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Abstract—With the growing use of large language models
(LLMs) hosted on cloud platforms to offer inference services,
privacy concerns about the potential leakage of sensitive infor-
mation are escalating. Secure Multi-Party Computation (MPC)
is a promising solution to protect the privacy in LLM inference.
However, MPC requires frequent inter-server communication,
causing high performance overhead.

Inspired by the prevalent activation sparsity of LLMs,
where most neuron are not activated after non-linear activation
functions, we propose an efficient private inference system,
Comet. This system employs an accurate and fast predictor to
predict the sparsity distribution of activation function output.
Additionally, we introduce a new private inference protocol.
It efficiently and securely avoids computations involving zero
values by exploiting the spatial locality of the predicted spar-
sity distribution. While this computation-avoidance approach
impacts the spatiotemporal continuity of KV cache entries,
we address this challenge with a low-communication overhead
cache refilling strategy that merges miss requests and incor-
porates a prefetching mechanism. Finally, we evaluate Comet
on four common LLMs and compare it with six state-of-the-
art private inference systems. Comet achieves a 1.87×-2.63×
speedup and a 1.94×-2.64× communication reduction.

1. Introduction

Large Language Models (LLMs) have been extensively
utilized in a range of tasks such as text generation, ques-
tion answering, sentiment analysis and reading comprehen-
sion [12], [13], [17], [53], [86], [93]. Currently, LLMs
commonly follow the “Deep Learning as a Service” (DLaaS)
paradigm [78], wherein LLMs are deployed on cloud servers
as service providers, and users send input data to these
servers to perform inference tasks. However, this raises
privacy concerns, as the user’s data may be privacy-sensitive.

One promising solution to address the privacy con-
cerns in LLM inference is Secure Multi-Party Computation
(MPC), known as MPC-based private inference [14], [20],
[30], [42], [43], [47], [60], [63], [70], [73], [82], [88], [89].

∗ Yuhui Zhang and Rui Hou are the corresponding authors.

Specifically, the model owner and the user provide their
models or inputs to multiple non-colluding (≥ 2) MPC
servers in a secret-shared form, then servers execute the pri-
vate inference protocol and send the results back to the user.
This method ensures that no single server can recover the
original data, thereby enabling privacy-preserving inference.

However, private inference encounters significant perfor-
mance problem, primarily due to extensive communication
between MPC servers. These servers frequently exchange
intermediate results derived from their local computations.
For instance, in the case of OPT-6.7B [94], communication
time constitutes over 85% of the total inference time. Prior
works have mainly focused on reducing the communication
overhead of non-linear layers by designing model archi-
tectures with fewer non-linear operations [1], [47], [56],
or by using more efficient approximations for non-linear
functions [23], [30], [59]. The optimization for linear layers
has been overlooked, especially in private LLM inference,
where this part of communication incurs higher overhead.

Fortunately, the activation sparsity [57], [62], [79], [80],
[95] of LLMs provides an opportunity to accelerate both
linear and non-linear computations. For instance, in OPT-
6.7B, more than 90% of the neurons output zero after the
activation function (ReLU) of its Feed-Forward Network
(FFN). As illustrated in Figure 1, if activation sparsity
can be accurately predicted (depicted by white boxes), it
becomes possible to identify neurons that will output zero
in advance. Consequently, the computations of their non-
linear activation functions can be omitted, and the related
linear computations in both preceding and subsequent linear
layers can also be skipped. By avoiding these unnecessary
computations (shaded boxes), the associated communication
overhead in private inference can also be reduced.
Contributions. This paper proposes Comet, an efficient
private inference system that leverages activation sparsity to
reduce computation and communication overhead in MPC.
Unlike prior work focusing on optimizing specific MPC
protocols, Comet is orthogonal to these efforts and inte-
grates the novel prediction mechanism and the computaion-
communication avoidance mechanism into the classical pri-
vate inference framework. To the best of our knowledge, this
is the first system to exploit activation sparsity for acceler-
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Figure 1: Activation sparsity of LLMs.

ating private inference in LLMs. The main contributions of
this paper are as follows:
• We propose a predictor to estimate the sparsity distribu-

tion of activation outputs. To ensure accurate prediction
and efficient execution, we implement the predictor using
a lightweight neural network. To preserve privacy, the
predictor generates a secret-shared sparsity distribution,
which is collaboratively computed by MPC servers using
secure protocols. However, indexing activated neurons
based on this secret-shared distribution poses efficiency
challenges, as existing secure indexing methods require
numerous expensive comparison operations [50], negat-
ing the efficiency gains of sparsity. To address this, we
introduce a shuffle-based indexing technique that uses
oblivious shuffling to randomize the order of the sparsity
distribution, allowing plaintext indexing while preserving
privacy. These designs significantly reduce prediction and
indexing latency, establishing the feasibility of sparsity
prediction within private inference systems.

• We propose a private inference protocol designed to
minimize computation and communication overhead by
leveraging the spatial locality of the sparsity distribution.
For the linear layers preceding and following the activa-
tion function, computation can be reduced by identifying
nonzero elements of the sparsity distribution and perform-
ing only the corresponding dot products. However, in clas-
sical private inference protocols, naively performing dot
products separately results in redundant communication
due to the need for repeated masking and communicat-
ing the rows or columns of the matrix. In contrast, our
protocol fully exploits the spatial locality of sparsity dis-
tribution by grouping the nonzero elements resulting from
dot products of the same matrix rows or columns into a
single block, ensuring that each row or column is masked
and communicated only once. This approach enhances
the efficiency of secure computations, achieving up to
300× reduction in communication overhead compared to
classical methods.

• We propose a KV cache refilling strategy to address
the compatibility challenges between sparsity prediction
and KV caching. KV cache [48] is a core optimization
technique in LLM systems, enhancing performance by
storing and reusing intermediate results. However, the
computation savings introduced by sparsity prediction
disrupt the spatiotemporal continuity of cached key-value
pairs, reducing the cache hit rate and requiring costly
refills. To mitigate this, our strategy merges consecutive
cache miss requests, often targeting the same attention

heads or tokens, and incorporates a prefetching mecha-
nism to proactively handle potential misses. These designs
improve the compatibility between sparsity-aware compu-
tation and KV caching, enabling efficient integration with
modern private LLM inference systems.
Finally, we evaluate the performance of Comet system

using four different sizes of LLMs. The results indicate that,
compared to six state-of-the-art private inference systems,
the Comet achieves 1.87×-2.63× end-to-end speedup and
1.94×-2.64× communication reduction.

2. Understanding of Private Inference

2.1. MPC-based private inference

Secure Multi-Party Computation (MPC) [26] is a cryp-
tographic technique that provides a promising solution for
private inference among multiple participants [30], [34],
[42], [43], [47], [59], [73]. It relies on cryptographic prim-
itives such as secret sharing to protect both model weights
and inference data [11], [32], [76]. This work adopts an
additive secret sharing scheme, which is widely used in
private inference due to its efficiency and applicability.
Additive secret sharing. For simplicity, we illustrate addi-
tive secret sharing in a two party setting (P1 and P2):
• Sharing: A secret x is split into two shares [[x]]1 and [[x]]2

such that x = [[x]]1 + [[x]]2, ensuring no single share can
retrieve information of the secret. The data owner sends
[[x]]1 to P1 and [[x]]2 to P2.

• Reconstruction: To reveal the secret x, P1 and P2 ex-
change their shares and locally compute x = [[x]]1+[[x]]2.

• Addition: To compute z = ax+ by + c, where a, b, c are
public values and x, y are secret-shared among P1 and P2,
each party locally computes [[z]]i = a[[x]]i+b[[y]]i+(i−1)c.

• Multiplication: To compute z = xy where x, y are
secret shared among P1 and P2, the parties use pre-
generated Beaver triples ([[a]], [[b]], [[c]]) where c = a · b.
The triples can be provided by a trusted third party or
generated via cryptographic methods such as homomor-
phic encryption [67] or oblivious transfer [41]. Each party
locally computes differences [[d]]i = [[x]]i − [[a]]i and
[[e]]i = [[y]]i − [[b]]i, reconstructs d and e, and computes:

[[z]]i = [[c]]i + d · [[b]]i + e · [[a]]i + (i− 1) · d · e (1)

Based on the above basic operations, various protocols can
be constructed, including dot product (ΠDP) and matrix
multiplication (ΠMatMul). In this paper, we employ them in
a blackbox manner.
Private inference. In a MPC-based private inference sys-
tem, three primary roles are typically identified: the model
owner, the user, and at least two non-colluding MPC servers.
In practical, the computing nodes from different cloud plat-
forms are usually selected to act as MPC servers to meet the
requirement of non-colluding [3], [65]. Additionally, if the
user has enough compute capability, it can serve as one of
the MPC servers [30], [60]. This setup ensures that at least



one server remains independent, thereby further enhancing
the guarantee of non-colluding.

Before inference, the model owner uses secret sharing
to splits the model parameters into shares, deploying them
across MPC servers. During inference, the user also splits
the input and distributes shares to the servers. MPC servers
execute each layer of models sequentially using the input
share and model share. Specifically, they jointly complete
each basic operation within a layer, such as addition, mul-
tiplication and comparison through MPC protocols. The
result of each basic operation is still distributed in the
form of shares on MPC servers and is used for subsequent
computations. After the completion of the inference, the
result shares are returned to the user for reconstructing the
final result.

2.2. LLM private inference has high communica-
tion overhead

Although MPC-based private inference can protect the
privacy of user data and models, it faces critical challenges
when applied to LLMs. A key limitation of MPC proto-
cols is their reliance on frequent exchanges of intermedi-
ate results between servers, which makes communication
overhead the primary performance bottleneck. The deep
architectures and massive parameter sizes of LLMs further
exacerbate this issue: linear layers, containing billions of
parameters, require extensive communication, while non-
linear layers incur significant overhead as their non-linear
functions often need to be approximated by high-degree
polynomials or implemented using complex logic opera-
tions [23], [42], [43], [89], both of which are costly for
high-dimensional activations. As illustrated in Figure 2, both
OPT-6.7B [94] and Llama2-7B [79] require over 60 minutes
to generate 16 tokens, with communication time comprises
over 90% of the total inference time. Moreover, for both
non-linear and linear layers, communication accounts for
the majority of the overhead, exceeding 80%.
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Figure 2: MPC-based private inference time breakdown with
an input length of 512, output length of 16, and bandwidth
of 5Gbps. The numbers on the bars is the proportion of
communication time.

2.3. Prevalent activation sparsity enables signifi-
cant reductions in communication for private in-
ference

LLMs typically consist of multiple Transformer
blocks [87]. Each Transformer block includes a Multi-Head
Attention (MHA) module and a Feed-Forward Network

(FFN), both of which contain two linear layers with an
intermediate non-linear layer. The non-linear layer in the
MHA is the Softmax function applied in the attention heads,
while the FFN uses the ReLU [66] function.

A key property of LLMs is their activation sparsity—a
phenomenon where many outputs of non-linear layers are
zero or near zero [57], [62], [79], [80], [95]. For instance,
many attention heads in the MHA may remain inactive (i.e.,
the norm of their output vectors is close to zero), and the
ReLU function in the FFN produces many zeros. Even for
LLMs that use activation functions without inherent sparsity,
such as GeLU [37] and SwiGLU [77], activation sparsity
can still be achieved by replacing the activation function
with ReLU and fine-tuning, with a slight accuracy loss [79],
[81], [95]. Our analysis of various LLMs highlights the
prevalence of activation sparsity, particularly in larger mod-
els. As shown in Figure 3, for OPT and Llama2, more
than 50% of attention heads in the MHA of are inactive,
while over 90% of ReLU outputs in the FFN are zero. We
provide more results on activation sparsity across different
model architectures and different activation functions in
Appendix C.

OPT-1.3B

OPT-2.7B

OPT-6.7B

Llama2-7B
0%

50%

S
p

ar
is

ty

MHA Layer

OPT-1.3B

OPT-2.7B

OPT-6.7B

Llama2-7B
0%

50%

90%

S
p

ar
is

ty

FFN Layer

Figure 3: Activation sparsity of different LLMs, evaluated
on the same dataset used in Section 7.

This property allows us to disregard non-linear compu-
tations without affecting the final output. Furthermore, this
optimization cascades: when a non-linear computation can
be skipped, the computations in the preceding linear layer
that generate its input, as well as those in the subsequent
linear layer that consume its result, can also be avoided. This
reduction in computation directly translates to a reduction
in communication overhead for private inference. Profiling
the communication of OPT-6.7B during a single private
inference reveals that 31% of communication traffic comes
from non-linear layers, with 62% of it avoidable; 60% comes
from linear layers, with 83% avoidable. Overall, over 70%
of the communication traffic for private inference can be
eliminated, as shown in Figure 4.
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Figure 4: Communication cost breakdown for OPT-6.7B
with an input length of 512 and output length of 16.
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Figure 5: System overview of Comet.

3. Comet System Overview

3.1. Design motivation

As previously noted, LLMs commonly exhibit activation
sparsity, where many attention heads in MHA are not acti-
vated and numerous FFN ReLU outputs are zero. By accu-
rately predicting this sparsity, we can omit the corresponding
non-linear computations. Additionally, computations in the
preceding linear layers generating these zero values, as well
as those in the subsequent linear layers processing them, can
also be skipped. As shown in Figure 6, eliminating these
computations under ideal conditions (i.e., perfect predic-
tion) can accelerate inference for models such as OPT-6.7B
and Llama2-7B by approximately 2.2×-3.3×. This speedup
becomes even more significant with longer generated se-
quences. Inspired by this observation, we propose Comet,
a private inference system designed to leverage activation
sparsity prediction to minimize unnecessary computations
and reduce communication overhead.
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Figure 6: Ideal speedup.

3.2. Threat model

Comet adopts a standard MPC threat model, where
predefined programs run among multiple parties, protecting
input data and intermediate results while typically revealing
only the final outputs to designated parties. All correlated
randomness required for the protocol execution is generated
and distributed by a trusted third party (TTP). Following
prior works [34], [42], [43], [47], [59], [73], we assume
an honest-but-curious adversary who passively corrupts one
or more MPC servers but cannot corrupt all servers. Such
an adversary strictly follows the system protocols but may
attempt to infer sensitive information from the data it ob-
serves.

To leverage activation sparsity, we assume that sparsity
level (i.e., the number of zero values) can be revealed,
while the sparsity distribution (i.e., the positions of zero
values) remains hidden. This assumption is practical in real-
world applications of LLM inference because activation
sparsity levels are primarily determined by model size—a
publicly disclosed parameter by major model providers such
as Meta [86] and Google [85]—and exhibit small variation
across different inputs [52], [79]. This assumption also
aligns with other works that exploit sparsity in MPC [10],
[27], [75].

3.3. Design overview

Comet aims to provide efficient and privacy-preserving
inference for LLMs by exploiting activation sparsity. The
system accelerates computation and reduces communication
while ensuring input and model privacy through MPC. Fig-
ure 5 illustrates an overview of Comet. It comprises a user
and multiple MPC servers holding secret shares of the LLM.
Before inference, the user distributes secret shares of the
input to each MPC server. These servers then collaboratively
execute the inference task using private inference protocols.
Finally, the servers return the result shares to the user, who
reconstructs the final inference result.

To predict activation sparsity, Comet employs neural
network-based predictors for both the MHA and FFN. The
predictors are designed to be shallow and low-rank, enabling
rapid computation during inference, and are pre-trained
locally on large public datasets to ensure accuracy. The
predictors are secret-shared and deployed across multiple
MPC servers. The servers collaboratively execute these pre-
dictors via MPC protocols to obtain secret shares of the
sparsity distribution. To protect the sparsity distribution,
Comet employs a cryptographic technique, oblivious shuffle,
to obscure the positions of nonzero elements. Additionally,
a secure indexing mechanism is proposed to efficiently
retrieve elements from the shuffled sparsity distribution.

With the predicted sparsity distribution, Comet identi-
fies non-activated attention heads in MHA and zero ReLU
outputs in FFN to skip their associated computations and
communications. To achieve this, the private inference pro-
tocol is extended to support sparse matrix multiplication
for both the preceding linear layers (e.g., Sparse QKV



Layer and Sparse FC1) and the subsequent linear layers
(e.g., Sparse Output Layer and Sparse FC2) around the
nonlinear layers. For the nonlinear layers themselves, which
involve element-wise or vector-wise operations, the protocol
remains unchanged, as computations can be directly skipped
by filtering inputs corresponding to zero values.

The sparsity-aware computation mechanism in the
Sparse QKV Layer omits certain key and value computa-
tions, leading to missing KV entries. When these entries are
needed in subsequent inference, their absence can interrupt
the process or, if ignored, significantly degrade accuracy.
To address this compatibility challenge between sparsity
prediction and KV cache, Comet introduces a KV cache
manager that efficiently manages missing entries through
cache refilling and prefetching strategies, reducing the over-
head of refilling while ensuring seamless operation of the
KV caching mechanism.
Workflow. We take MHA as an example to illustrate the
workflow of Comet, as FFN operates similarly. First, the
MHA predictor determines activated attention heads. Then,
the QKV layer computes for these heads using sparse matrix
multiplication and outputs their query, key, and value. The
cache manager stores keys and values in the KV cache and
checks for misses. If found, cache miss requests are merged
and the cache is refilled. Afterward, attention computations
are performed only for the activated heads, generating the
attention output. This is followed by sparse matrix multi-
plications in the output linear layers, where computations
corresponding to non-activated heads are skipped. Finally,
the output are reshaped to origin size for the subsequent
layer computation.

4. Activation Sparsity Predictor with Oblivious
Shuffle

4.1. Basic design

To predict activation sparsity efficiently, Comet incor-
porates two predictors per Transformer layer, one for the
MHA module and one for the FFN. The predictors use the
inputs to the MHA or FFN as their inputs, as these inputs
fully determine the activation states during inference. This
is because model parameters remain fixed during inference,
making the input data the primary factor influencing activa-
tion states.

Both predictors share the same architecture. Taking
the FFN as an example, as illustrated in Figure 7(a), the
predictor is a shallow neural network consisting of two
fully connected layers (FC) with low-rank weight matrices,
followed by a threshold layer. It can be formulated as
y = σ(W2(W1x + b1) + b2), where x is the FFN input
and σ is a threshold function that outputs 1 if σ(x) > δ,
otherwise 0. The low-rank structure is chosen because acti-
vation outputs often reside in a low-dimensional subspace,
making it sufficient to capture sparsity patterns. The thresh-
old layer compares the outputs of the previous layer against
a predefined threshold δ to determine activation. For the

FFN, it determines whether each neuron outputs a nonzero
value after the activation function. For MHA, it determines
whether the norm of each attention head’s output vector is
significantly above zero.

The predictors are pre-trained by the model owner us-
ing publicly available datasets [61], [72]. Training data is
generated by collecting the inputs of MHA and FFN and
outputs from the activation functions of MHA and FFN
during inference.

(b) Enhanced design with oblivious shuffle

FC1 ReLUFFN
Input

Sparsity predictor

(a) Basic design of predictor

FC >𝛿𝛿FC

ReLUFC1FFN
Input Shuffle Index

Sparsity predictor

Shuffle Recons

Secure indexing

FC >𝛿𝛿FC

Secure indexing

Local operation

Figure 7: Activation sparsity predictor and secure indexing
mechanism for FFN. The design for MHA is similar.

4.2. Enhancing indexing efficiency with oblivious
shuffle

By leveraging the sparsity distribution to index inputs
that lead to nonzero outputs in non-linear layers, compu-
tations can be focused on these inputs, reducing overall
computation and communication overhead.

A naive indexing approach is to reveal the secret-shared
sparsity distribution as plaintext and then index inputs di-
rectly. However, this approach compromises privacy. If the
sparsity distribution is exposed, it could leak sensitive pat-
terns in the data, opening the system to privacy risks such as
inference attacks [16]. For example, by sending known in-
puts and observing their sparsity patterns, an attacker could
compare these patterns to a ciphertext input to determine
whether it is similar to the known inputs. Additionally, at-
tackers could analyze the sparsity distribution of a ciphertext
input to infer whether it belongs to a specific dataset.

To address the privacy concerns, secure indexing meth-
ods have been proposed [50], [75]. However, existing meth-
ods face significant efficiency challenges when applied to
latency-sensitive private inference. For OPT-6.7B, secure
indexing the ReLU inputs requires roughly 1000× the ex-
ecution time of the ReLU itself, outweighing any potential
time savings gained through sparsity. Existing methods typ-
ically consist of three steps: (1) Assume that the indexing
vector [[s]] ∈ Rn contains m nonzero elements. The argmax
protocol is executed m times to obtain m secret indices.
(2) For each secret index [[i]], a secret one-hot vector [[i]]



is created by executing the equality protocol n times. This
vector has [[1]] at the position [[i]] and [[0]] elsewhere. All one-
hot vectors are then concatenated into a matrix [[I]] ∈ Rm×n.
(3) Finally, a secure multiplication is performed between
[[I]] and the target vector [[x]] ∈ Rn to obtain the re-
sult vector [[o]] ∈ Rm. The total communication cost is
(m log n+ 2mn)C + 2mn, where C is the communication
cost of a comparison operation.

To address the inefficiencies of secure indexing while
maintaining privacy, we propose a novel shuffle-based in-
dexing technique that allows plaintext indexing without
compromising security. The key insight is that the privacy
risks of plaintext indexing arise from exposing the positions
of nonzero elements in the sparsity distribution. To mitigate
this, we incorporate a cryptographic technique, oblivious
shuffle [4], [19], [24], [44], [64], to randomize the order
of the secret-shared sparsity distribution. This shuffled dis-
tribution can then be revealed in plaintext without exposing
the original sparsity pattern. As illustrated in Figure 7(b), the
sparsity distribution output by the threshold layer is shuffled
and then reconstructed as plaintext. To ensure consistent
indexing, the target vector (FC1 output) is also shuffled to
match the revealed distribution’s order, allowing indexing
to be performed locally. While the sparsity pattern remains
hidden, the sparsity levels are still revealed. Although this
information does not expose specific inputs, repeated ob-
servations could potentially leak privacy. This can be mit-
igated by adding noise to the sparsity levels using MPC-
based differential privacy [40]. A more detailed discussion
is provided in Appendix E.

Oblivious shuffle. The shuffle operation in the predictor is
implemented using Protocol 1, which takes only one com-
munication round at the online stage, with a communication
cost equal to the size of the shuffled data itself. There-
fore, the communication cost of our shuffle-based indexing
method is only 2n. Compared to traditional secure indexing
methods, our method significantly reduces both computation
and communication overhead while preserving the privacy
of sparsity patterns of activation during inference.

Oblivious shuffle protocol reorders secret-shared vector
[[x]] according to a secret random permutation π. For the
permutation π = [2, 1, 3], π(x) = [x2,x1,x3]. The core
idea of oblivious shuffle is the decomposition of π into
two interdependent sub-permutation pairs (ρi, τi), i = 1, 2,
satisfying that π = ρ1 ◦ τ2 = ρ2 ◦ τ1. Each party Pi only
holds (ρi, τi), ensuring that neither can reconstruct π inde-
pendently. By first applying τi to their shares, exchanging
the masked results, and then applying ρi to the received
results while removing the masks, the parties collaboratively
achieve the effect of applying π without revealing π or their
respective shares. The security proof is in Appendix A.

In particular, (i) the sub-permutation (ρi, τi) can be
reused, requiring only new masks for protection each time.
Moreover, applying oblivious shuffle with the same sub-
permutation on two secret-shared vectors aligns them in
a same and secret order. (ii) A secret share shuffled by
(ρi, τi) can be restored to its original order, by each party

locally generating the inverse permutations (τ−1
i , ρ−1

i ) and
performing an oblivious shuffle based on these inverses. We
refer to this operation as “unshuffle”.

Protocol 1 Oblivious Shuffle Protocol ΠShuffle

Input: Pi holds the share [[x]]i, the permutation (ρi, τi), and
the masks (ai,bi), i ∈ {1, 2}.

Output: Pi gets the share [[z]]i, where z = π(x), π = ρ1 ◦
τ2 = ρ2 ◦ τ1.

1: At the offline stage:
2: TTP generates random permutation π, τ1, τ2.
3: TTP computes ρ1 = π ◦ τ−1

2 , ρ2 = π ◦ τ−1
1 .

4: TTP generates random vectors a1, a2, c.
5: TTP computes b1 = ρ1(a2) + c, b2 = ρ2(a1)− c.
6: TTP sends (ρi, τi,ai,bi) to Pi.
7: At the online stage:
8: Pi computes [[y]]i = τi([[x]]i) + ai.
9: Pi sends [[y]]i to Pi+1.

10: Pi computes [[z]]i = ρi([[y]]i+1)− bi.
11: return [[z]]i

5. Private Inference Protocol Exploiting Spa-
tial Locality of Sparsity Distribution

Comet leverages the predicted activation sparsity to ac-
celerate inference by eliminating zero-related computations
and communications. For non-linear layers, computations
are performed only on inputs with nonzero outputs. For
linear layers, only dot products involving nonzero outputs
or inputs are computed, as shown in Figure 8.

However, in MPC, redundant communication occurs
when the same elements of a matrix are involved in mul-
tiple separate dot products. This happens because the same
elements must be repeatedly masked and communicated
for each secure dot product. We observe that the sparsity
distribution exhibits strong spatial locality, meaning that dot
products involving nonzero outputs or inputs in the same
row or column often use the same data. Building on this
spatial locality, we propose the Sparse Output Matrix Mul-
tiplication (SOMM) protocol for the preceding linear layer
and the Sparse Input Matrix Multiplication (SIMM) protocol
for the subsequent linear layer to minimize communication
and computation.

Since the sparsity distribution output by the predictor
has been shuffled, we also perform an oblivious shuffle on
the input matrix before executing SOMM protocol. This
aligns the input matrix permutation with the shuffled sparsity
distribution, allowing secure and correct indexing of its
rows, columns, or elements. Notably, since the model weight
matrices are typically fixed, we can perform a one-time,
offline pre-shuffle on them, which does not add any latency
during online inference. After executing SIMM protocol, we
perform an unshuffle on the output matrix to restore it to
its original order, ensuring correct computation for the next
layer. Without loss of generality, in the following discussion,
we assume that the sparsity distribution and all matrices are
in the same permutation.
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The design for MHA is similar.

5.1. Sparse output matrix multiplication protocol
for preceding linear layer

For the preceding linear layer matrix multiplication
XY = Z, given the sparsity distribution of Z, we can
pre-identify which output elements need to be computed
(shown in pink in Figure 9(a)), and perform dot products
only for relevant rows and columns (shown in Figure 9(b)).
In MPC, the dot product is computed using a Beaver triple
([[a]], [[b]], [[c]]). To calculate [[Zi,j ]] , the MPC servers first
locally compute [[Ei]] = [[Xi]]− [[a]] and [[Fj ]] = [[Yj ]]− [[b]],
then exchange these masked values with other servers, and
finally derive [[Zi,j ]] using Equation 1. Due to security
requirements, if [[Xi]] or [[Yj ]] is involved in multiple sep-
arate dot products, each instance must use a fresh Beaver
triple [7]. As a result, when the same data participates in
multiple separate dot products, it leads to repeated mask-
ing and communication. For instance, Y1 in Figure 9(b)
is involved in two dot products, requiring masking and
communication twice.

Based on the spatial locality of the sparsity distri-
bution, we group nonzero ouputs computed from the
same row or column into a single result block. This al-
lows us to perform block matrix multiplications, where
each row or column is masked and communicated only
once in MPC. As shown in Figure 9(c), by grouping
Z1,1 and Z2,1, the MPC servers perform matrix multi-
plicaiton ΠMatMul([[X1,X2]], [[Y1]]) instead of dot products
ΠDP([[X1]], [[Y1]]) and ΠDP([[X2]], [[Y1]]), where [[Y1]] only
needs to be masked and communicated once. However,
naive grouping may introduce redundant computations, as
these result blocks might include zero outputs, leading to
unnecessary operations, as illustrated in the lower part of
Figure 9(c).

To determine the grouping with optimal communica-
tion and computation, we model it as a subgraph partition
problem in a bipartite graph. As shown in Figure 9(d), the
matrix multiplication is represented as a bipartite graph,
where rows of X and columns of Y are nodes, and the
nonzero elements of the output Z are edges. The number
of nodes represents the communication cost (the number
of rows and columns need to be masked and communited),
while the product of nodes reflects the computation cost (the
number of dot products). Grouping nonzero elements of Z
into result blocks corresponds to partitioning the bipartite
graph into subgraphs. To achieve optimal partitioning, two
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requirements must be met:
• Minimize communication cost: Each connected compo-

nent should be fully contained within a single subgraph. If
a node appears in multiple subgraphs, the corresponding
row or column will be involved in multiple individual ma-
trix multiplications, causing redundant communication.
For example, in Figure 9(d), adjusting edge Z2,4 and its
nodes into partition 2 prevents redundant communication
of node X2 from partition 1.

• Optimize computation: Each subgraph should contain
only one connected component. If multiple components
exist in a subgraph, redundant computations are intro-
duced. These redundancies can be avoided without in-
creasing communication costs, as shown by partitioning
the two connected components in partition 2 into partition
3 in Figure 9(d).
Therefore, finding the optimal partition is equivalent

to identifying all connected components in the bipartite
graph, which can be quickly accomplished using depth-first
search (DFS) [84]. This only needs to know the positions
of nonzero outputs, and can be performed locally on each
MPC server, without communication.

Based on the above analysis, we propose the SOMM
protocol for the preceding linear layer. The detailed steps
are provided in Protocol 2. First, each party locally performs
a depth-first search on the sparsity distribution to identify
all connected components (line 1). Then, these connected
components are transformed into corresponding index sets
(line 3), which are used to extract the respective submatrices
(line 4 and 5). Subsequently, a secure matrix multiplication
protocol is invoked on these submatrices individually to
obtain the result block (line 6). Finally, all the result blocks
are merged to form the final output (line 8). The security
of this protocol is proven in Appendix A. The proof of
Theorem 1 can be found in Appendix B.1.



Protocol 2 SOMM Protocol ΠSOMM

Input: Pi holds the share [[X]]i, the share [[Y]]i and the
sparsity distribution S of XY, i ∈ {1, 2}.

Output: Pi gets the share [[Z]]i, such that Z = XY.
1: Pi locally computes {Gt}Lt=1 ← DFS(S).
2: for t = 1 to L parallel do
3: Pi locally transforms the graph Gt into row indices

set Ix and column indices set Iy.
4: Pi locally extracts [[X]]ti ← IndexRows([[X]]i, Ix).
5: Pi locally extracts [[Y]]ti ← IndexCols([[Y]]i, Iy).
6: Pi invokes [[R]]ti ← ΠMatMul([[X]]ti, [[Y]]ti).
7: end for
8: Pi locally computes [[Z]]i ← Merge({[[R]]ti}Lt=1).
9: return [[Z]]i

Theorem 1. Given [[X]], [[Y]], and the sparsity distribution
S of XY, Protocol 2 achieves the minimal communication
cost for computing [[XY]]. Furthermore, under this minimal
communication cost, the protocol also ensures the minimal
computation cost.

5.2. Sparse input matrix multiplication protocol for
subsequent linear layer

For the subsequent linear layer matrix multiplication
XY = Z, given the sparsity distribution of X, this operation
can be seen as a generalized sparse matrix-matrix multipli-
cation (SpGEMM). Efficient implementations already exist
in plaintext computation, such as the PyTorch sparse tensor
library [29]. A typical SpGEMM approach follows a row-
by-column multiplication: each nonzero element in X is
multiplied with the corresponding elements in the respective
column of Y. Specifically, for a nonzero Xi,j , it suffices to
multiply it with the j-th row of Y, as shown in Figure 10(b).
However, in MPC, when multiple nonzero elements exist
in the same column of [[X]], the corresponding rows in
[[Y]] must participate in multiple separate computations,
which leads to redundant communications. For example, in
Figure 10(b), the third column of X contains two nonzero
elements, X2,3 and X4,3. As a result, Y3 is involved in two
separate multiplications, requiring [[Y3]] to be masked and
communicated twice in MPC.

To avoid this redundant communication, we shift from
row-by-column multiplication to column-by-row multipli-
cation. Nonzero elements in the same column of X are
aggregated into a sub-vector, which is then multiplied with
the corresponding row of Y, as shown in Figure 10(c).
This ensures that each row of [[Y]] participates in the
multiplication only once in MPC, requiring masking and
communication only once as well. After performing the
multiplication for each sub-vector, the results belonging to
the same row of the output Z are summed and merged to
obtain the final results (e.g., shaded vectors in Figure 10(c)
add up to Z2 and Z4).

Based on the above analysis, we propose the SIMM
protocol for the subsequent linear layer. The detailed steps
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Protocol 3 SIMM Protocol ΠSIMM

Input: Pi holds the share [[X]]i, the share [[Y]]i, the sparsity
distribution S of X, i ∈ {1, 2}.

Output: Pi gets the share [[Z]]i, such that Z = XY.
1: I ← ∅, Pi finds all nonzero columns {j} in S.
2: for each nonzero column j do
3: Pi finds all nonzero row indices set Rj .
4: I ← I ∪ {(j, Rj)}
5: end for
6: for (j, Rj) in I parallel do
7: Pi locally extracts [[x]]′i ← IndexCol([[X]]i, j).
8: Pi locally extracts [[x]]′′i ← IndexRows([[x]]′i, Rj).
9: Pi locally extracts [[y]]i ← IndextRow([[Y]]i, j).

10: Pi invokes [[R]]ti ← ΠMatMul([[x]]
′′
i , [[y]]i).

11: end for
12: Pi locally computes [[Z]]i ← Merge&Sum({[[R]]ti}Lt=1).
13: return [[Z]]i

are provided in Protocol 3. First, each party finds all nonzero
columns in S and records the nonzero row indices within
each column (line 1-5). For each nonzero column of [[X]],
each party extracts its nonzero elements to form a sub-
vector(line 7 and 8) and use the column index to extract
the corresponding row of [[Y]] (line 9). A secure matrix
multiplication protocol is then invoked to compute the result
block for the sub-vector and the row (line 10). Finally, all re-
sult blocks corresponding to the same row are summed, and
these rows are combined to form the final output matrix (line
12). The security of this protocol is proven in Appendix A.
The proof of Theorem 2 can be found in Appendix B.2.

Theorem 2. Given [[X]], [[Y]], and the sparsity distribution
S of X, Protocol 3 achieves the minimal communication
cost for computing [[XY]]. Furthermore, under this minimal
communication cost, the protocol also ensures the minimal
computation cost.



6. KV Cache Manager

During inference, LLMs take the user’s prompt as input
and generate text token by token. For each token generation,
the MHA requires accessing the keys(K) and values(V) of
all previous tokens to compute attention scores. Existing
LLM systems employ a KV cache to store these data for
efficient reuse.

However, when some attention heads are predicted to be
not activated, the Sparse QKV layer skips the computation
of their keys and values, leaving these entries absent from
the KV cache. This disrupts the temporal (token-wise) and
spatial (attention head-wise) continuity of the KV cache,
leading to a reduced hit rate. If these missing key-value pairs
are ignored in subsequent computations, model accuracy
may degrade. To mitigate this, we need to refill in the miss-
ing cache entries upon detection. However, plaintext cache
refill strategies [48] are designed to minimize computation
cost, and directly applying them to priavete inference can
introduce substantial communication overhead.

To address these challenges, we propose two comple-
mentary strategies: merging cache miss requests to reduce
redundant computation and communication, and prefetching
KV values for not-activated attention heads to improve cache
continuity.
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6.1. Merging cache miss requests

A straightforward approach to handle cache misses is
to respond to each miss request immediately by refilling the
cache entry. This requires the MPC servers to collaboratively
execute matrix multiplications in the Sparse QKV layer.
However, when multiple requests target the same attention
head, separatly processing each request results in redundant
communication, as the QKV weights must be repeatedly
communicated and masked, causing significant latency.

To mitigate this issue, we propose merging cache miss
requests before performing secure matrix multiplications.
As illustrated in Figure 11(a), when generating a token,

attention heads h1 and h3 are predicted to be activated.
The cache manager identifies the cache misses for these
heads (shaded in pink) and merges the requests into a single
batch. The Sparse QKV layer then processes the merged
requests together, ensuring that each token and attention
head participates in the computation only once, reducing
redundant communication.

6.2. Prefetching key-value for not-activated heads

While merging addresses immediate cache misses,
prefetching proactively improves the KV cache continuity
for future tokens. Specifically, when a cache miss occurs
for an activated attention head, the cache manager triggers a
prefetching mechanism to compute and store the KV values
for some not-activated attention heads (shaded in yellow in
Figure 11(a)). By leveraging shared communication for the
same tokens, prefetching reduces future cache misses and
associated latency.

The key challenge is determining which not-activated
attention heads are worth prefetching. We propose a cost-
benefit-based head selection strategy, prefetching only when
the future communication savings from reduced cache
misses outweigh the immediate communication cost incurred
by performing the prefetch. Let x denote the token vector
size and w the size of the attention head weight matrix. For
a prefetched not-activated head with L2 cache misses (while
there are L1 misses for activated heads), the additional
communication cost is 2(w + x · max(0, L2 − L1)), while
the saved cost is 2L2x. Prefetching is executed only if
L2 > w/x+max(0, L2 − L1), ensuring cost-effectiveness.
For instance, in OPT-6.7B, at least 128 cache misses are re-
quired for a not-activated head to be selected for prefetching.

Finally, because refilling and prefetching requests often
share tokens, they are merged into a single batch (Fig-
ure 11(a)). Moreover, as these requests use the same ac-
tivated attention heads as the current token’s inference, they
are further combined and processed in the Sparse QKV
Layer (Figure 11(b)). Within this layer, keys and values are
computed using Πshuffle and ΠSOMM, so they are already
shuffled in the KV cache. Consequently, neither refilling nor
prefetching reveals any information: the server cannot tell
which attention heads are missing or have been prefetched.

7. Evaluation

7.1. Methodology

Hardware platform. We evaluate Comet on three cloud
servers, with two servers for MPC computation node and
one for user node. Each server is equipped with an Intel
8458P@2.7GHz CPU, an NVIDIA A100 GPU, and 256GB
of memory. The bandwidth between the servers is 5Gbps.
Software platform. Comet is implemented based on
Crypten [42], a widely-used MPC framework. By leveraging
MPC primitives provided by Crypten, we implement the
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Figure 12: Overall performance of Comet.

private inference protocol in Comet, including oblivious
shuffle, SOMM and SIMM. The activation sparsity predictor
and cache manager are designed as independent modules,
without modification to the model architecture.
Models We use two popular LLMs, namely OPT [94]
with parameters from 1.3B to 6.7B and LLaMA2(ReLU)-
7B [79]. The model pre-trained weights are sourced from
the Transformer library HuggingFace [92], which provides
a variety of pre-trained models.
Workloads. The workloads for experiments are derived
from Alpaca [83] datasets, which consists of input and out-
put texts typical of real LLM services. To test the accuracy,
we used eight popular LLM benchmarks, covering four task
types. (1) Code Generation: HumanEval (0-shot) [21] and
MBPP (3-shot) [5]. (2) Commonsense Reasoning: PIQA (0-
shot) [9] and COPA (0-shot) [74]. (3) Reading Comprehen-
sion: BoolQ (0-shot) [25] and LAMBADA (0-shot) [69].
(4) Language Understanding: MMLU (5-shot) [36] and
GLUE [90].
Baselines. We select five mainstream Transformer private
inference systems as baselines for comparison with Comet.
Two systems, Iron [35] and Bolt [68], use hybrid protocols
with homomorphic encryption (HE) for linear layers and
MPC for non-linear layers. Since HE is slower than MPC,
we ensure a fair comparison by using their non-linear layer
implementations, while keeping the linear layer implemen-
tation consistent with Comet. The other three baselines,
MPCFormer [47], SecFormer [59], and Puma [30], rely
solely on MPC. We provide detailed descriptions of the
baselines in Appendix D.
Metrics. Our metrics include end-to-end runtime and com-
munication cost. The end-to-end runtime measures the total
time reflecting the latency of private inference. We quan-
tify the communication cost as the total amount of data
exchanged by the MPC servers during inference, mitigating
the impact of network fluctuation.

7.2. End-to-End Performance

We evaluate the end-to-end performance of the Comet
for generating text of different lengths (1, 2, 4, 8, and

16), using an input length of 512 tokens. The results are
presented in Figure 12. Compared to the baselines, Comet
achieve faster inference speeds (1.87× to 2.63×) and lower
communication overhead (1.94× to 2.64×).

Comet is effective for models of varying sizes, exhibiting
more pronounced speedups on larger models. For the 1.3B
model (OPT-1.3B), Comet achieves an average speedup
of 1.71×, while reducing communication cost by 1.61×.
When the model size increases to 7B (Llama2-7B), the
average speedup of Comet further increases to 2.58×, with a
reduction in communication cost of 2.49×. This is because
the larger models typically present higher activation sparsity,
which results in more redundant computations and commu-
nication, thereby offering greater potential for acceleration.
For instance, the average sparsity of the MHA and FFN in
OPT-1.3B is 34% and 61%, respectively, while Llama2-7B
reaches 49% and 85%.

As the output length increases, the speedup improves
due to the two-stage inference process: Prefill and Decode.
For instance, with the OPT-6.7B model, when generating
the first token (Prefill), Comet achieves a speedup of 2.09×
and reduces communication cost by 2.14×. However, when
generating the sixteenth token (Decode), the total speedup
increases to 2.57× and the total communication cost is
reduced by 2.73×. This is because, during the Decode stage,
only one token is input at a time, leading to high sparsity.
As the sequence length increases, this stage increasingly
dominates the inference latency, leading to greater speedup
and reduced communication costs.

We also evaluated the end-to-end performance of Comet
under different bandwidths, from 100Mbps to 5Gbps, as
shown in Table 1. We only selected two faster methods
(MPCFormer and Puma) on the two largest models (OPT-
6.7B and Llama2-7B) for comparison. Under lower band-
width (100Mbps, WAN), Comet achieved a 3.25× average
speedup, and under higher bandwidth (5Gbps, LAN), it
achieved a 2.05× average speedup. Overall, Comet accel-
erates private inference across all bandwidth conditions by
directly reducing communication costs.



TABLE 1: End-to-end performance of Comet for generating
one token with input length 512 under different bandwidths.

Model Method Time (min)

100Mbps 500Mbps 1Gbps 5Gbps

OPT-6.7B
MPCFormer 530.2 107.6 48.9 10.6

Puma 752.1 157.9 76.4 16.1
Comet 201.8 58.3 27.7 7.7

Llama2-7B
MPCFormer 575.5 98.4 44.0 9.5

Puma 722.7 154.5 70.4 14.9
Comet 194.8 54.1 25.8 7.0

7.3. Performance Breakdown

To analyze the acceleration effect of Comet on linear and
non-linear layers, we conduct a detailed breakdown. The
experiments use Puma as the baseline due to its superior
performance.

As shown in Figure 13, Comet accelerates both linear
and non-linear layers, with speedups of 1.6× to 3.7× for
linear layers and 1.9× to 2.6× for non-linear layers. Linear
layer speedup increases with sequence length due to growing
sparsity, while non-linear layers are less affected. In linear
layers, sparsity is low when generating the first token,
leading to modest acceleration, but increases for subsequent
tokens, boosting acceleration further. For non-linear layers,
the time for each token decreases significantly after the
first, so the acceleration mainly depends on the first token.
For example, in OPT-6.7B, the linear layer’s communication
overhead rises from 24% for the first token to 75% by the
sixteenth.
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Figure 13: Speedup breakdown for linear and non-linear
layers across different output lengths (denoted as L).

We evaluate the performance for each model layer to
gain a deeper understanding. Table 2 presents the results
for the two largest models, OPT-6.7B and Llama2-7B. All
layers are accelerated, and the performance improvement
in the layers within the FFN (FC1, ReLU, FC2) is more
significant than that in the layers within the MHA (QKV,
MatMul, Softmax, Output). Specifically the MHA and FFN
achieve an average speedup of 1.94× and 8.08×, and a
communication reduction of 2.23× and 10.01×, respec-

tively. This is due to the higher sparsity rate of the FFN
(approximately 50%) compared to that of the MHA (about
90%).

7.4. Accuracy

We evaluated the accuracy of Comet on different datasets
using Llama2-7B. The sparsity predictor was trained on
the WikiText2 [61] and StarCoder [49] datasets, which are
different from the inference datasets. This ensures that the
accuracy is not influenced by prior exposure to the infer-
ence data. As shown in Table 3, Comet maintains accuracy
comparable to plaintext inference, with a average accuracy
loss of 1.5%. The predictor achieves an average recall of
93%.

TABLE 3: Accuracy of Comet under different tasks.

Dataset Plaintext Comet Dataset Plaintext Comet

HumanEval 18.8 18.2 MBPP 22.4 91.2
PIQA 78.4 76.8 COPA 81.3 78.5
BoolQ 62.5 60.4 Lambada 66.2 63.4
MMLU 44.5 42.8 GLUE 84.7 83.5

Comet achieves a better trade-off between accuracy and
inference speed compared to other methods. As shown in
Figure 14, for larger models (OPT-6.7B), Comet achieves
approximately 2.1× speedup over Puma while maintaining
the same accuracy (85.17%). For smaller models (OPT-
1.3B), although accuracy drops slightly (about 0.7% lower
than Puma and Iron), Comet still delivers a notable speedup
(1.6× faster than Puma). As model size increases, Comet
further accelerates inference while preserving accuracy.
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Figure 14: Accuracy and inference speed of various methods
on the GLUE benchmark.

7.5. Ablation Study

To demonstrate the effectiveness of each design within
the Comet, we conduct an ablation study. Figure 15 illus-
trates the inference time as each component is progressively
removed. Initially, removing the cache refilling strategy
results in a 1.2× to 1.4× increase in inference time. Fur-
ther removal of SIMM leads to a rise in inference latency
by 1.3× to 2.0×, and the subsequent removal of SOMM
increases inference time by 1.5× to 2.5×. Finally, remov-
ing the predictor (denoted as ”-SpAct”) caused the system
to revert to a standard method without any optimizations.
Overall, all the designs have proven to be effective.



TABLE 2: The speedup of Comet for different layers. The input length is 512 and output length is 16.

Layer
PUMA Comet

Comp. Comm. Total Comm. Comp. Comm. Total Comm.
Time(s) Time(s) Time(s) Cost(GB) Time(s) Speedup Time(s) Speedup Time(s) Speedup Cost(GB) Reduce

O
PT

-6
.7

B

QKV 78.5 618 697 387 53.0 1.48× 309 2.0× 362 1.92× 191 2.02×
MatMul 10.3 60.2 70.5 37.6 7.3 1.41× 29.1 2.07× 36.4 1.94× 17.5 2.15×
Softmax 221 524 745 330 185 1.19× 230 2.27× 416 1.79× 141 2.34×
Output 25.7 207 232 129 9.8 2.63× 99.6 2.08× 109 2.13× 59.1 2.18×

FC1 100 849 949 513 30.6 3.28× 85.0 10.0× 115 8.22× 53.2 9.65×
ReLU 13.4 189 203 119 10.3 1.3× 16.1 11.8× 26.4 7.7× 10.1 11.9×
FC2 100 816 916 516 13.6 7.37× 83.5 9.78× 97.1 9.44× 52.6 9.81×

Others 94.4 171 265 106 95.7 0.99× 169 1.01× 265 1.0× 106 1.0×
Predictor 0 0 0 0 28.7 0 168 0 196 0 104 0

Total 644 3437 4082 2140 434 1.48× 1190 2.89× 1625 2.51× 742 2.88×

L
la

m
a2

-7
B

QKV 75.9 618 694 387 50.9 1.49× 293 2.11× 343 2.02× 180 2.14×
MatMul 10.3 60.1 70.4 37.6 7.6 1.35× 26.8 2.24× 34.4 2.04× 16.5 2.28×
Softmax 224 529 753 330 175 1.28× 211 2.5× 387 1.95× 133 2.48×
Output 24.7 205 230 129 8.9 2.78× 92.5 2.23× 101 2.27× 55.7 2.32×
Gate 66.4 548 614 345 21.6 3.07× 57.7 9.51× 79.3 7.75× 36.1 9.57×
Up 66.3 557 623 345 19.9 3.33× 57.2 9.74× 77.1 8.09× 36.1 9.57×

ReLU 13.4 131 145 80.2 11.6 1.15× 12.4 10.6× 24.1 6.03× 7.9 10.2×
Down 64.5 547 611 346 8.9 7.21× 56.2 9.74× 65.1 9.39× 35.4 9.79×
Others 87.4 113 200 70.3 85.3 1.02× 112 1.0× 198 1.01× 70.3 1.0×

Predictor 0 0 0 0 22.7 0 130 0 153 0 81.4 0
Total 633 3311 3945 2072 413 1.53× 1051 3.15× 1464 2.69× 659 3.14×
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Figure 15: Ablation study.

7.6. Component-wise Analysis

To provide a deeper understanding of the contributions
of individual components in Comet, we perform a detailed
component-wise analysis. Each subsection focuses on a
specific design element, evaluating its unique characteristics
and effectiveness in addressing different aspects of private
inference.
(1) Activation sparisity predictor.

Prediction overhead. As shown in Figure 16(a), for mod-
els of different sizes, the average overhead of the predictor
does not exceed 15% of the entire end-to-end inference time.
This low prediction overhead is due to our oblivious shuffle
design. As shown in Figure 16(b), the oblivious shuffle
design brings a 4.1× to 4.8× performance improvement.
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Figure 16: Predictor overhead.

Predictor accuracy. We evaluate the precision and recall
of the predictor on models of varying sizes. A lower preci-

sion indicates that more not activated neuron are incorrectly
predicted as activated, introducing additional avoidable com-
putations and communication. Conversely, a lower recall
suggests that more activated neurons are missed, thereby
impacting the model’s accuracy. As illustrated in Figure 17,
the predictor achieved an average precision of up to 90%
and a recall of 95%. Although the precision is slightly lower
then the recall, it only result in performance loss.
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Figure 17: Precision and recall of predictor.

Predictor threshold. We analyze how different predictor
thresholds affect Comet’s accuracy and inference speed us-
ing the Llama2-7B model. During pretraining, the predictor
threshold was set to 0. We tested various thresholds on
the GLUE benchmark. As shown in Table 4, keeping the
same threshold as in pretraining yields the highest accuracy
by preserving most neuron computations (89.1% sparsity).
Increasing the threshold filters out more neurons, leading
to a faster inference speed but a sharp drop in accuracy. In
most tasks, maintaining the pretraining threshold provides a
good balance between accuracy and efficiency.

TABLE 4: Impact of predictor thresholds on Comet’s accu-
racy and speed.

Threshold 0 0.1 0.3 0.5 0.7

Sparsity (%) 89.1 92.3 94.8 96.7 99.1
Accuracy (%) 86.4 81.5 64.3 53.1 49.3

Speedup 2.7× 2.9× 3.4× 4.4× 5.7×



(2) Sparse matrix multiplication. We compare the perfor-
mance of SOMM, SIMM, GEMM, and SpGEMM under
different sparsity levels, focusing on communication costs
since computation time is only about 15% of the total.
The input and output lengths are set to 512 and 1, respec-
tively. As shown in Figure 18, SOMM and SIMM reduce
communication by 1.41× to 95.3× compared to GEMM,
with greater savings at higher sparsity. For example, at
90% sparsity, SOMM achieves an 8.1× reduction. At low
sparsity, SOMM and SIMM are nearly equivalent to GEMM.
SOMM and SIMM also outperform SpGEMM, reducing
communication by 1400× to 300× as sparsity increases.
This is because SpGEMM repeatedly communicates the
same rows and columns, whereas SOMM and SIMM com-
municate them only once.
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Figure 18: Communication cost comparison of matrix mul-
tiplication methods at different sparsity levels.

(3) KV Cache manager. We compare the communication
costs of three cache refilling strategies: per-request refilling
(PR), merged-requests refilling (MR), and merged-requests
refilling with prefetching (Comet). To ensure consistent
attention head activation for each token generation, all
strategies were tested under identical input conditions. A
fixed output length of 2048 was used to demonstrate long-
term efficiency. Our merging strategy significantly reduces
communication costs, as illustrated in Figure 19(a). MR
achieves a 3.8× reduction compared to PR. Additionally,
the prefetching mechanism further reduces MR’s communi-
cation costs by 1.2×.

Figure 19(b) illustrates the communication cost for gen-
erating each token. It is evident that PR incurs higher com-
munication cost than the other two strategies. The strategy
of Comet is generally lower than MR but is nearly identical
in the early phases (sequence length < 500). This is because
the sequence length is relatively short at this stage, and the
cache misses length do not meet the prefetching conditions.
As the sequence extends and attention heads begin to exhibit
longer misses, prefetching is triggered, reducing redundant
communication.

8. Related Work

Acceleration of Private Inference for LLMs. Current
efforts to accelerate private inference for Transformers focus
on two areas: model architecture and protocol optimiza-
tion. For model architecture, mainstream methods replace
complex non-linear functions with simpler ones to improve
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Figure 19: Communication cost comparison of cache refill-
ing strategies over sequence lengths.

efficiency [1], [22], [47], [54]. For example, THE-X [22]
uses simpler ReLU functions under MPC instead of more
complex functions like GeLU and Softmax, though this
requires retraining to recover accuracy lost from these ap-
proximations. In protocol optimization, Iron [35] uses a
hybrid protocol with homomorphic encryption for linear
layers and MPC for non-linear layers. To reduce commu-
nication overhead in non-linear layers, CipherGPT [38],
BumbleBee [58], and Bolt [68] use piecewise polynomial
approximations. Since homomorphic encryption is slower
than MPC, systems like Puma [30], SIGMA [34], Sec-
Former [59], and SecureTLM [23] rely purely on MPC
and develop higher-precision approximations for non-linear
functions. While these methods mainly optimize non-linear
layers, Comet improves both linear and non-linear functions,
making it complementary to many existing approaches.
Activation Sparsity. Recent works leverage activation spar-
sity to speed up inference in plaintext LLMs. Deja Vu [57]
was the first to propose using activation sparsity to accel-
erate LLM inference without compromising model quality.
ReLU2 [95] and ReLU Strikes Back [62] utilized ReLU’s
activation sparsity to reduce computation and weight trans-
mission. ProSparse [79] further enhanced this by replac-
ing non-ReLU activations with ReLU to exploit sparsity.
PowerInfer [80] preloads frequently activated neurons onto
the GPU, while keeping infrequently activated ones on the
CPU for acceleration. To our knowledge, Comet is the
first private inference system to accelerate by leveraging
activation sparsity.

9. Conclusion

This paper proposes Comet, an efficient private infer-
ence system leveraging activation sparsity. By predicting
the sparsity of activation outputs, Comet skips computations
for elements predicted to be zero in both non-linear and
linear layers, effectively reducing communication costs and
accelerating inference. We implement Comet and evaluate
it across four model sizes, achieving a 1.87× to 2.63×
speedup over state-of-the-art private inference systems.
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Appendix A.
Security Proof

The security of Comet adheres to the standard
simulation-based security definition in MPC: a protocol is
considered secure if there exists a polynomial-time simulator
S that can construct a simulated world where the view of
an adversary A is computationally indistinguishable from
the real-world view [55]. Based on Universal Composability
(UC) framework [15], to prove the security of Comet, it
suffices to prove the security of its three core protocols:
Oblivious Shuffle, SOMM, and SIMM.

Theorem 3. The protocols oblivious shuffle, SOMM and
SIMM are secure against the honest-but-curious adversary.

Oblivous Shuffle. The adversary’s view in the oblivious
shuffle protocol is viewA = {ρ, τ,a,b, [[x]], τ([[x]]), [[y]],
ρ([[y]]), [[z]]}. where ρ and τ are random permutations, and
a,b are uniformly random vectors. The secret-shared vari-
ables [[x]] and [[y]], as well as their shuffled results τ([[x]]) and
ρ([[y]]), are uniformly random due to the properties of secret
sharing and random permutations. The output [[z]], computed
as the sum of two secret-shared vectors, also retains uniform
randomness. A simulator S can replicate viewA by gen-
erating these components independently, ensuring that the
simulated view is computationally indistinguishable from
the real view. Thus, this protocol is secure against the
honest-but-curious adversary.
SOMM and SIMM. The adversary’s view in SOMM proto-
col is viewA = {[[X]], [[Y]],S, [[X]]t, [[Y]]t, [[R]]t, [[Z]]}. The
secret-shared input [[X]], [[Y]] are uniformly random due to
the properties of secret sharing. S is a plaintext sparsity
distribution obtained by applying an oblivious shuffle to a
secret-shared 0-1 sparsity distribution, where the random-
ness of the shuffle ensures that S is uniformly random.
[[X]]t is obtained by performing local indexing operations
on the secret-shared input, which do not alter their uni-
form randomness. [[R]]t is generated using a proven secure
multiplication protocol, ensuring that it is also uniformly
random. The output [[Z]] is obtained by merged from secret-
shared matrices, also retains uniform randomness. Thus, the
SOMM protocol is secure against the honest-but-curious
adversary. The security proof of SIMM follows the same



reasoning as SOMM, as both protocols share a similar
structure and rely on the same security guarantees.

Appendix B.
Optimality Proof

B.1. The proof of Theorem 1

We model the matrix multiplication XY = Z using
a bipartite graph G = (X,Y, Z), where nodes x ∈ X
represent the row vectors of X, nodes y ∈ Y represent
the column vectors of Y, and edges z ∈ Z correspond
to nonzero elements in Z, computed as the dot product of
x and y. Since zero elements in Z do not induce edges
in G, some nodes in X and Y may be isolated, meaning
they do not contribute to computation or communication.
Without loss of generality, we focus on the reduced subgraph
Gr = (Xr, Y r, Z), where Xr and Y r include only nodes
that participate in at least one multiplication.

The communication cost of an MPC matrix multiplica-
tion is given by C1(G) = 2(|X| + |Y |), representing the
number of row and column vectors communicated. The
computation cost is C2(G) = 3|X||Y |, representing the
total number of local dot product operations performed. For
simplicity, we omit the coefficients. To achieve the minimal
communication cost and, under this condition, the minimal
computation cost, the problem can be formulated as finding
a subgraph partition G1, G2, . . . , Gk of Gr such that

min
G1,G2,...,Gk

S2 =

k∑
i=1

C2(Gi)

s.t. S1 =

k∑
i=1

C1(Gi) is minimized,

∀i ̸= j, Zi ∩ Zj = ∅.

S1 achieves its minimum when each connected compo-
nent of Gr is fully assigned to a single subgraph. Since∑

C1(Gi) =
∑
|Xi|+

∑
|Yi| ≥ (|Xr|+ |Y r|),

the minimum is exactly the total number of nodes. This
minimum is achieved only if each node is assigned to a
single subgraph, meaning that the connected component
containing the node must be entirely within one subgraph.
Otherwise, some nodes would be assigned to multiple sub-
graphs, increasing C1.

Under the condition that each connected component is
assigned to a single subgraph (minimizing S1), the S2 is
minimized by further ensuring that each subgraph contains
exactly one connected component. Consider a subgraph
G′ = (X ′, Y ′, Z ′) containing multiple connected compo-
nents Gi = (Xi, Yi, Zi) and Gj = (Xj , Yj , Zj). The
computation cost for G′ is:

C2(G′) = |X ′||Y ′| = |Xi +Xj | · |Yi + Yj |
≥ |Xi||Yi|+ |Xj ||Yj | = C2(Gi) + C2(Gj)

Thus, splitting G′ into Gi and Gj reduces the computation
cost. Repeating this argument, the optimal partition occurs
when each connected component forms its own subgraph.

Finding all connected components of Gr can be achieved
using Depth-First Search (DFS). The SOMM protocol uses
DFS to identify connected components, performs matrix
multiplications for each component, and merges the results.
Thus, Protocol 2 achieves both minimal communication cost
and computation optimality, completing the proof.

B.2. The proof of Theorem 2

Communication minimization. In Protocol 3, we adopt a
column-by-row multiplication strategy. Each nonzero ele-
ment in X is assigned to at most one column subvector, and
each row of Y participates in at most one multiplication.
Therefore, every nonzero element of X and every row of
Y are masked and communicated exactly once, achieving
minimal communication cost.
Computation optimality. While MPC inherently decom-
poses one matrix multiplication into multiple local multipli-
cations, the dimensions of these local multiplications remain
consistent with those of the original matrices. Therefore, the
total computation cost of MPC matrix multiplication can be
directly represented by the number of scalar multiplications
in the original matrix multiplication. Let X ∈ Rm×n and
Y ∈ Rn×p. Define Ri as the number of nonzero elements
in the i-th row of X and Cj as the number of nonzero
elements in the j-th column of X. The total number of
nonzero elements is N =

∑m
i=1 Ri =

∑n
j=1 Cj . Under a

row-by-column approach, each nonzero element participates
in p scalar multiplications, leading to

∑
Ri·p = N ·p. Under

a column-by-row approach, each nonzero element also con-
tributes to p scalar multiplications, giving

∑
Cj · p = N · p.

Hence, either method produces N · p scalar multiplications,
which matches the lower bound for computing XY.

Since the column-by-row approach simultaneously
achieves this computational optimum and incurs the minimal
communication overhead, Protocol 3 is optimal in both
communication and computation, completing the proof.

Appendix C.
Generality of Comet

Architectures. We evaluated Comet on various Transformer
architectures, including encoder-only (ViT [31], Bert [28]),
encoder-decoder (T5 [72]), and decoder-only (OPT [94]),
all of which use ReLU. As shown in Table 5, compared
to Puma [30], Comet achieves a 1.25×-2.84× speedup in
TTFT (Time To First Token).
Activation functions. We extend Comet beyond ReLU-
based LLMs by evaluating models that use GeLU [37] and
SwiGLU [77], two of the most widely adopted activation
functions in modern LLMs. Specifically, GeLU is used in
models such as GPT2 [71], Falcon [2], and BLOOM [45],
while SwiGLU is used in Llama2 [86], Llama3 [33], Mix-
tral [39], Qwen1.5 [6], and DeepSeek [8].



TABLE 5: Performance across different model architectures.

Model ViT-Base ViT-Large Bert-Base Bert-Large T5-Base T5-Large OPT-6.7B OPT-13B

Sparsity (%) 82.2 86.7 85.2 87.3 92.1 94.7 90.1 93.5
TTFT (min) 0.85 2.12 1.34 2.23 1.97 3.72 6.5 10.4
Speedup 1.55× 1.64× 1.73× 1.97× 1.85× 2.24× 2.57× 2.84×

TABLE 6: Performance across different activation functions.

Model GPT2-XL Falcon-7B Bloom-7B Llama2-7B Llama3-8B Mixtral-7B Qwen1.5-7B DeepSeek-7B

Activation GeLU GeLU GeLU Swish Swish Swish Swish Swish
Sparsity (%) 84.3 94.9 88.2 89.4 90.7 90.2 86.2 87.4
Accuracy deviation (%) -2.1 -0.3 +0.5 -1.0 -0.4 +0.3 -0.5 -0.6
Speedup 1.82× 3.12× 2.52× 2.69× 2.75× 2.31× 2.53× 2.62×

Although these activation functions do not inherently
exhibit sparsity, prior works [62], [79], [81], [91], [95],
[96] have shown that replacing them with ReLU-family
functions (e.g., ReLU [66], ReLU2 [95], shiftedReLU [62],
dReLU [81]) followed by fine-tuning enables activation
sparsity without significant accuracy loss. We applied this
ReLUfication strategy to eight different LLMs, as shown
in Table 6. Each model achieved an 80%-94% sparsity
ratio, with an average accuracy drop of less than 0.6% on
the GLUE benchmark. On these sparsified LLMs, Comet
achieves a 1.82×-3.12× speedup over Puma.

Appendix D.
MPC-based Private Inference Systems

MPCFormer accelerates Transformer private inference by
replacing costly Softmax and GeLU functions with sim-
ple quadratic approximations. Since these approximations
degrade model accuracy, knowledge distillation is applied
to restore performance. While effective in reducing MPC
overhead, this approach introduces additional training steps.

SecFormer, like MPCFormer, replaces Softmax with a
quadratic approximation but further improves efficiency by
designing a high-precision polynomial for GeLU and an
MPC-friendly LayerNorm computation. To compensate for
approximation errors, it also requires fine-tuning the model.

Puma enhances MPC efficiency by designing high-precision
polynomial approximations for Softmax and GeLU, ensur-
ing a slight accuracy loss. It also introduces secure protocols
for Embedding and LayerNorm computations. Unlike other
approaches, it achieves near plaintext-level accuracy in en-
crypted inference without requiring any model fine-tuning.

The above works adopt semi-honest security. Some, like
MUSE [46] and SIMC [18], achieve malicious security by
ensuring protocol termination upon an attack, preventing
sensitive information leakage. However, this significantly
reduces inference efficiency. Enhancing malicious security
in private LLM inference remains a key direction for future
research.

Appendix E.
Impact of Revealing Sparsity Levels

Comet leverages activation sparsity to accelerate private
inference. Compared to existing private inference systems,
the only additional information it reveals is the activation
sparsity levels. Although there are currently no known effec-
tive attacks targeting sparsity levels, this information could
introduce potential privacy risks. For example, in a semi-
honest setting, an adversary could issue repeated inference
requests for different inputs to map the relationship between
input and sparsity level. In a malicious setting, a model
provider could design a predictor that exhibits specific
sparsity levels on some layers for certain inputs. Notably,
the risks discussed here are not unique to Comet; these
inference attacks [16] and backdoor attacks [51] remain
open challenges even for state-of-the-art private inference
systems.

Fortunately, differential privacy (DP) [40] under MPC
can effectively mitigate risks of revealing sparsity levels.
Specifically, before revealing the shuffled sparsity distribu-
tion [[s]], the MPC servers collaboratively generate a secret-
shared 0-1 perturbation vector [[p]], where the number of
ones is determined via MPC-based DP. Then, by applying an
XOR operation between [[s]] and [[p]], some “0” are flipped
to “1”, hidding the exact sparsity level. Importantly, this
transformation does not turn “1” into “0”, ensuring that
all activated neurons are still computed, preserving model
accuracy. We evaluate the performance of Comet with DP.
For Llama2-7B, even under strong DP guarantees (ϵ = 0.01),
Comet achieves 71.1% sparsity and a 2.01× speedup over
Puma.

TABLE 7: The performance of Comet with DP under dif-
ferent privacy budget.

Privacy budget (ϵ) w/o DP 0.5 0.1 0.05 0.01

Sparsity (%) 89.4 87.7 85.9 79.9 71.7
Speedup 2.69× 2.63× 2.52× 2.34× 2.01×



Appendix F.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

F.1. Summary

The authors propose Comet, an MPC-based private in-
ference system for LLMs that exploits activation sparsity
to reduce communication and computation overhead. The
authors introduce new protocols to securely skip zero-valued
neurons and develop a KV-cache management strategy com-
patible with sparse inference. Extensive experiments demon-
strate significantly reduced inference time (1.87x-2.63x)
and communication (1.94x-2.64x) compared to state-of-the-
art private LLM inference systems, with further evidence
showing generalization across different activation functions,
architectures, and tasks.

F.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

• Creates a new tool to enable Future Science

F.3. Reasons for Acceptance

1) The paper addresses a timely challenge in secure
inference for LLMs and notably improves over state-
of-the-art in speed and communication.

2) The proposed method is presented comprehensively,
and the authors provide an extensive evaluation (in-
cluding WAN settings, different activation functions,
and various LLM architectures).

3) The paper contains many interesting and novel ideas
on how to speed up inference.
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