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Abstract
From automated intrusion testing to discovery of
zero-day attacks before software launch, agentic
AI calls for great promises in security engineer-
ing. This strong capability is bound with a sim-
ilar threat: the security and research community
must build up its models before the approach is
leveraged by malicious actors for cybercrime. We
therefore propose and evaluate RedTeamLLM, an
integrated architecture with a comprehensive se-
curity model for automatization of pentest tasks.
RedTeamLLM follows three key steps: summariz-
ing, reasoning and act, which embed its operational
capacity. This novel framework addresses four
open challenges: plan correction, memory manage-
ment, context window constraint, and generality vs.
specialization. Evaluation is performed through the
automated resolution of a range of entry-level, but
not trivial, CTF challenges. The contribution of the
reasoning capability of our agentic AI framework
is specifically evaluated.

Keywords: Cyberdefense; AI for cybersecurity; generative
AI; Agentic AI; offensive security

1 Introduction
The recent strengthening of Agentic AI [Hughes et al., 2025]
approaches poses major challenges in the domains of cyber-
warfare and geopolitics [Oesch et al., 2025]. LLMs are al-
ready commonly used for cyber operations for augmenting
human capabilities and automating common tasks [Yao et al.,
2024; Chowdhury et al., 2024]. They already pose significant
ethical and societal challenges [Malatji and Tolah, 2024], and
a great threat of proliferation of cyberdefence and -attack ca-
pabilities , which were so far only available for nation-state
level actors. Whereas there current recognized capabilities
are still bound to the rapid analysis of malicious code or rapid
decision taking in alert triage, and they pose significant trust
issues [Sun et al., 2024], there expressivity and knowledge-
base are rapidly ramping up. In this context, Agentic AI, i.e.
autonomous AI systems that are capable of performing a set
of complex tasks that span over long periods of time with-
out human supervision [Acharya et al., 2025], is opening a

brand new type of cyberthreat. They follow two complemen-
tary strategies: goal orientation, and reinforcement learning,
which have the capability to dramatically accelerate the ex-
ecution of highly technical operations, such as cybersecurity
actions, while supporting a diversification of supported tasks.

In the defense landscape, cyberwarfare takes a singular po-
sition, and targets espionage, disruption, and degradation of
information and operational systems of the adversary. More
than in traditional arms, skill is a strong limiting factor, es-
pecially since targeting critical defense systems heavily relies
on the exploitation of rare, unknown vulnerabilities, which
are most often than not 0-days threats. Actually, whereas fi-
nancial criminality aims at money extorsion and thus targets
a broad range of potential victims to exploit the weakest ones,
defense operations aim at entering and disrupting highly ex-
posed, and highly protected, technical environments, where
known vulnerabilities are closed very quickly. In this context,
operational capability relies so far in talented analysts capa-
ble of discovering novel vulnerabilities. This high-skill, high-
mean game could face a brutal end with the advent of tools ca-
pable of discovering new exploitable flows at the heart of the
software, thus enabling smaller actors to exhibit a highly asy-
metric threats capable of disrupting critical infrastructures, or
launching large-scale disinformation campaigns. Agentic AI
has the capability to provide such a tool, and LLMs them-
selves in their stand-alone versions, have already proved ca-
pable of detecting these famous 0-day vulnerabilities: Mi-
crosoft has published, with the help of its Copilot tools, no
less that 20 (!!) vulnerabilities in the Grub2, U-Boot and
barebox bootloaders since late 2024 1.

This is the public side of the medal, by a company who
seeks to advertise its software development environment, and
create some noise on vulnerabilities on competing operating
systems. No doubt malicious actors have not waited to take
the same tool at their advantage to unleash novel capabili-
ties to their arsenal, beyond the malicious generative tools
analyzed by the community: WormGPT2, DarkBERT [Jin et
al., 2023], FraudGPT [Falade, 2023]. In the domain of au-
tonomous offensive cybersecurity operations, the probability

1https://www.microsoft.com/en-
us/security/blog/2025/03/31/analyzing-open-source-bootloaders-
finding-vulnerabilities-faster-with-ai/

2https://flowgpt.com/p/wormgpt-6
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and likely impact of proliferation of agentic AI frameworks
are high. Understanding their mechanism to leverage these
tools for defensive operations, and for being able to antic-
ipate their malicious exploitation, is therefore an urgent re-
quirement for the community.

We therefore propose the RedTeamLLM model to the com-
munity, as a proof-of-concept of the offensive capabilities of
Agentic AI. The model encompasses automation, genericity
and memory support. It also defines the principles of dynamic
plan correction and context window contraint mitigation, as
well as a strict security model to avoid abuse of the system.
The evaluations demonstrate the strong competitivity of the
model wrt. state-of-the-art competitors, as well as the neces-
sary contribution of its summarizer, reasoning and act com-
ponents. In particular, RedTeamLLM exhibit a significant
improvement in automation capability against PenTestGPT
[Deng et al., 2024], which still show restricted capacity.

The remainder of this paper is organised as follows: Sec-
tion 2 presents the state of the art. Section 3 defines the re-
quirements, and section 4 present the RedTeamLLM model
for agentic-AI based offensive cybersecurity operations. Sec-
tion 5 presents the implementation and section 6 the evalua-
tion of the model. Section 7 concludes this work.

2 State of the Art
The advent, under the form of LLMs, of computing processes
capable of generating structured output beyond existing text,
is a key driver for a renewed development of agent-based
models, with so-called ‘agentic AI’ models [Shavit et al.,
2023], which are able both to devise technical processes and
technically correct pieces of code. These novel kind of agents
support multiple, complex and dynamic goals and can op-
erated in dynamic environments while taking a rich context
into account [Acharya et al., 2025]. They thus open novel
challenges and opportunity, both as generic problem-solving
agents and for highly complex and technical environment like
cybersecurity operations.

2.1 Research challenges for Agentic AI
The four main challenges in Agentic AI are: analysis, relia-
bility, human factor, and production. These challenges can be
mapped to the taxonomy of prompt engineering techniques
by [Sahoo et al., 2024]: Analysis: Reasoning and Logic,
knowledge-based reasoning and generation, meta-cognition
and self-reflection; Reliability: reduce hallucination, fine-
tuning and optimisation, improving consistency and coher-
ence, efficiency; Human factor: user interaction, understand-
ing user intent, managing emotion and tones; production:
code generation and execution.

The first issue for supporting reasoning and logic is the ca-
pability to address complex tasks, to decompose them and
to handle each individual step. The first such model, chain-
of-thought (CoT), is capable of structured reasoning through
step-by-step processing and proves to be competitive for math
benchmarks and common sense reasoning benchmarks [Wei
et al., 2022]. Automatic chain-of-thought (Auto-CoT) au-
tomatize the generation of CoTs by generating alternative
questions and multiple alternative reasoning for each to con-
solidate a final set of demonstrations [Zhang et al., 2022].

Trees-of-thought (ToT) handles a tree structure of interme-
diate analysis steps, and performs evaluation of the progress
towards the solution [Yao et al., 2023a] through breadth-first
or depth-first tree search strategies. This approach enables to
revert to previous nodes when an intermediate analysis is er-
roneous. Self consistency is an approach for the evaluation
of reasoning chains for supporting more complex problems
through the sampling and comparative 1evaluation of alterna-
tive solutions [Wang et al., 2022].

Text generated by LLM is intrinsically a statistical approx-
imation of a possible answer: as such, it requires 1) a rigor-
ous process to reduce the approximation error below usabil-
ity threshold, and 2) systematic control by a human operator.
The usability threshold can be expressed in term of veracity,
for instance in the domain of news.3. For code generation,
it matches code that is both correct and effective, i.e. that
compiles and run, and that perform expected operation. Us-
able technical processes, like in red team operations, are de-
fined by reasoning and logic capability. reducing hallucina-
tion: Retrieval Augmented Generation (RAG) for enriching
prompt context with external, up-to-date knowledge [Lewis et
al., 2020]; REact prompting for concurrent actions and updat-
able action plans, with reasoning traces [Yao et al., 2023b].

One key issue for red teaming tasks is the capability to
produce fine-tuned, system-specific code for highly precise
task. Whereas the capability of LLMs to generate basic
code in a broad scope of languages is well recognized [Li
et al., 2024], the support of complex algorithms and target-
dependent scripts is still in its infancy. In particular, the ar-
ticulation between textual, unprecise and informal reasoning
and lines of code must solve the conceptual gap between the
textual analysis and the executable levels. Structured Chain-
of-Thought [Li et al., 2025] closes this gap by enforcing a
strong control loop structure (if-then; while; for) at the textual
level, which can then be implemented through focused code
generation. Programatically handling numeric and symbolic
reasoning, as well as equation resolution, requires a binding
with external tools, such as specified by Program-of-Thought
(PoT) [Bi et al., 2024] or Chain-of-Code (CoC) [Li et al.,
2023] prompting models. However, these features are not re-
quired in the case of read teaming tasks.

2.2 Cognitive Architectures
Three main architectures implement the Agentic AI ap-
proach: ReAct (Reason and Act), ADaPT (As needed De-
composition and Planning) and P&E (Plan and Execute).

ReAct[Yao et al., 2023b] first reasons about the analysis
strategy, then rolls out this strategy. It performs multiple
rounds of reasoning and acting, executing one action at each
round then collecting observation. This enables a strong re-
duction of the error margin. As shown in Figure 1, ReAct
input is built with an explicit objective and an optional con-
text. Reasoning then summarizes the goal and context and
plan next action, each through a call to an LLM agent. The se-
lected action is then executed, again based on an LLM call. If
the analysis is not completed, the pipeline returns to the goal

3https://www.cjr.org/tow center/we-compared-eight-ai-search-
engines-theyre-all-bad-at-citing-news.php



definition step, with a given subgoal. If the goal is achieved,
the pipeline terminates. The main limits of this architecture,
whether it is used with prompting or with complex pipelines,
is the absence of memory, which requires each prompt to em-
bed all context and knowledge about previous analysis steps.
Since the context windows of current LLMs are strongly lim-
ited, information start being ignored as the context and his-
tory start exceeding the context window’s limit, which can
lead to reduced performance and inaccurate outputs.

Figure 1: Process diagram of ReAct

ADaPT [Prasad et al., 2023] takes a greedy approach to
decomposition: it keeps decomposing the task until it reaches
subtasks that can be executed, through recursive decompo-
sition which avoids a saturation of agent capability. The de-
composition stops either when a task can be executed directly,
or when a max depth is reached. Unlike ReAct and P&E,
ADaPT can’t be a prompting method as it is based on recur-
sion. ADaPT completely solves the problem of context win-
dow size restriction, by decomposing as much as needed. Ex-
ecution of leaves are then be carried out independently. How-
ever, many complications come along the way: plan correc-
tion (if a task fails completely, how can we correct the rest
of the plan ?) and new discoveries (the agent might stumble
upon information that can lead to a complete change of plan),
in particular, are not supported.

P&E [Sun et al., 2023] aims to decompose a task into
multiple subtasks that are executed independently from one
another. This architecture defines first solutions to ReAct’s
weak points, by decomposing a task and isolating the sub-
task’s execution. Prompt’s length is thus minimized, which
slows down the consumption of the context window capacity.
Task execution becomes more efficient. However, one key
issue remains: context window is eventually reached; and a
new one is introduced: error handling, since, on a subtask’s
failure, the whole execution fails.

2.3 Agentic AI and cybersecurity
Recent offensive-security agents all converge on a narrow de-
sign spectrum: a frontier LLM in a ReAct-style loop that
plans, executes a single tool call, observes, then repeats
[Heckel and Weller, 2024] — yet none of them store or revise
a global plan the way ADaPT or other deliberative-memory
systems do. AutoAttacker couples ReAct with an episodic
“Experience Manager,” but that memory is consulted only

to validate the current action rather than to update or back-
track the plan itself [Xu et al., 2024]. LLM-Directed Agent
preserves the classic four-stage ReAct chain (NLTG → CFG
→ CG → NLTP) and likewise discards alternative branches
once the CFG selects one [Laney, 2024]. One-Day Vul-
nerabilities’ Exploit [Fang et al., 2024a] and Hack-Websites
[Fang et al., 2024b] expose different toolsets to the same Re-
Act controller, and performance collapses as soon as GPT-
4 is replaced by weaker models. CyberSecEval 3 uses an
even leaner single-prompt ReAct wrapper to probe Llama-
3 and contemporaries, finding that all models stall long be-
fore complex exploitation [Wan et al., 2024]. HackSynth
strips the pattern down to just a Planner and a Summariser
—- still a think-then-act loop—and shows that temperature
and context-window size, not architectural novelty, dominate
success rates [Muzsai et al., 2024]. The sole departure from
ReAct is PenTestAgent, which hard-codes a pentesting work-
flow (Reconnaissance → Search → Planning → Execution)
without agentic recursion [Shen et al., 2024], and PenTest-
GPT, whose Plan-and-Execute modules shuffle intermediate
results between Reasoning, Generation and Parsing stages but
never revisit earlier strategies once execution starts [Deng
et al., 2024]. Although defensive models exhibit promising
properties [Ismail et al., 2025], the exploitation of Agentic AI
for malicious operations is a key concern to the community
[Malatji and Tolah, 2024]. Across current systems, memory
is used only as a scratch-pad for latest observations; none im-
plement hierarchical plan refinement, long-horizon memory,
or roll-back of faulty plans.

3 Requirements
In this section we explicit the specific challenges of agen-
tic AI offensive cybersecurity operations.We address context
window’s limit, continuous improvement, genericity and au-
tomation. One major issue of LLM agent-based systems
is their limited context window. Complex tasks usually re-
quire many iterations between the agent and a changing en-
vironment especially using ReAct, so tracking what has hap-
pened is essential for high-quality results. A common way
to address this challenge is recursive planning [Prasad et al.,
2023], in which a task is broken down into many subtasks
that are executed individually; each subtask then passes the
key points of its outcome to the next ones. A difficulty arises
when a subtask fails, potentially blocking the subtasks that
follow. To prevent this, a plan-correction mechanism [Wang
et al., 2024] is applied: whenever a subtask fails, the overall
plan is adjusted so execution can proceed smoothly. These
two techniques are crucial for building a high-performance
agent, but further refinements are still possible. Repeating the
same mistakes on every run wastes time, money, and com-
putation. Introducing a memory manager during task plan-
ning lets the agent avoid exploratory paths that have already
failed. Moreover, genericity is essential. Allowing the agent
full freedom to choose its own tools and techniques fosters
creativity and broadens its capabilities beyond a fixed toolset.
In our case, the agent has unrestricted execution privileges
through root access to a terminal. Finally a key part to con-
sider is automation; refining an agent system is important but



not useful unless the whole process is automated, not requir-
ing human interaction during the process. Thus, integrating a
tool call of an interactive terminal access within this context
is rudimentary.

Consolidated requirements for our penetration-testing
agent are thus:

1. Dynamic Plan Correction — Handling subtask or ac-
tion failures without halting the entire workflow [Wang
et al., 2025].

2. Memory Management — Managing large amounts of
contextual data in long-running tasks, which enables
continuous self-improvement.

3. Context Window Constraints mitigation — Prevent-
ing critical information loss due to an LLM’s limited
prompt size [Yao et al., 2023b].

4. Generality vs. Specialization — Balancing the need for
specialized pentesting tools with broader adaptability.

5. Automation — Automating the interaction of the agent
with its designated environment; in our case a terminal.

4 RedTeamLLM
In this section, we propose a novel architecture, supported
features and related memory management mechanism for an
offensive cybersecurity agentic model. Given the high ca-
pability and autonomy of the RedTeamLLM model, a robust
security model is also required.

4.1 The Architecture
The architecture of RedTeamLLM is composed of seven
components: Launcher, RedTeamAgent, Memory Man-
ager, ADaPT Enhanced, Plan Corrector, ReAct, and Plan-
ner. On a run, the Launcher retrieves the input task and gives
it to the RedTeamAgent while acting as the user interface
(showing number of tasks running, memory access, failed and
successful tasks, and allowing intervention in a task’s opera-
tion, e.g., stopping it or modifying its plan). Upon receiv-
ing the task, the RedTeamAgent has two objectives: pass it
to ADaPT Enhanced and await a tree structure represent-
ing the full agent execution, then save that structure to the
Memory Manager. The Memory Manager, which is the
storage area for operation’s knowledge, embeds and stores
each node’s description from a task tree in a database, thus
providing full access to previous task structures and depen-
dencies. ADaPT Enhanced then takes that task, passes it to
the Planner (which returns a tree of subtasks) and traverses
it to execute leaves and pass results to siblings. The Plan
Corrector can then adjust the plan and resume execution on
any failure. All leaf executions are performed by the ReAct
component, which carries out multiple rounds of reasoning,
execution, and observations with terminal access.

4.2 Features
To support autonomous offensive operations, the proposed
model must address many challenges and effectively meet es-
sential requirements. Thus here are the principal features:

Figure 2: Software Architecture for Red Team LLM Model

• To address context window’s limit the model needs to
decompose a task recursively as much as needed. This
is accomplished by the ADaPT component.

• With subtasks comes dependencies that need monitoring
to avoid fatal execution failure on error. Here comes the
plan corrector that has the ability to modify a task’s
accordingly to lattest outcomes.

• In order to support continuous improvement of the
model capabilities, the Memory Management comes
to improve planning over time by storing past execution
in a tree-like way.

• Finally the model needs to be generic and avoid restric-
tion to cover a wider range of tasks and not be limited
to a set of tools. Here comes ReAct with full terminal
access.This allows full automation, having full control
and autonomy on the task it is executing.

4.3 Memory management
Memory management is an essential part of the model to be
implemented. In all other competing models, memory is just
used at the execution part to retrieve already executed com-
mands for a similar task. In our case, memory is used at a
higher phase in which the agent decides how to create the ex-
ecution plan. In fact, at the end of each execution the traces
of the whole process are stored in form of a tree that is saved
using task’s description embedding. Thus, at every decom-
position, the planner queries the saved node’s hence having
access to their success/failure reason, sub-tasks and detailed
execution. This technique helps the agent improve over time
and especially when re executing a task where he eventu-
ally narrows all the possibilities to the right path. This way
the RedTeamLLM model, improves over time and has more
chances to complete a task over multiple rounds of execution.

4.4 The Security Model
The Red-Team LLM architecture supports a powerful au-
tonomous process for pen-testing, including error recovery
when the process meets dead-ends, and automation of offen-
sive action. The architecture is thus exposed to two main
threat families: hijacking of the execution process, on the one
hand, and inversion of dependency from the LLM agents to-
wards the framework, on the other hand. A strong security
model is thus required to address the key vulnerabilities of



Figure 3: Database schema for Memory management Model

agentic AI models: attack surface expansion, data manipula-
tion and prompt injection, API usage and sensitive data ex-
posure [Khan et al., 2024]. Its five key components, shown
in Figure 4 are: 1) a dedicated authentication, authorization
and session management module, 2) network and system iso-
lation of the runtime environment, 3) systematic command
validation by the user before any offensive action, 4) logging
in append-only mode for a posteriori analysis and 5) a kill
switch to shut the platform down. The threats related to con-
tainment and inversion of dependency are shown in table 5.
Isolation prevents unauthorized access to network entities or
configurations, and to system capabilities. Command valida-
tion by the user ensures the alignment between the ongoing
security task and performed operations, and prevent acciden-
tal calls to unwanted or dangerous tools upon proposal by the
agent. Following and, when necessary, reconstructing the ex-
ecution track is supported by the logging facility. To enhance
the reaction capability and to pave the way to greater auton-
omy of the framework, a kill switch is set up to immediately
halt any agent over which the supervision, or the control over
actual operations, would have been weakened or lost.

Figure 4: Security layers wrapping the LLM agent

The LLM itself is used in its default configuration, and
with a benevolent user that have not intend to abuse it.
Consequently, typical threats like prompt injection attacks

[Labunets et al., ] or app store abuses [Hou et al., 2024] are
not relevant to RefTeam LLM.

Figure 5: Security challenges and how RedTeamLLM address them

5 Implementation
The proof of concept for the RedTeamLLM model, that we
evaluate in following section, entails the ReAct component
for task execution. The current state of the implementation
also covers ADaPT for recursive planning, Memory man-
agement for continuous improvement, and Plan correction
to support operation continuity after task failure. However,
these are less mature, and not evaluated here. RedTeamLLM
and related tests are avalaible for the community4.

The evaluation is tested on a docker container over a
Thinkpad e14 gen 5 with 16GB of RAM ddr4 /I513420h pro-
cessor, and uses OpenAI’s API with GPT4-o.

5.1 Three-Step Pipeline
The ReadTeamLLM implementation uses a three-step
pipeline, each step handled by a separate LLM session:
1. Reasoning Before executing any action, the agent rea-
sons about the next steps. Reasoning occurs in an isolated
LLM session which elicits an explicit output of its process,
detailed steps, and a plan. When the user provides the task
definition to the model, it is forwarded to the reasoning com-
ponent; its output is then passed to the Act component. After
each tool call, the executed command and its output are fed
back to the reasoning component to generate further analysis.
2. Act The output of Reasoning is treated as an assistant
message by the Act session, which enforces adherence to the
plan and reduces the model’s inclination to interrupt execu-
tion with additional reasoning or safety checks. This setup al-
lows the LLM to focus solely on executing the recommended
action. For tool execution, the LLM session has full access
to a quasi-interactive, root-privileged Linux terminal. A cur-
rent challenge is determining when a process requires input;
we address this using strace, but it is not perfectly precise
because some processes read from multiple file descriptors,
not only stdin. After each tool execution, if the output is
too long, it is passed to a summarizer to avoid exceeding the
context window.

4https://github.com/lre-security-systems-team/redteamllm



3. Summarizer The summarizer is a stateless LLM ses-
sion: for each request, it summarizes the given command’s
output. Because this session does not maintain context about
the agent’s overall goal, it sometimes omits important infor-
mation. We plan to address this limitation in future work.

5.2 Sample Run
A sample run proceeds as follows:

1. A task is given to the agent (e.g., Obtain root access to
the machine with IP x.x.x.x”).

2. The task is forwarded to the reasoning session as a user
message.

3. The reasoner generates a result, which is provided as an
assistant message to the acting session.

4. The act session recommends a tool call (e.g., nmap or
sqlmap).

5. After execution, if the command output is lengthy, it is
summarized and sent back to the reasoner as a user mes-
sage.

6. The reasoner produces further thoughts, and the loop
continues until the reasoner stops recommending ac-
tions.

7. At that point, the system prompts the user for input (e.g.,
Continue” or a new task).

6 Evaluation
The evaluation is performed in three steps: a qualitative eval-
uation of the RedTeamLLM capability to autonomously per-
form offensive operations; a comparative study between the
cognitive mechanisms involved in these operations; an ab-
lation study focused on the evaluation of the impact of the
presence, or absence, of the reasoning capability.

6.1 Use cases
The choice of the benchmark to evaluate the RedTeamA-
gent is based on two factor: reproducibility and variability.
We therefore selected 5 use cases: Sar, CewiKid, Victim1,
WestWild, CTF4, from VULNHUB repository, which cover a
broad range of technical difficulties and various security tech-
niques, are easily deployable, and support reproducible exe-
cutions. The objective of this work is focused on creating a
proof on concept for ReadTeam LLM model, with the evalua-
tion of cognitive operations: summarize, reason, act; and with
a processing engine restricted to REaCT component. The 5
selected use cases are embedded in virtual machines from the
easy category. This selections also allows us to compare our
results since TAPT Benchmark [Isozaki et al., 2024] tested
PentestGPT [Deng et al., 2024] on the same target VMs.

RedTeamLLM proves to be competitive for the target use
cases, and surpasses PentestGPT on almost all the VM’s
when using GPT4-o. The decisive factors for these perfor-
mance are the following ones. First is reasoning, the differ-
ence without this step is really important. The agent used
block more on same thoughts and doesn’t keep a stable execu-
tion plan. Launching the agent multiple times, he sometimes
completely changes strategy. Having an important amount

of tokens dedicated to strategy, output analysis and reasoning
help the agent to stay on track. Regularly, without reasoning
the agent stops what he’s doing to ask for permission. Ad-
ditionally, giving complete control over a terminal not giving
a limited set of tools to the agent, helps with his creativity;
being able to chose whatever path to take in order to achieve
his goal. Sometime a specific version of a program isn’t suffi-
cient so he installs another one, sometime he launches scripts,
sometimes he save operation information in a file. Moreover,
the fact that he is directly executing the commands himself
saves token on other topics. Finally automation is a key part
of the agent, which enables longer and more complex au-
tomation without the need for manual supervision.

6.2 Cognitive steps
The RedTeamLLM implementation evaluated in this work
is built around the ReACT analysis component. It entails
3 LLM session, i.e. 3 interaction dialogs built by assistant
and user messages: 3) the summarizer that summarizes com-
mand outputs; 2) the reasoning component that reasons over
tasks and their outputs, and 3) the Act component that execute
the tasks. Figure 6 shows the total number of API calls for
each component, over the different use cases after 10 tests on
each VM.The Summarizer typically consumes between 9,5%
(CTF4) and 15,9% (Cewlkid) of API call tokens, with a low
at 3,1% for the WestWild use case and a peek at 30,9% for
the Victim1 use case. This peek enables a strong reduction of
the required tool calls (See Fig. 7). Reason and Act processes
perform a very similar number of API calls.

Figure 6: Number of API calls in Summarizer, Reason, Act steps for
the 5 use cases

RedTeamLLM outperforms PenTestGPT in 3 use cases
out of 5: wrt. the use case write-up, it completes 33%
more steps than PentestGPT-Llama (4 successful CTF lev-
els vs. 3) and 300% more than PentestGPT4-o (4 vs. 1)
for Victim1 use case, 33% more steps than PentestGPT4-
o or PentestGPT-Llama (4 vs. 3) for WestWild use case,
75% more than PentestGPT4-o (3.5 vs. 2) and 250% than
PentestGPT-Llama (3.5 vs. 1) for CTF4. PenttestGPT-Llama
outperforms RedTeamLLM for Sar by 17% (7 vs. 6) and by
100% (4 vs. 2) for CewiKid use case, while PentestGPT4-o
is similar or weaker that RedteamLLM for these 2 test cases.



6.3 Reasoning: a strong optimization lever
The ablation study aims to evaluate the contribution of rea-
soning to the RedTeamLLM framework. Figure 7 shows the
number of tool calls without and with reasoning for the 5 use
cases. Every LLM session can have tool calls. A tool calls
is a specific API response from an LLM session that triggers
the use of provided tools (in our case a terminal). For exam-
ple: when the agent executes a terminal command ls, that
is a tool call response suggested by the LLM. The total tool
calls over the 5 vms with 10 tests on each VM is sumed up:
5 with reasoning, 5 without reasoning. These are only the
tool calls with the Act components only because this is where
execution is performed. We can clearly see that the agent con-
sumes significantly less tool calls with reasoning in 4 out of 5
use cases: the drop is tool calls range from 37% (Sar) to 68%
(Victim1). Only for CTF4, the use of reasoning is bound with
an increase of 291% of tool calls, to support a slightly better
achievement of the target operation (see Fig. 8). In short, the
agent performs more analysis before performing actions, and
thus chooses better strategies to perform.

Figure 7: Number of tool calls without and with reasoning for the 5
use cases

The degree of completion is computed for each use cases,
using the write-up, which contains the listing of correct steps
to complete the security challenge, as reference. Figure 8
shows these results. The write-up bar shows the total numbers
of steps required to achieve the CTF (total of recon,general
technique, exploit and privilege escalation). The Reason and
No Reason bars show how many steps the agent has com-
pleted for each use case with and without reasoning respec-
tively. The test process is similar to previous evaluation:
RedTeamLLM handles 5 tests with reasoning and 5 tests
without reasoning for every use case. The maximum num-
ber of steps achieved over the 5 runs is considered, i.e. the
better execution. Reasoning improves the results in 4 cases
out of 5. In two of these cases, the number of steps mastered
pass from 1 to 4. A significant result of our experiments is
that this improvement is coupled with a strong gain in effi-
ciency wrt. to tool calls (see Fig 7). In one case (Cewlkid),
reasoning does not improve the offensive capability.

These results highlight the contribution of the reasoning
step to security operation by RedTeamLLM model.

Figure 8: CTF level completed by the RedTeamLLM framework
without and with reasoning for the 5 use cases

7 Conclusions and Perspectives
Beyond generative AI and now wide-spread Large Language
Models (LLMs), Agentic AI is opening wide novel opportu-
nities and threat to global security, and cybersecurity in par-
ticular. The objective of this work is to specify a reference
model for agentic AI as applied to offensive cyber operations,
so that the community can better understand these tools and
their capability, leverage them for securing their information
systems, and control this novel attack vector.

In this work, we define the key requirements for offensive
agentic AI, propose a reference architecture model, and make
a proof-of-concept of this architecture focused on iterative
task analysis and execution through the ReACT component.
The evaluation demonstrates that, though partial, our imple-
mentation beats state-of-the art competitors like PentestGPT
in 60% of the use cases. It also validate our hypothesis that
reasoning is a key feature for agentic AI, since it enables a
strong reduction of the necessary tool calls in 80% of the use
cases while improving offensive capabilities in 80 % of the
use cases. Interestingly enough, in 20% of the use cases, it
only supports reduction of tool calls, and thus process costs,
and in 20%, the gain in offensive capability requires a 4 times
increase in tool calls. This proves that while RedTeamLLM
improves both parameters in 60% of cases, it is also efficient
in dropping operation costs OR increasing operational capa-
bilities in more complex tasks.

The key insight of this study is that leveraging the dual ca-
pability of LLMs to analyze and decompose processes, on the
one hand, and to generate code for well-defined tasks, on the
other, brings a radical improvement to automation and gener-
icity of ReACT-based offensive cybersecurity frameworks.
These first promising results pave the way to structuring the
research effort in agentic AI for global security, in particu-
lar wrt. methodologies for evaluation of cost and automa-
tion capabilities of these models. The evaluation of recursive
planning, memory management and plan correction is also a
necessity to better understand the underlying mechanics and
capabilities of agentic models.
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