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Abstract—Federated Learning (FL) offers a promising frame-
work for collaboratively training machine learning models across
decentralized genomic datasets without direct data sharing. While
this approach preserves data locality, it remains susceptible to
sophisticated inference attacks that can compromise individual
privacy. In this study, we simulate a federated learning setup
using synthetic genomic data and assess its vulnerability to
three key attack vectors: Membership Inference Attack (MIA),
Gradient-Based Membership Inference Attack, and Label Infer-
ence Attack (LIA). Our experiments reveal that Gradient-Based
MIA achieves the highest effectiveness, with a precision of 0.79
and F1-score of 0.87, underscoring the risk posed by gradient
exposure in federated updates. Additionally, we visualize compar-
ative attack performance through radar plots and quantify model
leakage across clients. The findings emphasize the inadequacy of
naı̈ve FL setups in safeguarding genomic privacy and motivate
the development of more robust privacy-preserving mechanisms
tailored to the unique sensitivity of genomic data.

Index Terms—Federated Learning, Genomic Privacy, Member-
ship Inference Attack (MIA), Gradient-Based Inference Attack,
Label Inference Attack, Model Leakage, Synthetic Genomic Data,
Privacy-Preserving Machine Learning, Adversarial Attacks, Data
Confidentiality

I. INTRODUCTION

Genomic data plays a crucial role in modern biomedical
research, personalized medicine, and disease prediction. With
the exponential growth of genome sequencing technologies,
there is a growing need to develop machine learning mod-
els that can utilize this data to derive meaningful insights.
However, the sensitive nature of genomic information raises
significant privacy concerns. Genomic data can reveal not
only personal health conditions but also familial relationships,
ancestry, and potential predispositions to diseases—making it
a high-stakes target for privacy violations [1].

Federated Learning (FL) has emerged as a promising
paradigm to mitigate such risks by enabling decentralized
model training across multiple clients without requiring raw
data to be centralized [1] [2] [3]. In FL, each client (e.g.,
hospital or genomic research center) locally trains a model and
shares only the model updates (e.g., gradients or weights) with
a central server for aggregation. While this approach avoids
direct data exposure, recent advances in adversarial machine
learning have shown that such updates can still leak sensitive
information through inference attacks [4] [5].

This paper focuses on understanding and quantifying
the privacy risks associated with federated learning in the
genomic context. Specifically, we examine how inference
attacks can be leveraged to extract private information from
model updates in a synthetic genomic FL setup. We simulate
a federated environment with 20,000 synthetic genomic
records, each comprising single nucleotide polymorphisms
(SNPs), labels indicating phenotypic traits, and associated
client identifiers. This setting mirrors a real-world deployment
where multiple healthcare providers contribute to training a
shared model without centralizing raw genomic data [6].

We implement and evaluate three prominent classes of
inference attacks:

1) Membership Inference Attack (MIA): An adversary
attempts to determine whether a specific data point
was part of the training dataset, posing risks like re-
identification in clinical studies [4] [7].

2) Gradient-Based MIA: A more advanced attack that
exploits per-sample gradients, which are often accessible
during FL rounds, to infer membership with higher
confidence [5].

3) Label Inference Attack (LIA): An attacker tries to infer
the labels (e.g., disease status) of given data points based
solely on model behavior or updates, which can breach
medical confidentiality [8].

Our experiments reveal that these attacks can achieve alarm-
ing levels of success. Gradient-Based MIA achieved an F1-
score of up to 0.87, significantly outperforming basic MIA
strategies. The LIA, though less accurate, still yielded over
52% precision, highlighting label leakage potential. These
findings validate that federated learning, while structurally
more secure than centralized training, is not immune to
adversarial threats [4] [5] [8].
Beyond demonstrating these vulnerabilities, our contributions
include:

• A reproducible FL setup tailored to genomic data.
• A modular pipeline to simulate and evaluate inference

attacks.
• A comprehensive analysis of attack effectiveness across

different clients and thresholds.
This work serves as a foundational effort to quantify and
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visualize privacy risks in federated genomic analysis. It also
provides motivation for integrating stronger privacy-preserving
techniques such as differential privacy, secure multiparty
computation, or gradient obfuscation into future genomic FL
systems [1] [2] [9].

II. BACKGROUND

In recent years, the exponential growth of data and com-
putational capacity has enabled the widespread application of
machine learning in sensitive domains, such as personalized
healthcare, genomics, and pharmacogenomics. Genomic data,
in particular, is highly personal and permanent—once compro-
mised, it cannot be revoked or changed like a password. This
immutability makes privacy preservation a critical concern
[14]. The rise of collaborative learning techniques, especially
Federated Learning (FL), offers a promising avenue to enable
large-scale training while preserving data locality and privacy
[13].

A. Federated Learning and Genomic Applications
Federated Learning allows multiple decentralized clients —

such as hospitals, research centers, or edge devices — to
collaboratively train a global model under the orchestration of
a central server. Crucially, each client retains its local data and
only shares model updates, such as gradients or parameters,
which are then aggregated to improve a shared model. In
genomics, this is especially useful for combining insights
from disparate datasets without violating patient consent or
institutional policies [14]. FL has demonstrated that models
trained on distributed genomic data can achieve accuracy
comparable to centralized approaches, even in the presence
of significant heterogeneity between data sources [10].

However, the assumption that keeping data local inherently
guarantees privacy has been increasingly challenged. Studies
have shown that model updates can leak information about
local training data, especially when adversaries have access to
intermediate gradients or final model snapshots [11]. Privacy-
enhancing mechanisms such as differential privacy, secure
multiparty computation, and trusted execution environments
are being explored to address these risks, but FL alone does
not fully protect against information leakage [13] [14] [15].

B. Nature of Genomic Data and Its Sensitivity
Genomic datasets often consist of structured binary features

representing the presence or absence of specific SNPs (Single
Nucleotide Polymorphisms). These SNPs are the most com-
mon type of genetic variation among people and are widely
used to study genetic predisposition to diseases. Even with a
subset of SNPs, researchers (or adversaries) can reconstruct
sensitive information, infer ancestry, or identify individuals
through correlation with publicly available reference genomes
[10].

The sparsity and high dimensionality of genomic data sets
introduce unique challenges in FL training, often requiring
careful optimization strategies. At the same time, these same
properties can lead to unintended signal leakage, particularly
through overfitting or gradient-based updates [12].

C. Inference Attacks in Federated Settings

Three primary classes of inference attacks have emerged as
credible threats in federated setups:

• Membership Inference Attacks (MIA): These attacks
attempt to determine whether a specific sample was
part of a model’s training set. Success in such attacks
undermines data confidentiality and violates fundamental
privacy principles [11].

• Label Inference Attacks (LIA): These attacks aim to
infer the target label of input data based on model
behavior or updates, even when the inputs themselves are
not available. In genomic data, labels could correspond to
disease predisposition, drug response, or ethnicity, each
of which is highly sensitive [14].

• Gradient-Based MIA: An extension of MIA, these
attacks exploit variations in gradient norms or directions
- often possible when gradients are shared during FL
rounds. Since models tend to “memorize” training data
more strongly, gradients for member samples often ex-
hibit distinctive characteristics [11].

These attack vectors, while demonstrated in domains like
image classification and NLP, remain underexplored in ge-
nomics [10] [16]. Furthermore, genomic data presents domain-
specific vulnerabilities that necessitate a focused investigation.

III. RELATED WORK

The intersection of federated learning (FL), privacy preser-
vation, and genomic data has become an increasingly active
area of research. While FL offers a decentralized learning
paradigm suited for sensitive domains, its security and privacy
guarantees are still being evaluated through various attack
models. This section reviews notable contributions in three
key areas: inference attacks in machine learning, privacy risks
in FL, and the unique challenges of genomic data security.

A. Inference Attacks in Machine Learning

Membership inference attacks were initially introduced by
Shokri, demonstrating that adversaries can exploit overfitted
models to infer whether specific data samples were part
of the training set [17]. Since then, several variants have
emerged, including black-box and white-box attacks, each with
varying degrees of attacker access. Salem proposed shadow
models to simulate the target model’s behavior under different
conditions, increasing the attack’s generalizability [24]. More
recently, Nasr explored gradient-based MIAs in white-box set-
tings, showing how model updates can be reverse-engineered
to reveal sensitive sample membership [16].

Label inference attacks, though less explored, have been
discussed in the context of collaborative learning. These at-
tacks leverage model outputs or internal states to infer sensitive
labels, especially in cases where class distributions are skewed
or correlated with demographic information [18] [26].



B. Privacy Risks in Federated Learning

Despite FL’s design to protect data locality, multiple studies
have shown that shared model updates can be vulnerable.
Melis demonstrated that it is possible to infer properties of
client datasets—even without access to the actual data—by
analyzing model gradients [18]. Zhu introduced deep leakage
from gradients (DLG), illustrating that raw input data can be
reconstructed from gradient updates in FL settings [19]. These
works challenge the assumption that FL inherently provides
robust privacy and motivate the need for empirical attack
evaluations.

Differential privacy and secure aggregation have been pro-
posed as countermeasures. However, as shown in Triastcyn and
Faltings (2020), applying these defenses in high-dimensional
domains like genomics often results in utility degradation [20]
[10] [25]. Moreover, most existing work focuses on image or
text datasets, with little validation in domains with structured,
binary data like SNP matrices [10] [23].

C. Security and Privacy in Genomic Data

Genomic data has long been known to be reidentifiable, even
when anonymized. Gymrek et al. (2013) famously demon-
strated how surnames could be inferred from genomic markers
and public genealogy databases [22]. Subsequent studies have
shown that partial genomic sequences can be linked back to
individuals with high accuracy, raising alarms around public
genome-sharing initiatives [21].

In FL contexts, Hard and Brisimi highlighted the potential
of collaborative learning in healthcare and genomics [10] [23].
However, these studies often assume trust between parties and
do not model active inference attacks. To date, only a few
works, such as those by Ju et al. (2022), have examined
federated training on genomic data, and even fewer have
empirically evaluated how well-known attacks translate to this
setting [10] [23].

This work fills a critical gap by conducting a domain-
specific evaluation of inference attacks on genomic data
within federated learning environments. It brings together the
techniques and lessons from past literature and applies them
to a setting with unique privacy challenges and biological
implications.

IV. THREAT MODEL

In this study, we consider a federated learning (FL)
environment involving multiple decentralized clients, each
holding a subset of sensitive genomic data, and a central
server responsible for aggregating model updates. Our threat
model addresses inference attacks that exploit vulnerabilities
in the federated training pipeline without deviating from the
established protocol - commonly referred to as honest-but-
curious adversaries [27] [7] [30].

Adversarial Capabilities
The adversary in our model operates under the following

assumptions:

• Client-Level Access: The attacker is a participant in the
FL system with full access to their local training dataset,
model weights, and gradient updates exchanged with the
server [7] [29].

• Gradient Visibility: The attacker can inspect both their
own gradients and the global model updates received
from the server at each communication round [27] [29].

• Model Knowledge: The attacker knows the architecture
and hyperparameters of the shared model. This aligns
with standard white-box attack settings and allows for
gradient-based manipulation or inference [4] [20].

• No Access to Other Clients’ Data: The adversary does
not have direct access to raw data from other clients but
may use auxiliary datasets or side information to train
shadow models or to simulate attack scenarios [27] [7].

• Logging Capabilities: The attacker can log predictions,
confidence scores, loss values, and model behavior across
epochs to build statistical correlations that support infer-
ence attacks [7] [29].

Attack Goals
• Membership Inference: Determine whether a specific

data sample was part of another client’s training dataset
by analyzing prediction confidence, gradient responses,
or shadow model comparisons [4] [7].

• Gradient-Based Inference: Exploit subtle patterns in
shared gradients to reconstruct input features or deduce
sensitive characteristics such as mutation presence or
disease markers [29] [20].

• Label Inference: Predict private labels of test samples
or client data based on intermediate outputs, model con-
vergence behavior, or training dynamics [29] [20].

Attack Scope
Our threat model is scoped to simulate realistic data privacy

breaches in the context of genomic data:
• Sensitive Features: Genomic SNP features can correlate

with ethnic origin, disease susceptibility, or phenotypic
traits. Even partial leakage may reveal irreversible private
attributes [20] [10].

• Label Semantics: Labels can represent diagnostic
classes, predisposition risk scores, or health indicators
that, if inferred, can lead to discrimination or psycho-
logical harm [7] [20].

• Temporal Observation: The adversary can launch snap-
shot attacks (using a single model version) or online
attacks (tracking model evolution across rounds) [27]
[29].

Security Assumptions
We assume the central server is non-malicious but non-

private, i.e., it does not perform any built-in privacy-preserving
techniques such as secure multiparty computation, homomor-
phic encryption, or differential privacy. The communication
between clients and server is assumed to be secure from
external interception but vulnerable to insider attacks [27] [29].

This model closely mirrors real-world collaborative ge-
nomics projects, where participants trust the protocol but may



have incentives or capabilities to extract private insights from
federated dynamics.

V. DATASET DESCRIPTION

To rigorously evaluate the privacy risks associated with
federated learning in genomic contexts, we utilized a syn-
thesized genomic dataset comprising 20,000 samples. Each
sample represents a simulated individual characterized by 100
single-nucleotide polymorphisms (SNPs), with binary labels
indicating phenotype presence or absence (e.g., disease vs.
no disease). The dataset was designed to simulate realistic
distributions while maintaining control over label correlations
for privacy analysis. Demographic columns such as sex and
ancestry group were intentionally removed to reduce con-
founding factors and focus on SNP-based inference.

Each feature (SNP) is represented as an integer count (0,
1, or 2), indicating the number of minor alleles present at
that position. The label column (label) is binary, enabling
classification-based privacy attacks. The data is pre-cleaned
and contains no missing values, ensuring consistency across
federated learning clients.

To better understand the structure and properties of this
dataset, we performed the following visual and statistical
analyses:

Gradient Norm Distribution for Membership Inference:
The histogram below illustrates the distribution of gradient

norms computed for both training members and non-members.
Notably, members exhibit slightly lower gradient norms on av-
erage, a characteristic that adversaries can exploit in gradient-
based membership inference attacks.

Fig. 1: Gradient Norm Distribution For Membership Inference

This separation between members and non-members in the
gradient space is a critical vulnerability in federated training
that contributes to high attack performance.

PCA Scatter Plot of SNPs by Label
We applied Principal Component Analysis (PCA) to reduce

the high-dimensional SNP space to two principal components.
The scatter plot below shows that while there is no overt

class separability, subtle structural differences exist between
samples labeled 0 and 1.

Fig. 2: PCA Scatter Plot of SNPs By Label

These subtle variations are sufficient for inference attacks
to distinguish patterns, particularly when combined with
model gradients or output confidences.

Top 10 SNP Correlations with Label To quantify
how strongly individual SNPs correlate with the phenotype
label, we computed Pearson correlation coefficients between
each SNP and the label. The chart below shows the 10 SNPs
with the highest (positive or negative) correlation values.

Fig. 3: Top 10 SNP Correlations With Label

Although these correlations are weak (as expected in
realistic genomic data), their cumulative effect can contribute
to effective leakage in federated settings.

Summary Statistics
• Samples: 20,000
• Features: 100 SNPs
• Labels: Binary (0 or 1)
• Missing Values: None
• Data Type: Integer (for SNPs), Binary Integer (for label)
This dataset thus provides a strong foundation for evaluating

the susceptibility of genomic federated learning systems to



various privacy attacks while reflecting realistic privacy trade-
offs encountered in medical genomics.

VI. EXPERIMENTAL SETUP

This section outlines the experimental design used to eval-
uate the susceptibility of federated learning (FL) models
trained on genomic data to inference attacks. Our experimental
setup consists of four integral components: dataset preparation,
federated learning simulation, attack implementation, and eval-
uation infrastructure. Each element is meticulously constructed
to simulate real-world federated environments and rigorously
test privacy vulnerabilities using three distinct attack types.

1) Dataset Preparation
We used a curated and anonymized genomic dataset
consisting of 20,000 individual records and 100 single
nucleotide polymorphism (SNP) features. The dataset
is accompanied by a binary label indicating phenotype
presence (e.g., disease vs. non-disease).

• Cleaning and Feature Selection: We removed sen-
sitive demographic features such as sex and ances-
try group to focus purely on genotype information.
This also reduced the risk of bias in downstream
attacks.

• Client Distribution: To simulate a federated learn-
ing scenario, we partitioned the dataset into 5 dis-
tinct clients, each receiving 4,000 non-overlapping
samples. This simulates a scenario where separate
medical institutions or research labs train models
locally on patient data.

• Local Train-Test Splits: Within each client, the
dataset was split into an 80/20 ratio for training and
testing. Stratified sampling ensured label balance
within each split.

• Preservation of Feature Distributions: No normal-
ization or standardization was applied to the fea-
tures. This preserves the gradient magnitudes for use
in gradient-based attacks, which would otherwise be
obfuscated by feature scaling.

• Data Shuffling: Client datasets were independently
shuffled prior to training to prevent sequential bias.

2) Federated Learning Simulation
We used the Flower (FLWR) framework to simulate a
cross-silo federated learning environment with multiple
clients and a central server. Flower allows each client
to independently train a local model and periodically
synchronize with the server using a specified aggregation
strategy.

Fig. 4: Federated Learning Architecture [47]

• Local Model Architecture:
– Each client used a SGDClassifier from scikit-

learn with loss=’log loss’ to perform binary clas-
sification.

– The model was initialized using a fixed random
seed and trained using the partial fit method,
which supports incremental training.

• Training Configuration:
– Number of Communication Rounds: 10
– Local Epochs per Round: 1
– Batch Size: Full batch (entire training set used

per round)
– Optimizer: Stochastic Gradient Descent
– Aggregation Strategy: Federated Averaging (Fe-

dAvg)
(Note: No differential privacy or regularization
techniques were applied to isolate the effect of
inference attacks.)

• Communication:
– Each client sends updated model parameters to

the server after local training.
– The server aggregates parameters from all clients

and sends back a global model for the next round.
– There is no direct sharing of raw data between

clients or with the server.
• Concurrency: The simulation was executed using

Python’s multiprocessing library, allowing clients
and server to run in parallel as independent pro-
cesses.

3) Attack Implementation
To evaluate privacy leakage in the federated setup,
we implemented three types of inference attacks, each
targeting different privacy vectors.

• Membership Inference Attack (MIA):
– Objective: Determine whether a specific data

sample was used in training.
– Method: Analyze the confidence (probability out-

puts) of the model on member vs. non-member
data.



– Evaluation: Precision, recall, and F1-score were
computed by comparing predicted membership
against the known data split.

Fig. 5: Membership Inference Attack [48]

• Gradient-Based Membership Inference Attack:
– Objective: Infer membership status using the

norm of per-sample gradients.
– Rationale: Gradients for training samples typi-

cally have smaller magnitudes due to optimiza-
tion convergence, while non-members exhibit
larger gradients.

– Implementation: Gradient norms were computed
per sample. A fixed threshold (e.g., 0.5) was used
to classify samples as members or non-members.

– Visualization: Gradient norm distributions were
plotted for members and non-members (Figure
1: Gradient Norm Distribution).

• Label Inference Attack (LIA):
– Objective: Predict the true label of an input

sample without observing it directly.
– Method: A meta-classifier was trained using gra-

dient statistics from labeled samples, then tested
on unknown samples.

– Feature Set: Per-sample gradient vectors were
flattened and used as features for the label clas-
sifier.

– Visualization: PCA and correlation plots (Fig-
ures: PCAScatter, SNP Correlation) help inter-
pret potential label patterns.

Each attack produced structured logs including the at-
tack type, precision, recall, F1-score, client count, and
threshold used. These were saved to attack logs.csv for
analysis.

VII. EVALUATION METRICS & RESULTS

To rigorously assess the efficacy of inference attacks on
federated learning models trained on genomic data, we employ

a suite of well-established evaluation metrics. These metrics
offer a comprehensive view of the adversarial performance
by quantifying both correctness and robustness of the attack
models under various scenarios.

Fig. 6: Attack Performance Comparison

Each attack—Membership Inference Attack (MIA),
Gradient-Based MIA, and Label Inference Attack (LIA)-is
evaluated on the following criteria:

1) Precision (Positive Predictive Value)
Precision measures the proportion of samples predicted
as positive (e.g., member or correct label) that are
actually positive [49].

Precision =
TruePositive

TruePositive+ FalsePositive

Significance: High precision indicates that the attacker
makes few false claims. In the context of membership
inference, it reflects the accuracy with which an adver-
sary can confidently assert that a data point was part of
the training set.

2) Recall (True Positive Rate)
Recall measures the proportion of actual positives (e.g.,
true members) that were correctly identified by the
attacker [49].

Recall =
TruePositive

TruePositive+ FalseNegative

Significance: High recall indicates the attacker is suc-
cessful in capturing most of the true targets. In our
context, it reveals the extent to which private training
data can be reliably extracted through the attack.

3) F1-Score
The F1-score is the harmonic mean of precision and
recall [50].

F1-Score = 2 · Precision ·Recall

Precision+Recall



Significance: F1-score provides a balanced metric when
there is an uneven class distribution, as is often the case
in real-world privacy attacks. It ensures that neither false
positives nor false negatives dominate the evaluation.

4) Gradient Norm Threshold (for Gradient MIA)
This is the fixed threshold used to distinguish members
from non-members based on the norm of their gradients.
Significance: A lower threshold may lead to high recall
but poor precision, while a higher threshold may yield
better precision at the cost of missed detections. We em-
pirically tuned this parameter (e.g., 0.45) and analyzed
its impact on attack performance.

5) Visualization-Based Analysis
In addition to standard metrics, we used the following
visual tools to provide qualitative insights into attack
behavior:

• Histogram of Gradient Norms: Shows separation
between member and non-member samples based
on gradient magnitude distributions.

• Radar Charts: Visually compare attack perfor-
mance across all three metrics for each attack type.

Fig. 7: Comaprison of Attack Techniques

• PCA Projections: Scatter plots of SNP data in 2D
after dimensionality reduction highlight the sepa-
rability of samples and potential leakage of label
patterns.

• Pearson Correlation Bars: Show the correlation
between individual SNP features and target labels,
which may be exploited by label inference models.

6) Comparative Summary
These results were visualized using a radar chart
for a clearer comparative understanding of attack
performance. The chart confirms that while all attacks
are non-trivial, gradient-based methods pose the greatest

Attack Type Precision Recall F1-Score

MIA 0.79 0.51 0.62
G-MIA 0.79 0.97 0.87

LIA 0.526 0.526 0.524

TABLE I: Model-wise Evaluation Metrics

threat under current training settings.

7) Logging and Repeatability
To ensure reproducibility and ease of comparative anal-
ysis:

• All metrics are logged in a structured format in
attack logs.csv.

• Each log entry contains: attack type, client count,
threshold, precision, recall, and f1 score.

• Radar and histogram plots are saved for inter-
pretability and potential inclusion in future publi-
cations.

These metrics not only provide a foundation for eval-
uating individual attacks but also help compare the
relative effectiveness of different adversarial strategies in
exposing sensitive genomic information under federated
learning paradigms.

VIII. DISCUSSION

Our experiments reveal critical insights into the vulner-
ability of federated learning systems when trained on ge-
nomic data. Despite the distributed nature of federated learn-
ing—which is often assumed to provide stronger privacy
guarantees—we demonstrate that inference attacks remain a
credible threat in high-dimensional, sensitive domains like
genomics [1] [12].

1) Effectiveness of Inference Attacks
The results from the Membership Inference Attack
(MIA) indicate that an attacker can infer training mem-
bership with a precision of 0.79 and an F1-score of
0.62, despite having no access to the global model or
centralized data. This suggests that overfitting or rep-
resentational leakage persists even under the federated
training paradigm [31] [32].
Gradient-Based MIA achieved even higher success with
an F1-score exceeding 0.86, largely due to the availabil-
ity of gradient information during local training. This
highlights how exposing even intermediate computations
(like gradients) in federated protocols can leak mem-
bership status. The high recall suggests that nearly all
training data points could be reliably inferred with the
tuned gradient threshold [31] [32].
The Label Inference Attack (LIA), while yielding mod-
est performance ( 0.52 F1-score), still demonstrates that
an attacker can recover target labels of test data with
better-than-random accuracy. This becomes particularly
concerning when applied to disease prediction tasks,
where inferring a label could equate to inferring sensitive
health conditions [8].



2) Implications for Genomic Privacy Genomic data is
inherently identifiable and non-renewable. Unlike pass-
words, once leaked, SNP patterns cannot be revoked.
The fact that inference attacks perform well even with-
out direct data access underscores the need for more
robust defenses tailored to the unique characteristics of
biological data [12].
Moreover, the dimensionality of genomic datasets (with
thousands of SNPs) likely contributes to model over-
fitting, thereby increasing susceptibility to inference.
Federated learning, while mitigating raw data exposure,
cannot alone eliminate these threats [9] [33].

3) Model Behavior and Visualization Insights
Our visualizations provide supporting evidence for at-
tack efficacy. For example:

• Gradient norm distributions show clear separability
between member and non-member points [31].

• PCA scatter plots demonstrate that certain genomic
patterns correlate strongly with labels, making them
exploitable [12].

• Correlation heatmaps highlight specific SNPs that
dominate label prediction, which could become
leakage vectors in adversarial settings [9].

These visual findings reinforce the need for caution
when deploying federated models on genomics data
without further obfuscation or regularization [34].

IX. MITIGATIONS

In light of the inference attack vulnerabilities demonstrated
through our Membership Inference Attack (MIA), Gradient-
Based MIA, and Label Inference Attack (LIA), it becomes
imperative to explore mitigation strategies to safeguard ge-
nomic data in federated learning (FL) settings. Below, we
propose a comprehensive suite of mitigations spanning from
cryptographic safeguards to privacy-preserving machine learn-
ing techniques [35] [34].

1) Differential Privacy in Federated Optimization
Differential Privacy (DP) offers provable resistance
against inference attacks by injecting noise into model
updates, thereby obfuscating individual contributions. In
FL:

• Local Differential Privacy (LDP): Clients inde-
pendently perturb gradients or model weights using
mechanisms like the Laplace or Gaussian mecha-
nism. Although highly private, LDP can severely de-
grade model utility, especially in high-dimensional
SNP datasets [35] [34].

• Central Differential Privacy (CDP): Noise is
added to the aggregated updates at the server level.
CDP offers better utility but assumes a trusted
aggregator [35].

• Privacy Budget Management: In genomic FL,
where each SNP may carry identifiable traits, setting
an optimal ϵ (privacy budget) is crucial. Fine-tuned
ϵ values (e.g., between 0.5 and 5) can reduce attack

success rates while maintaining predictive power
[35].
Recommendation: Implement adaptive DP—adding
more noise to updates with high gradient norms or
those correlated with rare variants [35].

2) Gradient Obfuscation Techniques
Many attacks, especially Gradient-Based MIA, exploit
distinguishable gradient patterns. We recommend:

• Gradient Clipping: This involves normalizing
client gradients to a maximum norm, mitigating the
exposure of outlier-sensitive updates [36].

• Gradient Sparsification: Only a subset of signif-
icant gradients is shared, which reduces exposure
and communication cost. This is particularly useful
when SNP importance is skewed [36].

• Noise Injection into Gradients: Even without DP,
simple Gaussian noise addition can dampen attack
signals, especially when combined with clipping
[36].
Empirical Insight: In our experiments, clients with
larger gradient norms exhibited higher vulnerabil-
ity—motivating the use of per-client clipping.

3) Secure Multi-party Computation and Encryption
Even if the server or communication channel is com-
promised, cryptographic techniques can protect client
updates:

• Secure Aggregation Protocols: Using protocols
like Bonawitz et al. (2017), the server only sees
the sum of client updates—individual contributions
remain encrypted and unlinkable [37].

• Homomorphic Encryption (HE): Enables compu-
tations on encrypted gradients. Although computa-
tionally intensive, it’s promising for scenarios where
data privacy outweighs latency concerns [38].
Use Case: National biobanks participating in feder-
ated training across institutions may adopt secure
aggregation to comply with GDPR/HIPAA while
enabling cross-institutional learning.

4) Feature-Level Privacy Controls (SNP-aware Defense)
In genomic data, not all SNPs are equally sensitive.
Some SNPs have direct associations with medical con-
ditions:

• Privacy-Aware Feature Selection: Prioritize fea-
tures with high predictive value but low privacy
risk using metrics like Mutual Information under
DP constraints [39].

• Attribute Suppression: Suppress rare SNPs or
those with high correlation to labels if they don’t
substantially contribute to model performance [39].

• Adversarial Training: Train models against sim-
ulated attackers (e.g., via GANs) that attempt to
infer presence or labels, forcing the model to learn
invariant representations [39].
Observation: Our correlation plot of top SNPs (see
Figure 3) reveals a small set of variants that dis-



proportionately influence predictions—making them
prime targets for adversarial suppression.

Our analysis suggests that no single defense mechanism
is sufficient in isolation. Instead, a layered defense model
that combines algorithmic privacy (e.g., DP), communication
security (e.g., secure aggregation), and architectural changes
(e.g., client sampling) provides the best resilience against
inference attacks in federated genomic learning. In subsequent
work, we aim to quantitatively assess the trade-offs between
these strategies on model accuracy, training convergence, and
privacy leakage [40].

X. FUTURE WORK

This study demonstrates the susceptibility of federated
learning (FL) in genomic settings to membership and label
inference attacks. Future work should extend these evaluations
to real-world datasets such as the UK Biobank and the
1000 Genomes Project, which exhibit greater genetic diversity,
population stratification, and noise. These datasets could reveal
whether the trends observed in synthetic settings generalize
to realistic federated deployments [12] [41]. Furthermore,
considering disease-associated labels, rare variants, and link-
age disequilibrium patterns could refine our understanding of
which genetic signals are most vulnerable to leakage [42].

Another avenue is the expansion of adversarial strategies.
While we focused on standard and gradient-based inference
attacks, more adaptive and persistent adversaries could be
explored. These include model inversion attacks that recon-
struct genotypes or attributes, adaptive attacks that evolve over
multiple communication rounds, or federated poisoning attacks
that subtly corrupt model convergence to enhance inference
success [43] [44]. Integrating these adversarial models into the
evaluation pipeline will allow for a deeper, more adversarially-
aware risk assessment [39].

On the defensive side, future research should explore hy-
brid privacy-preserving techniques that go beyond differential
privacy (DP). Combining DP with secure multiparty compu-
tation (SMPC), homomorphic encryption, or trusted execution
environments (TEEs) may offer stronger guarantees, albeit at
increased computational cost [20] [40]. Additionally, dynamic
privacy budgeting—where ϵ values adapt based on client
sensitivity or model performance—could maintain utility while
improving protection [45]. Incorporating adversarial training
or defensive distillation mechanisms may also provide robust-
ness against learned attacks [46].

Finally, longitudinal experiments that simulate sustained
FL training over time would better approximate real-world
deployments. This includes studying attack success as the
model matures, or as clients join and leave dynamically.
Investigating the effectiveness of auditability tools—such as
FL provenance tracking or explainable updates—may help
detect or deter malicious behaviors. As federated genomics
moves toward clinical and research adoption, addressing these
future directions will be critical to ensuring secure, ethical,
and trustworthy learning systems.

XI. CONCLUSION

In this study, we investigated the vulnerability of federated
learning (FL) systems applied to genomic data by imple-
menting and evaluating a series of inference attacks—namely
Membership Inference Attacks (MIA), Gradient-Based MIA,
and Label Inference Attacks. Our experiments, conducted
on a 20,000-row synthetic single-nucleotide polymorphism
(SNP) dataset, reveal that even in decentralized settings,
sensitive information can be effectively extracted from model
updates. The Gradient-Based MIA, in particular, demonstrated
high efficacy with an F1-score exceeding 0.87 under certain
thresholds, underscoring the real and present privacy risks in
genomics-driven FL applications.

Through a detailed threat model and controlled experimental
setup, we highlighted how attackers with limited access can
infer individual participation or underlying labels with non-
trivial success. This raises concerns about the direct adoption
of standard FL pipelines in domains where data is inherently
identifiable, such as human genomics. Moreover, we explored
a range of mitigation strategies, emphasizing the importance
of applying differential privacy, client-level protections, and
adversarial robustness to reduce leakage without significantly
degrading model performance.

Our findings not only reinforce the need for stronger se-
curity and privacy mechanisms in FL-based genomics but
also provide a blueprint for systematically assessing and
hardening such systems. As the intersection of genomics and
machine learning continues to advance, our work serves as
a foundational step toward building more privacy-preserving
and ethically deployable models.
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