement. Based on
these results, the researchers reported that generating artificial malware data using GANs is more effective than using
VAEs for Deep Learning-based malware classification.

5.4.6 Few-shot Learning

Few-shot learning (FSL) [69] is a Machine Learning technique that enables models to recognize and generalize to
new classes with a limited number of labeled examples per class. Several Few-Shot Learning (FSL) models employ a
meta-learning framework. This framework continually updates the model using mini-batches covering diverse tasks.
These tasks are drawn from a latent task distribution based on the training set’s characteristics. Consequently, the
model acquires extensive and advanced knowledge that can be universally applied to all tasks, facilitating proficient
classification across various mini-batches. The selection of the loss function holds paramount importance in Few-Shot
Learning (FSL) since it steers the model in generalizing from a restricted set of examples.

The N -way-K-shot classification task is a common consideration, aiming to classify examples into N distinct classes
accurately. The challenge lies in having only K-labeled examples available for each class, as discussed in works by
Hsiao et al. [93] and Barros et al. [23]. The imbalanced data distribution among different malware families significantly
influences the effectiveness and generalization ability of Few-shot learning approaches [17]. Researchers have proposed
solutions using Siamese Neural Networks to tackle this challenge. A Siamese network, comprising two identical
networks sharing weights, aims to embed malware instances into a continuous vector space. This network is trained on
pairs of samples, treating instances from the same family as positive and those from different families as negative. The
resulting feature extractor, trained by the Siamese network, can subsequently link to a classifier for predicting class
labels. Hsiao et al. in [93] utilized Siamese Neural Networks to classify malware images, employing techniques such as
average hashing and malware visualization during data preprocessing. Similarly, in[17], the suggestion was made to use
Siamese Neural Networks for Android malware classification, connecting the Siamese Neural Network to a multilayer
perceptron for classifying generated embeddings. Another approach in [179] involved generating grayscale images
from network traffic data of malware and implementing a prototype-based few-shot learning model. The Siamese
network utilized in the study [9] specifically employs a shared-weight architecture, where two identical sub-networks
process pairs of images: one for the original malware image and the other for its adversarial counterpart created using
the Fast Gradient Sign Method (FGSM). This design allows the network to learn a consistent feature embedding for
both images, enabling it to compute a similarity score that quantifies the degree of similarity.

29



Survey on Visualization-based Malware Detection

5.5 Evaluation

This section provides a comprehensive analysis of the evaluation methods used in the field with a particular focus
on the comparability of results obtained by different research groups. We present the different software choices that
researchers have to make to implement their model and how these have to be considered when presenting the results to
the scientific community. Finally, we discuss the metrics commonly found in papers and their efficacy in judging a
model.

5.5.1 Software

ML can uncover patterns and insights from large and complex datasets that may be difficult or impossible for humans
to discern. Implementing ML algorithms from scratch can be a challenging and time-consuming task. Libraries provide
pre-implemented algorithms, tools, and functionalities that simplify developing and deploying models. Selecting the
suitable ML library holds significant importance during model implementation and when evaluating the results. Even
when employing the same algorithm, the back-end implementation in various libraries may exhibit variations, leading to
differences in the output that could significantly impact the overall model evaluation metrics [197, 75]. In the following
paragraphs, we’ll present the prevalent Python libraries frequently utilized by researchers within this field.

Several tools and libraries are crucial in visualization-oriented malware detection and machine learning research.
OpenCV [30] and the Python Imaging Library (PIL) [208] are powerful image-processing libraries that support essential
tasks such as image loading, transformation, enhancement, feature extraction, visualization, and image comparison,
while also integrating seamlessly with Machine Learning frameworks. Scikit-learn [167] offers a wide range of ML
algorithms focusing on simplicity and readability, enabling rapid prototyping and model validation. PyTorch [165],
known for its dynamic computational graph and modular design, provides flexibility for implementing cutting-edge
deep learning models, while TensorFlow [1], with its scalable architecture and efficient computation graph, is suited for
building and deploying complex ML models. Keras [47], a high-level API running on TensorFlow, further simplifies
neural network development with its user-friendly interface. For data visualization, Matplotlib [96] is indispensable,
supporting diverse plot styles from basic charts to intricate 3D visuals. Additionally, AVClass [121] aids in automated
malware classification by aggregating antivirus labels, offering consistent and meaningful insights into malware
taxonomy.

Hardware setup is critical for evaluating ML and DL models, as computational resources directly impact training speed,
model scalability, and reproducibility—yet over 40% of studies omit detailed hardware specifications.

5.5.2 Metrics

The metrics commonly used to evaluate the models are:
Accuracy. It is a metric used to evaluate the overall performance of a classification model. It represents the proportion
of correctly classified instances relative to the total number of instances. Although widely used due to its simplicity,
accuracy may not provide a reliable measure when dealing with imbalanced datasets. The formula for computing
accuracy is given below:

Accuracy =
TP + TN

TP + TN + FP + FN

here, TP (True Positives) denotes the number of actual positive instances that were correctly predicted, TN (True
Negatives) indicates the number of correctly predicted negative instances, FP (False Positives) corresponds to negative
cases incorrectly classified as positive, and FN (False Negatives) refers to positive instances that were wrongly predicted
as negative.

Precision. It evaluates how many of the instances predicted as positive are actually correct. It emphasizes the reliability
of positive predictions, making it particularly important in scenarios where false positives carry significant consequences.
Precision is calculated as the ratio of true positive predictions to the total number of predicted positive instances (i.e.,
the sum of true positives and false positives). The formula for precision is as follows:

Precision =
TP

TP + FP

, here TP (True Positives) represents the correctly predicted positive instances, and FP (False Positives) identifies the
incorrectly predicted positive instances.
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Recall. It is also referred to as sensitivity or the true positive rate, which measures the ability of a classifier to identify all
relevant positive instances in the dataset. It reflects how well the model minimizes false negatives. Recall is defined as
the proportion of true positive predictions out of the total actual positive cases, calculated using the following formula:

Recall =
TP

TP + FN

, here TP (True Positives) represents the correctly predicted positive instances, and FN (False Negatives) represents the
incorrectly predicted negative instances. F1-score. This metric combines precision and recall into a single value. It
provides a balanced measure of a classifier’s performance. F1-score is calculated as the harmonic mean of precision
and recall, giving equal weight to both metrics.

F1-Score = 2× Precision × Recall
Precision + Recall

Matthews Correlation Coefficient (MCC). MCC is A measure that takes into account all values in the confusion
matrix, giving a more comprehensive assessment of the model’s performance.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

, here TP (True Positives) represents the correctly predicted positive instances, TN (True Negatives) refers to the
correctly predicted negative instances, FP (False Positives) identifies the incorrectly predicted positive instances, and
FN (False Negatives) represents the incorrectly predicted negative instances.

Jaccard Index (JI).It measures the similarity between predicted and actual classifications by calculating the ratio of
their intersection to their union. It provides an indication of how closely the predicted labels match the actual labels.

JI =
TP

TP + FP + FN

here TP (True Positives) represents the correctly predicted positive cases, FP (False Positives) identifies the incorrectly
predicted positive instances, and FN (False Negatives) represents the incorrectly predicted negative instances.

Fowlkes-Mallows Index (FMI). It is defined as the geometric mean of precision and recall, offering a balanced
evaluation of the performance of a classifier. It is often used as a complementary metric to assess the quality of the
predictions.

FMI =
√

Precision × Recall

Confusion matrices. A confusion matrix is a table used to evaluate the performance of a classification model by
comparing predicted labels with actual labels. It includes four key components: true positives, true negatives, false
positives, and false negatives. This matrix offers a comprehensive view of the model’s prediction outcomes and serves
as the foundation for deriving metrics like accuracy, precision, and recall.

ROC curve. The Receiver Operating Characteristic (ROC) curve is a graphical representation of a classifier’s
performance across different discrimination thresholds. It plots the true positive rate (recall) against the false positive
rate (1 - specificity) at various threshold settings. The curve shows the trade-off between true positive rate and false
positive rate, and the area under the ROC curve (AUC) is the summary measure of a classifier’s performance. A
greater AUC value signifies improved classification performance. These assessments extend to multi-class classification
challenges, such as those tackled through the One-vs-All or One-vs-One methods. Both methods enable the evaluation of
a multi-class classifier through ROC curves but involve converting the multi-class issue into several binary classification
tasks.

Resource Consumption Measurements. Additionally, certain researchers prioritize the efficacy of their proposed
models. They offer metrics such as training time, classification time, and CPU Usage to highlight the time and resources
expended by high-performing models, demonstrating their strengths and weaknesses. It is crucial to provide context to
the quantitative outcomes by considering the hardware and software setup used for training and testing.

Merely assessing accuracy does not offer a comprehensive evaluation of a model. Therefore, considering precision, recall,
and the F1-score as metrics is crucial for a thorough evaluation. Moreover, a confusion matrix aids in pinpointing how a
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Table 6: Metrics used to evaluate classification models and reference articles

Metric Ref.
Accuracy [217] [72] [159] [236] [90] [58] [117] [198] [52] [200] [229] [227] [93] [78] [112] [152] [134] [171] [21] [237] [42] [6]

[108] [195] [215] [146] [127] [154] [212] [29] [100] [211] [250] [63] [180] [80] [216] [176] [221] [76] [97] [192] [57]
[15][204] [168] [24] [129] [2] [199] [222] [11] [228] [223] [101] [26] [67] [91] [79] [161] [251] [118] [143] [48] [253]
[174] [39] [37] [172] [61] [140] [183] [113] [102][125] [109] [190] [149] [7] [247] [243] [65] [120]

Precision [72] [159] [90] [52] [152] [229] [227] [78] [237] [108] [195] [146] [154] [212] [29] [211] [180] [80] [216] [176] [97] [192]
[57] [204] [168] [24] [15][129] [222] [11] [228] [223] [101] [26] [67] [161] [251] [118] [143][253] [162][162] [174][37]
[169] [172] [61] [140] [183] [102] [125] [109] [190] [149] [7] [247] [243] [65] [120]

Recall [72] [159] [90] [52] [229] [37] [199][2] [227] [78] [152] [237] [108] [195] [146] [154] [212] [29] [211] [180] [80] [216]
[176] [97] [192] [57][204] [168] [24] [15] [129] [222] [11] [228] [223] [101] [26] [67] [161] [251] [118] [143] [253][162]
[174] [169] [172] [61] [140] [183] [102] [125] [109] [190] [149] [7] [247] [243] [65] [120]

F1-score [72] [159] [90] [229] [227] [78] [152] [237] [108] [195] [146] [29] [211] [63] [180] [80] [216] [176] [76] [97] [57] [204]
[15] [168] [24] [129] [2] [199] [222] [11] [228] [223] [101] [26] [67] [91] [251] [143][48] [253] [162][174] [169] [172]
[61] [183][113] [102] [125] [109] [190] [149] [7] [247] [243][65] [120]

Confusion Matrix [52] [78] [152] [6] [154] [212] [29] [211] [180] [216] [76] [97] [192] [57] [204] [168] [24] [15] [129] [2] [199] [222] [11]
[228] [223] [26] [67] [161] [251] [118] [143] [253] [174] [37] [169] [61] [183][113] [109] [65]

ROC Curves [217] [236] [6] [108] [146] [212] [180] [176] [15] [67] [118] [253] [169] [61] [109] [238] [120]
Time & Resource [132] [97] [20] [122] [72] [159] [227] [78] [153] [152] [21] [195] [154] [212] [29] [59] [211] [250] [180] [216] [221] [57]

[168] [199] [11] [229] [223] [101] [67] [91] [161] [253] [253] [48] [65]
Others (MCC, JI, FMI, etc.) [9] [243] [7] [238] [241] [145]

model misclassifies samples within a specific class, providing an immediate overview of the classifier’s discriminatory
behavior. Lastly, ROC curves serve in binary classification directly or are adapted for multi-class scenarios to showcase
a model’s capability to differentiate between different groups. Table 6 showcases the chosen evaluation metrics for each
paper concerning their models. Observe that, the “Other” row represents papers that employed extra pertinent metrics
related to the visualization aspect of the problem.

5.6 Model Robustness and Adaptation

This section highlights adversarial attacks targeting visualization-based malware detectors. Researchers have
demonstrated that ML and DL are susceptible to Adversarial Examples (AEs) [201, 235]. Adversarial attacks aim
to either misclassify input into a different class from the legitimate source class or intentionally misclassify samples
from any source class into a specifically chosen target class. The adversarial domain has been structured using a
taxonomy [163] designed for multi-class Deep Learning classifiers. Adversaries can be classified according to their
level of knowledge about the targeted model needed to carry out attacks: (i) white-box attack, (ii) black-box attack, and
(iii) grey-box attack. A white-box attack requires complete access to the model. In a black-box attack, the attacker
has limited or no visibility into the internal parameters or architecture of the targeted machine-learning model. In a
grey-box attack, the attacker possesses limited information about the model, including architecture, training data, and
gradients. An Adversarial Example (AE) pertains to an altered sample from the initial dataset, intentionally designed
with slight modifications to trick Machine Learning-based malware detectors [201]. The adversarial image xadv is
generated using equation 4.

xadv = xor + δ (4)

where a small perturbation called δ is applied to the original image xorg . Various approaches can be employed to create
adversarial malware images. One method involves implementing adversarial perturbations [224], which entail carefully
crafting imperceptible modifications to deceive image classification algorithms. Gradient-based techniques leverage
gradients to generate adversarial examples, employing methods such as the Fast Gradient Sign Method (FGSM) [83].
Generative Adversarial Networks (GANs) can also train models that generate realistic, misleading images. Researchers
generally classify malware adversarial attacks into two categories: Attacks in the problem domain and attacks in
the feature domain [131, 182]. In problem-domain attacks, adversarial attacks are designed to fool the model by
manipulating the input data itself. This can be done by adding small, imperceptible perturbations to the input data
that cause the model to make a different prediction. For example, an attacker could add a small amount of noise to
an image. Conversely, feature-domain attacks, on the other hand, are designed to fool the model by manipulating
the intermediate features that the model extracts from the input data. This can be done by adding or removing small
amounts of activation to the model’s neurons. These attacks frequently utilize gradient-based techniques in the image
domain, such as DeepFool [148] and FGSM [83]. It’s important to recognize that mapping from the feature space back
to the original sample might not always succeed, possibly leading to creating samples that cannot be executed.

Targeted adversarial attacks aim to influence the model to predict a particular chosen target class. These adversarial
examples are carefully crafted by subtly altering the data to guide the model’s predictions toward the desired target
class. Conversely, untargeted adversarial attacks pursue a broader goal of causing misclassification, not restricted to a
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specific target class. For example, they might create a function F that modifies input X ′ in a way that leads model M to
misclassify X ′ as any class other than its original one. The challenge here is to ensure that the differences between X
and X ′ remain imperceptible to human observers. In contrast, targeted attacks seek to bias model M toward a particular
target class Y . Attackers devise the function F to produce a modified version of any normal input, prompting M to
predict class Y .

In [133], Liu et al. introduce a framework known as ATMPA, the first white-box adversarial attack method to undermine
visualization-based malware detectors. ATMPA starts by transforming the malware sample into a grayscale image
representing its binary texture, and then altering the associated adversarial example using subtle perturbations produced
with the help of FGSM and C&W techniques. However, a significant limitation of ATMPA is that the resulting
adversarial grayscale image disrupts the original malware structure, rendering it unsuitable for practical PE malware
detection in real-world scenarios. Khormali et al. introduce COPYCAT [112], an adversarial attack that makes
use of existing generic adversarial attacks (e.g., FGSM, C&W, DeepFool, PGD, etc.) similar to ATMPA targeting
visualization-based malware detectors that utilize CNNs. Subsequently, COPYCAT takes a different approach by
attaching the adversarial image to the tail of the original malware image rather than integrating it directly into it. In
contrast, Park et al. in [164] proposed an alternative adversarial attack technique that generates an adversarial image of
malware using existing off-the-shelf adversarial attacks. Subsequently, the adversarial malware alignment obfuscation
(AMAO) algorithm injects minimal NOP instructions into the original executable malware. This process aims to align
the executables with the previously generated adversarial image, ultimately evading visualization-based malware
detectors. The authors introduce AMGmal [245], an Adaptive Mask-Guided adversarial attack designed to evade
malware detection with minimal perturbation while preserving malware functionality. They achieve this by leveraging
GradCAM++ for saliency detection to identify crucial bytes in malware binaries and modifying only slack areas in the
PE format. The approach employs three adaptive mask transformation strategies—Dilation, Erosion, and Heuristic—to
balance evasion effectiveness and perturbation minimization. Experimental results show AMGmal reduces perturbation
from 3.34% to 0.90% on Malimg and from 2.32% to 0.73% on SOREL-20M, achieving evasion rates of 68.09% and
64.75%. The method ensures functionality preservation and adaptability to other attack models but relies on slack area
availability and accurate saliency detection. They suggest enhancing saliency precision, exploring black-box attacks,
and developing robust dynamic and behavior-based detection techniques to counter adversarial malware evasion in the
future.

The authors of [105] utilized Generative Adversarial Networks (GANs) to improve the robustness of its malware
detection model against adversarial attacks. This process involves generating adversarial examples that closely resemble
original malware images by perturbing them with a generator network, while a discriminator network learns to
distinguish between real and adversarial samples. These generated adversarial examples are then incorporated into
the training dataset alongside the original images, leveraging a similarity metric (Structural Similarity Index Measure)
to ensure their resemblance to the originals. This adversarial retraining enhances the model’s ability to correctly
classify both legitimate and perturbed images, ultimately improving its resilience against attacks, as evidenced by more
concentrated activation patterns in heatmaps following retraining. In [14], the authors evaluated deep learning models
under white-box adversarial attacks using noise perturbations like Gaussian and Salt & Pepper. The models exhibited
minor accuracy drops on MalImg (4.1%) and BIG2015 (11.9%), but performance on the Malhub data set dropped
sharply (up to 98.5%) due to data imbalance. These results highlight that even simple adversarial noise can significantly
affect detection reliability, especially in imbalanced settings, emphasizing the importance of incorporating adversarial
robustness into malware detection systems. The study [9] employs adversarial training using the FGSM to enhance the
resilience of the FASNet model against malicious attacks. Adversarial images are produced through the addition of
carefully calculated perturbations to the original malware images, making them difficult to classify correctly. As the
model undergoes training, it learns to classify both the original and adversarial images, which enhance its capability to
handle deliberately misleading inputs. This exposure ensures that the model can accurately distinguish between benign
and adversarial samples, thereby bolstering its robustness against adversarial attacks in real-world environments.

Attacks on models. Machine learning (ML) has enhanced malware detection by enabling the identification of
both known and novel threats, it simultaneously opens new attack surfaces. Adversaries increasingly exploit these
vulnerabilities through sophisticated techniques to subvert and manipulate ML-based detection systems. Recent
work in[128] presents a novel backdoor attack targeting ML-based Android malware detectors, exposing critical
vulnerabilities in these systems. Unlike traditional adversarial attacks, their approach operates without access to the
training data, enhancing its realism and threat level. The authors inject adversarial Android applications containing
stealthy, trigger-based perturbations selected using a Genetic Algorithm into the training pipeline. These samples are
mislabeled as benign and modified at the APK level to preserve functionality while evading detection. Evaluated on
four prominent detectors—Drebin, MaMaDroid, DroidCat, and DroidAPIMiner—the attack achieves evasion rates
of up to 99%, with minimal impact on overall model accuracy. The study identifies feature interdependencies as a
limitation and underscores the need for robust defenses via improved feature selection and labeling.
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Another effort in this direction is the Jigsaw Puzzle (JP) attack proposed in [239], which improves the stealth of
backdoor strategies by selectively targeting specific malware families. Unlike traditional attacks that poison entire
classes, JP activates only when a unique trigger aligns with the latent features of the attacker’s malware. The authors
design the attack in a clean-label setting without controlling training or labels, enhancing realism. JP achieves high
evasion on attacker-owned samples while preserving accuracy and maintaining low false positives. Evaluations on
a large Android dataset show JP evades advanced defenses like MNTD by violating their broad-spectrum backdoor
assumptions. While the study focuses solely on Android malware and uses fixed hyperparameters across families, it
highlights the urgent need for adaptive defenses and calls for further research to generalize selective backdoor strategies
to broader classification contexts. In [246], the authors present a framework that exploits third-party crowdsourced threat
intelligence, allowing adversaries to inject poisoned data without altering labels. They embed universal adversarial
triggers in unused PE header bytes, preserving functionality while manipulating predictions. Using heuristic search,
they craft triggers that misclassify malware as benign. Experiments show high attack success and evasion of defenses
with minimal impact on clean sample accuracy. Despite relying on soft labels and fixed regions, the method exposes
weaknesses in static detection systems. The study emphasizes the need for research into sample-specific triggers,
adaptability to dynamic detectors, and stronger defenses against clean-label backdoor attacks.

In [184], the authors highlight that the widespread use of crowdsourced threat intelligence by security vendors creates a
practical avenue for injecting poisoned data into training pipelines. They demonstrate the vulnerability of feature-based
malware classifiers and propose a model-agnostic, explainable AI approach using SHAP to embed stealthy backdoors
via influential features. The method achieves high attack success across diverse datasets and models while remaining
difficult to detect due to benign sample diversity. The study highlights the dual-use risk of explainable AI in adversarial
contexts, assuming knowledge of the victim model’s feature space and showing variability across datasets. It calls
for research into generalizable attacks and robust defenses, especially against stealthy clean-label threats in hybrid
detection systems.

6 Interpretability

This section focuses on the vital realm of interpretable techniques for detecting image-based malware. Explainability
holds immense significance in ML, addressing the need for clarity and responsibility in automated decision-making
across diverse sectors like healthcare, finance, and autonomous systems [144]. Legislations like GDPR’s Article 22
underscore the right for individuals to comprehend the logic and implications behind automated decisions, driving
the call for transparency [220]. In cybersecurity, this transparency is non-negotiable, as ambiguity within security
systems can lead to grave consequences. Understanding the ’why’ behind these systems’ decisions is crucial to prevent
vulnerabilities and malicious activities. While some Machine Learning models naturally explain their outputs, Neural
Networks—a prevalent model class—lack inherent transparency. This ambiguity has created a need for methods that
make these models more understandable. This isn’t just about trust and fairness but also about ethically using these
systems.

The researchers in [234] applied a CNN with attention to identifying critical regions for classification, facilitating the
extraction of distinctive byte sequences unique to the malware family. Even without prior knowledge, this method
offers significant insights to human analysts. Moreover, examining the connections in attention maps between malware
samples belonging to the same family assists analysts in pinpointing specific positions unique to targeted malware
families. In their work [103], the authors investigate how the Vision Transformer (ViT) exploits its strengths to offer a
robust understanding of complex patterns in malware images. The attention map produced during detection identifies
crucial elements such as class and method names. Real-world dataset validation demonstrates an 80.27% accuracy
in malware detection. Furthermore, they computed an “interpretability score” [225], surpassing other interpretable
Machine Learning (ML) methods like Drebin, LIME, and XMal. This underscores its potential contribution to
explainable artificial intelligence within cybersecurity.

The authors of [97] presented an interpretable approach to detect malware in the Android environment. They employed
the Grad-CAM algorithm to facilitate the visual debugging of models and gain insights into the specific areas that
receive focus when predicting the maliciousness of Android application images. Hamad et al. in [150] developed a
pre-trained Inception-v3 transfer learning model to analyze malware in IoT devices. They used Grad-CAM to generate
visual explanations through cumulative heatmaps, providing insights into the learned features of the CNN models.
Additionally, t-SNE was employed to assess feature density within the proposed CNN models. In [43], the authors have
utilized LIME to generate super-pixel (patches of pixels) plots for malware images. An interpretable approach using
an ensemble of eight CNN-based pre-trained models is proposed in [130]. They have also conducted experiments to
enhance accuracy by leveraging the resultant interpretations. Furthermore, the authors of [71] suggested that explainable
AI models demonstrate resilience against adversarial attacks. They highlighted the potential of these models in detecting
adversarial inputs or samples by generating distinctive explanations using the Shapley Additive Explanations (SHAP)
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for perturbed samples. They generated SHAP Signatures for the internal layers of a Deep Neural Network classifier,
which helped assess features’ relevance and importance in distinguishing between normal and adversarial inputs. The
authors of [105] use SHAP to attribute individual feature contributions to model predictions, helping identify key
influences on outcomes. Grad-CAM generates heatmaps to highlight important image regions, showing which areas
most impact classifications. Additionally, t-SNE visualizes high-dimensional data in two dimensions, allowing the
examination of clusters and patterns among different malware families.

The quantitative evaluation of interpretation quality is paramount. Metrics such as Fidelity [87], stability[68], and
Robustness[68] are three well-established measures used to assess the quality of explanations. Fidelity evaluates
individual explanation accuracy, while robustness quantifies dissimilarity between explanations from different families.
Stability assesses similarity among explanations from the same interpretation method on identical models.

7 Applications and Real-World Deployment Contexts

Visualization-based malware detection has found applications across platforms including Windows, Android, and IoT
environments such as smart factories and autonomous vehicles [166, 170, 150, 173]. These methods typically convert
binary or behavioral data into grayscale images for classification using convolutional neural networks (CNNs). Recent
work shows that embedding ML-based image analysis directly into IoT and vehicle platforms can enable low-latency
malware detection. For example, Patel et al.[166] continuously monitor an autonomous vehicle’s network traffic,
convert malware binaries into gray-scale images, and apply a ResNet50V2 CNN to classify them. In a smart-factory
IIoT case, Kim and Lee deploy a three-tier edge/cloud architecture (on-device, edge server, and cloud) that runs a CNN
on visualization images of malware (from the Malimg dataset) and reaches 98.9% accuracy. Prathiba et al.[170] take a
complementary approach by using blockchain to label trustworthy AV nodes: onboard sensors detect malicious code and
isolate infected vehicles, and only vetted vehicle IDs are recorded on-chain. This Blockchain-enabled scheme achieves
0.99 F1 for malware detection. ViT4Mal[173] demonstrates partial deployment of a lightweight vision transformer on a
Xilinx FPGA, achieving real-time malware detection on edge devices with minimal latency and high accuracy, though
decoder execution remains offloaded to a host CPU. In practice these systems span Windows executables, Android
apps, and general IoT devices, leveraging CNNs on binary-to-image conversions and integrating with SOC or SIEM
infrastructures. The blockchain logs and on-device inference bolster trust and privacy, but real-world deployment must
still tackle issues of cross-device scalability, heterogeneous malware datasets, and the interpretability of deep models.

8 Lesson Learned

This section presents a comprehensive discussion of the insights gained from the analysis conducted in this study. The
main findings derived from our survey are outlined below:

• Relying on outdated datasets risks poor model generalization to new malware variants, underscoring the
necessity of using up-to-date datasets that reflect current threats for robust detection.

• Research largely focuses on static feature-based image generation, but combining it with dynamic
visualization—despite its computational cost—offers more profound insights and improves the accuracy
of malware analysis.

• The standard method found in the literature to generate images from malware is the bytecode gray scale
method and its variants. This method interprets the bytes that form the malware file as grayscale values for a
pixel. One can use the technique with the sample’s opcodes with minor adaptation.

• Images can also be created by using dynamic features of the analyzed malware. Authors have experimented
mainly with API calls, system calls, and network traffic. The methods used to transform these features in
images vary a lot among authors, and the problem is often less explored;

• Researchers experimented with different methods to reorder and reinterpret the bytes to convey more useful
information in an image. In particular, Markov images help classifiers to identify repeated patterns inside the
code, SFC is used to maintain the vicinity of each byte of a sample, and hashing schemes are another way to
maintain the locality of each byte. All these methods have proven to increase the accuracy of the analyzed
classifiers. However, the literature needs a proper, well-defined benchmark dataset and environment with fixed
parameters on which models can be objectively tested and compared.

• Entropy can also be used to represent a sample uniquely. The use of Entropy is interesting because it also
conveys information about obfuscated malware samples.

• Various methods exist for extracting features from images, generally categorized into extracting global features
and local features.
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• The combination of local and global features has been proven more and more as the best-performing one

• The extraction of features through a Neural Network, particularly a CNN and its variants, has been proven
better than any other feature extractors that do not use domain-specific information. Deep learning seems to be
the way forward if we do not consider handcrafted features generated by domain experts.

• There is no way to objectively compare different feature extractors because different authors usually use
different classifiers in their research, and so the final results are not comparable. At the feature level, few
authors have pushed to interpret the extracted features, and the only explanations are related to inherently
interpretable algorithms used to extract those features.

• Limited research has been conducted on interpretability in the context of DL malware image visualization,
with CAM explanations emerging as the most promising avenues. Further experimentation in this domain is
imperative, particularly in light of the growing demand for explanations driven by GDPR and similar laws
requirements and other pressing security robustness concerns.

9 Challenges and Future Directions

The cybersecurity research community has recently voiced concerns about the efficacy of a visualization-based approach
in malware classification. Research on such approaches is gaining momentum. To contribute to the literature, we
comprehensively investigated various steps and procedures in the visualization-based malware detection domain. This
section delves into potential research challenges and future directions as visualization-based methods in malware
detection become more prevalent.

Obfuscated data. By utilizing visualization techniques, analysts can better understand the behavior and structure of
obfuscated code, enabling them to identify malicious patterns and enhance the detection process. Commonly employed
obfuscation techniques include injecting dead code, reshuffling subroutines, rearranging code, etc. [242, 185]. Texture-
based methods in malware detection enhance resilience against obfuscation techniques [157]. Rather than focusing
on code-level modifications, these methods analyze image texture patterns and visual characteristics, including color
distribution, edges, and local patterns. They exhibit resilience to code obfuscation, packing, and encryption if they do
not introduce significant visual alterations. These methods also demonstrate robustness to code-level modifications by
effectively capturing stable high-level visual patterns. By performing statistical analysis on textures, such as histograms
and co-occurrence matrices, these methods offer a robust representation that captures higher-level information. However,
one significant challenge with many visualization approaches is their reliance on computing texture similarity. While
these approaches effectively tackle code obfuscation issues, they demand substantial computational resources for
extracting intricate texture features from malware images, including LBP, GIST, DSIFT, and GLCM. Analyzing specific
malware obfuscations poses significant challenges due to their potential utilization of diverse packing techniques
and resolutions. Consequently, examining them solely based on textual features becomes a difficult task[215]. In
[57], the authors introduce a semi-supervised approach that uses grayscale images to visually analyze executables,
aiming to detect and classify obfuscated malware. Meanwhile, Vasan et al.[211] tackle the challenge of obfuscated
malware classification by employing a fine-tuned CNN architecture. This architecture aims to extract resilient features
by incorporating translation invariance, capturing distinct representations of obfuscated patterns, and adapting to
evolving obfuscation techniques. Furthermore, in [212], the same authors initially tested their model on MalImg and
subsequently on packed and salted samples. The model achieved an accuracy of 98.11% against packed malware,
a common obfuscation technique, and 97.59% against salted malware. Salting malware, observed in other studies
like [232], involves inserting benign samples, commonly found on recent Windows PCs, into each malware family.
Researchers in [62] proposed a method to classify obfuscated malware and identify obfuscation types in Android
IoT applications by converting bytecode into Markov images and applying a CNN. Although this approach improves
robustness against obfuscation, its effectiveness depends on image quality, remains susceptible to concept drift, and may
not address all obfuscation techniques. They recommend integrating dynamic analysis and implementing continuous
learning to improve detection performance.

Sustainability. Concept drift is a key challenge in sustainable malware detection, as the statistical properties of
malware evolve over time, reducing the effectiveness of ML models. Traditional models trained on historical datasets
become outdated and struggle to classify new malware accurately. While some researchers have addressed this issue,
no systematic methodology has been established. A trade-off exists between using fixed benchmark datasets (e.g.,
Big2015, MalImg) and more current datasets. Solutions include testing models on benchmark datasets for comparability
before evaluating them on newer data or periodically updating benchmark datasets with new samples. To mitigate
concept drift, continuous model updates, adaptive learning techniques, ensemble methods, and the integration of new
features and data sources are essential for maintaining effective malware classification. Unfortunately, the literature
often overlooks a direct analysis of concept drift, as evident in Table 5. This oversight is rooted in the fact that
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benchmark datasets typically remain static over time. Consequently, evaluations of the presented models stand as
singular snapshots, subject to judgment based on the future evolution of malware over an extended period. Malware
visualization approaches have seen a limited exploration of concept drift, with only a few works addressing the issue in
the context of malware detection using alternative features. Transcend [106] introduces a framework that innovatively
identifies aging classification models and issues an early warning before the model consistently makes poor decisions
due to outdated training. The framework achieves this by employing statistical comparisons of samples encountered
during deployment with those utilized for model training, thereby establishing metrics for prediction quality. In[22],
the authors revisit the conformal evaluator and Transcend [106], aiming to establish their internal workings on a solid
theoretical foundation and identify optimal operational settings. They also introduce Transcendent, a framework for drift
detection with computational efficiency. DroidSpan in[34] introduces a behavior profile capturing the distribution of
sensitive accesses in Android apps. This profile enables DroidSpan to demonstrate superior sustainability, consistently
separating benign and malicious apps over eight years. The study also deals with the crucial role of features that endure
over time in achieving sustainable learning-based malware detection. Another approach in[85] is to detect and mitigate
concept drift in Android malware detection and demonstrate its effectiveness over a seven-year data set. The method
also minimizes retraining with short-term datasets, evaluates the impact of timestamps, and characterizes concept drift
in Android malware by analyzing essential features across time horizons. While sustainability is not explicitly addressed
in the majority of papers, numerous authors examine the robustness of their models by testing them on diverse datasets.
This approach, when combined with a reflection on the evolution of malware and model performance following the
introduction of newer samples, can establish the foundation for a future study on sustainability [132].

Outdated Datasets. While many papers excel in malware detection or classification tasks using visualization-based
approaches, these models are typically assessed using outdated datasets, posing a risk to the model’s generalization
ability for zero-day malware. While widely used datasets exist, they frequently encompass brief timeframes that might
not sufficiently represent malware evolution or possess unevenly distributed samples across various families. Moreover,
researchers frequently incorporate samples from various public repositories to either balance or augment the datasets.
This practice, however, hampers the efficiency of method comparisons and reproducibility, as the samples vary across
each research paper. These factors can significantly impact the performance of detection approaches. Hence, the
creation of current and precise datasets that mirror ongoing trends becomes imperative, and we highlight this as a
priority for future endeavors.

Computational Costs. The majority of research focuses on techniques for generating static-feature-based images,
particularly in greyscale. Although dynamic information visualization holds considerable potential for malware analysis,
it comes with the drawback of being computationally intensive. Further efforts to apply hybrid approaches to images
could enhance the robustness of these techniques, but this area still requires exploration.

Benchmark Dataset for Feature Fusion Strategies. Though all feature extraction techniques enhance classifier
accuracy, the existing literature lacks a well-defined benchmark dataset specifically tailored for applying these techniques.
Moreover, a consistent environment with fixed parameters enables unbiased testing and model comparisons. Further
exploration into combining local and global features is necessary. Additionally, investigating the fusion of various
feature extractors and Deep Learning models warrants attention.

Resource-Constrained IoT devices. In many instances, techniques for analyzing malware are crafted to enhance
detection accuracy, often overlooking constraints such as memory footprint, power consumption, and network resources.
Regrettably, these operational limitations give rise to notable performance bottlenecks in the context of IoT systems,
resulting in a degradation of detection accuracy. For example, complex convolution and pooling operations slow down
these techniques when used on edge devices. Extensive research is necessary for visualization-based approaches, which
have proven effective for resource-constrained devices like IoT systems.

Interpretability. Using deep models is limited by their lack of interpretability, as they essentially function as black
boxes. However, understanding the reasoning behind predictive models is vital, especially in cybersecurity, where
analysts must comprehend the security-related decisions made by algorithms. While explainability techniques currently
exist to illuminate predictions from deep architectures, there is a need to explore more of these techniques to improve
the interpretability of malware predictions through visualization-based malware detection approaches. This is crucial
because very few works in this area involve creating methods that clearly explain why specific visual patterns indicate
obfuscated behavior. Further research in this direction has the potential to benefit the fields of malware detection and
analysis significantly.

Adversarial Attacks. In a broad context, adversaries can target image classifiers by modifying pixel values to create
adversarial images. Concerning malware, any alterations to a malware file must not compromise its functionality.
The content within executable files is highly sensitive, and even a minor change can completely alter the malware
functionality or render the file inoperable. Despite this constraint, adversaries in the visualization-based malware
domain have mainly limited themselves to perturbation types, which struggle to maintain the functionality of modified
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files. Moreover, there are few available mechanisms to verify post-perturbation functionality. Consequently, future
research should focus on developing tools that can automatically and efficiently verify the functionality of malware
after undergoing perturbations.

Reproducibility. The issue of result replicability is a well-known concern within the research community, and this
study’s domain is no exception. Daoudi et al. [55] have addressed the critical challenge of reproducibility in Android
image-based malware detection. The difficulty in replicating results, even with similar setups, highlights the need for
researchers to consider this aspect carefully when aiming to make meaningful and testable contributions to the field.
In this assessment, we’re determining if the examined papers offer crucial details that can benefit fellow researchers,
encompassing specifics on the model’s structure, parameters, software components, and more. Guaranteeing thorough
documentation of this data is vital to improve the ability to replicate research outcomes and drive progress in image-based
malware detection.

10 Conclusion

The proliferation of malware, or malicious software, poses an ongoing and evolving challenge in cybersecurity. In
response to the increasing threat landscape, cybersecurity defenses continually evolve to mitigate the impact of
malware. Visualization-based detection approaches have emerged as a crucial component of these defense strategies.
Adopting visualization-based approaches in malware detection enhances traditional methods by leveraging pictorial
representations to uncover intricate relationships and anomalies in large datasets. This paper comprehensively reviews
techniques that employ visualization for malware detection. We introduce fundamental knowledge essential for
understanding visualization-based methods. Our review categorizes and provides insight into state-of-the-art works,
outlining various steps adopted for visualization-based approaches and offering comprehensive descriptions of malware
datasets represented as images. This survey also underscores the vulnerability of image-based detection systems to
effective adversarial attacks, as attackers aim to deceive these systems. In addition, our survey also discusses the
obfuscation detection and sustainability of visualization-based approaches. We began by analyzing 248 works and
ultimately included 102 papers published from 2018 to 2025 in our study to reveal the promising future of applying
image-based methods to malware detection. As a result, we highlight the lessons learned and suggest future research
directions based on current challenges in the field.
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