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Abstract—This paper considers random walk-based decentral-
ized learning, where at each iteration of the learning process,
one user updates the model and sends it to a randomly chosen
neighbor until a convergence criterion is met. Preserving data
privacy is a central concern and open problem in decentralized
learning. We propose a privacy-preserving algorithm based on
public-key cryptography and anonymization. In this algorithm,
the user updates the model and encrypts the result using a
distant user’s public key. The encrypted result is then transmitted
through the network with the goal of reaching that specific user.
The key idea is to hide the source’s identity so that, when the des-
tination user decrypts the result, it does not know who the source
was. The challenge is to design a network-dependent probability
distribution (at the source) over the potential destinations such
that, from the receiver’s perspective, all users have a similar
likelihood of being the source. We introduce the problem and
construct a scheme that provides anonymity with theoretical
guarantees. We focus on random regular graphs to establish
rigorous guarantees.

I. INTRODUCTION

Machine learning models have the potential to provide sig-
nificant benefits in a wide range of areas, including intelligent
healthcare [1], [2], Internet of Things (IoT) [3] or Internet
of Vehicles [4], [5]. However, the success of the models
relies heavily on access to large and comprehensive datasets.
Distributed learning in its various forms, e.g., federated and de-
centralized learning, emerged as a new paradigm for accessing
massive amounts of personalized and private data generated by
participating clients.

In federated learning [6], users maintain their data locally
and only share locally updated models with the federator,
who orchestrates the training process. Decentralized learning
eliminates the need for a central authority. Instead, users take
an active role in distributing model updates among themselves.
The users can be modeled as vertices in a graph. Users who
can communicate are connected with an edge. Two main
types of algorithms are studied in the literature: (i) gossip
algorithms, e.g., [7]–[13], in which at every iteration, all
users update the model locally and share their update with
all their neighbors; and (ii) random walk-based algorithms,
e.g., [14]–[18], in which at every iteration, one designated
user updates the model locally and shares the update with
one of its neighbors chosen at random. In both cases, the
algorithm proceeds until certain convergence criteria are met.
We focus on random walk-based algorithms due to their low
communication cost incurred per iteration. The name random
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walk-based algorithm stems from the machine learning model
being passed sequentially among neighboring nodes, thus
drawing a random walk (RW) on the graph.

Despite users’ data being kept locally, privacy is not imme-
diately preserved. For instance, users can infer updates to the
model by comparing its state to the point where the RW was
last observed. The current model might exhibit a bias towards
the data of the user who recently updated it. By accumulating
such observations, a user may potentially glean information
about the other users’ data, cf. [19], [20].

The main approach to conceal individual data updates is
through the application of differential privacy [21], as done
in [17], by injecting carefully designed random noise into the
model updates. However, this comes at the cost of a trade-off
between privacy and model precision [22]. The noise needed to
ensure privacy grows with the number of updates that will be
observed [23]. Therefore, without proper care, a large amount
of noise may be needed, significantly reducing the algorithm’s
utility. While homomorphic encryption, as introduced in [24],
presents a promising alternative as it allows for computation on
encrypted data, the computational overhead of such algorithms
often renders them impractical for handling large datasets or
complex functions (see, for example [25]).

This paper introduces a novel privacy-preserving model that
does not require differential privacy mechanisms and whose
practicality surpasses homomorphic solutions. The core idea is
to use public-key encryption and source anonymity as follows.
The user updating the model encrypts it using the public key
of the destination user. The model is transmitted through the
graph in a way that, when reaching the destination, the identity
of the transmitting user will be concealed. This model achieves
two goals simultaneously: (i) high utility, the destination can
decrypt the model and use it plainly; and (ii) privacy, by
concealing the identity of the transmitter, the eavesdropping
users would not be able to map the information they inferred to
other users’ data. Note that our privacy-preserving mechanism
is compatible with differential privacy. Noise can be inserted
into the model before encryption. The noise level needed here
may be lower since concealing the identity of the user hinders
the composition of multiple observations.

The main challenge in this model is to carefully design
a choice of the destination node among all nodes to ensure
that the identity of the transmitting user is concealed. We
term this property “source anonymity”, inspired by similar
studies in other contexts, such as wireless sensor networks,
e.g., [26], [27]. To the best of our knowledge, this work is
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the first to tackle anonymity for random walk-based learning.
We investigate random regular graphs in which a rigorous
analysis of our method can be carried out. We study the privacy
leakage, i.e., how well the source anonymity can be guaranteed
under probabilistic guarantees.

II. MODEL AND ANONYMITY NOTION

Consider a collaborative setup consisting of N users, also
referred to as nodes. Each user i with i ∈ [N ] ≜ {1, . . . , N},
possesses a local dataset Di and is capable of communicating
with a subset of the other users Ni ⊆ [N ], called its neighbors.
We represent the users as vertices in a graph G = (V, E), where
the set of vertices V = [N ] corresponds to the users, and the
edges E represent the communication links between them. The
degree of a node i ∈ V is defined as the number of neighbors
it has, i.e., deg(i) = |{j ∈ V : (i, j) ∈ E}| = |Ni|.

We sketch a potential learning algorithm that serves as mo-
tivation for our work, noting that our methods can be applied
to any RW-based decentralized system that processes sensitive
individual data. Starting with a random model w0 ∈ Rd and
a designated node i0 ∈ V , the following procedure takes
place at every iteration g ≥ 0. Node ig updates the model
using (stochastic) gradient descent based on a predefined loss
function F (w,Dig ) on its local data Dig , i.e., the model
update reads wg+1 = wg − η∇F (wg,Dig ). The updated
model is then sent to a random neighbor ig+1 ∈ Nig . The
process repeats until certain convergence criteria are met.

The described learning approach implicitly leaks informa-
tion about the nodes’ private data through the shared model
updates. The privacy problem becomes most pronounced when
eavesdropping nodes can obtain information about the model
update of the targeted neighbors. For instance, consider a
situation where, at iteration g, a node ig sends the model
update to a neighbor ig+1 ∈ Nig , who updates the model
and then chooses ig+2 = ig ∈ Nig+1 as the next destination.
In this case, node ig can directly obtain the local model update
(gradient) ∇F (wg+1, Dig+1) of node ig+1, and from this infer
information about node ig+1’s local data Dig+1

.
We propose a modification of this learning algorithm that

does not allow model updates conducted by direct members
and further hides the identity of the updating node. In particu-
lar, node ig+1 should not know the identity of the predecessor
ig , thereby providing a new notion of privacy through source
anonymity. We focus on a single iteration in the following and
hence drop the iteration index g.

We assume that each node generates a cryptographic key
pair and publishes its public key. Upon updating the model,
the current node i ∈ V selects a destination node j ∈ V \ {i}
according to a predefined distribution pDi . This distribution
may be both node-dependent and time-varying. The current
node then encrypts the model using the public key of the
destination node j. The RW continues independently moving
on the graph, but no update is performed until the destination
node is reached. Once the RW reaches node j, the model can
be decrypted using node j’s private key. After updating the
model, the learning process proceeds. The time it takes for the
RW to transition from node i to node j is known as the first
hitting time, denoted by TFH(i, j). We define the first hitting

time distribution as pi→j(t), which represents the probability
that the RW reaches node j for the first time at time t, starting
from node i. The return time TFR(i) is the time it takes for an
RW to return to a node i after leaving the node.

By encrypting the model for a designated destination node
and choosing appropriate distributions pDi

, we ensure that the
destination node cannot determine the identity of the source
node, thereby preserving the source node’s anonymity. Our
formal privacy notion is defined as follows.

Definition 1. Let H denote the entropy function. We say that
an RW-learning model, as described above, ensures α-privacy
if, for intervals Ii,j ≜ [Ei,j − δ, Ei,j + δ] and fixed δ > 0,

min
j∈V

H

([ ∫
Ii,j

pDi(j)pi→j(t)dt∑
i′∈V\{j}

∫
Ii′,j

pDi′ (j)pi′→j(t)dt

]
i∈V\{j}

)
≥ α,

(1)where α > 0 and Ei,j ≥ δ for all i, j ∈ V .

Imagine that node j ∈ V receives the RW and attempts to
estimate the identity of the source node. To facilitate this, node
j estimates the time interval for an RW to move from a source
node to itself, denoted as Ei,j . This estimation can be accom-
plished through various means, including computing average
values or incorporating supplementary side information. For
every node i ∈ V \ {j}, and an estimated path length around
Ei,j , node j calculates the probability that node i was the
sender. If the entropy over all possible source nodes is high,
node j will struggle to distinguish the true source node from
other nodes. In the optimal scenario, the possible source nodes
appear uniformly distributed to the destination node, making
it impossible to identify the true source. Finally, note that this
condition must hold for every possible destination node j ∈ V .

Concealing the source of an update incurs a cost in terms
of increased runtime. Unlike the classical approach, where the
model is updated at every time step, our method updates the
model only when the RW reaches the designated destination
node. On average, the first hitting time is given by

E[TFH] =
∑

i,j∈V,i̸=j

E[TFH(i, j)]P (i)pDi
(j),

where P (i) represents the likelihood of the RW being in node
i ∈ V . In practice, choosing suitable distributions pDi

requires
balancing two competing goals: achieving a high level of
anonymity while also minimizing the runtime overhead.

III. OPTIMAL SOURCE ANONYMITY

To elucidate the implications of the privacy notation outlined
in the previous section, we examine the specific instance of
Random Regular Graphs (RRG). The uniform structure of
RRGs enables a thorough and precise analysis, leveraging
analytical expressions for the first hitting time and return
time of the RWs. This characteristic makes RRGs a more
accessible and illustrative choice for demonstrating our model,
compared to other, more complex random graphs. We show
in this section how to select the distributions pDi

such that, in
the absence of additional side information, our model yields
an optimal privacy guarantee; i.e., that the potential source
nodes appear uniformly distributed from the perspective of



the destination node. We therefore give a concise introduction
to RRGs and their associated first hitting time distribution. We
then address the topic of source node anonymity within this
context.

A. On the First Hitting Time of RRGs
RRGs are characterized by a degree distribution, that, for

all nodes, is a degenerate probability density function, such
that P (k) = 1{c}(k), where c is the degree of the RRG, and
1{c}(k) = 1 iff c = k and 0 else. Hence, every node within the
graph exhibits a uniform degree. We focus on RRGs in which
the degree parameter c ≥ 3, for which the graph consists of a
single, connected component if N is large enough [28].

For RRGs, the authors of [29] presented approximate ex-
pressions for the first hitting time distribution. Notably, they
considered two distinct cases for the RW between two nodes.
In the shortest path (SP) scenario, the RW follows the direct
path between node i and node j. This includes scenarios
in which the RW may backtrack some of its steps or even
recede. Formally, a path belongs to this case if the subnetwork
consisting of the nodes and edges along the trajectory forms
a tree network, and the distance between node i and node j
in this subnetwork is the same as in the entire network. All
other paths belong to the opposite case, denoted as ¬SP.

We are interested in the first hitting time between nodes i
and j, which, in an RRG, only depends on their distance ℓ
(i.e., the length of the shortest path). According to [29], we
have P (TFH = t|ℓ) = P (TFH = t|ℓ,SP)P (SP|ℓ) + P (TFH =
t|ℓ,¬SP)P (¬SP|ℓ), where the hitting time distributions con-
ditioned on the two distinct cases SP and ¬SP are given by
P (TFH = t|ℓ,SP) = ℓ

t

(
t

t+ℓ
2

)
(1− c−1)

t+ℓ
2 c

ℓ−t
2 for (t− ℓ) even

and

P (TFH = t|ℓ,¬SP) =
(
e

c′
N − 1

)
e−c′ t−ℓ

N , (2)

for t > ℓ, where c′ is defined as c′ ≜ (c − 2)/(c − 1). The
probabilities for each case are given by

P (SP|ℓ) =
(

1

c− 1

)ℓ

+
1

N
and P (¬SP|ℓ) = 1− P (SP|ℓ).

Additionally, we can express the expected value of the
first hitting time distribution, conditioned on the distance
between two nodes, as E[TFH|ℓ] = E[TFH|ℓ,SP]P (SP|ℓ) +
E[TFH|ℓ,¬SP]P (¬SP|ℓ) with E[TFH|ℓ,SP] = c

c−2ℓ and

E[TFH|ℓ,¬SP] = ℓ+
1

1− e−
c′
N

. (3)

In the non-shortest path scenario, we applied the more
accurate result [29, Eq. 54] for P (TFH > t|ℓ,¬SP) to calculate
the expectation, yielding a result that differs marginally from
the original expression in [29, Eq. 70].

B. Source Anonymity in Light of RRGs
We demonstrate how to select the distributions pDi

to
achieve optimal α-privacy, where optimal refers to a value
of α equal to the entropy of a uniform distribution. For
simplicity, we assume that all distributions pDi

are time-
invariant. Furthermore, due to the regular structure of the

graph, we posit that for an arbitrary node i, the probability
distribution pDi(j) depends solely on the distance between
nodes i and j. Let A(ℓ) be the number of nodes situated
at distance ℓ ≥ 1, which we assume is constant for every
node i. We can then equivalently express the distribution pDi

as pDi
(j) = p(ℓ)

A(ℓ) , where p denotes a probability distribution
over node distances. To achieve high-probability control in
arbitrary cases, we constrain the support of p by excluding
direct neighbors. Denote the resulting support of p as [ℓ1, ℓ2],
where ℓ2 is bounded from above by the diameter of the graph.

Initially, we consider a scenario in which the node lacks any
supplementary side information beyond the graph’s structure
and the distributions (pDi

)i∈V . Under these conditions, a
natural choice for Ei,j in (1) is the expected first hitting time
Ei,j = E[TFH(i, j)] from node i to node j. Notably, in an
RRG, the expected first hitting time Ei,j depends solely on
the nodes’ distance ℓ. The integral in the numerator of (1)
simplifies to∫ E[TFH(i,j)]+δ

E[TFH(i,j)]−δ

pDi
(j)pi→j(t)dt=

p(ℓ)

A(ℓ)

E[TFH|ℓ]+δ∑
t=E[TFH|ℓ]−δ

P (TFH = t|ℓ) . (4)

When computing the sum in (4), we focus on the hitting
time probability within an interval centered around the ex-
pected time. However, as a consequence of (3), it follows that
E[TFH|ℓ] ≥ E[TFH|ℓ,¬SP]P (¬SP|ℓ) ∼

(
l + N

c′

)
P (¬SP|ℓ) and

hence, E[TFH|ℓ] ≫ l. For values of t in this regime, we have
P (TFH = t|ℓ,SP) ∈ O(t−

3
2 e−γt) with γ = log(c)− 1

2 log(c−
1) − log(2) > 0, which, for all c becomes asymptotically
negligible compared to the contribution from the non-shortest
path. This observation justifies the following simplification.

Assumption 1. The first hitting time distribution within the
interval Iℓ ≜ [E[TFH|ℓ] − δ,E[TFH|ℓ] + δ] is dominated by
the non-shortest path scenario for all ℓ ∈ [ℓ1, ℓ2], i.e., we
assume that Pr(TFH = t|ℓ) ≜ Pr(TFH = t|ℓ,¬SP) Pr(¬SP|ℓ)
for every t ∈ Iℓ, ℓ ∈ [ℓ1, ℓ2].

Under this assumption, the integral presented in (4) admits
a closed-form solution. To simplify the notation, let

Kδ(ℓ) ≜
P (¬SP|ℓ)

A(ℓ)

(
e

c′
N − 1

)
ec

′ δ+ℓ
N

e−c′ 2δ+1
N − 1

e−
c′
N − 1

.

Lemma 1. Let i, j ∈ V be two nodes within distance
ℓ ∈ [ℓ1, ℓ2] and let δ > 0 be fixed. Under Assumption 1,
the integral in (4) is given by∫ E[TFH|ℓ]+δ

E[TFH|ℓ]−δ

pDi(j)pi→j(t)dt = p(ℓ)Eδ(ℓ)

where Eδ(ℓ) = Kδ(ℓ)e
−c′

E[TFH|ℓ]
N .

We find that the privacy notion now only depends on the
distance ℓ between two nodes. Consequently, in the context of
RRGs, our privacy notion requires that the distribution

Wδ(ℓ) ≜
p(ℓ)Eδ(ℓ)∑
ℓ′ p(ℓ

′)Eδ(ℓ′)



on ℓ ∈ [ℓ1, ℓ2] remains sufficiently close to a uniform dis-
tribution over all possible values of ℓ. Notably, this security
notion is particularly satisfied when p(ℓ)Eδ(ℓ) remains con-
stant across all values of ℓ ∈ [ℓ1, ℓ2]. The following choice of
p(ℓ) achieves optimal privacy in the sense of (1) for RRGs.
Lemma 2. Let δ > 0. For every ℓ ∈ [ℓ1, ℓ2], choose p(ℓ) as

p⋆δ(ℓ) ≜
1

Eδ(ℓ)
∑ℓ2

ℓ′=ℓ1
1

Eδ(ℓ′)

and p⋆δ(ℓ) = 0 elsewhere. Then Wδ is uniform on the support
[ℓ1, ℓ2] and consequently H(Wδ) = log(ℓ2 − ℓ1 + 1).

This choice of p(ℓ) guarantees the destination node cannot
identify the source node with better accuracy than by simply
choosing uniformly at random from all possible nodes. This
demonstrates how to achieve optimal α-privacy with the
maximal value of α, if no further side information is available.

Remark 1. For RRGs, we analyze the distributions over dis-
tances. Equivalently, the entropy can be formulated expanding
each distance ℓ with all source nodes in distance ℓ.

IV. SOURCE ANONYMITY UNDER SIDE INFORMATION

In practice, the situation is more complex than initially
described. A node can gather side information about the first
hitting time by recalling the most recent visit of the RW.
This additional information can, in turn, affect the node’s
ability to accurately infer the identity of the source node. This
consideration becomes particularly crucial when the return
time between two visits of the RW is short, as it effectively
eliminates certain nodes as potential sources. If the model was
re-encrypted between two returns to node j, and node j is
the designated destination, the return time represents an upper
bound on the first hitting time. If the distributions pDi were
chosen as before, the destination node could indeed make a
more informed guess about the source node, surpassing the
uniform case. To alleviate this problem, users can choose
pDi such that even with this additional side information, the
deviation from the uniform distribution remains bounded with
high probability. To optimize the model for such cases, the user
selects a design parameter κ as an upper bound for the first
hitting time. Following this, Ei,j in Definition 1 can be chosen
as Ei,j = E[TFH|ℓ, TFH ≤ κ]. We will first demonstrate how to
choose pDi in this setting and then analyze the probabilistic
guarantees when a different value κ′ is observed during a
random walk, where κ′ refers to the return of the random walk
used as side information by the destination node as described
above. In line with Assumption 1, we assume the following.

Assumption 2. E[TFH|ℓ, TFH ≤ κ′] is dominated by the
non-shortest path scenario, that is E[TFH|ℓ, TFH ≤ κ′] ≈
E[TFH|ℓ,¬SP, TFH ≤ κ′] Pr(¬SP|ℓ, TFH ≤ κ′).

The expected value obtained under additional side informa-
tion can be calculated as follows.

Proposition 1. For every κ′ > ℓ, we have

E[TFH|ℓ,¬SP, TFH ≤ κ′] =
ℓ

1− e−c′/N(κ′−ℓ)
+

1

1− e−c′/N
.

The following generalization of Lemma 1 gives a closed-
form expression for the corresponding modification of (4) with
additional side information.

Lemma 3. Let i, j ∈ V be two nodes within distance
ℓ ∈ [ℓ1, ℓ2]. Let δ > 0 be fixed and assume that it is known
that the first hitting time is restricted by κ′ ∈ (ℓ,∞). Under
Assumption 1, we have∫ E[TFH|ℓ,TFH≤κ′]+δ

E[TFH|ℓ,TFH≤κ′]−δ

pDi
(j)pi→j(t)dt = p(ℓ)Eδ,κ′(ℓ),

where Eδ,κ′(ℓ) = Kδ(ℓ)e
−c′

E[TFH|ℓ,TFH≤κ′]
N .

We refine the solution given in Lemma 2 for the optimal
distribution of p⋆δ(ℓ) to the case where certain side information
κ′ = κ is assumed. Afterwards, we provide guarantees on
privacy when the actual side information κ′ differs from the
design parameter κ. Given κ, we choose the destination node
distributions as follows.

Lemma 4. Let κ, δ > 0. For every ℓ∈ [ℓ1, ℓ2], choose p(ℓ) as

p⋆κ,δ(ℓ) =
s

Eδ,κ(ℓ)
=

1

Eδ,κ(ℓ)
∑ℓ2

ℓ′=ℓ1
1

Eδ,κ(ℓ′)

,

and p⋆κ,δ(ℓ) = 0 elsewhere. With Wδ,κ′ defined as

Wδ,κ′(ℓ) ≜
p⋆κ,δ(ℓ)Eδ,κ′(ℓ)∑
ℓ′ p

⋆
κ,δ(ℓ

′)Eδ,κ′(ℓ′)
, (5)

we have that Wδ,κ, i.e., Wδ,κ′(ℓ) for κ′ = κ, is uniform on the
support [ℓ1, ℓ2] and consequently H(Wδ,κ) = log(ℓ2−ℓ1+1).

Let p⋆κ,δ(ℓ) be the optimal distribution for the case κ′ = κ.
To analyze the privacy for κ′ ̸= κ, we study the distribution
Wδ,κ′(ℓ), which inherits the support [ℓ1, ℓ2] from p⋆κ,δ . Our
objective is to show that, with high probability, the devia-
tion between Wδ,κ′ and the uniform distribution of Wδ,κ is
bounded, facilitating a bound for the α-privacy guarantee.
Using Proposition 1, we can bound the total variation and
the entropy as follows.

Theorem 1. Let κ, κ′, δ > 0. For Wδ,κ′ as in (5), we have

dTV(Wδ,κ′∥Wδ,κ) ≤
1

ℓ2 − ℓ1

ℓ2∑
ℓ=ℓ1

(e
c′
N φεℓ(κ,κ

′) − 1),

where εℓ(κ, κ
′) = ℓ

∣∣∣ 1
1−e−c′/N(κ′−ℓ) − 1

1−e−c′/N(κ−ℓ)

∣∣∣, and

φ ≜ Pr(¬SP|ℓ2, TFH ≤ κ′).

Theorem 2. Let ρ ≜ dTV(Wδ,κ′∥Wδ,κ). For p⋆κ,δ(ℓ) as in
Eq. (5), the entropy of Wδ,κ′ is lower bounded by

H(Wδ,κ′) ≥ (1− ρ) log(ℓ2 − ℓ1 + 1) + ρ log(ρ)− ρ.

The distribution of κ′ is captured by the first return time
of the RW. The deliberate choice of the destination node does
not affect the stochasticity of the RW, and hence the return
time is independent of our method. Let K ⊂ N be such that
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κ′, with and without Assumption 1, compared with no countermeasure and the
theoretical guarantee from Theorem 3 using δ′ = 0.3. Uniform distribution
supported on [ℓ1, ℓ2] = [2, 6] has entropy log(ℓ2 − ℓ1 + 1) ≈ 1.61.

Pr(κ′ ∈ K) ≥ 1− δ′ Our goal is that for a given δ, a desired
probability 1− δ′ and a chosen K ⊂ N, we optimize

min
κ

max
κ′∈K

|H(Wδ,κ)−H(Wδ,κ′) |.

We make the following assumption on the first return time of
an RW on an RRG, which can be separated into retroceding
(RETRO) and non-retroceding trajectories (¬RETRO). The
distributions are known from [30].

Assumption 3. The first return time on RRGs is dominated
by non-retroceding scenarios, i.e., Pr(TFR = t) = Pr(TFR =
t|¬RETRO), which is described by Pr(TFR > t|¬RETRO) =

e−c′ t−2
N−2 for t ≥ 3 and Pr(TFR > t|¬RETRO) = 1 otherwise.

We further have E[TFR|¬RETRO] = 2 + (1− e−c′ 1
N−2 )−1.

By the choice of p(ℓ) supported on [ℓ1, ℓ2], each node selects
the destination node in a distance of at least ℓ1. Hence, at any
destination node, the minimal observed return time is TFR ≥
2ℓ1 and hence the probability that a destination node observes
a return time of TFR ≥ t ≥ 2ℓ1 is given by

Pr(TFR ≥ t|¬RETRO, TFR ≥ 2ℓ1) = e−c′
t−2ℓ1
N−2 . (6)

We justify Assumption 3 by the fact that we are interested
in first return times of at least 2ℓ1. In this case, the proba-
bility Pr(¬RETRO) = 1/(c − 1) diminishes further, making
Pr(RETRO|TFR ≥ 2ℓ1) the dominating component. With this
at hand, we have the following main result of our paper that
quantifies α-privacy under a probabilistic guarantee.

Theorem 3. Let δ′ > 0 and d ≜ ℓ2 − ℓ1. Then, there exists
a value for κ such that with probability at least 1 − δ′ for a
certain K s.t. Pr(κ′ ∈ K) ≥ 1 − δ′, the entropy observed by
every destination node j is bounded by

max
κ

min
κ′∈K

H(Wδ,κ′) ≥ (1− ρ) log(d+ 1) + ρ log(ρ)− ρ︸ ︷︷ ︸
α

,

where, for φ ≜ Pr(¬SP|ℓ2, TFH ≤ κ′),

ρ = O

(
1

d

e
c′
2N (ℓ2+1)φε − e

c′
2N ℓ1φε

e
c′
2N φε − 1

− 1

)
,
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Fig. 2. α-privacy over probabilistic guarantee for N = 300, c = 3 and δ = 5
with and without Assumption 1, compared with no countermeasure and the
theoretical guarantee from Theorem 3.

and the asymptotic behavior of ε is given by
ε ≜ ℓ2

2 O
(
max

{
(1− δ′)e−(2ℓ1−ℓ2)

c′
N − 1, −2−log(1−δ′)

2 log(1−δ′)

})
.

The result above is based on selecting an optimal value for κ
that minimizes the upper bound on the entropy. When optimal
uniformity of Wδ,κ′ for κ′ = κ on [ℓ1, ℓ2] should be achieved
for the average return time, and hence κ = E[TFR|¬RETRO],
we have the following result. The result also holds for κ → ∞,
which corresponds to the case studied in Section III.

Corollary 1. When choosing p⋆κ,δ(ℓ) to match the average
case, i.e., for κ = E[TFR|¬RETRO], and for κ → ∞,
Theorem 3 holds with ε replaced by 2ε.

V. NUMERICAL EVALUATIONS

We evaluate our methods and theoretical guarantees on an
RRG with N = 300 nodes and degree c = 4. Therefore, we
consider the parameters δ = 5, δ′ = 0.3, along with the choice
of κ = 634 and p⋆κ,δ(ℓ) resulting from Theorem 3 as well
as ℓ1 = 2 and ℓ2 = 6. We approximate Pr(¬SP|ℓ2, TFH ≤
κ′) ≈ Pr(¬SP|ℓ2) for all κ′. In Fig. 1, we compare the
entropy in Definition 1 for various side information κ′ under
Assumption 1 to the case where the optimal solution is found
based on Lemma 4 using the exact properties of RRGs, i.e.,
without the relaxation in Assumption 1. As a baseline, we
plot the source node anonymity without any countermeasure,
i.e., for choosing pδ(ℓ) uniformly on [ℓ1, ℓ2], and we also
show our worst-case bound provided by Theorem 3. For the
same choice of κ, we plot in Fig. 2 the minimum entropy
resulting from Theorem 3 as a function of the probability
1− δ′, illustrating how anonymity degrades as this probability
varies. With approximately 90% probability, our method still
achieves near-optimal anonymity. Lastly, we analyze source
node anonymity for κ′ = κ over the mean iteration time
Tℓ1,ℓ2 =

∑ℓ2
ℓ=ℓ1

p⋆κ,δ(ℓ)E[TFH|ℓ] determined by the choice
of p⋆κ,δ(ℓ) and the average first hitting times E[TFH|ℓ]. We
observe an almost linear increase of α in Tℓ1,ℓ2 (cf. Fig. 3 in
Appendix G).



VI. CONCLUSION

We considered the problem of privacy in decentralized
random walk-based learning algorithms. Instead of resorting to
only applying differential privacy guarantees, we formulated a
new privacy notion based on revealing the model update, but
concealing the identity of the owner of the revealed update.
To that end, public key cryptography is used by the sender
to encrypt the update with the public key of a designated
destination, ensuring that no intermediate node can decrypt
the model update. The choice of the destination is the key
component. We designed a probability distribution over the
choice of the destination that ensures that with high probabil-
ity, the destination will not be able to guess the identity of the
source.
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APPENDIX

A. Proof of Lemma 1 and Lemma 3

Proof. We only prove Lemma 3 as it includes Lemma 1 as a
special case for κ′ → ∞. First note that with Assumption 1,
for every κ′ > l,

∫ E[TFH(i,j)|TFH≤κ′]+δ

E[TFH(i,j)|TFH≤κ′]−δ

pDi
(j)pi→j(t)dt

=
p(ℓ)

A(ℓ)
P (¬SP|ℓ)

E[TFH|ℓ,TFH≤κ′]+δ∑
t=E[TFH|ℓ,TFH≤κ′]−δ

P (TFH = t|ℓ,¬SP).



Inserting (2) yields

E[TFH|ℓ,TFH≤κ′]+δ∑
t=E[TFH|ℓ,TFH≤κ′]−δ

P (TFH = t|ℓ,¬SP)

=
(
e

c′
N − 1

) E[TFH|ℓ,TFH≤κ′]+δ∑
t=E[TFH|ℓ,TFH≤κ′]−δ

e−
c′(t−l)

N

=
(
e

c′
N − 1

) 2δ∑
t=0

e−
c′(E[TFH|ℓ,TFH≤κ′]+t−δ−l)

N

=
(
e

c′
N − 1

)
e

(
− c′(E[TFH|ℓ,TFH≤κ′]−δ−l)

N

)
e−c′ 2δ+1

N − 1

e−
c′
N − 1

,

which finishes the proof.

B. Proof of Lemma 2 and Lemma 4

Proof. Again, we only prove Lemma 4 as a generalization of
Lemma 2. Assume that for some s > 0,

p⋆κ,δ(ℓ)Eδ,κ(ℓ) = s (7)

is constant. Then with p⋆κ,δ being a probability distribution
over [ℓ1, ℓ2] defined as p⋆κ,δ(ℓ) =

s
Eδ,κ(ℓ)

we have

1 =

ℓ2∑
ℓ=ℓ1

p⋆κ,δ(ℓ) =

ℓ2∑
ℓ=ℓ1

s

Eδ,κ(ℓ)

or equally,

s =
1∑ℓ2

ℓ=ℓ1
1

Eδ,κ(ℓ)

.

This proves the representation of p⋆κ,δ(ℓ) in (7). The uniform
distribution of Wδ,κ over the support [ℓ1, ℓ2] follows trivially.

C. Proof of Proposition 1

Proof. To compute the conditional expectation
E[TFH|ℓ,¬SP, TFH ≤ κ′], note that

E[TFH|ℓ,¬SP, TFH ≤ κ′] =

∑κ′

t=0 P (TFH > t|ℓ,¬SP)
Pr(TFH ≤ κ′|ℓ,¬SP)

.

According to (2), the tail of the first hitting time distribution
is given by

Pr(TFH > t|ℓ,¬SP) =

{
1, t ≤ ℓ

e−
c′
N (t−ℓ), t > ℓ.

Hence, we have

κ′∑
t=0

P (TFH > t|ℓ,¬SP) = ℓ+

κ′∑
t=ℓ

e−
c′
N (t−ℓ)

= ℓ+

κ′−ℓ∑
t′=0

e−
c′
N t′ = ℓ+

e−
c′
N (κ′−ℓ) − 1

e−
c′
N − 1

and

E[TFH|ℓ,¬SP, TFH ≤ κ′] =
ℓ

1− e−
c′
N (κ′−ℓ)

+
1

1− e−
c′
N

,

whereby the second term is independent of κ. Note that for
κ → ∞, we obtain the known case in (3) as

E[TFH|ℓ,¬SP] =
ℓ+ e−

c′
N

(κ′−ℓ)−1

e−
c′
N −1

1− e−
c′
N (κ′−ℓ)

= ℓ+
1

1− e−
c′
N

.

D. Proof of Theorem 1

Proof. We first derive the following intermediate result on the
unnormalized likelihoods:

|p(ℓ)Eδ,κ′(ℓ)− p(ℓ)Eδ,κ(ℓ)|

= Kδ(ℓ)p(ℓ)

∣∣∣∣e− c′E[TFH|ℓ,TFH≤κ′]
N − e−

c′E[TFH|ℓ,TFH≤κ]
N

∣∣∣∣
≤ Kδ(ℓ)p(ℓ)e

− c′E[TFH|ℓ,TFH≤κ]
N ε′ℓ(κ, κ

′),

where

ε′ℓ(κ, κ
′) ≜ e

c′|E[TFH|ℓ,TFH≤κ′]−E[TFH|ℓ,TFH≤κ]|
N − 1.

using that |e−x − 1| ≤ e|x| − 1, for all x ∈ R. According to
Lemma 3, this equals

|p(ℓ)Eδ,κ′(ℓ)− p(ℓ)Eδ,κ(ℓ)|
≤ Eδ,κ(ℓ)p(ℓ)ε

′
ℓ(κ, κ

′) = sε′ℓ(κ, κ
′), (8)

with s from (7). For every κ′, κ > 0, let

εℓ(κ, κ
′) ≜

|E[TFH|ℓ,¬SP, TFH ≤ κ′]− E[TFH|ℓ,¬SP, TFH ≤ κ]| .

According to Proposition 1, εℓ(κ, κ′) is given by

εℓ(κ, κ
′) = ℓ

∣∣∣∣ 1

1− ec′/N(κ′−ℓ)
− 1

1− e−c′/N(κ−ℓ)

∣∣∣∣
and with Assumption 2, we can express ε′ℓ(κ, κ

′) as

ε′ℓ(κ, κ
′) = e

c′ Pr(¬SP|ℓ,TFH≤κ′)εℓ(κ,κ′)
N − 1.

Let d = ℓ2−ℓ1 be the number of possible distances and recall
from (7), that = p(ℓ)Eδ,κ(ℓ)s is constant for some s > 0. To
bound the total variation between Wδ,κ′ and Wδ,κ, from the
definition of total variation, we have

dTV(Wδ,κ′∥Wδ,κ)

=
1

2

∑
ℓ

∣∣∣∣ p(ℓ)Eδ,κ′(ℓ)∑
ℓ′ p(ℓ

′)Eδ,κ′(ℓ′)
− p(ℓ)Eδ,κ(ℓ)∑

ℓ′ p(ℓ
′)Eδ,κ(ℓ′)

∣∣∣∣
≤ 1

2

∑
ℓ

Aδ,κ,κ′(ℓ) +Bδ,κ,κ′(ℓ),

where

Aδ,κ,κ′(ℓ) ≜

∣∣∣∣ p(ℓ)Eδ,κ′(ℓ)∑
ℓ′ p(ℓ

′)Eδ,κ′(ℓ′)
− p(ℓ)Eδ,κ′(ℓ)

ds

∣∣∣∣



and

Bδ,κ,κ′(ℓ) ≜

∣∣∣∣p(ℓ)Eδ,κ′(ℓ)

ds
− p(ℓ)Eδ,κ(ℓ)

ds

∣∣∣∣ ,
according to the triangle inequality. Note that using the triangle
inequality once again and in view of (8), we have

Aδ,κ,κ′(ℓ) ≤ p(ℓ)Eδ,κ′(ℓ)

ds

|
∑

ℓ′ p(ℓ
′)Eδ,κ′(ℓ′)− ds|∑

ℓ′ p(ℓ
′)Eδ,κ′(ℓ′)

≤ p(ℓ)Eδ,κ′(ℓ)

ds

∑
ℓ′ |p(ℓ′)Eδ,κ′(ℓ′)− p(ℓ′)Eδ,κ(ℓ

′)|∑
ℓ′ p(ℓ

′)Eδ,κ′(ℓ′)

≤ p(ℓ)Eδ,κ′(ℓ)

d

∑
ℓ′ ε

′
ℓ′(κ, κ

′)∑
ℓ′ p(ℓ

′)Eδ,κ′(ℓ′)

and hence,∑
ℓ

Aδ,κ,κ′(ℓ) ≤
∑

ℓ′ ε
′
ℓ′(κ, κ

′)

d

∑
ℓ

p(ℓ)Eδ,κ′(ℓ)∑
ℓ′ p(ℓ

′)Eδ,κ′(ℓ′)

=

∑
ℓ′ ε

′
ℓ′(κ, κ

′)

d
.

Similarly, we obtain

Bδ,κ,κ′(ℓ) =
ε′ℓ(κ, κ

′)

d

such that

dTV(Wδ,κ′∥Wδ,κ)

≤ 1

2

(∑
ℓ ε

′
ℓ(κ, κ

′)

d
+ (

∑
ℓ ε

′
ℓ(κ, κ

′)

d

)
=

1

d

∑
ℓ

ε′ℓ(κ, κ
′).

Observing that∑
ℓ

ε′ℓ(κ, κ
′) =

∑
ℓ

(
e

c′ Pr(¬SP|ℓ,TFH≤κ′)εℓ(κ,κ′)
N − 1

)
concludes the proof.

E. Proof of Theorem 2

Proof. From [31] and an alphabet size of ℓ2−ℓ1+1, we have

|H(Wδ,κ)−H(Wδ,κ′) | ≤ ρ log(ℓ2 − ℓ1) + hb (ρ) ,

where hb (ρ) ≜ −ρ log(ρ) − (1 − ρ) log(1 − ρ) is the binary
entropy function. From Lemma 4, it is known that Wδ,κ is
uniform over [ℓ2−ℓ1], and hence H(Wδ,κ) = log(ℓ2−ℓ1+1).
For the binary entropy function, it holds that

hb (ρ) ≤ −ρ log(ρ) + ρ,

and hence, by slightly relaxing the above inequality, that

|H(Wδ,κ)−H(Wδ,κ′) | ≤ ρ log(ℓ2 − ℓ1 + 1)− ρ log(ρ) + ρ.

The statement follows since H(Wδ,κ) = log(ℓ2− ℓ1+1).

F. Proof of Theorem 3
Proof. From Assumption 3 and (6), the probability that TFR
is between t1 > 1 and t2 > t1 is given by

Pr(t1 ≤ TFR ≤ t2|TFR ≥ 2ℓ1)

= e−c′
t1−2ℓ1
N−2 − e−c′

t2+1−2ℓ1
N−2

≥ e−c′
t1−2ℓ1

N − e−c′
t2+1−2ℓ1

N

= e2c
′ ℓ1
N

(
e−c′

t1
N − e−c′ κ

N + e−c′ κ
N − e−c′

t2+1
N

)
,

where the inequality follows from the monotonicity of e−x

and as t2 > t1. To achieve a probability of at least

Pr(t1 ≤ TFR ≤ t2|TFR ≥ 2ℓ1) ≥ 1− δ′,

since deviations are maximal for small t1, we choose t2 = ∞.
Hence, we require that t1 ≤ −N

c′ log(1− δ′)+ 2ℓ1. Motivated
by Theorem 1, we choose t1 and t2 so that

e−c′
t1
N − e−c′ κ

N = e−c′ κ
N − e−c′

t2
N =

1− δ′

2e2ℓ1c′/N
.

Consider Theorem 1, and let t1 ≤ κ′ ≤ t2. Then, by continuity
for both cases of κ > κ′ and κ < κ′, the worst-case bound
is given for κ′ = t1 and κ′ = t2. By the deliberate choice
of t1 and t2 above, choosing κ′ ∈ {t1, t2} gives the same
result. The resulting probability that TFR is between t1 and t2
is at least 1− δ′. With t2 = ∞, we choose t1 = −N

c′ log(1−
δ′) + 2ℓ1. We ignore rounding errors since we are interested
in order-wise results. There exists a choice of κ such that
εℓ(κ, t2) = εℓ(κ, t1) =

ℓ
2

∣∣∣ 1
1−e−c′/N(t1−ℓ) − 1

1−e−c′/N(t2−ℓ)

∣∣∣ =
ℓ
2

(
1

1−e−c′/N(t1−ℓ) − 1
)

, for

εℓ(κ, t2) = ℓ

∣∣∣∣ 1

1− e−c′/N(t2−ℓ)
− 1

1− e−c′/N(κ−ℓ)

∣∣∣∣
and

εℓ(κ, t1) = ℓ

∣∣∣∣ 1

1− e−c′/N(t1−ℓ)
− 1

1− e−c′/N(κ−ℓ)

∣∣∣∣ .
For small 1− δ′, we approximate 1

1−ex by 1
x + 1

2 , and obtain

εℓ(κ, t1) = εℓ(κ, t2) =
ℓ

2

(
1

1− e−c′/N(t1−ℓ)
− 1

)
= O

(
ℓ

2

(
N

c′(t1 − ℓ)
− 1

2

))
= O

(
ℓ

2

(
1

− log (1− δ′) + (2ℓ1 − ℓ) c
′

N

− 1

2

))

= ℓO

(
1

−2 log (1− δ′)
− 1

4

)
.

For large 1− δ′, we approximate 1
1−ex by e−x and obtain

εℓ(κ, t1) = εℓ(κ, t2) = O

(
ℓ

2
e−c′/N(t1−ℓ) − 1

)
= O

(
ℓ

2
elog(1−δ′)−(2ℓ1−ℓ) c′

N − 1

)
= O

(
ℓ

2
(1− δ′)e−(2ℓ1−ℓ2)

c′
N − 1

)



Hence, overall we have for t1 ≤ κ′ ≤ t2 that εℓ(κ, κ′) = ℓ
2ϵ

with

ϵ ≜ O

(
max

{
(1− δ′)e−(2ℓ1−ℓ2)

c′
N − 1,

−1

log(1− δ′)
− 1

2

})
.

This formulation of εℓ(κ, κ
′) is now independent of ℓ. Ac-

cording to Theorem 1, the total variation is bounded as

dTV(Wδ,κ′∥Wδ,κ) ≤
1

ℓ2 − ℓ1

ℓ2∑
ℓ=ℓ1

e
c′
N φεℓ(κ,κ

′) − 1

=
1

ℓ2 − ℓ1

ℓ2∑
ℓ=ℓ1

e
c′φ
N

ℓ
2 ε − 1

= O

(
1

ℓ2 − ℓ1

e
c′φ
2N (ℓ2+1)ε − e

c′φ
2N ℓ1ε

e
c′φ
2N ε − 1

− 1

)
.

This concludes the proof.

G. Privacy-Utility Trade-Off
For completeness, we provide in Fig. 3 a visual representa-

tion of the trade-off between the privacy parameter α and the
mean per-iteration time Tℓ1,ℓ2 for N = 300 and c = 4.
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Fig. 3. Entropy over the average iteration times Tℓ1,ℓ2 for κ′ = κ as chosen
in Section V, N = 300 and c = 4.


