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Abstract—In the field of digital security, Reversible Adversarial
Examples (RAE) combine adversarial attacks with reversible data
hiding techniques to effectively protect sensitive data and pre-
vent unauthorized analysis by malicious Deep Neural Networks
(DNNs). However, existing RAE techniques primarily focus on
white-box attacks, lacking a comprehensive evaluation of their
effectiveness in black-box scenarios. This limitation impedes their
broader deployment in complex, dynamic environments. Further-
more, traditional black-box attacks are often characterized by
poor transferability and high query costs, significantly limiting
their practical applicability. To address these challenges, we
propose the Dual-Phase Merging Transferable Reversible Attack
method, which generates highly transferable initial adversarial
perturbations in a white-box model and employs a memory-
augmented black-box strategy to effectively mislead target mod-
els. Experimental results demonstrate the superiority of our
approach, achieving a 99.0% attack success rate and 100%
recovery rate in black-box scenarios, highlighting its robustness
in privacy protection. Moreover, we successfully implemented a
black-box attack on a commercial model, further substantiating
the potential of this approach for practical use.

Index Terms—Adversarial attack, privacy protection, black-
box attack.

I. INTRODUCTION

DEEP Neural Networks (DNNs) have initiated a techno-
logical revolution in various fields [1]–[14], such as im-

age recognition, natural language processing, and autonomous
driving. Despite rapid progress in artificial intelligence across
these domains, concerns about security and privacy have also
increased [15]–[18]. Malicious actors often exploit unautho-
rized DNNs to analyze and steal users’ private data to their
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Fig. 1. RAEs prevent malicious DNNs from stealing privacy data and can
recover the image quality when necessary.

advantage [19]–[23]. For example, Cambridge Analytica used
unauthorized personal data from Facebook users for targeted
political advertising [24].

Recent research has exposed critical vulnerabilities in DNNs
[25]–[27], particularly their susceptibility to variations in input
data quality and distribution [28]. In image recognition tasks,
even minor pixel modifications can significantly mislead clas-
sification results [29]–[32]. Adversarial attacks exploit these
weaknesses by introducing subtle perturbations that mislead
DNNs incorrect predictions [33]. Recent studies have proposed
using adversarial attacks to protect image privacy from mali-
cious DNN analysis [34]–[36]. However, the adversarial noise
introduced directly is often irreversible, leading to degraded
image quality and reduced data usability, especially for digital
images. Therefore, there is an urgent need for a technique
that can protect image privacy while preserving visual quality.
Our research indicates that Reversible Adversarial Examples
(RAEs) [37] offer significant potential for data protection: this
approach ensures data security while enabling the adversarial
perturbations to be reversed, restoring the original image.
As illustrated in Figure 1, RAEs can generate controlled
and reversible adversarial perturbations to effectively mislead
unauthorized DNNs, thus safeguarding user privacy without
compromising data usability.

The field of RAEs is still in its early stages of development.
Liu et al. first introduced the concept of reversible adversarial
attacks by integrating reversible data hiding techniques with
adversarial examples [37]. Xiong et al. further expanded re-
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versible adversarial attacks to black-box scenarios, employing
ensemble model techniques to demonstrate the potential of
RAEs across multiple models [38]. Although their approach
exhibited strong transferability and misleading capability, it
faced limitations in effectively attacking previously unex-
ploited models. Meanwhile, Zhang et al. [39] proposed a
method utilizing RGAN technology to replace reversible data
hiding techniques, efficiently generating adversarial examples
via an attacking encoder network and reversing them through
a recovery decoder network. While this approach successfully
restored the original images, it was less effective against
unknown models.

Due to the specific nature of RAE, most current RAEs
rely on the transferability of white-box attacks to achieve
attacks. However, the effectiveness of this transferability is
predominantly contingent upon the intensity of the applied
perturbations. The RDH method imposes strict limitations on
the magnitude of perturbations, leading to a design conflict
that significantly reduces the success rate of attacks against
unknown black-box models.

To overcome the potential challenges of existing RAE
techniques, particularly the balance between implementing
effective adversarial attacks and adhering to the strict pertur-
bation limits of reversible data hiding [40], [41] techniques,
we propose the Dual-Phase Merging Transferable Reversible
Adversarial Example (DP-TRAE), a novel reversible adver-
sarial attack on black-box models. The preliminary version
[42] of this work was presented at ACM MM 2024. DP-
TRAE divides the entire attack into two phases: the Stepwise
Adaptive White-box Attack (SA-WA) and a Memory-Assisted
Expansion Black-box Attack (MAE-BA). The motivation be-
hind DP-TRAE is to combine the high transferability of white-
box attacks with the targeted nature of black-box attacks,
thus reducing the overall cost of the attack. Our intuition
suggests that, compared to random perturbations, conducting a
black-box attack on top of adversarial perturbations initialized
by a white-box attack can mislead the target model more
efficiently, similar to modifying an existing masterpiece with
a clear direction in mind. Although white-box adversarial
noise may not fully align with the gradient ascent direction
of an unknown model, it provides a superior initial direction
for the attack. Among them, The SA-WA method introduces
additional perturbation guidance for gradient-sensitive regions,
thereby enhancing the efficiency of misdirection. It adaptively
adjusts the magnitude of perturbations to mitigate overfitting,
ensuring more robust attack performance. MAE-BA method
records the impact of each perturbation on the results, ac-
cumulating and utilizing historical data to select the most
promising update points and enhance the perturbation intensity
in neighboring regions. Furthermore, to address the conflict
between perturbation and RDH storage capacity [37], [38],
[43], we regularize the perturbations and compress them using
Huffman coding, effectively mitigating the trade-off between
perturbation intensity and storage requirements. In particular,
the main contributions of this work are as follows:
• We propose a novel Adaptive Transferable Reversible

Adversarial Attack framework for black-box attacks, integrat-
ing multiple attack strategies to enhance both transferability

and efficiency effectively. To the best of our knowledge, our
approach is the first successful application of RAE attacks on
commercial black-box models.
• We propose the MAE-BA and SA-WA to accelerate

the generation and compression of effective perturbations
and employ Huffman coding to further compress the final
perturbation information. These approaches tackle the key
challenge of preserving the integrity of adversarial examples
while guaranteeing their reversibility.
• Experimental results affirm the superiority of our attack

framework, achieving a 99.0% Attack Success Rate (ASR)
for reversible adversarial examples on specific models, with
a 100% restoration rate for the recovered images. These
outcomes validate the practical feasibility of our approach.

The rest of this paper is organized as follows. Section II
describes the relevant background and technology. Section III
provides the detailed design of the DP-TRAE. Section IV fully
analyzes the experimental results and verifies the feasibility of
the proposed DP-TRAE. Finally, the conclusions and future
outlooks are presented in Section V.

II. RELATED WORK AND BACKGROUND

In this section, we review the existing work on adversar-
ial attacks and the related techniques used in the proposed
methods.

A. Adversarial Attack

Adversarial attacks generate perturbations to mislead model
decisions. Goodfellow et al. [44] introduced the Fast Gradient
Sign Method (FGSM), which exposed the vulnerability of deep
learning models by adding small perturbations along the gra-
dient direction. Despite FGSM’s computational efficiency, its
performance in complex scenarios is limited. To address these
limitations, Kurakin et al. [45] proposed the iterative-FGSM
(I-FGSM), enhancing attack effectiveness through multiple
minor iterative updates. Dong et al. [46] extended I-FGSM by
incorporating a momentum term, resulting in the Momentum
Iterative Method (MI), which stabilizes the update direction
and significantly improves the transferability of adversarial
examples across different models.

Attacks based on a single input often exhibit poor trans-
ferability due to overfitting to a specific model. To alleviate
this issue, data augmentation techniques have been integrated
into adversarial attacks to increase input diversity. Xie et
al. proposed the Diverse Input Method (DI) [47], which
enhances adversarial attack effectiveness by applying random
transformations (e.g., scaling and cropping). Dong et al. [48]
further proposed the Translation-Invariant Method (TI), which
uses convolution to smooth the gradient, expanding the pertur-
bation’s spatial extent and improving generalizability to unseen
models.

In the black-box attack setting, Guo et al. developed the
Simple Black-box Attack (SimBA) [49], which modifies in-
dividual input dimensions to evaluate their impact on model
output, generating compelling adversarial examples with min-
imal queries. This straightforward approach demonstrates the
efficiency of black-box attacks without relying on gradient
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Fig. 2. An overview of the proposed DP-TRAE.

information. On the other hand, Maho et al. proposed the
SurFree attack optimizes the query path using geometric con-
siderations [50], eliminating the need for a substitute model.
This approach substantially reduces query complexity while
maintaining high attack success rates.

B. Reversible Data Hiding

Image steganography involves embedding secret informa-
tion within images in an imperceptible way to the human
eye. The Least Significant Bit (LSB) [51] substitution is a
popular and highly effective technique known for its sim-
plicity and ease of implementation while maintaining high
imperceptibility. Discrete Cosine Transform embeds data in
the frequency domain, providing robustness against compres-
sion. Discrete Wavelet Transform offers better localization in
both spatial and frequency domains [52]. Grayscale invariant
reversible steganography, which allows perfect image recovery
after data extraction while maintaining robustness to grayscale
variations, has also emerged as an important method [53]. Re-
cently, deep learning-based approaches have been introduced
to further enhance the security and capacity of steganographic
systems [54], [55]. In a nutshell, it can be described as:

XRAE = R(X,Mes), (1)

where X is the carrier, and Mes is the embed message. In this
paper, considering the balance between capacity and efficiency,
we employ the LSB method for data embedding.

III. METHODOLOGY

A. Overview

This section elaborates on the DP-TRAE framework, which
comprises three core modules illustrated in Figure 2: the

SA-WA module for white-box attacks, MAE-BA for black-
box scenarios, and a reversible mechanism ensuring image
preservation. DP-TRAE begins by performing rapid adversar-
ial preprocessing on the input clean image to generate robust
adversarial examples, thereby reducing the query overhead for
the second-stage MAE-BA. MAE-BA estimates the gradient
direction by querying superpixel blocks and utilizes historical
query results to effectively improve attack efficiency. SA-
WA and MAE-BA can be used independently to adapt to
different attack scenarios. Finally, Huffman coding is applied
to compress the information of the matrix, which is then em-
bedded using RDH to generate DP-TRAE. During restoration,
RDH extracts and reverses the perturbation matrix to losslessly
recover the image.

B. Preliminary

Consider the white-box model f and the unknown target
model b, where x ∈ X is a benign input with dimensions
H ×W ×C and the corresponding ground-truth label y ∈ Y .
Let f(x) and b(x) denote the prediction results of the white-
box and black-box models, respectively. Consistent with prior
work, we assume that the complete gradient information of f
is available while b is entirely unknown, providing only the
output labels and the associated probabilities.

For white-box attacks, given a benign input x and a loss
function J (e.g., the Cross-Entropy loss), the aim of the attack
can be formulated as:

δ = argmaxJ (f(x+ δ), y), (2)

f(x+ δ) ̸= y, s.t. ∥δ∥∞ < ϵ, (3)
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where δ represents the adversarial perturbation and ϵ is a
constant that controls the norm constraint.

MI-FGSM is a classic attack algorithm that incorporates
momentum to stabilize the optimization process to maximize
Eq. 2 and improve attack success rates. In MI-FGSM, the
adversarial perturbation is iteratively updated, and the accu-
mulated gradient is used to determine the direction of the
perturbation. Given a step size α, a number of iterations T ,
and a decay factor µ, the iterative update is defined as follows:

gt+1 = µ · gt +
∇δJ (f(xt + δt), y)

∥∇δJ (f(xt + δt), y)∥1
, (4)

δt+1 = δt + α · sign(gt+1), (5)

where gt is the accumulated gradient at iteration t, and
δt represents the adversarial perturbation at iteration t. The
use of the momentum term µ helps in accumulating the
gradient information from previous steps, thereby generating
more effective perturbations.

However, a single image input limits the robustness of the
attack. Therefore, prior works have utilized a combination of
DI and TI to increase input diversity, effectively preventing
overfitting to a single model. And the iterative equation
becomes:

gt+1 = µ · gt +
T · ∇δJ (f (D (x+ δt) , y))

∥T · ∇δJ (f (D (x+ δt)) , y)∥1
, (6)

where T is the convolution kernel in TI and D is the diverse
input transformation in DI. We employ the combination of
DI, TI, and MI as the basis of the attack to gain more
transferability.

C. Stepwise Adaptive Attack

The SA-WA module aims to produce highly transferable ad-
versarial perturbations. In white-box attacks, internal details of
the target model are accessible, which allows for the effective
use of gradient information to craft adversarial perturbations.
During this attack process, we observed that the gradients
of the model exhibit non-uniform variations across different
input regions. The SA-WA leverages this by applying more
substantial perturbations to gradient-sensitive areas, thereby
prioritizing regions where the model’s decision boundaries
are most susceptible to deviation. This approach enhances
the efficiency of generating adversarial perturbations, allowing
significant attack effects to be observed in the initial iterations.

However, focusing solely on enhancing perturbations in
gradient-sensitive regions may lead to overfitting to a single
model, resulting in suboptimal performance and reduced attack
transferability. Therefore, we introduced the adaptive strategy
for scaling the perturbations in sensitive regions. Specifically,
as the number of iterations increases, we progressively reduce
the amplification applied to these regions. By doing so, we
mitigate the risk of overfitting during later iterations, ensuring
a balance between attack effectiveness and model transferabil-
ity, and the SA-WA algorithm is presented in Algorithm 1.

In addition to focusing on attack performance, it is essential
to consider the embedding and recovery of perturbations in

subsequent steps, as RDH technology imposes strict storage
limitations, and the magnitude of adversarial perturbations at
each position varies, which complicates direct encoding and
storage. For instance, with a ϵ size of 8/255, storing the
perturbation for a single pixel across three channels would
require 48 bits, not even accounting for cases where the
perturbation is zero. Therefore, it is crucial to compress the
perturbation while preserving its effectiveness.

Algorithm 1 DI-TI-MI-SA
Require: Clean image x, model f , loss function J , Iterations

N , step size α, perturbation limit ϵ, original label y
Ensure: Adversarial perturbation δ

1: Initialize adversarial perturbation: δ = 0, Xadv = X
2: for i← 0 to N − 1 do
3: Xadv = X + δi
4: Apply DI:Xadv = D(Xadv)
5: Calculate gradients: gi+1 = ∇δf(xadv, y)
6: Apply TI,MI: utilize Eq. 6 and make gtemp = gi+1

7: Apply SA: The top (N − i)/2N of gtemp magnitude
changes are labeled as 2, while the rest are labeled as 1.

8: Update perturbation: δi+1 = δi+α · sign(gt+1) ·gtemp

9: Clip perturbation: δi+1 = clip(δi+1,−ϵ, ϵ)
10: end for
11: return δ

To address this, SA-WA incorporates a compression mech-
anism directly into the iterative attack process. By embedding
the compression step, SA-WA minimizes the impact of com-
pression on attack performance, allowing for efficient storage
without significantly compromising the attack’s effectiveness.
SA-WA first aggregates the gradients of channels, reducing
the three-dimensional perturbation δ to one dimension:

gt = Ec∈{R,G,B}[gct ] =
1

3

∑
c∈{R,G,B}

gct . (7)

At this stage, the data storage volume is reduced to one-
third of its original size. The perturbations are then compressed
using a threshold-based approach, where precise values are
replaced with uniform noise:

E(|δ|) =


2, ϵ

2 ≤ |δ| ≤ ϵ

1, 0 < |δ| ≤ ϵ
2

0, |δ| = 0

(8)

δt+1 = sign(δt+1) · E(|δt+1|) · ξ, (9)

where ξ represents the stage threshold used to compress
the perturbation values within a piecewise distribution. Com-
pressed perturbation δ will be applied as the initial perturbation
matrix for the MAE-BA method.

D. Memory-Assisted Expansion Attack

For black-box models, the SimBA method for generating
adversarial perturbations is a simple yet effective approach.
SimBA iteratively applies perturbations in randomly selected
directions and observes the resulting change in the target class
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probability. Perturbations that effectively reduce the target
class probability are retained, enabling SimBA to reliably
lower the model’s prediction confidence through repeated
adjustments. This approach resembles finite difference meth-
ods for gradient estimation [56], but with a key distinction:
SimBA’s stochastic coordinate perturbations do not directly es-
timate gradients, instead leveraging observed outcomes to gen-
erate effective perturbations. In this work, we adopt stochastic
coordinate perturbations as the default strategy.

However, pixel-level stochastic coordinate perturbations,
which involve perturbing individual pixels, result in a high
number of queries, leading to increased costs, especially when
attacks are repeated over multiple iterations. To address this,
the MAE-BA method introduces the concept of superpixel
blocks to reduce query complexity and associated costs. Super-
pixel blocks group neighboring pixels into cohesive regions,
allowing for coordinated exploration of the input image via
larger pixel groups rather than individual units. Operating
on these aggregated blocks significantly reduces the required
queries while maintaining perturbation effectiveness.

Algorithm 2 MAE-BA
Require: Clean image x, White adversarial noise δ, Black

model b, Iterations N , stage threshold ξ, perturbation limit
ϵ, original label y, enhance step size s, Expand size Ep

Ensure: Adversarial perturbation δ
1: Initialize Empty Memory list H
2: for i← 0 to N − 1 do
3: if b(x+ δ) ̸= y then
4: Select random direction q
5: Select random superpixel blocks Ej

6: Ppre = Pb(y|x+ δ)
7: if (i+ 1)%s = 0 then
8: Replace index j with the largest value in H
9: Expand superpixel blocks Ej size with Ep

10: H[j] = 0
11: end if
12: δ = δ + q · ξ · Ej

13: Pnext = Pb(y|x+ δ)
14: if Ppre < Pnext then
15: δ = δ − q · ξ · Ej

16: Pnext = Pb(y|x+ δ)
17: end if
18: H ← (Ppre/Pnext, j)
19: Clip perturbation: δ = clip(δ,−ϵ, ϵ)
20: end if
21: end for
22: return δ

In addition to employing superpixel blocks, we utilize
information obtained from historical queries, a factor often
neglected in typical black-box attack scenarios. Historical
information provides insights into the sensitivity of specific
image regions to perturbations, guiding the informed selection
of subsequent query directions. Leveraging this historical
knowledge enhances search efficiency by avoiding redundant
queries and accelerating convergence toward effective ad-
versarial perturbations. Specifically, we prioritize superpixel

blocks previously identified as promising based on historical
query data, expanding the exploration scope around these
regions. By focusing on the neighborhoods of promising
superpixel blocks, we exploit the intrinsic local coherence of
the gradient, where small perturbations in adjacent regions
tend to yield similar effects on model output. This approach
reduces redundant queries in less sensitive areas, concentrating
instead on regions where minor adjustments are more likely
to induce significant changes in model behavior. Furthermore,
integrating historical query information as adaptive feedback
guides the attack towards areas of maximum vulnerability,
improving both the effectiveness and query efficiency of the
adversarial perturbation process and the whole algorithm is
presented in Algorithm 2.

E. Embed and Recover

After compressing the perturbations using Eq. 7 and Eq. 8,
we observed a significant imbalance in the value distributions
of different perturbations, as well as considerable variation
among individual perturbations. Therefore, we decided to
employ Huffman coding to effectively encode and store the
perturbation information. By leveraging the advantages of
Huffman coding, we can efficiently encode these perturbations
with a higher compression ratio, thereby reducing storage
requirements and improving processing efficiency. The de-
tailed steps of the entire perturbation embedding algorithm
are presented in Algorithm 3.

Algorithm 3 Encode and Embed
Require: Clean image x, Adversarial noise δ, stage threshold

ξ, Flexible encryptor F , RDH technology R
Ensure: Reversible Adversarial Examples DP-TRAE

1: Initialize Huffman Tree T , Message matrix Mse(H,W )
2: for h← 0 to H − 1 do
3: for w ← 0 to W − 1 do
4: Calculation stage: stage = δhw/ξ
5: Msehw = ξ
6: Contract Huffman Tree: T.append(stage)
7: end for
8: end for
9: Compress 2D Mes into 1D

10: Encrypted message: Mse = F (Mes+ T )
11: Generate DP-TRAE: DP-TRAE=R(x+ δ,Mse)
12: return DP-TRAE

When performing the recovery operation, we only need
to reverse the embedding process to losslessly restore the
perturbation information. Furthermore, during the encoding,
compression, and storage processes, we can flexibly introduce
specific encryption measures to ensure that the information
remains secure during transmission and storage.

IV. EXPERIMENT

A. Experiment setup

Dataset and Environment. In this study, we employed
the ILSVRC2012 dataset [57] to assess the effectiveness
of various adversarial attack methods across different deep
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TABLE I
ASR (%) ON SEVERAL MODELS UNDER ATTACK SCENARIOS USING RES-50, VGG-16, AND INC-V3 AS THE WHITE-BOX MODELS, RESPECTIVELY.

Source : RN-50 Target model

Attack RN-34 RN-50 RN-152 DN-121 VGG-16 VGG-19 Inc-v3 Alexnet Mob-v2 Mob-v3 Average

Liu [37] 27.8 99.9 29.0 26.1 26.4 23.8 11.4 11.7 21.2 6.6 28.4
RIT [43] 34.7 99.8 31.3 31.8 26.8 27.0 15.1 19.1 24.0 9.4 31.9
DP-RAE [42] 47.1 100 43.9 44.7 45.2 46.6 24.1 26.7 43.5 16.5 43.8
DP-TRAE (Ours) 71.3 99.3 68.4 74.3 81.0 81.4 50.3 37.6 73.7 35.1 67.2
Source : Inc-v3 Target model

Attack RN-34 RN-50 RN-152 DN-121 VGG-16 VGG-19 Inc-v3 Alexnet Mob-v2 Mob-v3 Average

Liu [37] 5.0 4.0 4.0 4.9 6.2 6.9 97.3 9.2 7.3 3.9 14.9
RIT [43] 9.7 8.4 6.8 9.6 9.8 10.7 97.6 15.2 12.3 8.1 18.8
DP-RAE [42] 20.1 18.5 14.1 18.2 19.2 19.2 98.1 25.4 25.3 15.4 27.4
DP-TRAE (Ours) 41.5 40.1 32.5 44.6 45.1 47.3 96.9 30.5 45.4 24.6 44.9
Source : VGG16 Target model

Attack RN-34 RN-50 RN-152 DN-121 VGG-16 VGG-19 Inc-v3 Alexnet Mob-v2 Mob-v3 Average

Liu [37] 10.2 9.1 5.7 11.6 99.5 59.6 6.9 10.4 16.4 5.5 23.5
RIT [43] 11.8 11.1 5.6 14.5 99.6 53.5 9.5 15.2 16.2 7.5 24.5
DP-RAE [42] 16.2 17.2 10.9 17.6 99.7 79.4 12.3 21.9 26.2 12.5 31.4
DP-TRAE (Ours) 30.7 31.7 21.3 35.5 100 87.4 21.4 33.7 47.0 23.0 43.2

learning models. We randomly selected 1,000 images that
the target models could classify accurately. All experiments
were conducted on an NVIDIA A40 GPU, which ensured
efficient processing capabilities for the extensive computations
involved.

Regarding model selection, we focused on a range of
models with diverse architectures and their corresponding
sub-models, including ResNet34 (RN-34) [58], ResNet50
(RN-50) [58], ResNet152 (RN-152) [58], DenseNet121 (DN-
121) [59], VGGNet16-BN (VGG16) [60], VGGNet19-BN
(VGG19) [60], Inception-v3 (Inc-v3) [61], Alexnet [62],
MobileNet-v2 (Mob-v2) [63], MobileNet-v3 (Mob-v3) [64].
This approach allowed us to evaluate the transferability of
adversarial attacks across different model types, providing
insights into their robustness and vulnerabilities.

Attack Setting. We set the maximum perturbation ϵ for the
attack to 8/255, the stage threshold was set to half of the δ,
and the step size α equals the stage threshold. The number
of iterations for the white-box attack was set to 10, while the
maximum number of iterations for the black-box attack was
set to 1000. For the black-box attack, the expand size Ep was
set to 4, with an enhanced step size as s = 5.

Evaluation Metrics. Regarding the evaluation of attack
performance, we employed Attack Success Rate (ASR) as
the primary metric to assess the effectiveness of misleading
different models. ASR is defined as the proportion of images
that successfully deceive the target model out of the total
number of input images. The higher ASR values reflect greater
attack performace.

For recovery performance, we employed Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
[65], which are widely used metrics for evaluating image
quality. The higher PSNR value implies that the restored image

more closely resembles the original. On the other hand, SSIM
assesses the similarity between two images and with values
ranging from 0 to 1. A higher SSIM value indicates a more
remarkable similarity to the original image regarding struc-
tural details. Together, these metrics provide a comprehensive
assessment of the visual quality of the recovered images.

In addition, we evaluated the recognition accuracy of the
recovered images, referred to as Success Rate (SR). SR
measures the proportion of recovered images that the model
correctly classifies. This metric provides insight into whether
adversarial samples, after undergoing the recovery process,
can successfully restore the classifier’s predictions to their
original labels. A higher SR indicates that the recovery process
effectively mitigates the impact of adversarial attacks, restor-
ing the model’s ability to correctly classify the images while
preserving high visual quality.

B. Attack performance

In this section, we evaluate the attack performance of DP-
TRAE from two perspectives: the attack performance of DP-
TRAE in white-box scenarios and the attack performance of
DP-TRAE in black-box scenarios.

White-box scenarios. In this experimental setup, we com-
pared DP-TRAE with several existing RAEs, including the
RAE [37] proposed by Liu et al., the RAE based on Reversible
Image Transformation (RIT) [43] and our previous work
DP-RAE [42]. We selected three structurally diverse models
to conduct the attacks and used it to generate adversarial
examples, which were then tested on the other models to assess
single-model transferability. Table I shows the results. First,
the proposed DP-TRAE consistently outperformed across most
scenarios. This is because that the method proposed by Liu et
al. fails to compress the perturbation magnitude, resulting in
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TABLE II
THE ASR (%) ON SEVERAL MODELS UNDER ATTACK SCENARIOS USING RES-50, VGG-16, AND INC-V3 AS THE ENSEMBLE MODELS.

Test model Ensemble model

Attack RN-34 RN-152 DN-121 Mob-v2 Mob-v3 VGG-19 AlexNet RN-50 Inc-v3 VGG-16

Liu [37] 29.5 28.8 34.8 31.0 6.5 59.5 9.5 99.1 99.0 99.4
RIT [43] 43.4 36.8 42.9 36.8 14.1 63.8 20.4 99.1 98.8 99.4
DP-RAE [42] 60.4 57.3 62.7 61.1 22.0 86.5 30.8 99.6 99.3 99.7
DP-TRAE (Ours) 83.2 81.4 87.6 85.6 44.4 96.2 42.9 99.2 99.0 99.9

TABLE III
THE ASR (%) ON DIFFERENT MODELS, WITH DN-121 AS THE BLACK-BOX MODEL, AND DP-TRAE UTILIZING THE ENSEMBLE PREPROCESSING

OPERATION BASED ON SA-WA.

Target model

Attack RN-34 RN-50 RN-152 DN-121 VGG-16 VGG-19 Inc-v3 Alexnet Mob-v2 Mob-v3 Average

Simba [49] 1.0 0.4 0.2 94.6 1.2 1.0 0.9 1.7 0.3 0.2 10.2
Simba-DCT [49] 0.7 0.6 0.5 95.9 0.9 0.8 1.5 2.6 0.7 1.0 10.5
Surfree [50] 13.3 11.6 4.1 97.2 24.8 21.6 8.2 54 33.8 23.6 29.2
DP-RAE [42] 60.2 99.5 56.4 99.0 99.5 82 99.1 29.6 60.2 22.0 70.8
DP-TRAE (Ours) 80.9 98.0 79.7 99.0 99.6 92.2 97.1 41.9 83.8 43.2 81.5

over-detailed storage processes that significantly increase the
steganographic storage overhead. This issue becomes particu-
larly pronounced when the ϵ parameter is large, forcing Liu’s
approach to sacrifice partial attack performance while meet-
ing steganographic requirements. The RIT method achieves
reversible adversarial attacks by directly disguising the orig-
inal image as adversarial examples. However, its inability
to losslessly preserve adversarial perturbation details during
sample generation ultimately compromises the effectiveness
of the attack. Our previous work DP-RAE employs grayscale-
invariant steganography. While maintaining image grayscale
properties, it significantly reduced storage efficiency and DP-
RAE did not compress the perturbation information effectively.
To preserve attack efficiency, the method relies on super-
pixel blocks for perturbation compression, which inevitably
degrades attack performance and leads to limited cross-model
transferability. In contrast, DP-TRAE adopts a more concise
and efficient RDH technique while leveraging Huffman coding
to compress the perturbations. This approach eliminates the
need for additional regional compression, effectively preserves
attack performance, and demonstrates superior transferability
compared to DP-RAE. Additionally, we observed that pertur-
bations generated using the RN-50 exhibited better transfer-
ability across different models. It is attributed to the residual
connections of RN-50, which are used to capture hierarchical
and generalized feature representations. Residual connections
help preserve crucial information across layers, resulting in
perturbations that generalize better, making them more ef-
fective when used to deceive other models. Inc-V3 relies on
convolutional blocks that focus on multi-scale feature extrac-
tion, which may result in more specialized perturbations to
that specific architecture and be less effective on other models
with different structures. Similarly, VGG16, with its simpler
and more uniform convolutional stack, may lack the ability

to generate perturbations that capture complex, transferable
features, leading to a reduced effectiveness when transferred to
dissimilar models. Moreover, it can be observed that the gen-
erated perturbations demonstrate stronger transferability when
applied to homologous models. Through the above analysis,
it is suggested that both the architectural characteristics of the
model used to generate adversarial examples and the nature
of the learned feature representations play a crucial role in
determining the transferability of adversarial attacks.

To further assess the transferability of adversarial pertur-
bations, we employed an ensemble attack strategy, which
enhances the cross-model transferability by optimizing per-
turbations across multiple models simultaneously. The per-
turbations were generated by integrating several white-box
models, each assigned with simple weighting factors. As pre-
sented in Table II, the results demonstrate that the DP-TRAE
consistently improves ASR in all cases. This improvement
is attributed to introducing the stage threshold and Huffman
coding compression mechanism, which effectively reduces
the storage requirement for unit perturbations while ensuring
the success rate and effectiveness of the attack, leading to
a more refined application of perturbations. Additionally, the
extra perturbation in gradient-sensitive regions accelerates the
generation process.

Black-box attack scenario. Due to the current lack of
research on black-box reversible attack methods, we com-
pared DP-TRAE with several existing state-of-the-art black-
box attack methods, including Simba [49], Simba-DCT [49],
Surfree [50], and our previous work DP-RAE [42]. The
experimental results, as shown in Table III, indicate that
although these query-based black-box attacks exhibit strong
performance when targeting specific models, they generally
suffer from poor transferability. Specifically, these methods
typically rely on optimizations tailored to specific models,
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Fig. 3. Visual results of DP-TRAE, including clean images, attacked images, and the corresponding recovery images.

resulting in suboptimal performance when transferred to differ-
ent target models. The main reason for the poor transferability
is that these methods fail to effectively leverage the com-
mon features across different models, leading to a significant
degradation in attack performance during cross-model transfer.
In contrast, DP-TRAE enhances transferability by introducing
preprocessing noise generated during the white-box phase. The
introduction of this noise provides a more stable perturbation
pattern for subsequent attacks, allowing DP-TRAE to achieve
more consistent attack performance across different models. In
addition, the MA-EA method further enhances the attack effect
on the target model by optimizing the perturbation through
the historical query results. Compared to the previous version
DP-RAE, DP-TRAE produces black-box attack with better
transferability due to the improved attack performance of the
white-box attack phase.

C. Robustness evaluation

In practical applications, networks often preprocess input
data and apply defense techniques to reduce the impact of
adversarial attacks, improving overall performance. These de-
fenses aim to reduce the effectiveness of adversarial examples,
ensuring the model remains stable and accurate under mali-
cious perturbations. Therefore, the robustness of adversarial
examples against these defenses is crucial. In this study, we
employ several preprocessing and defense methods, includ-
ing Spatial Squeezing (Spatial) [66], Random Resizing and
Padding (Random) [67], Gaussian Blurring (Gaussian) [68],
JPEG Compression (JPEG) [66], and Super-resolution (Super)
[69].

As shown in Table IV, adversarial perturbations from black-
box attacks lose their effectiveness when subjected to these
defensive techniques. This is because such preprocessing in-
troduces uncertainty, weakening the impact of query-based
attacks. In contrast, DP-TRAE utilized the white-box prepro-
cessing approach to identify and exploit shared vulnerabilities

TABLE IV
THE ASR (%) OF ADVERSARIAL ATTACKS WHEN AGAINSTING DIFFERENT

DEFENCE METHODS.

Attack
method

Defense method

Spatial Random Gaussian JPEG Super

Simba [49] 4.5 16.8 20.3 20.3 2.7
Simba-DCT [49] 7.8 32.6 32.4 23.5 8.0
Surfree [50] 20.0 23.4 23.7 54.0 13.6
DP-RAE [42] 63.1 52.0 39.6 52.3 74.0
DP-TRAE (Ours) 89.9 54.5 50.7 82.3 88.3

across different models, thereby reducing the effectiveness
of defense strategies. This approach enhances robustness by
addressing vulnerabilities common to multiple model archi-
tectures.

D. Recover ability

RAEs are often evaluated based on their recovery perfor-
mance. Notably, previous studies overlooked the assessment of
this key metric. To demonstrate the recovery capability of DP-
TRAE, we compared the images restored by DP-TRAE with
the clean samples. As shown in Figure 3, the perturbations
introduced by DP-TRAE cause only a slight degradation in
image quality, which is imperceptible to human observers but
can be devastating to adversarial models. The restored images
effectively eliminate these perturbations without loss, making
them indistinguishable from the original images.

Table V presents an evaluation of the restored images using
several quality metrics. The PSNR of the restored images
exceeds 45 dB, and the SSIM approaches 1 and the recovered
images successfully recover the correct classifications in the
model. In addition, we observed that the DP-TAE and the
recoverable DP-TRAE are almost identical in all respects, this
is because of the threshold-based perturbation compressing
and Huffman coding compression, the RDH approach does
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Fig. 4. (a) reported the impact of different expand sizes on attack performance; (b) reported the impact of different enhance step sizes on attack performance;
(c) reported the impact of dual-phase strategie on attack performance.

TABLE V
WE REPORTED THE PSNR AND SSIM OF THE DP-TAE, DP-TRAE AND

ITS RECOVERD EXAMPLES, AND WE ALSO EVALUATED THEIR
CLASSFICATION SUCCESS RATE (SR) IN THE TARGET MODEL, ”↑” MEANS

THE BIGGER THE BETTER.

PSNR (dB) ↑ SSIM ↑ SR (%) ↑
DP-TAE 31.14 0.8256 1.1
DP-TRAE 31.10 0.8242 1.1
Recover (DP-TRAE) 48.94 0.9913 100

not have a large impact on the adversaral examples. These
results demonstrate the effectiveness of DP-TRAE is not only
maintaining the adversarial performance but also ensuring that
the restored images retain both high visual fidelity and model
accuracy.

E. Ablation study

This section presents an ablation study on DP-TRAE to
evaluate the impact of different parameters and strategies on
attack performance.

SA-WA: First, we assessed the impact of the SA-WA on
attack performance. To this end, we employed various gradient
calculation strategies, including the IFGSM, MI-FGSM, DI-
MI-FGSM (DI-MI), and DI-TI-MI-FGSM (DTMI). The core
idea of these methods is to improve the efficiency of gradient
calculation and the effectiveness of perturbations through
different strategies, thereby enhancing the attack performance
of adversarial examples.

As shown in Table VI, the SA-WA consistently demon-
strated significant improvements in attack performance across
different iteration counts. This indicates that SA, by applying
additional perturbations to gradient-sensitive regions, can more
effectively exploit model vulnerabilities, thereby increasing
attack success rates and robustness, while accelerating the
generation process of adversarial examples. Moreover, input
diversity also played a critical role in gradient calculation,
particularly in the DI-MI and DTMI methods. The input
diversity effectively prevented gradients from falling into local
optima, making the computed gradients more general and
effective. This input diversification strategy enables adversarial
examples to maintain a high success rate when facing different
target models and defense mechanisms.

Overall, the SA-WA can be flexibly integrated with most
gradient-based update methods, demonstrating its versatility

and adaptability. This flexibility allows DP-TRAE to seam-
lessly incorporate different gradient calculation techniques as
they evolve, enabling it to adopt more effective strategies to
further improve attack performance.

MAE-BA: Subsequently, we conducted an ablation study
on the MAE-BA method to investigate the impact of varying
enhancement frequency and expansion size on attack perfor-
mance. Specifically, we examined how different settings for
expanding perturbation regions and increasing enhancement
frequency affected the adversarial attack efficacy. Notably, it
can be seen as our previous work DP-RAE when the expand
size is 0. For clarity, we only utilized clean perturbations
without employing white-box preprocessing techniques. The
experimental results, as illustrated in Figure Figure 4 (a),
indicate a significant improvement in attack performance with
an increase in the expansion size.

The underlying mechanism can be attributed to the targeted
amplification of perturbations around the points that histor-
ically demonstrated the highest effectiveness. By selectively
enhancing perturbations in these key regions, the attack gains
a more precise impact, thereby effectively leveraging the
model’s vulnerabilities. However, when the expansion size
was allowed to grow without restriction, a decline in attack
performance was observed. This deterioration can be explained
by the fact that an overly extensive expansion range tends
to blur the accurate gradient update direction, leading to
the inclusion of numerous irrelevant points and resulting in
incorrect gradient updates. Consequently, the efficacy of the
attack DI-MInishes as the focus on key perturbation areas
becomes diluted.

Moreover, we also observed a notable increase in attack
success rate as the historical enhancement frequency was
increased in Figure 4 (b). This suggests that frequent reinforce-
ment of previously effective perturbations allows for more
persistent and accumulative exploitation of model weaknesses.
However, considering the computational overhead associated
with frequent updates, we opted to update the perturbations
every five iterations. This approach strikes a balance between
maintaining a high attack success rate and minimizing the
additional computational burden. By selectively tuning both
the expansion size and enhancement frequency, the MAE-BA
method demonstrated an effective trade-off, achieving robust
attack results while managing computational efficiency.

Finally, we tested the impact of different strategy combi-
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TABLE VI
ASR (%) ON SEVERAL MODELS UNDER ATTACK SCENARIOS USING RES-50, VGG-16, AND INC-V3 AS THE ENSEMBLE MODELS. WE CONDUCT THESE

EXPERIMENTS UNDER TWO METHODS AND REPORT THE ASR WITH ORIGINAL/SA-WA METHOD.

steps = 5 Test model Ensemble model

Attack RN-34 RN-152 DN-121 VGG-19 AlexNet Mob-v2 Mob-v3 RN-50 VGG16 Inc-v3

BIM 45.0/48.3 40.7/42.5 47.8/47.2 73.4/75.9 18.9/21.9 44.7/48.9 14.7/16.1 98.6/98.6 99.3/99.3 98.8/98.6
MI-FGSM 56.7/58.3 51.1/52.2 58.6/58.9 82.1/82.6 27.7/30.8 57.2/57.8 21.0/21.9 99.3/99.2 99.4/99.3 98.6/98.8
DI-MI 60.2/62.1 55.2/57.0 64.1/65.4 86.0/87.9 33.0/34.9 64.0/67.2 25.8/26.7 90.1/92.1 98.4/99.7 88.7/91.5
DTMI 67.9/70.3 63.5/64.8 71.9/75.0 89.7/89.4 39.9/40.3 71.4/75.6 38.6/40.6 91.1/92.9 99.2/98.0 90.8/94.1

steps = 10 Test model Ensemble model

Attack RN-34 RN-152 DN-121 VGG-19 AlexNet Mob-v2 Mob-v3 RN-50 VGG16 Inc-v3

BIM 53.2/54.9 47.3/52.2 51.8/56.5 81.7/82.8 21.4/21.7 53.1/54.6 16.3/17.9 99.5/99.5 99.6/99.4 99.0/99.2
MI-FGSM 58.5/60.9 55.0/56.6 61.2/63.4 85.2/86.2 29.4/30.1 59.2/61.3 21.5/23.1 99.5/99.6 99.5/99.6 99.3/99.3
DI-MI 72.8/76.6 69.7/74.5 78.0/80.4 93.9/95.0 36.5/36.7 77.3/79.2 29.9/30.9 96.8/98.6 99.8/99.8 96.2/97.9
DTMI 80.5/84.9 78.3/82.8 83.9/86.6 95.1/96.2 43.1/43.4 84.7/87.9 43.6/44.7 98.3/99.3 99.8/100 98.7/98.6

nations on the attack performance. As shown in Figure 4
(c), when the SA-WA is combined with MAE, the attack
efficiency improves significantly. This demonstrates that using
adversarial perturbations as the initial disturbance can notably
enhance performance in black-box model attacks. The combi-
nation of these strategies not only improves the precision of the
attack but also allows for more effective exploitation of model
vulnerabilities, leading to a higher success rate in bypassing
the defenses of the black-box models. This result highlights
the potential of adversarial perturbations in strengthening the
performance of attacks under challenging black-box scenarios.

F. Commercial model attack
To evaluate the effectiveness of our RAE on real-world

systems, we conducted tests on Baidu’s cloud vision API1,
an object recognition service. The objective of the attack
was to mislead the top-3 categories returned by the API,
all while adhering to the constraints of limited queries and
perturbations. We selected 50 images for testing and achieved
a 92% success rate. Notably, a significant portion of the images
were misclassified even before the queries were completed.
This underscores the efficiency of the attack strategy, as the
white-box perturbations applied at the outset were sufficiently
powerful to influence the model’s decision boundaries early in
the querying process. Such early-stage perturbations highlight
the potential effectiveness of adversarial attacks, particularly
in scenarios with constrained query budgets.

As shown in Figure 5, DP-TRAE successfully misclassified
the original labels, highlighting the potential threat of our
method to commercial black-box models. Considering the
limited number of queries allowed by commercial black-box
models, we believe that increasing the number of queries can
effectively enhance the success rate of the attack.

V. CONCLUSION

In this paper, we introduced the DP-TRAE method, which
effectively combines the characteristics of different types of

1https://ai.baidu.com/tech/imagerecognition/general

Fig. 5. Results of DP-TRAE attacks on a commercial model.

attacks to enhance the protection of sensitive data in com-
plex environments. By leveraging the perturbations generated
through white-box attacks, DP-TRAE significantly improves
the transferability of adversarial examples, while the black-
box attack component ensures targeted attacks on unknown
models. Experimental results further demonstrate the superi-
ority of our method, maintaining a high attack success rate
even under various defense strategies. Notably, to the best of
our knowledge, DP-TRAE is the first method to successfully
perform reversible adversarial attacks on commercial black-
box models. As a potential future direction, we are looking
forward to extending our method to improve the performance
of various applications such as large language models [4], [70],
[71] and distributed learning system [9], [72]–[74].
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