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Abstract. Preserving data confidentiality during the fine-tuning of open-source Large Lan-
guage Models (LLMs) is crucial for sensitive applications. This work introduces an interac-
tive protocol adapting the Low-Rank Adaptation (LoRA) technique for private fine-tuning.
Homomorphic Encryption (HE) protects the confidentiality of training data and gradients
handled by remote worker nodes performing the bulk of computations involving the base
model weights. The data owner orchestrates training, requiring minimal local computing
power and memory, thus alleviating the need for expensive client-side GPUs. We demon-
strate feasibility by fine-tuning a Llama-3.2-1B model, presenting convergence results using
HE-compatible quantization and performance benchmarks for HE computations on GPU
hardware. This approach enables applications such as confidential knowledge base ques-
tion answering, private codebase fine-tuning for AI code assistants, AI agents for drafting
emails based on a company’s email archive, and adapting models to analyze sensitive legal
or healthcare documents.

1 Introduction

Large Language Models (LLMs) exhibit transformative potential across a vast array of applications,
from translation and summarization to classification and generation. While foundation models
trained on web-scale datasets possess broad capabilities, unlocking their full potential for specific
tasks or specialized domains like healthcare or law often requires fine-tuning. Fortunately, the
prevalence of the transformer architecture allows many open-source LLMs to be efficiently adapted
using techniques like Low-Rank Adaptation (LoRA) [11].

However, adapting these powerful tools using sensitive, private data presents a significant chal-
lenge for organizations. Healthcare providers aiming to leverage confidential patient records, finan-
cial institutions using private transaction data, legal firms working with sensitive case documents,
or companies customizing AI assistants on proprietary source code all face a critical dilemma. Ex-
posing such raw data to third-party cloud services or even internal tools without stringent privacy
guarantees is frequently untenable due to regulatory constraints (e.g., HIPAA, GDPR), compet-
itive risks, or ethical considerations. Consequently, leveraging LLMs on valuable private datasets
poses a major privacy problem.

While performing fine-tuning locally on client hardware avoids direct data exposure, this al-
ternative presents its own significant challenges. State-of-the-art LLMs, even with efficient meth-
ods like LoRA, often demand substantial computational resources—particularly GPUs with high
VRAM (e.g., > 24GB)—which may exceed the capabilities or budget of many users or smaller or-
ganizations. Furthermore, establishing and managing the complex software environment for LLM
fine-tuning requires considerable technical expertise. Therefore, outsourcing the computationally
intensive parts of the fine-tuning process is highly desirable but demands a solution where data
confidentiality can be rigorously maintained.

To address this critical need for secure and accessible private fine-tuning, we present a
protocol where a client (data owner) interactively orchestrates LoRA fine-tuning of an open-source
LLM, securely outsourcing the most demanding computations to a server (or a network of worker
nodes). Our contribution lies in the design and practical integration of a system enabling
this private fine-tuning, centered around several key aspects:

– A client-server architecture tailored for LoRA, where the client manages private LoRA weights
(U,D) and performs non-linear operations, while the server handles linear operations involving
the public base model weights (W ) under Homomorphic Encryption (HE).
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– An efficient HE protocol for the core encrypted vector-clear matrix multiplication (W · [x]HE),
utilizing packed Ring Learning With Errors (RLWE) ciphertexts for input/output, modulus
switching for communication efficiency, and GPU acceleration via custom CUDA kernels.

– A demonstration of feasibility and convergence on a standard LLM (Llama-3.2-1B) using HE-
compatible quantization.

In our setting, the base LLM is public, allowing the server to perform necessary computations, while
the client exclusively holds the private LoRA weights representing the model’s adaptation. Efficiency
is achieved by restricting server-side HE to only the linear operations involving W , leveraging
optimized GPU kernels, and using strong ciphertext compression to minimize bandwidth. While
the protocol naturally supports inference, our focus here is demonstrating the feasibility of private
fine-tuning.

2 Prior Work

2.1 Low-Rank Adaptation

LLM architectures are almost exclusively based on the multi-head attention (MHA) mechanism.
For an input sequence x (batch size B, context length C, model dimension d), a transformer
layer computes updated representations x′ using MHA and a feed-forward network (FFN). Let
dk be the dimension of keys and queries per attention head. The computation involves weight
matrices (WQ,WK ,WV ,Wproj) for attention and FFN weights (e.g., Wgate,Wup,Wdown in Llama-
style models). Conceptually, for a single token (ignoring batch/context dimensions for simplicity):

Q = WQx, K = WKx, V = WV x

AttnOut = Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

h = Wproj(AttnOut)

FFNout = Wdown(SiLU(Wgateh)⊙Wuph)

x′ = h+ FFNout

(1)

Regular Low-Rank Adaptation (LoRA) fine-tuning [11] modifies a pre-trained weight matrix W
(size dout × din) by adding a low-rank update ∆W = UD, where U is dout × r and D is r × din,
with rank r ≪ min(din, dout). The forward pass for a matrix multiplication Wx is then modified
to become y = Wx + UDx(+b if bias). For instance, applying LoRA to the query projection
matrix WQ (where din = dout = d) in Eq. (1) changes the computation to Q = WQx + UQDQx.
Only the LoRA matrices U and D are trained. LoRA is typically applied to attention weights
(WQ,WK ,WV ,Wproj) and FFN weights. The number of trainable parameters r(din + dout) is
much smaller than the original dindout parameters of W .

2.2 Split Edge-Cloud LLM Fine-tuning

Splitting LLM LoRA fine-tuning between an edge device and a cloud service has been explored
in [7,23]. Both works outsource the computations involving the original model weight matrices W
to a cloud, while forward and backward passes on LoRA weights U,D are kept local on the edge
client. However, these approaches do not consider data confidentiality risks associated with sending
intermediate activations to the cloud, and the latter work does not ensure model adaptation (∆W )
confidentiality either.

2.3 Non-interactive Encrypted Training

In non-interactive training, only the encrypted dataset is sent to the server, and the encrypted
model is retrieved. This has the advantage of keeping bandwidth requirements to a minimum.
Logistic Regression training on encrypted data was described in several works [3,4,9,16,19]. Small
multi-layer perceptrons (MLPs) were studied in [17,19,20]. Since HE operates over integers, most of
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these works quantize weights, gradients, activations, and the error function to between 6 and 8 bits.
However, fully encrypted training requires a large amount of expensive encrypted multiplications
and noise-management procedures like bootstrapping, making it too costly at present for large
models like LLMs.

Outsourcing linear operations confidentially usually relies on HE ( [26], [25]) or multi-party
computation (MPC) [8]. [26] relies on the Paillier cryptosystem [21]. With Paillier, ciphertexts
have sizes of 4096 or 6144 bits and can pack multiple plaintexts. Encryption is performed using
modular exponentiation, though it can be optimized by splitting encryption into an online and an
offline stage [14]. When encrypting a large amount of data, pre-computing modular exponentiations
in the offline stage may not be practical. Modular exponentiation makes encryption slow, placing a
large computational burden on the client side and strongly reducing training throughput. RLWE-
based approaches that pack multiple plaintexts in a single ciphertext are shown to be much more
efficient than Paillier [15], both in terms of bandwidth needs and latency. [12] introduces a protocol
for private vector-matrix products with RLWE inputs and Learning With Errors (LWE) outputs,
and [10] uses this protocol for LLM inference. These works do not address the training use case,
which requires stronger data compression.

3 Preliminaries

3.1 Homomorphic Encryption Scheme

Our approach utilizes an RLWE-based Homomorphic Encryption scheme [18,22], similar to TFHE
[5]. We briefly introduce the relevant concepts. Let N denote the polynomial size (a power of 2,
specified in Table 1).

RLWE Ciphertexts. Let Zp := Z/pZ (the ring of integers modulo p). An RLWE ciphertext encrypts
a polynomial message M ∈ Rp = Zp[X]/(XN + 1) under a secret key S ∈ R2 (a polynomial with
small coefficients). It is represented as a pair (A,B) ∈ Rq × Rq, where Rq = Zq[X]/(XN + 1), q
is the ciphertext modulus, p is the plaintext modulus, A is a uniformly random polynomial in Rq

called the mask, and B = A · S + E +∆M . Here, E ∈ Rq is a small noise polynomial (typically
Gaussian), and ∆ = q/p is a scaling factor. Decryption involves computing B − A · S ≈ ∆M and
scaling down. The security relies on the hardness of the RLWE problem.

LWE Ciphertexts. The Learning With Errors (LWE) problem is the basis for RLWE. An LWE
ciphertext encrypts a single integer m ∈ Zp under a secret key vector s ∈ {0, 1}n. It is a pair
(a, b) ∈ Zn

q × Zq, where a is a random vector (mask), and b = ⟨a, s⟩+ e+∆m, with e being small
noise. Here, n denotes the LWE dimension, which is related to the RLWE polynomial size N in
terms of security.

Mask Generation via PRNG. To reduce communication overhead, the client and server can agree on
a Pseudorandom Number Generator (PRNG). The client only sends a short seed se, allowing both
parties to deterministically generate the large mask polynomial A locally. The client then only
needs to transmit the seed and the computed body B, significantly compressing the ciphertext
compared to sending both A and B.

3.2 Key HE Operations

Our protocol relies on several standard HE primitives derived from [5]:

– SampleExtract: Given an RLWE ciphertext (A,B) encrypting polynomial M and an index
h, this operation extracts an LWE ciphertext (a′, b′) encrypting the h-th coefficient Mh of M .

SampleExtract(RLWES(M)A,B , h) → LWES′(Mh)a′,b′ :=


a′i = Ah−i, 0 ≤ i ≤ h

a′i = −AN+h−i, h < i < N

b′ = Bh

(2)
where a′ = (a′0, . . . , a

′
N−1) and S′ = (S0, S1, ...SN−1), the coefficients of the RLWE secret key.
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Fig. 1. Private LoRA fine-tuning computation split: Client handles LoRA weights U,D and non-linearities;
Server handles base model weights W under HE.

– KeySwitching: This operation changes the secret key under which a ciphertext is encrypted,
typically from an LWE key s (dimension n) to an RLWE key S′ degree N . It is fundamental
for packing multiple LWE ciphertexts into a single RLWE ciphertext. This requires a pre-
computed Key Switching Key (KSK), which encrypts the bits of the original key s under the
target key S′. In practice, KSK is a specific set of RLWE ciphertexts. For an LWE ciphertext
(a, b) encrypting m under s, the operation yields an RLWE ciphertext (A′, B′) encrypting m
(or a constant term) under S′.

KeySwitching(LWEs(m)a,b,KSK) → RLWES′(m′)(A′,B′) (3)

is computed as:

(A′, B′) = (0, b)−
n−1∑
i=0

Decomp(ai) ·KSKi (4)

where (0, b) represents a trivial RLWE encryption of b in the constant term and KSKi is the
ciphertext encrypting the i-th bit of the original key s. Finally, the Decomp algorithm is
specific to the key switching procedure; for details, we refer to [5].

– ModulusSwitch: This operation reduces the ciphertext modulus q to a smaller modulus qout.
It serves to reduce the size of ciphertexts before they are transmitted back to the client, further
lowering bandwidth.

– Homomorphic Operations: The scheme supports homomorphic addition and multiplication
(by a cleartext value). We denote the homomorphic multiplication of an encrypted polynomial
by a cleartext polynomial as (·).

– Rotate: Homomorphic rotation of the coefficients of the plaintext polynomial within an RLWE
ciphertext. This rotation is negacyclic, meaning that coefficients wrapping around from the
highest degree term acquire a sign change, corresponding to multiplication by Xk in the quo-
tient ring Zp[X]/(XN + 1).

We refer the reader to [5] and related works for detailed algorithms and security analyses.

4 Method

4.1 LoRA Fine-tuning

Figure 1 shows the responsibilities of the client and server in our LoRA fine-tuning protocol.
The client performs local computations involving the private LoRA weights (U,D) and non-linear
activation functions (softmax, SiLU). The server performs the computationally heavy linear oper-
ations involving the original known model weights (W ) on homomorphically encrypted activations
([x]HE). This split is expressed for a linear layer in Eq. (5).

y = W · [x]HE︸ ︷︷ ︸
server-side

+UDx+ b︸ ︷︷ ︸
client-side

(5)

4



Here, [x]HE denotes the HE encryption of the activation x. The client receives the encrypted result
W · [x]HE, decrypts it to obtain Wx, adds the locally computed UDx + b, applies the necessary
activation function (if any), and re-encrypts the result for the next layer’s server-side computation.

The matrices D,U have shapes (r, d), (d, r) respectively, where d is the LLM hidden dimension
and r is the LoRA rank. The number of LoRA weights can thus be less than one percent of the
number of weights in the original model. The weights W are not updated with gradients, and the
client only updates LoRA weights locally using any optimization strategy they see fit (e.g., Adam,
AdaGrad). Attention modules that compute h = softmax(QKT )V and the MLP activation are
computed on the client side. The intermediate encrypted values needed for Q,K, V (i.e., WQ[x]HE,
WK [x]HE, WV [x]HE) and the inputs to the final client-side additions for h and x′ are obtained from
the server using the HE computation of Eq. (5).

4.2 Quantization

As LLMs typically operate on floating-point numbers and HE schemes work with integers, our
approach requires quantization [13]. This involves converting floating-point values xf to n-bit
integers xq.

Challenges with Standard LLM Quantization in HE. It is important to note that many popular
quantization techniques developed for LLMs are not directly compatible with HE computation.
Methods like block-wise quantization, where scaling factors are computed for small blocks of weights
within a matrix, are primarily designed to reduce memory footprint and bandwidth during model
loading [6]. During computation (inference or training), these weights are often dequantized back to
floating-point (e.g., bfloat16) on the fly to perform the matrix multiplications. This dequantization
step is incompatible with HE, which fundamentally operates on encrypted integers. HE requires
the entire computation, particularly the core matrix multiplications, to be performed using integer
arithmetic on the quantized values. While some techniques like SmoothQuant [24] aim to make
quantization more amenable to integer-only execution by migrating quantization difficulty from
activations to weights, our current work focuses on simpler affine and symmetric quantization
methods applied uniformly or with basic granularity, as detailed below.

Affine Quantization. We convert floating-point values xf to n-bit integers xq using a scaling factor
sx and a zero-point zpx: xf ≈ sx(xq − zpx). The parameters sx and zpx define the range and
distribution of representable floating-point values. A common method to determine these is affine
mapping based on the minimum (xmin) and maximum (xmax) values observed in the data:

sx =
xmax − xmin

2n − 1

zpx = round

(
−xmin

sx

)
xq = round

(
xf

sx
+ zpx

) (6)

The choice of xmin and xmax is critical and leads to different quantization strategies.

Static vs. Dynamic Quantization. The calculation of the range (xmin, xmax) can be done statically
or dynamically.

– Static Quantization: The range is determined once using a representative calibration dataset
before inference or training. The same sx and zpx are then used for all subsequent inputs. This
is simpler but may not capture the varying ranges encountered during execution.

– Dynamic Quantization: The range (xmin, xmax) is computed on-the-fly for each input tensor
based on its actual values. This adapts better to varying data distributions but incurs runtime
overhead for range calculation.

In our HE context, dynamic quantization parameters for activations sent to the server must be
computed by the client and also sent. Static parameters for weights are fixed beforehand.
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Quantization Granularity. The quantization parameters (sx, zpx) can be applied at different levels
of granularity within a tensor:

– Per-Tensor: A single set of parameters (sx, zpx) is used for the entire weight or activation
tensor. This is the simplest approach.

– Per-Channel: For weight tensors (e.g., shape [out channels, in channels]), separate pa-
rameters are computed for each output (or input) channel. This better accommodates varying
weight scales across different neurons.

– Per-Token: For activation tensors (e.g., shape [batch, sequence len, features]), separate
parameters can be computed for each token along the sequence length dimension. This captures
fine-grained variations in activation magnitudes within a sequence.

Finer granularity generally improves accuracy but increases the number of scale/zero-point param-
eters to manage.

Symmetric Quantization for HE. Substituting the affine quantizers xf ≈ sx (xq − zpx) and wf ≈
sw (wq − zpw) into the inner product

∑
xfwf (cf. Eq. (6)) gives the integer expression

K∑
i=1

x(i)
q w(i)

q − zpw

K∑
i=1

x(i)
q − zpx

K∑
i=1

w(i)
q + K zpxzpw,

where K is the number of accumulated terms (e.g., the input dimension din). If the zero-points
are non-zero, all four sums must be evaluated homomorphically—which is costly under HE. We
therefore adopt symmetric quantization: choose the ranges such that xmin ≈ −xmax and wmin ≈
−wmax, which forces zpx = zpw = 0 (for signed integers). With the offset terms eliminated,

the server’s task reduces to computing only the encrypted dot product
∑

i x
(i)
q w

(i)
q , after which

the client re-applies the cleartext scale factor sxsw. Both weights and activations are quantized
symmetrically in our HE protocol.

Our experiments (Sec. 6.1) explore the impact of these different strategies (static vs. dynamic,
granularity) on model convergence.

4.3 Encrypted Vector – Clear Matrix Multiplication

The main objective for the encrypted vector – clear matrix multiplication (W · [x]HE) design was
to keep ciphertext sizes low while maintaining HE performance.

Computation Method We split the input activation vector x (of size din) into L = ⌈din/N⌉
blocks, x̂0, x̂1, . . . , x̂L−1, padding the last block with zeros if necessary. The client encrypts each
block individually using the RLWE scheme, obtaining RLWE(x̂0), . . . , RLWE(x̂L−1). The server
holds the cleartext weight matrix W , whose columns wj are conceptually split into corresponding
blocks ŵ0j , . . . , ŵL−1,j , where each ŵij aligns with the block x̂i.

To obtain the dot-product between the encrypted input [x]HE and a cleartext matrix column
wj , the server performs the following computation using homomorphic operations:

LWE(x · wj) =

L−1∑
i=0

SampleExtract(RLWE(x̂i) · ŵij , N − 1) (7)

Here, RLWE(x̂i)·ŵij represents the homomorphic multiplication of the encrypted block RLWE(x̂i)
by the cleartext polynomial block ŵij . Weights are encoded in reverse order (i.e., ŵij [k] = wj [iN +
N − 1 − k]) for efficient dot product computation via the highest coefficient of the polynomial
multiplication. SampleExtract then isolates the LWE encryption of the i-th partial sum of the
dot product.

The final ModulusSwitch to a smaller qout compresses the output ciphertext that is to be
sent back to the client.

Finally, the resulting LWE samples LWE(x · wj) for all columns j (from j = 0 to dout −
1) are efficiently packed back into a single output RLWE ciphertext using KeySwitching and
homomorphic rotations (Rotate), conceptually represented as:

RLWE(Wx) = ModulusSwitchqout

dout−1∑
j=0

Rotate(KeySwitching(LWE(x · wj)), j)

 (8)
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We use coefficient packing into RLWE ciphertexts (defined in Eq. (8)). Our approach is similar
to [12] but adds steps for enhanced communication efficiency: (1) careful packing of intermediate
dot-products, and (2) final ModulusSwitch of the output RLWE ciphertext.

4.4 Cryptosystem Parameters

We require that the encoding precision β prevents overflows during computation for any x or
W , provided the quantization protocol is followed. Furthermore, we allow noise to impact β − γ
least significant bits (LSBs) of the dot-product result. Since, for layer k + 1, the client sends a
re-quantized result derived from the decrypted k-th linear layer output, the full precision of the
k-th layer result is not strictly necessary.

Following the constraints above, the cryptosystem parameters are chosen to provide 128-bit
security according to the lattice estimator, and their values are given in Table 1.

Table 1. Cryptosystem parameters.

Parameter Description Value

β Bits reserved for computation 27
γ MSBs unaffected by noise growth 12
N Polynomial size 2048
qin Input modulus (bits) 39
qout Output modulus (bits) 26
σinput Input noise distribution std. dev. 2.845e-15
σksk Keyswitching key noise std. dev. 2.845e-15

Considering these parameters, we can compute the communication expansion factor. We define
this as the total size of the input/output ciphertexts divided by the size of the corresponding
plaintext values (assuming 8-bit quantization). Let N = 2048.

The expansion factor is calculated as follows:

1. Input x: The client sends a seed (se, 64 bits = 8 bytes) and the RLWE body B which has N
coefficients with modulus qin (39 bits). Size of B ≈ N × qin/8 = 2048 × 39/8 ≈ 9984 bytes.
Total size ≈ 8 + 9984 = 9992 bytes. This encrypts N = 2048 plaintext values. Assuming 8-bit
plaintext values (1 byte each), the input plaintext size is 2048 bytes. Expansion factor (Input):
9992/2048 ≈ 4.88.

2. Output Wx: The client receives the full RLWE ciphertext (A′, B′). Both A′ and B′ have
N = 2048 coefficients with modulus qout (26 bits). The size of each component is N × qout/8 =
2048× 26/8 ≈ 6656 bytes. The total transmitted size is therefore 2× 6656 = 13312 bytes. This
ciphertext represents N = 2048 output values resulting from the homomorphic computation.
Since the scheme guarantees γ = 12 correct MSBs per value, the effective plaintext information
size is N × γ/8 = 2048× 12/8 = 3072 bytes. Expansion factor (Output): 13312/3072 ≈ 4.33.

4.5 GPU Implementation

Matrix multiplication is a core computation performed on GPUs, used extensively in machine
learning, particularly in LLMs. While common MatMul implementations work on floating-point
numbers, for this work, we implemented one for 64-bit and 32-bit integers based on [1]. On an
NVIDIA RTX 4060 Laptop GPU, our kernel achieves approximately 800× 109 integer operations
per second, roughly 4x slower than the floating-point reference implementation in the cuBLAS
library.

We implement the various parts of the encrypted vector-matrix computation using GPU kernels,
leveraging the integer MatMul. We consider a batch of input vectors. The computation in Eq. (7)
involves homomorphic polynomial multiplication (RLWE(x̂i) · ŵij), which is computed coefficient-
wise, followed by SampleExtract and summation to produce LWE ciphertexts. The subsequent
packing step via KeySwitching (part of Eq. (8)) relies heavily on matrix multiplications and is
well-suited for GPU acceleration.
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For a given input vector x, the computation in Eq. (7) yields one LWE ciphertext LWE(x·wj) =
(aj , bj) for each column j of the weight matrix W (from j = 0 to dout − 1), where aj ∈ ZN

q is
the LWE mask vector and bj ∈ Zq is the LWE body. To perform KeySwitching efficiently for all
columns in parallel, we aggregate these LWE components. Let ALWE be the matrix of size dout×N
whose rows are the mask vectors aj , and let bLWE be the column vector of size dout containing the
bodies bj . The KeySwitching operation, transforming these dout LWE ciphertexts (under key s)
into dout RLWE ciphertexts (under key S′), can then be expressed using matrix products suitable
for the MatMul kernel: RLWE(x · w0)

...
RLWE(x · wdout−1)

 =

{
ARLWE = 0−MatMul (Decomp(ALWE),KSKA) ,

BRLWE = bLWE −MatMul (Decomp(ALWE),KSKB)
(9)

Here, Decomp(ALWE) represents the matrix resulting from applying the decomposition algorithm
(seeKeySwitching in Section 3.1) to the LWE masks.KSKA andKSKB are components derived
from the Key Switching Key (KSK), pre-computed based on the source LWE key s and target
RLWE key S′. This matrix formulation allows the computationally intensive part of KeySwitching
to be performed efficiently using the GPU’s MatMul kernel. The resulting ARLWE and BRLWE

contain the dout RLWE ciphertexts, where the j-th ciphertext encrypts x · wj . In the subsequent
step, each resulting RLWE(x · wj) ciphertext is homomorphically rotated by degree j, and the
rotated ciphertexts are summed together, as per Eq. (8). This final result is modulus switched,
packed into a bit-vector, and returned to the client.

4.6 Client-Side Computation Sizing

In our protocol, the client performs computations involving the LoRA adapters (U,D) and non-
linearities. We estimate the client’s computational load (FLOPs) per layer for a forward and back-
ward pass over a context of C tokens (batch size B = 1). Let d be the hidden dimension, m the
intermediate FFN dimension, r the LoRA rank, dk the key/query dimension per head, dv the value
dimension per head, and nlayers the number of layers.

1. Attention Mechanism: The client computes QKT and the subsequent product with V after
receiving decrypted WQ[x]HE, WK [x]HE, WV [x]HE from the server and adding the local LoRA
contributions. The QKT operation involves matrices of size C × dk and dk × C (per head),
resulting in C × C attention scores. Summing over nheads (where d = nheadsdk), this requires
approximately dC2 FLOPs. The product of the C × C attention scores with V (size C × dv,
where d = nheadsdv) requires another dC2 FLOPs. Total non-LoRA client MHA FLOPs per
layer ≈ 2dC2.

2. LoRA Adapter Computation (UDx): Computing UDx for a layer with input dimension
din and output dimension dout requires calculating Dx (r × din multiplications, r × (din − 1)
additions ≈ 2rdin FLOPs) and then U(Dx) (dout × r multiplications, dout × (r − 1) additions
≈ 2rdout FLOPs), totaling approximately 2r(din + dout) FLOPs per adapter application.

3. LoRA FLOPs per Layer: We assume LoRA is applied to WQ,WK ,WV ,Wproj (all din =
d, dout = d) and the FFN layers. For Llama-style FFNs, this includes Wgate,Wup (din =
d, dout = m) and Wdown (din = m, dout = d).

– Attention LoRA (Q, K, V, Proj): 4× 2r(d+ d) = 16dr FLOPs.

– FFN LoRA (Gate, Up, Down): 2× 2r(d+m) + 2r(m+ d) = 6rd+ 6rm FLOPs.

– Total LoRA FLOPs per layer (forward pass): 16dr + 6dr + 6mr = 22dr + 6mr FLOPs.

Combining these for a single forward pass per layer gives approximately 2dC2 + 22dr + 6mr
FLOPs. Assuming the backward pass requires roughly twice the FLOPs of the forward pass (a
common rule of thumb), the total client-side computation for one context of C tokens across all
nlayers is on the order of:

ClientFLOPs ≈ 2× nlayers(2dC
2 + 22dr + 6mr) FLOPs (10)
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5 Security Model

This section outlines the security properties and assumptions of our private LoRA fine-tuning
protocol.

5.1 Threat Model

We consider the server executing the HE computations as honest-but-curious. This means the
server correctly follows the protocol but may attempt to infer information about the client’s pri-
vate data from the encrypted messages exchanged. We do not consider malicious servers who
actively deviate from the protocol (e.g., by tampering with computations); protection against such
adversaries is beyond the scope of this work.

5.2 Protected Assets

The protocol aims to protect the confidentiality of the following client-owned assets from the server:

– The raw fine-tuning data (e.g., text inputs, labels).
– Intermediate activations and gradients derived from the private data that are processed homo-

morphically by the server.
– The final trained LoRA weights ∆W = UD, representing the client’s private model adaptation.

5.3 Assumptions

The security of the protocol relies on the following assumptions:

– The base LLM weights W are publicly known or available to both client and server.
– The underlying RLWE-based HE scheme provides semantic security (IND-CPA), ensuring ci-

phertexts do not reveal information about the plaintexts.
– The client machine is secure and trusted.
– Cryptographic parameters (Table 1) provide a standard level of security (e.g., 128-bit) against

known attacks.

5.4 Security Guarantees

Under the honest-but-curious threat model and the stated assumptions, the protocol ensures that
the server learns no information about the client’s private data or the resulting LoRA weights
∆W . The semantic security of HE protects all data processed homomorphically on the server.
Furthermore, the LoRA weights U and D are managed exclusively on the client side and never
shared, encrypted or otherwise, with the server. Potential information leakage is limited to data-
independent side channels like computation counts or timing patterns, which are not explicitly
addressed here.

6 Evaluation

We evaluate our private LoRA fine-tuning approach using experiments conducted with the Llama-
3.2-1B [2] open-source model (1B parameters, nlayers = 16, hidden size d = 2048, FFN intermediate
size m = 8192) on various tasks. All experiments were performed simulating a client interacting
with a single server. Our evaluation focuses on demonstrating:

(i) The feasibility and convergence of LoRA fine-tuning using 8-bit quantization compared to
floating-point.

(ii) The correctness of the HE execution path by comparing loss trajectories between the quantized
cleartext execution and the HE execution setting.

(iii) The performance (timing) of the actual HE execution on a representative task using the Llama-
3.2-1B model in our single-server setup, including the resulting client compute rate.

(iv) The qualitative impact of fine-tuning on model outputs.

All experiments utilized components from the Concrete ML 1 library, implementing the client-
server computation split described in Section 4. Unless otherwise specified, experiments used 8-bit
symmetric quantization, with LoRA rank r = 8 and α = 32.

1 Implementation available in the Concrete ML library: https://github.com/zama-ai/concrete-ml
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6.1 Correctness and Convergence in Quantized Cleartext

We carried out an extensive ablation study in cleartext to establish which quantization policies
allow LoRA fine-tuning to converge reliably at low bit-widths. Table 3 gives an overview of the
concrete settings we evaluated, which cover combinations of:

– Range selection: static (S) vs. dynamic (D) (computed per input tensor),
– Granularity: per-tensor (T), per-token for activations (Tok), and per-channel for weights (C),
– Bit-width: 8, 16, and the FP32 reference.

A shorthand notation of the form Activation-Weight (e.g., DTok-SC) denotes the pair of strate-
gies applied to activations and weights, respectively. For instance, DTok means Dynamic range on
a per-Token basis, whereas SC stands for S tatic range on a per-Channel basis.

Experimental protocol. All runs fine-tuned Llama-3.2-1B for 2500 training steps on the Orca-
Math dataset using rank r = 8 LoRA adapters (α = 32). Each model used the same initial
optimizer, weights, and data state to ensure comparable learning dynamics. Convergence was moni-
tored through the running average of the training loss, and the quantitative results are summarized
in Figure 2. We observe the following:

(a) Static per-tensor (ST-ST) struggles significantly at low bit-widths. At 8-bit, the loss
initially converged for approximately 700 steps before exhibiting instability, marked by sudden
increases—a sign of potential gradient explosion due to the limited dynamic range captured
by a single static scale. At 16-bit, ST-ST performed better, converging to a lower loss initially,
but the loss eventually flattened and began increasing around step 2000, indicating that even
at 16-bit, a static per-tensor approach can be suboptimal for capturing the full dynamics of
training.

(b) Dynamic range is crucial, especially for activations. Introducing dynamic range for
activations (DT-ST) at 8-bit prevented the gradient explosion seen with ST-ST. The loss con-
verged steadily after the initial 300 steps, although it still settled at a higher value (0.42) than
the FP32 reference. This shows that while dynamic range helps stabilize training, per-tensor
granularity at 8-bit remains insufficient to fully match FP32 convergence. Gradients, in par-
ticular, benefit from dynamic range estimation as their magnitude can change dramatically
during training.

(c) 16-bit precision is more forgiving regarding granularity. The DT-ST setting at 16-bit
achieved convergence nearly identical to the FP32 baseline (final loss 0.29). This highlights that
with sufficient bit-width (16-bit), even simpler granularity strategies (dynamic per-tensor for
activations, static per-tensor for weights) can yield excellent results, validating the underlying
quantization implementation.

(d) Fine granularity unlocks 8-bit performance near FP32. To match FP32 convergence
at 8-bit, finer granularity is necessary. Introducing per-channel static weights (DT-SC) or per-
token dynamic activations (DTok-ST) significantly improved 8-bit performance (final loss 0.29
and 0.30, respectively). Combining both—dynamic per-token activations and static per-channel
weights (DTok-SC)—yielded an 8-bit loss trajectory virtually indistinguishable from the FP32
reference (final loss 0.27).

(e) 16-bit serves as a virtually lossless upper bound. All granularity variants tested at 16-bit
(including the most granular DTok-SC) converged within numerical noise of FP32, confirming
that 16-bit quantization is a robust and easy choice when near-lossless accuracy is required.

Final Perplexity Confirmation. We further confirmed these findings by evaluating the perplexity
on the Orca-Math validation set after 2500 training steps. Table 2 shows the results. The 8-bit
DTok-SC configuration achieved a perplexity (1.2391) nearly identical to the FP32 baseline (1.2381).
Conversely, the ST-ST configurations yielded significantly higher perplexity values, agreeing with
their poor performance observed in the loss curves.
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Table 2. Final perplexity on Orca Math validation set after 2500 training steps for different quantization
settings. Lower is better. Best performing configurations are highlighted.

Configuration Final Perplexity

FP32 1.2381
8-bit (DTok-SC) 1.2391
16-bit (DT-ST) 1.2506
8-bit (DT-ST) 1.4898
8-bit (ST-ST) 33.4061
16-bit (ST-ST) 44.6870

This study reveals that dynamic range calculation, particularly for activations (and implicitly,
gradients), is essential for stable low-bit training. Furthermore, achieving convergence close to FP32
at very low bit-widths like 8-bit necessitates fine-grained quantization strategies. The DTok-SC

recipe consistently delivered near-float accuracy at 8 bits, confirmed by both loss and perplexity
metrics, and was therefore adopted as the default for our HE experiments (Sections 6.3–6.4).

Table 3. Quantization schemes explored in the cleartext study on Orca Math. The two leftmost columns
specify the range selection and granularity for activations and weights; the remaining columns report the
final training loss after one epoch at 8- and 16-bit. Lower is better.

Activations Weights 8-bit 16-bit

ST ST 2.1 0.29
DT ST 0.42 0.29
DTok SC 0.27 0.27
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Fig. 2. Training-loss trajectories for quantization settings in Table 3 on Orca Math.

6.2 HE Execution Fidelity

To verify that our homomorphic back-end faithfully reproduces cleartext training dynamics while
preserving numerical precision, we conducted two complementary evaluations: (1) training-loss
fidelity on Llama-3.2-1B, and (2) bit-level error analysis of decrypted dot-product computations.

Training-loss fidelity (Llama-3.2-1B). We first contrasted the early loss trajectories of an 8-bit
quantized Llama-3.2-1B fine-tuning run executed in cleartext against the identical run under HE.
Each step invokes multiple encrypted vector-matrix products per transformer layer during both
forward and backward passes. Figure 3 shows the first five optimization steps: the cleartext (solid
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blue) and homomorphic (dashed red) curves overlap almost perfectly, with any deviations well
within stochastic batching noise. This near-perfect match confirms that ciphertext noise growth,
modulus switching, and homomorphic operations do not materially perturb gradient computations.

Fig. 3. Llama-3.2-1B: training-loss comparison between 8-bit quantized cleartext (blue) and HE execution
(red) over the first five steps.

Bit-level error analysis. To complement the loss-based test and precisely quantify any residual
numerical errors inherent in the HE computation, we measured the bit error rate in decrypted
dot-product results across different bit positions. This analysis simulated the core vector-matrix
multiplication by performing homomorphic dot products between encrypted random integer vectors
and cleartext random integer weight vectors of varying input dimensions din (specifically, 768, 2048,
and 8192). This dimension represents the input vector size, corresponding to the inner dimension
of the weight matrix column involved in the dot product. All these HE computations used the fixed
polynomial size N = 2048 (as defined in Table 1). We decrypted the resulting HE ciphertexts and
compared them bitwise against the true cleartext dot-product values.

Figure 4 reports the observed error rates. The y-axis represents the input vector dimension din
used in the dot product, while the x-axis shows the bit position, ranging from More Significant
Bits (MSBs) on the left (e.g., position 21) down to the Least Significant Bit (LSB) at position 0
on the right. We observe two key points:

– Noise increases with dimension: As the input vector dimension din increases, the error
rate in the lower-order bits (LSBs, closer to 0) tends to increase. This is expected because
computing the dot product involves accumulating more terms homomorphically, which leads
to greater noise accumulation in the HE ciphertext.

– MSBs remain accurate: Despite the noise growth affecting the LSBs, the critical high-
order bits remain highly accurate across all tested dimensions. Specifically, for bit positions
12 and higher (i.e., the 13th bit up to the MSB, indexed from 0), the observed error rate is
negligible (well below 1%). This confirms that our HE parameters reliably preserve the γ = 12
most significant bits required for computational accuracy, even for the largest input dimension
tested (din = 8192).

This analysis verifies that our cryptographic setup maintains the necessary numerical precision for
the core homomorphic operations within the fine-tuning process.
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Fig. 4. Bit error rate versus bit position for homomorphic dot products. The y-axis shows the input
vector dimension din (dimensions tested: 768, 2048, 8192). The x-axis shows the bit position (MSB
near 21, left; LSB=0, right). All computations used the fixed polynomial size N = 2048. Higher input
dimensions increase LSB error due to noise accumulation, but high-order bits (positions 12 and higher)
exhibit error rates under 1%, preserving γ = 12 MSBs reliably.

6.3 HE Performance

We analyze the performance of the HE computations on the server side, focusing first on the core
encrypted vector–clear matrix multiplication (W · [x]HE) and then on the end-to-end time for a full
training step, including the implications for client-side computation. All timings were obtained on
a single NVIDIA RTX 4060 Laptop GPU using the cryptographic parameters from Table 1.

Core HE Operation Performance. The server’s primary task is computing W · [x]HE. We bench-
marked this operation for typical LLM layer dimensions (din, dout), considering an input batch of
encrypted vectors [x]HE multiplied by a cleartext weight matrix W . Table 4 lists the measured
latencies for a single token (B = 1, C = 1, where C is context length). The time scales approxi-
mately linearly with the total number of input tokens (B × C) and the output dimension (dout),
and depends on the input dimension din relative to the polynomial size N used for packing.

Table 4. Latency of encrypted-vector × clear-matrix multiplication (W · [x]HE) for a single token (B =
1, C = 1) on an RTX 4060 Laptop GPU. Polynomial size N = 2048. Reported values are mean ± std. dev.

Input Dim (din) Output Dim (dout) Latency (seconds)

768 768 0.0809± 0.0011
3072 768 0.1528± 0.0267
2048 2048 0.2402± 0.0253
768 3072 0.3389± 0.0271
8192 2048 0.6368± 0.0202
2048 8192 1.0539± 0.0335

End-to-End Training Step Performance. To obtain an end-to-end timing for the HE back-end, we
ran a single training step (forward and backward pass) of the Llama-3.2-1B model (nlayers =
16, d = 2048,m = 8192, r = 8) on a code-generation task. This step invokes the W · [x]HE primitive
for the various weight matrices in each transformer layer. The mini-batch containedB = 1 sequence,
truncated and padded to a context length of C = 16 tokens. All linear layers acting on the public
base weights W were offloaded to the server and executed under HE.

Raw timing. The complete step (forward and backward pass) for this batch (B = 1, C = 16)
finished in 57 min 38 s (3458 s). This corresponds to processing 16 tokens in 3458 seconds,
yielding an average throughput of approximately 0.0046 tokens per second, or a latency of:

τtok ≈ 3458 s

16 tokens
≈ 216 s per token.

Scaling and Parallelization Potential. The total wall-time T for an HE training step is expected to
scale linearly with the total number of encrypted tokens processed: T ≈ τtok (BC). Consequently,
doubling the batch size or the sequence length would roughly double the latency on a single
server. For inference (forward pass only), the cost would drop by approximately a factor of 2.
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Crucially, because the client-side workload is minimal (see below) and the server computations
for different tokens or batches can often be parallelized, this approach exhibits excellent scaling
potential. The overall throughput can be significantly increased by distributing the workload
across S identical HE servers, potentially reducing the effective per-token latency towards τtok/S.

Client Compute Rate. Using the derived formula (Eq. (10), using the approx. 2× factor for back-
ward pass) and the Llama-3.2-1B parameters (nlayers = 16, d = 2048,m = 8192, r = 8, C = 16),
we estimate the client’s computational work during this benchmark step:

ClientFLOPs ≈ 2× 16× (2× 2048× 162 + 22× 2048× 8 + 6× 8192× 8)

≈ 48× (1, 048, 576 + 360, 448 + 393, 216)

≈ 48× 1, 802, 240 ≈ 86.5× 106 FLOPs.

Given the total step time of 3458 s, the average client compute rate required is:

86.5× 106 FLOPs

3458 s
≈ 25, 000 FLOP/s ≈ 0.025 MFLOP/s.

This extremely low rate confirms that the client’s computational burden is negligible. The overall
process is heavily bottlenecked by the HE computations on the server, reinforcing the viability of
using multiple parallel servers managed by a lightweight client.

Resource footprint. During the benchmark, the server held at most ≈ 2.8 GB of RLWE ciphertexts,
comfortably within the 8 GB VRAM of the RTX 4060 Laptop GPU. Using the expansion factors
from Sec. 4.4, we estimate the data transfer per HE-accelerated linear layer invocation for the batch
(B = 1, C = 16). Assuming din = dout = 2048, N = 2048, so L = L′ = 1 block per token:

– Client to Server (Input Activation Ciphertexts): 16 tokens×1 block/token×9992 bytes/block ≈
160 kB.

– Server to Client (Output Activation Ciphertexts): 16 tokens×1 block/token×6656 bytes/block ≈
107 kB.

Total transfer per layer invocation ≈ 267 kB. A full training step involves multiple such in-
vocations (for different layers WQ,WK , . . . and for the backward pass). Even accounting for
nlayers × (# HE layers) × 2 transfers, the total bandwidth per step remains modest, well within
the capacity of standard internet connections. (Note: Bandwidth scales linearly with B × C and
the number of HE layers.)

6.4 Qualitative Results

We demonstrate the effect of fine-tuning by comparing model outputs before and after training
(using the converged quantized cleartext models as a proxy for HE results).

Llama-3.2-1B on Code Generation: We prompted the Llama-3.2-1B model before and after
fine-tuning on Python snippets related to the Concrete ML library. Listing 1.1 shows the base model
providing generic Python parameters typical for standard machine learning libraries. In contrast,
Listing 1.2 demonstrates the fine-tuned model correctly suggesting the n bits argument, which
is specific to the Concrete ML library and reflects the context provided during fine-tuning. This
illustrates successful adaptation to a specialized technical domain.

Prompt: from concrete.ml.sklearn import LogisticRegression\n\nmodel = LogisticRegression(

Completion: parameters={’C’: [0.1, 1, 10], ’penalty’: [’l1’, ’l2’]}) # Example standard

↪→ parameters

Listing 1.1. Llama-3.2-1B Original model prediction (Code Gen)

Prompt: from concrete.ml.sklearn import LogisticRegression\n\nmodel = LogisticRegression(

Completion: n_bits=8) # Example Concrete ML specific parameter

Listing 1.2. Llama-3.2-1B Fine-tuned model prediction (Code Gen, 8-bit quantized)
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Llama-3.2-1B on Mathematical Reasoning (Orca-Math): We also tracked the model’s
ability to solve simple mathematical word problems during fine-tuning on the Orca-Math dataset.
The prompt ”When you multiply a number by 7, it becomes 98. What is that number?” was taken
from the test-set and used for evaluation at various checkpoints.

Early in training (e.g., Step 100, Listing 1.3), the model exhibited confusion, often misinter-
preting the question or performing incorrect operations:

Prompt: When you multiply a number by 7, it becomes 98. What is that number?

Response: If you multiply a number by 7, it becomes 98. So, the number you’re asking about

↪→ is 98.

Listing 1.3. Llama-3.2-1B at Step 100 (Orca-Math, 8-bit quantized)

After sufficient fine-tuning (e.g., Step 1000, Listing 1.4), the model consistently demonstrated
the correct reasoning process—identifying the need for division and performing the calculation
accurately:

Prompt: When you multiply a number by 7, it becomes 98. What is that number?

Response: To find the number, you need to divide 98 by 7.

98 / 7 = 14

So the number is 14

Listing 1.4. Llama-3.2-1B at Step 1000 (Orca-Math, 8-bit quantized)

These examples illustrate that the private fine-tuning process, even when employing HE-
compatible quantization, effectively adapts the models to the specific nuances, terminology, and
problem-solving skills required by the target domain specified by the private data.

7 Conclusion

We presented and validated an interactive protocol using Homomorphic Encryption (HE) to enable
privacy-preserving LoRA fine-tuning of open-source LLMs. By strategically outsourcing computa-
tions involving the public base model weights to an HE-enabled server while keeping private data
and LoRA adapters on the client, our approach addresses the confidentiality challenge inherent in
adapting LLMs to sensitive domains.

We demonstrated the feasibility of this method by fine-tuning the Llama-3.2-1B model. Our
experiments confirmed that carefully chosen HE-compatible quantization can achieve convergence
nearly identical to floating-point training, and the HE execution faithfully replicates the quantized
cleartext dynamics. Performance benchmarks on a single GPU, while indicating significant com-
putational cost (≈ 216 s/token for a Llama-3.2-1B training step), highlighted the viability of our
optimized HE implementation and demonstrated the extremely low client-side compute require-
ment (≈ 0.025 MFLOP/s). This low client burden, combined with modest bandwidth needs, makes
multi-server parallelization a practical and promising approach for scaling the HE computation to
achieve acceptable training times.

This work provides a concrete pathway for securely leveraging private datasets to specialize
LLMs in fields like healthcare or finance. While performance optimization and scaling remain cru-
cial, our results show the potential of HE to unlock privacy-sensitive AI applications. Future work
includes further HE optimizations, exploring efficient multi-server orchestration, and extending the
approach to embedding layers.
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