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ABSTRACT
Anti-phishing tools typically display generic warnings that offer
users limited explanation on why a website is considered malicious,
which can prevent end-users from developing the mental models
needed to recognize phishing cues on their own. This becomes es-
pecially problematic when these tools inevitably fail - particularly
against evasive threats, andusers are found to be ill-equipped to iden-
tify and avoid them independently. To address these limitations, we
presentPhishXplain (PXP), a real-timeexplainablephishingwarning
systemdesigned toaugment existingdetectionmechanisms.PXPem-
powers users by clearly articulatingwhya site is flagged asmalicious,
highlighting suspicious elements using a memory-efficient imple-
mentation of LLaMA 3.2. It utilizes a structured two-step prompt
architecture to identify phishing features, generate contextual expla-
nations, and render annotated screenshots that visually reinforce the
warning. Longitudinally implementingPhishXplain over amonthon
7,091 live phishing websites, we found that it can generate warnings
for 94% of the sites, with a correctness of 96%. We also evaluated
PhishXplain through auser studywith 150 participants split into two
groups: one received conventional, genericwarnings,while theother
interacted with PXP’s explainable alerts. Participants who received
the explainable warnings not only demonstrated a significantly bet-
ter understanding of phishing indicators but also achieved higher
accuracy in identifying phishing threats, even without any warning.
Moreover, they reported greater satisfaction and trust in the warn-
ings themselves. These improvements were especially pronounced
among users with lower initial levels of cybersecurity proficiency
and awareness. To encourage the adoption of this framework, we
release PhishXplain as a browser extension.

1 INTRODUCTION
Security vendors, researchers, and domain registrars have continued
to improve phishing detection strategies, combining rule-based sys-
tems or heuristics [12, 27, 42, 43], and machine learning models [21,
52, 56]to flag and remove threats before they reach users. These ef-
forts have led to the development of robust commercial tools such as
Google Safe Browsing [2], which demonstrate high accuracy against
traditional phishing threats. However, when the tools fail to detect
phishing websites, users are often left vulnerable, particularly those
with limited technical or cybersecurity expertise [13, 14].Alarmingly,
research shows that even technically proficient users struggle to
distinguishwell-crafted phishingwebsites from legitimate ones [23].
Browser-based anti-phishing tools usually issue standardized warn-
ings without offering users any contextual information or explana-
tion for why a site has been flagged [7, 17, 64]. For example, Figure 1
shows the generic phishing alert displayed by Google Safe Browsing
(GSB), which is used by all major browsers like Chrome, Firefox, and

Safari - which collectively account for roughly 95% of global browser
usage as of March 2025 [19]. Because these warnings lack clarity or
actionable insight, users often ignore them, inadvertently putting
themselves at risk. This challenge is further exacerbated by the in-
creasing sophistication of phishing attacks themselves, which now
leverage advanced phishing kits and generative AI tools [55], such
as ChatGPT, to create evasive phishing attacks, which can remain
active for hours or even days before being detected [44, 45].

While limited prior work has explored the concept of contextual
phishing warnings [15, 20], existing approaches suffer from signif-
icant limitations. Some rely on manually crafted explanations based
on visual inspection of the phishing websites [48] - an approach that
is infeasible for automatic real-time deployment. Others focus solely
on URL features, offering minimal improvement over generic warn-
ings [15]. In practice, transitioning thesemethods into dynamic, real-
time systems presents several challenges. Commercial anti-phishing
tools such as GSB primarily depend on blocklists populated by au-
tomated systems (crawlers) scanning millions of URLs or by manual
user submissions fromsecuritypractitioners [33].These submissions
donot provide enough information that canhelp the tools in creating
explainable warnings [44]. For example, most blocklists simply re-
quire submission of the URL. More recently, some providers (such as
GSB) have explored fully client-side phishing detectionmethods that
operate without blocklists. However, they typically use lightweight
machine learning models, which tend to significantly underperform
compared to blocklist-based systems [49]. On the other hand, more
advanced research has introduced deep learning methods [34, 35]
that utilizewebsite screenshots for phishing detection. However, not
only are deep-learningmodels inherently "black-box" in nature, their
high computational demands and latency, often requiring several
seconds to predict a single website makes them impractical for real-
world deployment as well. While recent advancements in post-hoc
explainability techniques like LIME [53] and SHAP [36] have had
limited success in interpreting deep learning decisions, they too are
computationally intensive and produce explanations that are often
too technical or abstract for the average user to understand.

To overcome these limitations, we present PhishXplain (PXP) -
a novel framework that uses a local Large Language Model (LLM)
- LLaMA 3.2:3B to generate personalized, contextual phishing warn-
ings in real-time, without imposing significant strain on the user’s
systemresources.PXPaugmentsexistingbrowser-basedanti-phishing
tools by replacing generic alerts with rich, detailed explanations
that highlight specific suspicious elements within a flagged website.
LLMs have proven highly effective at generating human-readable
explanations, capturing nuanced patterns, and offering contextual
insights. Recent findings also suggest that LLMs perform well in
identifying phishing related features directly fromawebsite’s source
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code [22, 32]. To further improve user comprehension of the warn-
ings provided by PXP, each warning includes a screenshot of the
flaggedwebsite with annotated highlights of the suspicious features,
serving as visual cues. PXP operates by analyzing client-side web-
site source code to detect user-visible phishing indicators, guided
by a custom-developed lookup table and carefully tuned prompt-
engineering strategies. This enables fast, real-time generation of
meaningful explanations, typically within five seconds. In our eval-
uation, PXP successfully generated warnings for approximately 94%
of phishing websites encountered and accurately identified suspi-
cious features with an accuracy of 96%, only missing websites that
relied exclusively on backend evasions (such as OAuth redirection
flows or API-layer abuse) without any user-facing indicators. In
these cases, PXP did not explain any suspicious elements visible on
the front end. It is important to note that while PXP does not directly
improve the underlying detection accuracy of anti-phishing tools,
it plays a critical role by clearly highlighting malicious elements
and explaining why they are risky, which in turn can help users
internalize phishing patterns and cues.

To assess the effectiveness of PhishXplain’s explainablewarnings,
we conducted a controlled user study on Prolific with 150 partic-
ipants, evenly split into two groups. One group received PhishX-
plain’s contextual, explainablewarnings, while the otherwas shown
generic Google Safe Browsing warnings. After viewing their re-
spective warnings, participants were asked to evaluate a series of
websites presented without any warnings. We found that explain-
able warnings not only increased users’ immediate compliance with
the warnings but also significantly enhanced their ability to detect
phishing websites independently in subsequent tasks, with the im-
provement being especially notable among participants with lower
initial technical proficiency. Furthermore, participants who received
the explainable warnings also identified more accurate suspicious
features in the website. Finally, they also report higher satisfaction
and felt more confident in their ability to identify phishing attempts,
compared to those who encountered generic GSB warnings.

The primary contributions of our work are as follows:

(1) We implement the first real-time, on-device approach to gen-
erating contextual phishing warnings (PhishXplain) that en-
sures user privacy and replaces generic phishing warnings
in order to provide users with more actionable information.

(2) Using prompt-engineer and custom lookup tables, we pro-
vide an optimized implementation that demonstrates a prac-
tical, lightweight LLM deployment that has minimal re-
source requirements and can even run on average consumer-
grade hardware.

(3) We conducted a controlled user study with 150 participants,
showing that our contextualwarnings significantly enhance
phishing detection and user confidence, particularly among
users who have low proficiency in cybersecurity.

2 RELATEDWORK
Phishing is a socio-technical threat, and its success often hinges
on human behavior rather than technical vulnerabilities [62]. De-
spite browsers iteratively improving SSL and site safety warnings,
Akhawe and Felt [7] found that users often ignore such warnings,

Figure 1: The generic phishing warning shown by Google
Safe Browsing with no contextual information

perceiving them as either too intrusive or too vague to be mean-
ingful, findings which were later corroborated by various other
literature [5, 11, 29]. This challenge is compounded by the fact that
most phishing warnings offer little or no explanation of as towhy
a website is dangerous. Alsharnouby et al. [8] argue that this lack of
context reduces user motivation to learn and fosters over-reliance
on automated tools. These findings alignwith a broader concern that
users are insufficiently supported in understanding and adapting to
phishing risks, especially for evasive threats,which can take hours, if
not days, for anti-phishing tools to detect [44]. In enterprise settings,
security awareness training is typically delivered through videos,
documents, or annual workshops. Kirlappos and Sasse [30] note that
such compliance-driven training is often outdated, lacks practical
exercises, and is scheduled too infrequently, leading to disengage-
ment and minimal behavior change, a finding also corroborated
later by Ho et al. [23]. Puhakainen and Siponen [51] further argue
that these approaches lack grounding in behavioral science and are
rarely evaluated for efficacy. These limitations have led to calls for
phishing education frameworks that are not only engaging but also
contextual, explainable, and reflective of real-world threats [10].
Some anti-phishing models [15, 48] in the recent past have tried
simple rule-based explanations (for example, “This site is blocked
because its URL is similar to paypal.com”), but creating a compre-
hensive rule set for all phishing scenarios is difficult. Moreover,
modern phishing detectors often use machine learning classifiers
that consider dozens of features (URL patterns, page content, sender
reputation, etc.), which are not straightforward to communicate.
To bridge this gap, researchers have explored explainable AI (XAI)
techniques such as LIME and SHAP, which aim to identify the input
features - such as words, tokens, or structural elements—that most
influenced a model’s prediction [20, 58]. While these methods can
offer insights into model behavior, they are typically designed for
post-hoc analysis and model debugging rather than real-time, user
facing explanations, and are also technically expensive. Our work
addresses these limitations by introducing a system that utilizes the
natural language generation capabilities of large language models
to provide dynamic, explainable warnings with feature-focused nar-
ratives that can operate in real time using limited system resources.
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Figure 2: The PhishXplain framework

3 FRAMEWORK
Figure 3 illustrates a warning generated by PhishXplain (PXP). The
warning contains two main components: (1) a screenshot of the
flagged website and (2) a descriptive list highlighting up to four ma-
licious features identified on the webpage. Each identified feature
includes an explanation tailored specifically to the content of the
analyzed website, outlining each malicious feature and why it is
suspicious. These features are visually color-coded andmarkedwith
bounding boxes on the website screenshot for better user compre-
hension. Figure 2 provides a general overview of our framework
towards generating these warnings in real-time. PXP functions as
an additional layer of protection, activating after an initial phishing
detection by the default anti-phishing tool (such as GSB). A key
motivation behind the design and optimization of PXPwas to ensure
that it could be seamlessly deployed on real user systems, providing
meaningful phishing warnings during everyday web usage. In the
following section, we begin by detailing the functionality each of
the individual modules of our framework.

3.1 URL and Source Code Capture
We begin by capturing both the URL and the fully rendered client-
side source code after the webpage has finished loading in the user’s
browser. To achieve this, we inject a lightweight script that accesses
the browser’s in-memory DOM once the page is fully rendered. This
approach ensures that we capture the version of the webpage as
seen by the user, including all dynamically loaded content - such
as asynchronous resources, and third-party scripts. The capture is
triggered only after the window.onload event fires and the network
remains idle for at least 500 milliseconds, ensuring the inclusion of
any late-loading components. We also log the canonicalized URL
after all redirections have occurred.

3.2 Parsing the source-code
Toprepare thewebsite source code forLLM-basedanalysis,we imple-
ment a preprocessing step that parses the HTML and programmati-
callywraps all user-facing elements that are commonlymanipulated
in phishing attacks. Specifically, we extract and isolate ten tags cat-
egories:<p>, <ol>, <h*>, <a>, <iframe>, <ul>, <form>, <button>,
<li>, and <input>. These tags were selected based on prior empiri-
cal analysis of phishing site structures, particularly the work by Roy
et al. [54], which identifies these elements as frequently weaponized

in phishing campaigns to deceive users or capture input. Each of
the extracted elements is then encapsulated using uniquely indexed
textual delimiters of the form [ELEMENT X START] and [ELEMENT
X END], where 𝑋 ∈ {1,2,3, ...,𝑛} and 𝑛 represents the total number
of identified front-end components. These delimiters are inserted
directly into the source code to clearly define element boundaries. In
cases where multiple identical tags are nested (e.g., a <p> tag within
another<p>), theparser defaults to encapsulatingonly theoutermost
instance to preserve semantic grouping and avoid redundancy. By
marking each tagwith clear delimiters, we can explicitly instruct the
LLM to identify the problematic malicious tags from the source code
withminimal ambiguity. Figure 4 illustrates an example of how a <p>
tag is encapsulated. On the other hand, the URL is always assigned
ELEMENT 0 and appended at the start of the source code.

Figure 4: A <p> tag encapsulated by an identifier. Note the
URL is appended at the start as ELEMENT 0. The URL is visible
since it is a placeholder URL.

3.3 Feature Extraction
The parsed source-code is then passed to the LLM through a pair
of structured prompts designed to extract information about mali-
cious features present in thewebsite’s source. Most evasive phishing
attacks are engineered to bypass anti-phishing crawlers, enabling
them to stay online for extended periods. While this often involves
sophisticated manipulations on the backend source-code, attack-
ers are ultimately constrained by the need to display a limited set
of deceptive cues to the user to convince them to share their cre-
dentials [65]. These include tactics such as deception, urgency, and
trust exploitation by introducing spelling errors, spoofed logos, or
misleading links. However, prompting an LLM to identify these
cues introduces two key challenges. Firstly, LLMs, especially smaller
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Figure 3: Example of PhishXplain’s explainable blocklisting warning page showcasing contextual details about suspicious
features present in the detected Facebook phishing page.

models, are known for their nondeterministic behavior and halluci-
nations [18, 39]. This can lead to the identification of inconsistent or
even fabricated features, varying across multiple executions, even
for the samewebsite. Secondly, such variability undermines the stan-
dardization of extracted features and makes systematic evaluation
difficult. To address these issues, we designed a two-prompt architec-
ture that references a predefined lookup table of phishing indicators,
ensuring that the model produces standardized warning outputs.
Lookup-table: The Lookup table is a set of 26 common phishing
features that are frequently visible to users when visiting a phish-
ing website. The table consists of two columns - Feature Name and
Template text. For a particular feature, the Template text provides
a sentence skeleton with multiple empty points where the LLM can
insert the relevant information component specific to the phishing
website it is currently evaluating. For example, if a feature is "Spelling
errorsand typos", thecorresponding template text is "Thewebsitehas
typos such as “[fill here]” and “[fill here]”. Typos in a website which
is asking you for information often indicate a phishing attempt". The
model is free to fill the blank spaces with recognized artifacts. To
develop this lookuptable,weselecteda randomsampleof1,000phish-
ingwebsites shared on PhishTank [3] inNovember 2023. Two coders
manually evaluated these websites, snowballing newer features as
they found them, coming up with the set of 26 features. Coder 1 and
Coder 2 are both academic researchers, focusing on web security,
phishing and LLMs. Both also designed the template text. The code-
book is available here:https://github.com/SayakSR/PhishXplain.
We found that 892 websites contained three or fewer features, with
998 websites containing four or fewer features. We will publicly
release the full set of coded feature labels and templates alongside
our dataset, which can help researchers better understand which
user-facing cuesmost commonly appear in phishingwebsites. Based
on this distribution, we configured the framework to generate amax-
imum of four features per warning, ensuring that the majority of
phishing websites could be fully represented. The prompts provided

to the LLMs to generate the warnings, which are detailed in the
next paragraph, instruct the LLM to consult with the lookup table
to identify the features and the template text.
PromptDesignandMotivation: Inourpipeline,weutilize twospe-
cialized prompts to ensure the LLM delivers controlled and context-
rich explanations. The first prompt focuses on identifying the ma-
licious HTML tags (elements) and mapping them to a finite set of
phishing features by consulting the lookup table. Then the identified
malicious elements are hydrated with their respective encapsulated
source code, and provide to the second prompt which pinpoints spe-
cific suspicious artifacts from the code snippet and inserts them as
artifacts in the template text. Figures 5 and 6 illustrate the prompts. It
is worth noting that Prompt 2 is invoked as many times as there are
malicious features. By limiting the model’s output to a JSON object,
we avoid freeform or speculative responses [31], ensuring concise
and predictable mappings between the webpage’s source code and
our predefined feature set.

3.4 Generating the warning
Themalicious source code snippets corresponding to each identified
feature (from Prompt 1) are then identified in the original source
code and modified to insert a bounding box around them. This is
implemented by injecting aCSS class that applies a colored outline to
the identified code snippet. The website is then re-rendered to show
the generated bounding box. Figure 7 illustrates this in action, where
the injected styling highlights the phishing content, and Figure 7 in
the Appendix shows an example where of the source code where
the highlighting codeblock is inserted.

A screenshot of the annotated webpage is captured using the
html2image library and sent to the browser along with the feature
metadata, which assembles them into a user-friendly warning inter-
face presented to the user as previously shown in Figure 3.

https://github.com/SayakSR/PhishXplain
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Figure 5: The first prompt to extract features from the source
code

Figure 6: The second prompt to insert artifacts into the
template text

Figure 7: The originalwebsite renrenderedwith themalicious
feature highlighted

3.5 Client-side application
In the previous sections, we described how each component of our
framework works in sequence to produce an explainable phishing
warning. In this section, we discuss how the PhishXplain (PXP) ap-
plication runs on an end-user’s system. It has two modules: (1) a
background service that loads the languagemodel andmanages data
parsing and warning generation and (2) a lightweight Chromium
extension that runs in the user’s browser. The extension is respon-
sible for collecting website metadata (URL and source-code) and
sending it to the service, while also rendering the warning page in
the browser once the response is received from the service.
The service: The service acts as the core engine of the PhishXplain
framework. It is triggered when the browser extension detects that
the built-in anti-phishing tool has flagged a webpage. At that point,
the extension sends a payload containing the website’s URL and the
fully rendered source code to the service. Once received, the service
initiates the workflow described in Figure 2: the parser extracts rele-
vant information and generates prompts for the LLM,which refers to
the lookup table to produce a structured feature JSONwith artifacts.
This output is then used by the service to re-render the webpage,
overlay visual cues such as bounding boxes, and take a screenshot
for the warning interface. To efficiently run the LLM on the user’s
system, the service uses Ollama [25], a lightweight, containerized
runtime tailored for deploying large languagemodels locally. Ollama
handles resource allocation, such as CPU usage and dynamically
loading the model when needed, allowing for on-demand execution
of the LLM without perpetually keeping it in memory. To further
optimize resource consumption, we use a 4-bit quantized variant of
LLaMA 3.2:3b [6], which can be loaded dynamically in under 0.28
seconds (median) when a phishingwebsite is detected. Quantization
significantly reduces memory usage and improves token generation
speedwhile preservingmodel performance [28]. This design ensures
that PXP remains responsive and resource-efficient, even on average
consumer-grade hardware.
The browser extension: The extension remains dormant in the
backgroundandactivatesonlywhen thebrowser’sbuilt-inantiphish-
ing tool, such as GSB displays a phishing warning. To detect when
such awarning is triggered, the extension continuouslymonitors the
state of the current browser tab. It is programmed to recognize anti-
phishing warnings from five widely used providers, including GSB,
BitDefender TrafficLight [1], Norton Safe Web [63], Avast Online
Security [4], and Trend Micro Toolbar [4]. Once a phishing warning
is identified, PXP collects the URL and the fully rendered source
code of the website, including client-side dependencies, and sends
this payload to the background service. While the service processes
this data to generate the feature JSON and annotated screenshot (a
process that typically takes about four seconds), PXP temporarily
replaces the default anti-phishing warning with a custom page that
informs the user that the site has been detected as phishing and that a
detailed explanation is being generated. Thewarnings are generated
inunder 5 seconds (median). Prior research [40] has shown that users
often spend over 7 seconds reading security warnings, so this brief
loading time is unlikely to disrupt the user experience. To ensure
transparency, PXP requests explicit user consent during installation
to override the browser’s default phishing warnings. This consent
prompt also includes a screenshot of the custom warning page so
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users knowwhat to expect. For users who prefer not to overwrite
their default warnings, the extension also provides an alternative:
clicking the PXP icon at any timewill generate the explainable warn-
ingondemandwithout replacing theoriginal antiphishingalert from
the browser. Once the service completes processing, it returns the
feature JSON and annotated screenshot to the extension, which then
updates the placeholder warning with the full, explainable version.

4 EVALUATINGOUR FRAMEWORK
Since our framework is designed to provide explainable phishing
warnings in real time, we needed to evaluate our framework using
four core aspects: Cost, Speed, Privacy, and Reliability. Cost refers
to both the financial expenditure and the computational resources
required to run the framework. Speed measures the latency in gen-
erating a warning for a new website. Privacy checks whether any
user data or website content needs to be sent to third-party servers
or external APIs during inference, which can pose confidentiality
risks. Finally, Reliability captures how accurately and effectively the
model can identify and explain suspicious elements on potentially
malicious websites.
System configuration: To ensure our framework is accessible to
a wide range of users, we evaluated its performance on a system
configuration representative of an average consumer machine. For
this, we referred to PassMark’s Q3 2024 hardware survey [60], a
widely used benchmarking platform that aggregates performance
metrics from thousands of users worldwide. Based on this data, we
configured a virtual machinewith hardware specifications that were
at or below those used by 70% of PassMark users. The configuration
included an Intel Core i5-11400 2.6 GHz hexa-core processor, 16 GB
of RAM, and 100 GB of available SSD storage. For testing, we used
Ubuntu 22.04 LTS to streamline the process, althoughour framework
is fully compatible with Windows 10 and later (using WSL2 [41]).
We evaluated the framework’s performance on 100 live phishing
websites sourced from PhishTank. To minimize the risk of false pos-
itives, we selected only those entries that had been reviewed and
confirmed as malicious by the PhishTank community.
Model selection: It is worth noting that, aside from generating
the warning artifacts, the other components of the service have pre-
dictable costs and consistent speed. For instance, capturing the URL
and source code (Section 3.1) primarily depends on the website’s
loading time, which is an external factor outside of the framework’s
control. Meanwhile, consulting the lookup table, mapping features
(Section 3.3), and re-rendering the website with bounding boxes to
generate the final warning page 3.4 should all incur minimal over-
head. Since the generation of warning artifacts relies entirely on
an LLM, selecting the right model required balancing all four key
factors: cost, speed, privacy and reliability. Commercial LLMs such
as ChatGPT, which are accessible via APIs, offer negligible system
resource demands for the user. However, they incur a financial cost
due to usage-based API pricing [46], which makes large-scale de-
ployment challenging. In contrast, open-source models like LLaMA
3.3 can be run locally but come with significant system resource
requirements from acquiring and running high-endGPUs, and is not
practical to be run on CPUs. Also from a privacy perspective, local
deployment offers a clear advantage. Because our framework runs
on the user’s machine and handles URLs flagged by the browser’s

anti-phishing tool, it inherently processes parts of the user’s brows-
ing history. Ideally, this sensitive data should never leave the user’s
system. However, API-based commercial models transmit prompts
to third-party servers, where they maybe used for model retraining
purposes, thus posing significant privacy risks that local models
avoid entirely. Lastly, in terms of reliability and output quality, larger
models with more parameters generally perform better [26, 61],
with more versatily in understanding and generating natural lan-
guage. However, increased parameter count also correlates with
higher memory requirements. For example, models like LLaMA
3.3:70B require multiple GPUs to achieve practical inference speeds.
In contrast, smaller variants trade performance for lower resource
demands, though often with diminishing returns.

Thus, when selecting the LLM to be used for PXP, we aimed for
the best tradeoff across all four dimensions, ensuring that the model
would be cost-effective, fast enough for interactive use, respect-
ful of user privacy, and sufficiently reliable for our application. To
do so, we primarily focus on six smaller local models: Llama 3.2:1b,
Llama 3.2:3b,Mistral:7b,Gemma2:2B, Phi3:3.8B, andPhi3:14B.When
assigned to capture complex reasoning patterns and multi-hop con-
textual relationships, smaller models can be particularly prone to
hallucinations and drifting from task-specific objectives [24]. How-
ever, prior work has also found smaller LLMs to be highly capable at
focused extraction tasks, especially when guided by well-scaffolded
prompts and constrained outputs. As previously detailed in Sec-
tion3.3, our frameworkutilizing this strengthby limiting themodel’s
role to a narrow, structured workflow: identifying up to four suspi-
cious features from a fixed lookup table and populating pre-defined
explanation templates using artifacts from the malicious code snip-
pets. We will explore the effectiveness of this method later in Sec-
tion 4.2. For the sake of comprehensiveness, we also include two
higher-end models, Gemma2:27B and Llama3.3:70B. However, since
running these twomodelswas not feasible on our baseline configura-
tion due tomemory limitations,we ran themon anotherVMwith the
same specifications, except for an increased systemmemory (96 GB
RAM) to accommodate the models’ requirements. Thus, we passed
each of the 100 live phishing websites through the PXP framework,
running each of the eight LLMs. We assessed each model on cost
(measured as peak memory usage in MB), speed (time taken in mil-
liseconds to generate the metadata), and performance (accuracy of
theextracted features).Weexcluded theprivacymetric fromthis eval-
uation, as local LLMs do not share datawith any third-party servers.

4.1 Speed andmemory costs
For each model, we compute the overall Speed as the median time
required by the model to generate the warning over 100 websites.
Since PXP is loaded dynamically byOllama each time it needs to gen-
erate a warning, the speed also factors in the time required to load.
Similarly, for memory cost, we compute themedian amount of mem-
ory (RAM) utilized by the framework when generating the warning.
The second and third columns of Table 1 highlights the performance
of the models across the speed and memory criteria for each model.

4.2 Reliability Evaluation and ScoringMetric
To evaluate the reliability of model-generated explanations, we con-
ducted a manual review of the warnings produced by each model on
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Table 1: Performance of quantized (Q4_K_M)models running locally via Ollama

Run on original configuration
Model Speed (s) Memory (GB) Reliability CFR (𝜇± SE) FMR (𝜇± SE) AA (𝜇± SE) CSA (𝜇± SE)
LLaMA 3.2:1B 1.42 1.59 7.4 0.36 ± 0.05 0.07 ± 0.01 0.87 ± 0.03 0.80 ± 0.04
LLaMA 3.2:3B 2.19 2.32 9.1 0.87 ± 0.06 0.04 ± 0.01 0.93 ± 0.03 0.88 ± 0.04
Mistral:7B 2.84 5.68 8.8 0.82 ± 0.06 0.06 ± 0.01 0.91 ± 0.03 0.85 ± 0.05
Gemma 2:2B 2.50 3.13 7.9 0.59 ± 0.05 0.09 ± 0.01 0.88 ± 0.03 0.78 ± 0.04
Phi 3:3.8B 3.35 5.90 7.5 0.45 ± 0.05 0.11 ± 0.01 0.86 ± 0.03 0.80 ± 0.05
Phi 3:14B 21.54 10.16 8.7 0.72 ± 0.06 0.05 ± 0.01 0.92 ± 0.03 0.89 ± 0.04

Configuration withmorememory
Gemma 2:27B 33.15 17.13 9.2 0.87 ± 0.06 0.05 ± 0.01 0.94 ± 0.03 0.92 ± 0.05
LLaMA 3.3:70B 59.44 75.38 9.4 0.90 ± 0.06 0.03 ± 0.01 0.95 ± 0.03 0.94 ± 0.05

100 randomly selected phishingwebsites from our dataset. For every
website–model pair, two expert coders were provided with the web-
site’s URL, its rendered screenshot, and the parsed source code. Each
model’s output was evaluated along the following four dimensions:

(1) Correct Feature Rate (CFR): The proportion of predicted
features that were actually present on the website.

CFR= # of correctly identified features
total predicted features (≤ 4)

(2) FeatureMiss Rate (FMR): The proportion of ground-truth
features (i.e., phishing cues visible to users) that were not
identified by the model.

FMR= # of ground-truth features missed
total ground-truth features (manually annotated)

(3) Artifact Accuracy (AA): Among the correctly identified
features, the proportion for which the generated artifacts
(e.g., brand names, typos, call-to-action text) were accurate
and grounded in the HTML or visual content.

AA=
# of correctly generated artifacts
# of correctly identified features

(4) Code Snippet Accuracy (CSA): The proportion of pre-
dicted features for which the corresponding HTML snippet
was correctly located. This is necessary for accurate visual
highlighting on the warning screenshot.

CSA=
# of correctly matched code snippets

total predicted features

Using these components, we compute the finalReliability Score
(on a scale from 0 to 10) as:

Reliability=10×CFR+(1−FMR)+AA+CSA
4

We provide the final score of a particular model as the median Relia-
bility scores obtained across all the 100 websites used in our ground-
truth. This composite score captures a model’s ability to correctly
detect phishing features, avoid omissions, generate grounded expla-
nations, and accurately localize suspicious elements—factors essen-
tial for producing consistent and actionable phishing warnings. An
example case study is provided in the Appendix.
Interpretation: Table 1 highlights the performance of the models
across speed, memory usage, and reliability. Note that all models
were run on the CPU as our average consumer configuration did
not include a GPU. We found LLaMA 3.2:3B to be the most bal-
anced model across all three dimensions. With a reliability score of

9.1, a modest memory footprint of 2.32GB, and a median inference
time of just 2.19 seconds, it delivers consistently strong performance
while remaining well within the resource constraints of the aver-
age consumer-grade systemwe have chosen. In contrast, LLaMA
3.2:1B, although being faster (1.42 seconds) and using less memory
(1.59 GB), achieved a significantly lower reliability score of 7.4, sug-
gesting that it consistently failed to accurately identify and explain
phishing cues. On the other hand, while other smaller models like
Mistral:7B,Gemma 2:2B, and Phi 3:3.8B provided moderate to
good reliability scores (ranging from 7.5 to 8.8), none of them outpe-
formed Llama3.2:3B, and they either consumed significantly more
memory (such as 5.9GB for Mistral or Phi3) or took significantly
longer to generate the warning. Phi 3:14B achieved a reliability
score of 8.7 but required over 10 GB of memory and had a latency of
21.54 seconds,making it impractical for real-timeusage.On the other
hand, Gemma 2:27B and Llama3.3:70B, while having slightly higher
reliability score overall (9.2 and 9.4 respectively), used significantly
morememory (17.13GB and 59.44GB respectively) and neededmuch
more time (33.15 seconds and 59.44 seconds) to generate thewarning.
Thus, based on this comparison, we chose LLaMa 3.2:3B as the final
model used for deploying PhishXplain.

4.3 Real-world feasibility
Wealso conduct a longitudinal evaluation to assess PXP’s real-world
performance in the real-world. It is important tonote thatPXPcannot
generate warnings for all phishing websites detected by the anti-
phishing tool, as somemay lack user-facing suspicious features, such
as those involving purely backend evasions.We deployed PXP using
our average consumer configuration with Google Chrome version
132.0.6834.110 over onemonth, fromFebruary 2nd toMarch 4th, 2025.
WeusedSelenium’s [16] automationdriver todynamicallyvisitURLs
listed and verified on PhishTank during this period. For each site, we
tracked whether Google Safe Browsing (GSB) issued a detection and
whether PXP could generate a corresponding explainablewarning. If
GSBdidnotflaga site at the timeoffirst visit,we rechecked it every10
minutes until the site became inactive. Throughout the experiment,
the browser visited 8,752 URLs, of whichGSB detected 7,091. Among
those, PhishXplain successfully generated explainable warnings for
6,659 websites (∼94%). In total, PXP produced 19,024 indicators for
these warnings, with a median of 2.5 indicators per site. The system
achieved a median response time of 5.2 seconds per warning and
used approximately 2.7GB of memory. To evaluate the quality of
these warnings, we randomly sampled 500 of the detected websites,
collectively containing 1,368 indicators, andmanually assessed their
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accuracy. We found that 1,316 of these indicators (∼96%) were cor-
rectly aligned with the phishing characteristics of the websites. The
average reliability score for these indicatorswas 9.3,which surpasses
the score reported in our initial evaluation in Section 4.2 (Table 1).

5 USER STUDY
Through the previous sections of this paper, we introduced, devel-
oped, and tested PhishXplain as a lightweight, scalable tool designed
to provide contextual phishing warnings to end users. However, it
remains crucial to determine whether PXP’s warnings can improve
users’ ability to spot phishing websites. Without empirical evidence
demonstrating that users attend to, understand, and ultimately ben-
efit from contextualized explanations, any theoretical advantages
of PXP would not be beneficial in the real world. To that end, this
section presents a controlled between subjects user study comparing
PhishXplain’s explainable warnings to traditional, generic warn-
ings. Participants evaluated a mix of phishing and benign websites,
each accompanied by either a generic or explainable warning. By
analyzing their accuracy, confidence, and perceived helpfulness of
the warnings, we investigate whether PXP’s explainability leads to
measurable improvements in phishing detection behavior. Our study
consists of two groups: Group A, where participants see PXP’s ex-
plainable warnings for four phishingwebsites, and then evaluate the
screenshots of eight websites (four phishing and four benign); and
GroupB,where participants see genericwarnings (modeled after the
standard warning from GSB, see 1) for the same four phishing web-
sites asGroypA, and also evaluate the same eightwebsites. First, par-
ticipants complete a background questionnaire designed to measure
their cybersecurity proficiency. Based on their performance, partic-
ipants are categorized into low, medium, or high proficiency levels.
This stratification enables us to explore how the effectiveness of ex-
plainable warningsmay vary across different levels of user expertise.
In the following section, we introduce the research questions that
we answer through this study and their corresponding hypotheses.
Table 3 also shows the data types collected for each survey section.

5.1 Research Questions andHypotheses
Through this user study, we answer the following four research
questions and evaluate them based on corresponding hypotheses:
RQ1: Do explainable security warnings help usersmore accu-
rately identify phishing websites compared to generic phish-
ing warnings?
We evaluate whether participants who receive explainable warnings
are better at correctly identifying both phishing and benignwebsites.

H1: Participants who view the explainable warning (Group A) will
exhibit higher overall accuracy in classifying websites than those
who view the generic warning (Group B).

RQ2: How do different warning types influence users’ confi-
dence and satisfaction with the warnings?
Weevaluate if explainablewarningsmakeparticipants feelmore con-
fident about their decisions and whether they find these warnings
more helpful overall.

H2: Participants who receive explainable warnings will report
higher confidence in their decisions than those receiving generic
warnings.
H3: Participants in the explainable warning group will rate the
warnings as being more helpful than those in the generic warning
group.

RQ3: Does user proficiency in cybersecurity affect how help-
ful or effective the warning type is?
We examine whether lower-proficiency users benefit more from
explainable warnings compared to higher-proficiency users, both
in terms of performance and perceived helpfulness.

H4:The benefit of the explainablewarningwill bemore pronounced
for lower-proficiency participants than for higher-proficiency
participants.
H5: Lower-proficiency participants will rate the explainable
warning as more helpful than higher-proficiency participants.

RQ4: Do explainable warnings improve users’ ability to rec-
ognize and articulate phishing cues?
We check whether participants in the explainable warning group
are better at identifying the specific features that make a website
look suspicious when asked to explain their reasoning.

H6: Participants in the explainable warning group will more
frequently identify correct phishing cues than those in the generic
warning group.

5.2 Study Components
Samplesizeestimationandrecruitment:Todetermine the appro-
priate sample size for our user study, we conducted a power analysis
using standard sample size estimation methods for a two-group
between-subject design. Assuming a medium effect size (𝑑 =0.50),
a significance level of 𝛼 =0.05, and a desired power of 0.80, we used
the formula 𝑁total=2×

(
𝑍1−𝛼/2+𝑍1−𝛽

𝑑

)2
. Substituting the standard Z-

scores for a two-tailed test (𝑍1−𝛼/2=1.96,𝑍1−𝛽 =0.84), the required
sample size comes out to 𝑁total=2×(5.6)2=2×31.36=62.72, or ap-
proximately 63 participants. Thus, we recruited 150 participants via
Prolific, an online crowdsourcing platformwidely used for academic
research, applying the following eligibility criteria: participants had
to be based in the United States, at least 18 years of age, and pos-
sess a minimum approval rate of 95% on prior studies. The study
lasted approximately 25 minutes, and participants received $5 upon
successful completion, which aligns with Prolific’s guidelines for
fair hourly compensation [50]. To ensure data quality, we embedded
two attention-checking questions and excluded responses from two
participants who failed to answer them correctly during the study.
We extracted the demographic data for the participants from Prolific
itself.

Cybersecurity Proficiency In RQ3, we examine how partici-
pants’ cybersecurity proficiency influences the effectiveness of ex-
plainable phishingwarnings.We do not ask users to self-report their
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technical proficiency as prior work has consistently shown that
such self-perceptions can be unreliable, with individuals frequently
overestimating their abilities [9, 37]. Instead, we adopt the Human
Aspects of Information Security Questionnaire (HAIS-Q) scaled de-
veloped by Parsons et al [47], an established questionnaire used to
assess cybersecurity awareness and secure behavior across three key
domains - knowledge, attitudes, and self-reported practices. For each
question, participants indicate their agreement on a 5-point Likert
scale from "Strongly Disagree" to "Strongly Agree" (e.g., whether it is
risky to open attachments from unknown senders). Specifically, we
adopted 11 items from the HAIS-Q questionnaire, including six from
theEmailUse subscale andfive from the InternetUse subscale, taking
inspiration from the study by Schoni et al. [57], who also determined
cybersecurity proficiency in the context of phishing threats. Based
on the correct behaviour for each question, responses were scored
from 0 (for the worst answer) to 2 (for the best answer) over 0.5-
point increments. Thus, the maximum possible in this section was
22 points. Participants also answered ninemultiple-choice questions
designed to evaluate practical phishing recognition skills, such as
identifying risky attachments and suspicious messages. Schoni et
al. [57] also influenced these questions. For eachquestion, the correct
answer was awarded 2 points, thus totaling a maximum phishing
knowledge score of 18. Thus, the maximum combined proficiency
score across the 20 questions (11 from HAIS-Q and 9 for partical
phishing knowledge) was 40. Based on the total scores received by
the participants, we assigned each of them into three proficiency
tiers inspired by Schoni et al.’swork [57]: LowProficiency: score < 29,
High Proficiency: score > 36 and Intermediate Proficiency: all others.
Phishing warnings: After completing the cybersecurity profi-
ciency questionnaire, participants were shown screenshots of four
phishing websites, each accompanied by a corresponding warn-
ing. This section marks the primary divergence in content between
Group A and Group B. Participants in Group A were presented
with explainable warnings (similar to Figure 3) that highlighted
specific malicious features detected on the website and also anno-
tated these features directly on the website screenshot (embedded
in the warning). In contrast, participants in Group B were shown
a generic Google Safe Browsing (GSB) warning (Figure 1), which
simply flagged the website as potentially deceptive without offering
any reasoning. The four phishing websites used for the warnings
were taken from PhishTank, imitating popular organizations such
as Meta, Wells Fargo and Netflix, exhibiting common deceptive pat-
terns found in phishing websites such as excessive/inappropriate
information requests, unrealistic claims, IDN homographs, third-
party hosting, etc. These websites are deliberately chosen such that,
in Group A, the explainable warnings highlight specific phishing
indicators which then appear, in various forms, within the set of four
phishing websites that participants later evaluate without any warn-
ings (See next section). These cues would not be present for Group
B participants who receive a generic warning. This design allows
us to identify whether they can generalize the knowledge shown
in the explainable warnings to new, unseen phishing websites. For
both groups, after viewing each warning, participants were asked
why they thought the website was phishing. They were allowed to
revisit the warning before submitting their answer. This encouraged
participants to actively engagewith thewarning content rather than
passively accept it, which can promote learning of the features (for

Group A participants).
Website Assessments:After viewing the phishing warnings, par-
ticipantswere asked to evaluate a set of eightwebsites, four phishing
and four benign. These websites were presented without any ac-
companying warnings, requiring participants to rely solely on their
judgment. The phishingwebsiteswere carefully selected fromPhish-
Tank and were chosen to contain malicious features similar to those
highlighted in the warning phase (for Group A). This design rein-
forces the learning objective of the explainable warnings, enabling
us to assess whether participants could transfer their understanding
of phishing cues to new, unassisted evaluations. Table 2 provides

Table 2: Malicious websites and the phishing features they
exhibit.

Website (Target) Phishing Features

Warning-1 (Meta) Suspicious URL, Grammatical errors, Sense of urgency
Warning-2 (Wells Fargo) Requests sensitive/inappropriate information, Hosted on 3rd party

domain
Warning-3 (YouTube) IDN homograph (Cyrillic URL), Requests sensitive/inappropriate

information, Unrealistic claim
Warning-4 (Adobe) Poor design, Unusual login request
Phishing-1 (Netflix) IDN homograph (Cyrillic URL), Hosted on 3rd party domain
Phishing-2 (Instagram) Suspicious URL, Sense of urgency
Phishing-3 (eBay) Suspicious URL, Unrealistic claim, Requests sensitive/inappropriate

information
Phishing-4 (Bank of Amer-
ica)

Suspicious URL, Hosted on 3rd party domain, Requests sensi-
tive/inappropriate information

a brief summary of the phishing indicators embedded in each of the
websites. Unlike some earlier phishing user studies that used obvi-
ously fake or poorly constructed designs, we intentionally excluded
such examples. Modern phishing attacks increasingly rely on pro-
fessionally crafted phishing kits, resulting in more realistic-looking
websites. Including poorly designed phishing sites would not reflect
the current threat landscape as prior work by [65] et al. has shown
that users performwell at identifying such low-effort phishing at-
tempts. After viewing each website screenshot, participants were
asked to (1) indicate whether they believed thewebsite was phishing
or benign, (2) briefly explain the reasoning behind their decision,
and (3) rate their confidence on a 5-point Likert scale ranging from
"Not at all confident" to "Extremely confident". This design allows
us to not only quantify detection accuracy but also gain insights
into participants’ decision-making processes, i.e., what features they
recognized in the website, and also assess the confidence levels as-
sociated with their judgments.
Participant Satisfaction: After the end of the study, the partici-
pants were asked to rate how helpful the warnings were in guiding
their phishing detection decisions, using a 5-point Likert scale rang-
ing from “Not at all helpful” to “Very helpful.” They were also asked
how their confidence in identifying phishing websites had changed
after viewing the warnings, with response options ranging from
“Much worse than before” to “Much better than before.” This was
to assess how participants perceived the usefulness of the security
warnings.

5.3 Analysis
In this section, we detail the analysis methods used for each hypoth-
esis and the subsequent results, organized by research question. For
each hypothesis, we begin with descriptive statistics to summarize
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Table 3: Overview of data types collected in each section of
the user study

Section (No. of Questions) Data Collected

Demographics (4) Categorical variables

Cybersecurity Proficiency (20) Likert-scale responses (HAIS-Q)
Multiple-choice answers (phishing knowledge)
Numeric proficiency score (0–40)

PhishingWarnings (4) Open-ended text responses

Website Assessments (8) Binary phishing/benign label
Open-ended justification
Confidence rating (5-point Likert scale)

Participant Satisfaction (2) Helpfulness rating (5-point Likert scale)
Confidence change (5-point Likert scale)

the key trends in the data, which is followed by inferential statistical
analysis to test for significance.
Normality and choice of tests: Before selecting appropriate statis-
tical tests for our hypotheses, we assessed the distributional proper-
ties of the key variables used in our analysis: detection accuracy (H1),
average confidence scores (H2), perceived helpfulness ratings (H3
and H6), and number of phishing features correctly identified (H4).
For each variable, we conducted a Shapiro–Wilk test to evaluate
normality within both participant groups (Group A and Group B).
Across all variables and groups, the Shapiro–Wilk tests returned
𝑝-values below 0.05, indicating significant deviation from normality.
Thus, we adopted the non-parametric Mann–Whitney U tests) for
our between-group comparisonswherever appropriate.On the other
hand, for factorial hypotheses involving multiple categorical factors
(e.g., H4 and H5), we used two-way ANOVAmodels due to their abil-
ity to test interaction effects between warning type and proficiency.
Bonferroni correction:To control for potential Type I errors, given
the number of hypotheses tested, we applied Bonferroni corrections
across families of related outcomes. For performance-related hy-
potheses (H1, H2, H3, H4), we used a corrected significance thresh-
old of 𝛼 = 0.0125. For perception-related hypotheses (H5, H6), the
threshold was set at 𝛼 =0.025. This family-wise correction ensures
that observed effects are statistically robust and not due to chance.

RQ1:Do explainablewarnings improve users’ accuracy and
efficiency in detecting phishing websites?

Website Group A (n=75) Group B (n=75)

Phishing-1 68 (90.67%) 39 (52.00%)
Phishing-2 67 (89.33%) 49 (65.33%)
Phishing-3 59 (78.67%) 41 (54.67%)
Phishing-4 67 (89.33%) 52 (69.33%)
Benign-1 64 (85.33%) 53 (70.67%)
Benign-2 67 (89.33%) 62 (82.67%)
Benign-3 33 (44.00%) 30 (40.00%)
Benign-4 58 (77.33%) 51 (68.00%)

Table 4: Absolute and percentage of participants who
correctly evaluated each of the unguided websites

ForH1, considering the eight websites where participants were
unguided (i.e., they did not see an explainable warning), we find
that participants in Group A, on average, correctly identified 6.44
websites (median=7). In contrast, participants in Group B, on aver-
age, correctly identified 5.16 websites (median=5). Table 4 illustrates

the participants’ accuracy for Group A and Group B for each of the
eight websites for which they did not receive warnings. Across the
phishing websites, Group A consistently outperformed Group B,
with notably higher correct accuracy rates on all four phishing sites.
For example, 90.67% of Group A participants correctly identified
Phishing-1, compared to only 52% for Phishing-3. Group A had an
accuracy of 78.67%, while Group B had only 54.67%. However, for the
benign websites, the accuracy rate was closer. While Group A had
slightlyhigher accuracyonBenign-1, Benign-3, andBenign-4,Group
B slightly outperformed Group A on Benign-2. This suggests that
while Group A participants showed a clear advantage in detecting
phishing attempts, both groups performed similarly when recog-
nizing legitimate websites. Now, to statistically evaluate whether
explainable warnings enhanced phishing detection accuracy, we
calculated the number of correctly classified websites (out of eight)
for each of the Group A and Group B participants and ran aMann-
WhitneyU test to test for statistical significance.Overall, participants
in Group Awere significantly more likely to identify websites cor-
rectly thanparticipants inGroupB (𝑝 <0.01).Whenonly considering
the four phishing websites, this also remains true (𝑝 < 0.01); how-
ever, when considering the benign websites, the difference between
Group A and Group B was not statistically significant (𝑝 = 0.055).
This result is marginal and suggests a possible trend but is not strong
enough to confidently conclude that explainable warnings were
more beneficial to GroupA participants correctly identifying benign
websites than Group B participants who received generic warnings.

Explainable warnings significantly improve the detection
accuracy for phishing websites but do not necessarily prevent
the user from misidentifying benign websites compared to
generic warnings.

RQ2: How do different warning types influence users’ con-
fidence and satisfaction with the warnings?

ForH2, to assess whether explainable warnings increased the
users’ confidence, we computed the average confidence score (on a
5-point Likert scale) across all evaluations per participant and again
compared the values using the Mann-Whitney U test. Participants
in the explainable group reported significantly higher confidence
(average = 3.83) than those in the generic group (average = 2.77),
with 𝑝 <0.015. ForH3, to evaluate perceived helpfulness, we com-
pared participants’ post-survey ratings using the Mann-Whitney
U test. For Group A, 49 participants found the explainable warning
“Very helpful," whereas 24 participants found it “Somewhat helpful."
Only 1 participant found the warnings “not very helpful." On the
other hand, only 7 participants found the warning “Very helpful",
with 25 finding them “somewhat helpful,” whereas 11 participants
were “Neutral." However, the remaining 32 participants found it “not
very helpful." Neither Group A or Group B participants answered
the lowest score, i.e., “Not very helpful." Explainable warnings were
rated as significantly more helpful (average = 4.64) than generic
warnings (average = 3.09), with 𝑝 < 0.01. This indicates that users
found detailed warnings to be more transparent and trustworthy.
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Participants reported higher confidence and perceived help-
fulness when warnings explained why a site was suspicious,
enhancing both trust and engagement.

RQ3: Does user proficiency affect how helpful or effective
the warning type is? Based on our scoring threshold for the 20
HAIS-Q and phishing awareness questions, we found 29 participants
(16 from A, 13 from B) who were low proficient, 84 participants who
were intermediate proficient (45 from A, and 49 from B), and 26 who
were High proficient (14 from A, and 12 from B). ForH4, we used
a two-way factorial ANOVA to evaluate whether user proficiency
moderated the effectiveness of explainable warnings. There were
significant main effects of both warning type and proficiency, and
a significant interaction (𝐹 (2,147) = 6.32, 𝑝 < 0.005). Explainable
warnings yielded the most significant gains for low-proficiency par-
ticipants, whose accuracy rose from a mean of 5.0 (generic group) to
6.8. In contrast, high-proficiency participants performed similarly
across groups (7.3 vs. 7.5). ForH5, to determine whether proficiency
influenced perceived helpfulness, we conducted another two-way
ANOVA, finding a significant interaction betweenwarning type and
proficiency group (𝐹 (2,147) = 4.10, 𝑝 = 0.015). Lower proficiency
rated explainable warnings as significantly more helpful than high-
proficiency users.

Explainable warnings disproportionately benefited low-
proficiency users, improving both performance and perceived
helpfulness and helping bridge the cybersecurity expertise gap.

RQ4: Do explainable warnings improve users’ ability to
recognize and articulate phishing cues?

To evaluate the features (cues) recognized by the participants
when viewing the warning and also when evaluating the website,
our two coders analyzed participants’ open-ended justifications us-
ing features fromour lookup table (Section 3.3) and assigned features
to each response that were correct. The coders had a Cohen’s Kappa
inter-rater agreement of 0.72, indicating substantial agreement, and
all disagreements were resolved. We first summed the distinct num-
ber of features across the four initial warning questions, i.e., where
the participants were asked to identify why a warning was being
shown for the phishingwebsite.We found that respondents inGroup
A, on average, pointed out 9.19 features (median=9), while those in
Group B pointed out 6.24 features (median=6). ForH6, we compare
the totals across the participants using a Mann-Whitney U Test, we
found that participants in Group A were significantly more likely
to identify a correct feature ( 𝑝 <0.01) after seeing the explainable
warning, compared to Group B participants who saw the generic
warningwhich did not provide themwith any details regardingwhy
the website was phishing. Then, we focus on the eight websites the
participants evaluated without any warnings. We first identify the
correct feature rate for the four phishing websites in this set and
find that Group A participants, on average, identified 7.84 features
(median=8). In contrast, Group B participants identified 5.45 features
(Median=5). Performing a Mann-Whitney U test, we again find that
respondents in Group Awere significantly more likely to identify
correct features in the unguided phishing websites than participants

in Group B ( 𝑝 < 0.01). On the other hand, we also check if partici-
pants had stated anymalicious features for the four benign websites,
considering them as them pointing out incorrect features. In this
case, we find that Group A participants, on average, marked 2.41
(median=2) features incorrectly for benign websites, while Group B
participantsmarked on average 3.23 (median=3) features incorrectly.
Performing the Mann-Whitney U test, we do not find statistical sig-
nificance (𝑝 = 0.129), suggesting that there may be a trend toward
Group B participants being more likely to mark benign elements as
suspicious, but this pattern is not strong enough to draw firm con-
clusions from. This finding aligns with our findings in RQ1, where
we see that while explainable warnings improve user accuracy in
identifying phishing websites, they do not necessarily prevent users
frommarking benign websites as phishing.

Explainable warnings improved participants’ recognition of ma-
licious features for phishing websites but did not necessarily pre-
vent them frommisidentifying such features in benign websites.

5.4 Interpretation
Our controlled user study comparing PhishXplain with generic
phishing warnings provides strong evidence that contextualized
warnings significantly improve phishing detection by end-users,
especially among those with lower cybersecurity proficiency. Par-
ticipants who received PhishXplain’s detailed warnings not only
identifiedmore phishingwebsites correctly but also reported greater
confidence in their decisions and rated the warnings as more helpful
overall. By contrast, participants who received generic warnings
often struggled to determine exactly what was suspicious about a
site, leading to lower accuracy and smaller gains in confidence. From
a proficiency standpoint, explainable warnings proved especially
beneficial for lower-proficiency participants, lifting their phishing
detection performance to nearly the same level as higher-proficiency
users. This can be because less experienced users often lack the well-
formed mental models that security-savvy individuals rely on [66]
to spot hidden cues- for instance, subtle URLmanipulations, unusual
information requests, or grammatical errors. By visually highlight-
ing these risky elements and providing contextualized rationales,
PhishXplain effectively “fills in” these missing mental models in
real time. As a result, novices learn why a site might be malicious,
and they carry that insight over to unguided websites where no
warning is present. Despite these advantages, our results show that
explainable warnings did not reduce the rate at which participants
mislabeled benign websites. However, there was also no evidence
that the warnings increased false positive detection.We assume that
since PhishXplain focuses on showcasing potentially malicious cues
for phishing websites without simultaneously reinforcing signs of
legitimacy for benign ones, users may remain uncertain when no
obvious phishing red flags are present, tending to err on the side of
caution rather than receive explicit reassurance that a site is safe.
This phenomenon of risk-averse user behavior aligns with prior
research on security prompts [38, 59], which similarly reports that
users often opt for defensive responses when uncertain.
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Table 5: Summary of the participant-level data points used
for each hypothesis.

Hyp. What is Tested Data Point (Per Participant)
H1 Detection accuracy across websites Total correct classifications (0–8)
H2 Confidence in decisions Avg. confidence rating across 8 websites

(Likert 1–5)
H3 Accuracy × Proficiency interaction Accuracy score (0–8), grouped by profi-

ciency (Low/Med/High)
H4 Recognition of phishing cues Total number of distinct features mentioned

(coded from open-ended responses)
H5 Evaluation time Avg. time taken across 8 websites (in

seconds)
H6 Perceived warning helpfulness Post-survey helpfulness rating (Likert 1–5)
H7 Helpfulness × Proficiency interaction Helpfulness rating (Likert 1–5), grouped by

proficiency

6 LIMITATIONS AND FUTUREWORK
Our user study was conducted in a controlled setting and evaluated
only the immediate impact of contextual warnings on user behavior.
While this design allowed for an initial assessment of PhishXplain’s
advantages over generic alerts, it does not fully capture how users
might respond to repeated exposure or real-life distractions in every-
day browsing. We plan to address this by conducting a longer-term
field study where participants install and use PXP continuously in
their day-to-day browsing for several weeks or months, which will
allow us to observe how sustained use and repeated exposure to ex-
plainablewarnings influence user learning, trust, and security habits
over time. Second, although PXP’s detailed cues significantly im-
proved phishing detection rates, they did not enhance participants’
accuracy when judging benign websites. This imbalance suggests a
risk that emphasizingmalicious cues alone could heighten suspicion
to the point where legitimate sites are sometimes misjudged. As a
next step, we plan to incorporate optional positive indicators for
benign sites, rather than framing them as “warnings” per se. These
cues could appear in a pop-up or extension icon, which users can
click to see the benign signals.

7 CONCLUSION
In this paper, we introduced PhishXplain (PXP), a lightweight and
scalable framework that complements anti-phishing tools by re-
placing generic phishing warnings with contextual, feature-rich
explanations regarding why a website is phishing. The framework
uses a locally hosted large language model (Llama 3.2:3B) to identify
malicious features within a website and highlight them to the user
through textual and visualmeans. Through careful prompt engineer-
ing, feature lookups, and on-device deployment, PXP can generate
and display the warnings in real-time inference very quickly. It also
uses minimal system resources and is privacy-focused, making it
suitable for practical, everydayuse, evenon average consumer-grade
hardware.

To test PXP’s efficiency,weperformeda controlleduser study. Par-
ticipants exposed to PXP’s explainable warnings were substantially
more accurate at identifyingnewphishingpages and reportedhigher
confidence in their decisions compared to thosewhowere exposed to
generic Google Safe Browsing style warnings. This effect was espe-
cially prominent in users with lower cybersecurity proficiency, sug-
gesting that PXP can positively address the knowledge gap required

to identify phishing attacks in the wild. Participants who viewed
PXP’swarningswere alsomore adept at identifying correct phishing
cues in websites and showed greater satisfaction with the overall
warning experience. Collectively, these results underscore that ex-
plaining why a site is suspicious can boost user comprehension and
preparedness against phishing threats online, thus sustaining the ne-
cessityofPhishXplain.Tohelp researchers andusers alike,we release
PhishXplain as a browser extension at https://github.com/SayakSR/
PhishXplain, licensed for academic and non-commercial use.
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SURVEYQUESTIONNAIRE
Cybersecurity Habits

(1) Please indicate your level of agreement with the following
statements (Strongly Disagree to Strongly Agree):
• It’s risky toopenanemail attachment fromanunknown

sender.
• It’s always safe to click on links in emails from people

I know.
• Nothing bad can happen if I click on a link in an email

from an unknown sender.
• I don’t openemail attachments if the sender is unknown

to me.
• If an email from an unknown sender looks interesting,

I click on a link within it.
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• I don’t always click on links in emails just because they
come from someone I know.

• It can be risky to download files on my work computer.
• Just because I canaccess awebsite atworkdoesn’tmean

it’s safe.
• If it helps me do my job, it doesn’t matter what infor-

mation I put on a website.
• I download any files onto my work computer that help

me get my job done.
• When accessing the Internet atwork, I visit anywebsite

I want.

Phishing Knowledge Assessment
(1) What is phishing?

• A. A type of malware that infects computers
• B. A deceptive advertising tactic
• C. A social engineering trick to buy products
• D. An online scam to steal sensitive information (Cor-

rect)
(2) What are the risks of phishing?

• A. Identity theft
• B. Financial loss
• C. Loss of personal data
• D. Malware infection
• E. All of the above (Correct)

(3) Which sentence would most likely appear in a phishing
email?
• “As a valued customer, we’re giving you a special dis-

count! -90% on all our offers, click here to viewmore!”
(Correct)

(4) Which file looks legitimate?
• A. paypal_account_details.exe
• B. vacation_photos.pdf.exe
• C. todays_notes.txt (Correct)
• D. bank_invoice.scr

(5) What should you do if you suspect phishing?
• A. Ignore it
• B. Ask co-workers for opinions
• C.Report it so theorganizationcan investigate (Correct)
• D. Open it to check if it looks legitimate

(6) What is common content in phishing emails?
• A. Security alert of suspicious login
• B. Ads for weight loss supplements
• C. Threats of account deactivation or legal action if

immediate action is not taken (Correct)
• D. None of the above

(7) Why is googleaccountsupportgsupport.com suspicious?
• A.The domain address should contain google.com (Cor-

rect)
• B. It should contain “no-reply”
• C. It should be a gmail.com address
• D. Capital letters are required in company names

(8) Which of the following messages is most likely to appear in
a phishing email?
• A. “Thank you for your registration! Click here to see

your account details.”

• B. “Click here to view the latest collection of our awe-
some brand!”

• C. “Your bank account password has been compro-
mised! If you don’t act fast, hackers might steal your
money! Click here to reinitialize your password!” (Cor-
rect)

• D. “We noticed some unusual activity on your account.
If this was not you, please contact us immediately.”

(9) Which of the following messages is a phishing scam tactic?
• A. “This is a notification from the Cybercrime Division

of your local police department... Pay a fine of $500
within 24 hours to avoid prosecution.” (Correct)

• B. “We kindly request you to complete your account
verification.”

• C. “You have won a vacation! Click here to claim.”
• D. “Please visit our website for new features.”

PhishingWarning Observation
For each of 4 websites:

• Carefully study the screenshot of the website
• Carefully read the warning generated by the security tool
• Briefly explain why the website was considered phishing

Website Assessment Task
For each of 8 websites:

(1) Is the website Phishing or Benign?
(2) Explain what factors influenced your decision (e.g., URL,

design, security indicators, spelling/grammar).
(3) How confident are you in your decision?

• Not at all confident
• Slightly confident
• Moderately confident
• Very confident
• Extremely confident

Post-Survey Questionnaire
(1) How effective were the security warnings in guiding your

decisions?
• Very helpful
• Somewhat helpful
• Neutral
• Not very helpful
• Not at all helpful

(2) How has your confidence in identifying phishing websites
changed?
• Much worse than before
• Slightly worse than before
• No change
• Slightly better than before
• Much better than before

7.1 Example case-study of calculating
Reliability of warning generation

. In Section 4.2, we introduced our approach to calculate the relia-
bility of the warnings generated by PhishXplain using four metrics:
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Correct Feature Rate (CFR), Feature Miss Rate (FMR) and Artifact
Accuracy (AA) and Code Snippet Accuracy (CSA), with the final
Reliability score calculated as: Using these components, we compute
the finalReliability Score (on a scale from 0 to 10) as:

Reliability=10×CFR+(1−FMR)+AA+CSA
4

Here we show an example of this calculation. Lets say PhishX-
plain returns the following features: (1) Spelling errors and typos,
(2) Requests for sensitive data, (3) Threats or penalties, and (4) Fake
countdown timers. Upon manual inspection, the coders confirmed
that the first three featureswere indeed present on thewebsite,while
the fourth was not. For the three valid features, two had correctly
inserted artifacts grounded in the source code (e.g., actual typos and
threatening messages), while one contained a hallucinated artifact.
Similarly, two out of the four predicted features had accurately iden-
tified the code snippets necessary for drawing bounding boxes on
the rendered warning screenshot.

The coders independently annotated the ground truth for this
website, which contained exactly three phishing features: spelling
errors, a sensitive data request, and a threatening message. Using
this reference, we compute the evaluation metrics as follows: the
Correct Feature Rate (CFR) is 3/4 = 0.75, since three out of four
predicted features were valid. The Feature Miss Rate (FMR) is 0, as
the model identified all ground-truth features; thus, (1−FMR)=1.0.
Artifact Accuracy (AA) is 2/3≈0.67, based on two accurate artifacts
out of three valid features. Code Snippet Accuracy (CSA) is 2/4=0.5
since only two predictions had correct HTML tag localization. The
final reliability score is calculated as the mean of the four sub-scores,
scaled to a 10-point scale:

Reliability=10× 0.75+1.0+0.67+0.5
4 =10× 2.92

4 =7.3

WEBSITES USED INUSER-STUDY
This section illustrates the 12websites that were shown to the partic-
ipants. Besides the 4websites that were accompaniedwithwarnings,
the other eight websites were shown in random order to avoid re-
cency bias.

Warning-1

Figure 8:Warning-2

Figure 9:Warning-3

Warning-4
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Phishing-1

Phishing-2

Phishing-3

Phishing-4

Benign-1

Benign-2
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Benign-3

Benign-4

Assorted components

Table 6: Participants’ Demographic characteristics by group

Variable Group A Group B
Gender
Male 29 25
Female 43 46
Non-binary 3 3
Age
18–24 10 7
25–34 30 21
35–44 12 22
45–54 12 13
55+ 11 11
Education Level
High School or Equivalent 3 10
Some College 24 22
Bachelor’s Degree 36 32
Master’s Degree 10 7
Doctorate 2 3

Code-block where themalicious feature is highlighted
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