
ar
X

iv
:2

50
5.

06
82

2v
2

 [
cs

.C
R

]
 2

8
M

ay
 2

02
5

Hunting the Ghost: Towards Automatic Mining of
IoT Hidden Services

Shuaike Dong
The Chinese University of Hong Kong

1155085891@link.cuhk.edu.hk

Siyu Shen
The Chinese University of Hong Kong

ss019@ie.cuhk.edu.hk

Zhou Li
University of California, Irvine

zhou.li@uci.edu

Kehuan Zhang
The Chinese University of Hong Kong

khzhang@ie.cuhk.edu.hk

Abstract—The Internet of Things (IoT) has been prosperously
used and profoundly changing people’s daily life. However, for
normal users, most IoT devices are smart “black boxes” listening
to their commands and providing feedbacks. Recent notorious
IoT-based attacks have shown that even IoT devices themselves
may behave normally, evil things can be happening under the
hood. Therefore, it is crucial for both normal users and security
analysts to quickly profile the behavior of an IoT device and
dig out ”open” and ”half-open” doors in it. In this paper, we
proposes IoTBolt , an automatic firmware analysis tool targeting
at finding hidden services that may be potentially harmful to
the IoT devices. Our approach uses static analysis and symbolic
execution to search and filter services that are transparent to
normal users but explicit to experienced attackers. A prototype
is built and evaluated against a dataset of IoT firmware, and The
evaluation shows our tool can find the suspicious hidden services
effectively.

I. BACKGROUND

A. Smart-Home IoT Architecture

A typical smart home consists of three parties: IoT device,
service provider and user. The normal interaction scheme is
shown in fig . Below we briefly introduce it.

B. IoT Firmware

IoT firmware is the software programmed on IoT hardware.
Since IoT products are usually embedded devices with limited
computation resources and variant architectures. IoT firmware
provides basic functionalities to interact with the hardware.
Firmware layout. There are two typical types of firmware,
firmware blobs and embedded-Linux based firmware.
Firmware blobs often come with bare-metal devices with very
monotonous capabilities and restricted resources, like smart
bulbs and smart plugs. Firmware blobs usually have various
formats due to the proprietary development process of their
vendors.

Smart Devices

Home
Router

Remote
Server

Fig. 1. A typical smart home

According to previous works [22], embedded-Linux based
firmware takes up the largest portion of off-the-shelf firmware
with a ratio of around 86%. Contents of an embedded-Linux
based firmware vary among different vendors. In most cases,
there is at least one embedded file system inside and can be
extracted by firmware unpacking tools like binwalk [14].
Firmware acquisition. There are generally three ways to
obtain a firmware.

1) Download from websites of the vendor. Several vendors
release the firmware dataset on their websites, like D-Link [5]
and TP-Link [11].

2) Extract firmware from hardware. Firmware often resides
in the storage unit of an IoT device such as flash chip. With
microcontrollers that supports flash communication protocols,
one can dump the firmware without destroying the device [9].
Apart from flash chip dumping, other hardware debugging
ports can be leveraged for the firmware extraction as well [8].

3) Network interception. Some vendors provide mobile
Apps to facilitate the control of IoT devices. Most of these
Apps can trigger the firmware upgrade by one or several
simple operations. During the firmware upgrading process,
either the meta-data (including download url, file size and
checksum, etc.) or the firmware itself will be transmitted to the
device. An experienced analyst can easily intercept the traffic
he/she needs by setting up a proxy.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.23xxx
www.ndss-symposium.org

https://arxiv.org/abs/2505.06822v2

C. Issues in IoT Development

As the development of a commercial IoT product is a long
and lasting task during which the code may experience a lot of
changes and updates from different developers. Many issues
may arise during the process and thus produce some ”hidden”
services, which may be utilized by malicious attackers. We
classify the factors to these risks as follows:

1) Leftover Debugging code. As the modern software
development is usually a complicated process including
multiple coupling components, developers widely use
debugging to locate the errors and fix them. Different
from codes released in production version, debugging
code usually involves a wider capability and higher
privilege, or some functionalities that are just for testing
usage. Apart from that, the debugging codes are usually
not directly visible to normal users but can be easily
found by experienced and purposeful attackers.

2) Unmatched interfaces and services. To facilitate nor-
mal users in using IoT devices, vendors usually provide
easy-to-use interfaces for them. For example, most do-
mestic routers provide a series of web pages leading
users to configure the product step by step. As those
pages are just interactive entrances to back-end running
programs, we call them interfaces and their targets
as services. From the perspective of a normal user,
interfaces and services should have a ”surjection” re-
lation which means each service should have at least
one interface to trigger it. However, there are cases
when multiple services running behind the scene without
any companion interfaces. Apart from that, even those
”already-matched” services may contain hidden func-
tions that are not within the scope of their interfaces,
which are exploitable by experienced attackers.

3) Backdoors. Previous work [25] has shown that back-
doors are pervasive in IoT devices. From the perspective
of vendors, backdoors are helpful for debugging usage
and testing phase during the development. However, they
can be taken advantage of by attackers and thus leading
to the compromise of the whole device or privacy
exposure.

D. IoT interfaces and services

As the medium between normal users and the environment,
IoT devices provide easy-to-use interfaces for consumers. We
categorize common interfaces as follows:

1) Web-based interfaces. Some IoT devices embed web
pages inside the firmware to help users do the config-
uration. For example, home-use routers often host the
domain “http://192.168.0.1” by a web server. People
access that domain and set up the router step by step
according to its wizard. According to our study, some
IoT cameras, also support such kind of interface.

2) Mobile-based interfaces. More and more IoT devel-
opers are releasing their companion mobile Apps with
devices. A user yields commands by operating the UI

controllers of the mobile App, the commands will be
transferred to the cloud or directly sent to the device in
the form of network packets.

3) Physical contacts. Most IoT devices provide physical
interfaces to make them consistent with previous non-
IoT devices, like traditional plugs and sockets. Some
physical actions like long-pressing a button also act as
the critical role in the binding process, like [21] shows.

4) Others. There are additional interfaces utilizing differ-
ent kinds of signals. For example, Google home [15]
responds when it hears legal voice commands. Some
smart thermometers commits certain behaviors when the
temperature has reached a threshold.

After a user request is well received by the device, it is
processed by the software components of the IoT firmware.
Due to the variety of the information involved inside requests,
different handlers are chosen to react. We refer to reactions
taken by the IoT devices as services, which are IoT
functionalities that can be aroused through IoT interfaces.

To conclude, IoT services hold the following attributes:
1) can be triggered through IoT interfaces or channels with

the equal semantics. For instance, a service of a home
router can be activated either by interacting with the web
interface or by a manually-crafted network packet.

2) can reveal information to the sender of a request.
3) can change the device status.

Hidden Service. Due to the “black box” feature of an IoT
device, we differentiate a hidden service from a normal one
by whether it is transparent to normal users. To simplify, we
assume normal users have no enough knowledge of network
security and can only operate IoT devices following specifica-
tions. For example, when given a home-use router, a normal
user only performs the following steps:

1) Plug in necessary wires and turn on the router.
2) Open the browser and access “http://192.168.0.1”, input

default credentials on the specification to authorize.
3) Follow the Setup Wizard and configure the router.
4) Connect his/her electronic devices to the WiFi and surf

the Internet.
He or she is unaware of more advanced techniques like pene-
tration tests. According to our definition, all the functionalities
provided outside the scope of “http://192.168.0.1” are hidden
from the user, and therefore are hidden services.

Note that hidden services do not certainly mean vulner-
abilities. However, the existence of hidden services brings
unnecessary redundancy to the IoT system and has negative
influence on its robustness and security.

II. SYSTEM OVERVIEW

IoTBolt aims at finding hidden services in IoT devices.
In this section, we introduce the high-level idea of our tool
and how it works in an automatic way.

Figure 2 shows the overall structure of IoTBolt . From
it we know, IoTBolt takes 4 steps analyzing each input
firmware sample.

2

1) Firmware Unpacking. IoTBolt works on Linux-
based firmware. We use the popular firmware extraction
tool binwalk to unpack the firmware. After a suc-
cessful unpacking, all files in the original file system
(squash-fs, etc.) of the firmware are restored.

2) Files Filtering. Step 1 will recover most of the files
inside a file system, including executables, libraries,
configuration files, ect.. However, not all of them are
needed by IoTBolt . IoTBolt will recognize all web-
based interface files, including those with extensions
like .html, .js, .php, .asp. IoTBolt will also identify
executables handling user requests and provide services,
which we call service binaries. The detailed algorithm
we use is illustrated in section III.

3) IoT Services Recognition. After locating service bina-
ries, IoTBolt analyzes them in a static way to find and
summarize the provided services. At this step, IoTBolt
also prepares for the symbolic execution by identifying
the start and end points.

4) Normal User View Emulation.
5) Hidden Services Detection.

Firmware
Unpacking

File
Filtering

Normal User
View

Emulation
web interface

files

service
binaries

Request
Processing

Analysis

IoT
Service

Recognition

Request
Recovery

Hidden Service
Detection

Firmware

IoT Service Detection

Fig. 2. The workflow of IoTBolt

III. FILES FILTERING

IoTBolt takes a straightforward name-based approach to
filtering the files needed.
Document Root Location. Current web servers usually hold
most of their web interface files in a certain directory, called
Document Root. Files under the Document Root directory are
what a user sees when he/she is visiting a website.

To recognize the document root directory, we count the
number of files with extensions like .html, .js, .php, .asp, .css.
The directory holding the largest quantity of web interface
files is regarded as the document root.
Service Binary Recognition. We categorize the service bi-
naries into two folds: server-like binaries and module-like
binaries. These two types mainly differentiate at whether it can
receive/send network requests/responses individually. Except

from web servers, there are some daemon programs belong to
server-like binaries. They provide other interfaces, like another
open port rather than 80 and 443, to interact with users.

Module-like binaries mainly refer to Common Gateway
Interface (CGI) files written in C programming language.
These files can interact with users but only with CGI-modules
enabled by web servers.

We recognize service binaries by counting the occurrences
of a set of network-related strings. We also perform a scanning
in /etc folder, if those service binaries are found in those
initialization files, like /init.d/rcS, we assume they have larger
chances to be service binaries and prioritize them in theana-
lyzing queue.

IV. REQUEST PROCESSING ANALYSIS

Network
Request

Request Processing
Procedures

Request-handler
Binder

Request
Receiver

Network
Response

Handler
Table

Handler 1 Handler 2 Handler 3

Fig. 3. The procedure of processing a network request

As section I-D says, services can be triggered only when
requests received at the firmware side can be successfully
processed. Figure 3 shows a normal process of handling a
network request. At first, the request is captured by a request
receiver, which is often realized by standard C functions like
recv and recvfrom. After that, the request is parsed and checked
by request processing procedures.

A request processing procedure examines network messages
by traversing a tree-like structure. At each internal node of the
tree, a certain field inside the message is checked and different
values will lead to different paths until a corresponding service
is invoked. Figure 4 shows the control flow graph of a typical
request processing procedure.

Fig. 4. The overview graph of a typical request processing procedure(by IDA)

Previous works have already proposed several approaches
to identifying request processing procedures. For example,

3

Karonte [24] leveraged five features to evaluate whether a
function implements a request processing procedure or not,
including (1) the number of basic blocks, (2) the number of
branches, (3) the number of conditional statements used in
conjunction with memory comparisons, (4) network mark, the
number of network-related strings that are used by memory
comparisons and (5) connection mark, whether the data re-
ceived from a network socket is used in memory comparisons.

Karonte’s approach has moved a big step forward to the
automatic recognition of network-related parsing functions.
However, we find there are still some limitations that are not
fixed, which are listed as below:

1) Some embedded web servers provide APIs to associates
a URL with a specific handler. For example, GoA-
head [7] provides an API called websUrlHandlerDefine
whose first parameter is a string representing the target
URL and the second parameter is a processing function
object, whenever the target URL is detected, the corre-
sponding handler will be invoked to process the request.
We refer to such functions as request-handler binders
since server itself will initiative deliver requests to their
handlers without querying a tree-like structure.

2) The heavy-weight approach to calculate the connnec-
tion mark can easily fail. According to the details of
Karonte, we find it applies symbolic-execution-based
taint analysis to trace the data flow from standard socket
APIs, like recv and recvfrom to memory comparisons
like memcmp and strcmp. This approach can work when
the program being analyzed is small-sized. However, for
a program with a large size and many indirect control
flow transitions, the approach can easily gets lost and
stops in the half way. The following code snippet shows
how boa hinders the taint analysis with the usage of a
message queue.

To fix the limitations above, we propose the following im-
provements to Karonte’s approach based on our observations,
which are summarized as below:

• Observation 1. A request-handler binder usually contains
a network-related string and a function object as parame-
ters. Apart from that, request-handler binders are usually
invoked for multiple times to bind different URLs with
their handlers.

• Strategy 1. We propose another two features, of which
the first recording whether a network-related string and
a function object appear together as the arguments of a
subroutine, the second being the number of invocations
to this subroutine.

• Observation 2. For a request processing subroutine with
a tree-like structure, the request or the object representing
the request is usually stored in function arguments or
global variables.

• Strategy 2. Instead of tracking the data flow from stan-
dard socket APIs, we determine to apply intra-procedure
taint analysis on the subroutine. IoTBolt checks if the
parameters and the global variables appearing inside the

address name handler
0x58c560 “SetMultipleActions” (0x4a6620) sub 433768
0x58c568 “GetDeviceSettings” (0x4a6634) sub 423d28
0x58c570 “GetOperationMode” (0x4a6648) sub 433f70
0x58c578
0x58c888 0x00 0x00

TABLE I
A TYPICAL FUNCTION TABLE IN MEMORY.

subroutine are finally used by memory comparisons.
Function table recognition. Apart from the tree-like structure,
function tables are often used to find corresponding handlers.
A function table is often composed of multiple compactly-
stacked items. Each item has a key(name) and a value(handler
address). Once a key matches that of a request, the correspond-
ing handler will be invoked. Table I shows a real function table
we extract from our firmware database and Listing 1 illustrates
how function table is usually used inside a function.

Algorithm 1 Abstract of function table usage
Require: url← the url to access

1: pointer ← &func table
2: while ∗pointer ̸= zero byte do
3: if ∗pointer == url then
4: handler ← ∗(pointer + 4)

CALL(handler)
5: else
6: pointer = pointer + 8
7: end if
8: end while

Locating function tables can significantly enrich the services
we can find. Based on our observations, function tables are
often accessed inside loop structures. To this end, we take the
following steps to locate them.

1) Identify loop structures inside a function body. This can
be done by angr’s built-in analysis modules.

2) Partially symbolic-execute the loop until an ending (usu-
ally byte zero) is encountered. Collect all memory addresses
accessed during the execution and store them into a list
[addr1, addr2, ..., addrn].

3) Generally, the collected memory addresses are those
pointing to name strings, therefore, we calculate the stride
between addri and addri+1 and get a second address list
[addr1 + stride/2, addr2 + stride/2, ..., addrn + stride/2]

4) For each address inside the second address list, we
match the disassembly code at that address against the built-
in function prologues of angr. A successful match implies an
identification of a function table item, and we finally obtain a
function table containing multiple jumping targets.

V. IOT SERVICES RECOGNITION

Services are the most critical part of an IoT device due to
their usability. In this section, we introduce how IoTBolt

4

recognize the services within a firmware. Note that the “ser-
vice” in our paper emphasizes on its availability, not the
concrete behaviors that can benefit people’s daily lives, like
“playing a song” and “turning on the light”.

A. Service Categorization

Referring to attributes of services listed in section IV, we
summarize the services into four categories:
persistent output. One of the main capabilities of IoT devices
is to feed back users with information they have asked for.
After manually analyzing multiple firmwares from different
vendors, we conclude three strategies that are commonly used
in network-related binaries.

1) For Common Gateway Interface (CGI) files, information
is directly output by standard output functions, like printf
and puts in C programming language, echo in Linux
bash.

2) For non-CGI files, especially web server binaries, infor-
mation is usually yielded to files using stream output
functions , like fprintf and fputs. Whether the user can
access the information is determined by the authentica-
tion and authorization settings of that binary.

3) Some developers leverage third-party libraries to de-
liver data of different formats from plain HTML, like
Extensible Markup Language (XML) and JavaScript
Object Notation (JSON). For example, the web server
file goahead in a D-Link firmware1widely uses functions
from library libmxml.so to get/set values inside a XML
object.

system command execution. Since a firmware contains mul-
tiple binaries with different capabilities, there are often cases
when a user’s request can only be fulfilled by executing
another binary. Apart from that, Linux provides a lot of
easy-to-use but powerful commands, which are frequently-
used in IoT firmwares, like reboot, sleep and echo, etc. For
example, when a user uploads a new version of firmware to
the home router, the router will first store the new firmware
in a temporary area and changes the bootloader settings. After
that, a system(”reboot”) will be executed to make the device
reboot and load the newer firmware.

According to our observation, the most commonly-used
system command execution APIs are system and exec function
family, including execle, execv, etc.
non-volatile storage operation. Non-volatile storage is perva-
sively used in IoT devices due to its small size and low power
consumption [13]. As the physical carrier of firmware itself,
non-volatile storage is often used for device configuration
and user personalization [1]. Developers can also control the
non-volatile storage with the help of non-volatile memory
libraries(libnvram.so, etc.) like operating a normal key-value
storage. Different from a normal key-value storage, the updates
is stored globally and can be shared among different binaries.
network activities. We conclude two scenarios when IoT
devices create network activities. (1) Network activities be-

1DLink DIR823G V1.0.2B05 20181207

service category APIs library needed

persistent output

printf, printf s, puts

C standard library
fprintf, fprintf s, fputs

fopen, fopen64
open, open64

system command
execution

system, execl, execle, execlp
execv, execve, execvp, popen

nonvolatile storage
operation

nvram set, nvram update
apmib set, apmib update libnvram.so/apmib.so

network activities bind, connect, SSL connect
SSL read, SSL write

C standard library;
libssl.so

TABLE II
TYPICAL APIS OF FOUR IOT SERVICES

tween IoT devices and remote servers. Due to the restricted
resources of an IoT device, some of its functionalities can only
be accomplished with the help of remote servers. For example,
a smart assistant like Google Home and Amazon Alexa
have to interact with remote servers to answer users’ various
questions. (2) Network activities between IoT devices and
terminal users. One typical case is network cameras with
real time streaming protocol(RTSP) supported . When the user
accesses the RTSP channel of the camera, the camera will start
sending RTSP packets continuously.

B. Service Recognition

We locate services by searching for APIs with correct
contexts, which we call end points. The selected APIs are
listed in table II. Note the API list can be extended when
some third party libraries are used in the development.
API context. Even for the same set of APIs, there is no
guarantee that the consequences of their usage are the same.
For example, although printf can output information as HTML
codes directly in CGI files, non-CGI files do not have such
feature, where printf is frequently used to yield messages
to the console, for the aim of logging and debugging. So is
stream output function fprintf [6]. Given its prototype – int
fprintf (FILE * stream, const char * format, ...);, we know the
first parameter plays a big role in determining the behavior
of fprintf. The following piece of code gives an example.
From it we see, although fprintf writes “something” to the
file stream, however, stream refers to /dev/console that
does not deliver any information to the user’s screen.
IoTBolt deals with this by considering and recovering the

context of API call sites. For printf -like functions, IoTBolt
determines whether it is an end point by the type of the
file, in our case, CGI or non-CGI. For fprintf -like functions,
IoTBolt first searches for corresponding file handling func-
tions, like open and fopen, in the vicinity of fprintf call sites.
After that, IoTBolt recovers its arguments, only when the
argument filename is not the console device and the argument
access mode includes “writing” capability, will the invocation
be regarded as a legal end point.

1 __stream = fopen("/dev/console", "w");
2 fprintf(__stream,’SCRIPT NAME{%s}\n’, __s1);

Listing 1. fprintf output to console

5

API encapsulation. Another issue we consider is the encap-
sulation of APIs. According to our observations, dynamically
linked shared object libraries may introduce functions with
the same capabilities but different names from the APIs
listed in table II. For example, we found libputil.so of the
firmware D-Link DIR-505 v1.09B02 defines a function called
system, which encapsulates the API system by adding a call

to vnsprintf in the front. Two functions behave in the almost
same way but are invoked interchangeably in other binaries, as
shown in the listing 2. To fix this, IoTBolt scans the whole
file system(in the firmware) looking for dynamically linked
shared libraries used by the binary being analyzed, if there
are any function found to be the encapsulation of the APIs in
table II and are invoked inside the current binary, IoTBolt
add them to the end points list.

1 int _system(char* param_1, char* param_2)
2 {
3 char arr[520];
4 int var = vsprintf(arr, param_1, param_2);
5 system(arr);
6 return Var;
7 }

Listing 2. fprintf output to console

VI. REQUESTS RECOVERY BY SYMBOLIC EXECUTION

After identifying services inside a binary, IoTBolt tries
to recover the network requests that can trigger them. In this
section, we describe the challenges we met in recovering the
requests and how we overcome them.
Challenge 1. Determine start points of symbolic execution.
As a popular software testing approach, symbolic execution
engine needs to specify an entry point to start the simulation.
By default for a C-language program, the main function will be
set as the entry point. However, for a lot of complex binaries
like web servers, main function is not the optimal solution,
since there are a lot of initialization and pre-processing tasks
within the main function which can be the burden to the
symbolic execution.
Solution 1. The intuition to solve challenge 1. is that request
processing subroutine is the most important in recovering the
request. If a request can trigger the service along a certain
path, the request processing subroutine must be on that path
as well.

Following this, we first generate a call graph for the whole
binary. For each end point collected as the section V shows,
we perform a backward tracing from it until a function with
no predecessors is found. Among all functions in the trace,
we select the one holding the highest probability of being the
request processing subroutine, and take it as the start point for
that end point.
Challenge 2. State explosion during symbolic execution.
State explosion has been a long-term challenge when applying
symbolic execution to practical projects [17]. For network-
related binaries, the issue becomes obvious due to the exten-
sive existence of loop-like structures and deep function call
traces.

%dskto think about why our work is more difficult
Solution 2. Our high-level idea of solving challenge 2. is to
leverage static analysis to guide the symbolic execution. To be
specific, we statically generate a set of chopped control flow
graphs for each pair of start point and end point. The graphs
are used to guide the system in avoiding unnecessary and
unrelated paths during the symbolic execution. The detailed
algorithm is introduced in section VI. Apart from that, we
take the strategy of high-level constraints recording. On one
hand, this strategy helps the symbolic execution engine bypass
functions that have no or little impacts on request recovery,
on the other hand, provide security analysts with clearer
information about the request contents rather than byte- or
bit-level memory constraints.

A. Multi-stage Chopped Control Flow Graphs

As the aim of symbolic execution engine is to rapidly
explore the paths from a start point to an end point and recover
the critical information inside the request body that leads to
it, strategies should be taken to guide the symbolic engine
to avoid unrelated paths. To achieve this, we leverages static
analysis to generate multi-stage chopped control flow graphs
before running the symbolic execution.

We referenced the concept of “chopped CFG” proposed by
Brumley et al. [18]. To reduce the overhead of chopped CFG
generation, we take advantage of function-level backward trace
mentioned in Solution 1. To be specific, given one pair of
start point and end point, instead of calculating chopped CFGs
from the whole binary, we decompose the task into multiple
sub-tasks. That is to say, for each caller and callee along the
backward trace, we set the caller’s address as the start point
and the callee’s call site as the end point, then calculate the
sub-chopped-CFG of them. After iterating the whole trace, we
compose all sub-chopped-CFGs to get the multi-stage chopped
CFG. Taking advantage of the backward trace significantly
reduce the time spending on getting chopped CFGs.

During the symbolic execution, the current symbolic state
will be checked against the multi-stage chopped CFG at each
step. If the basic block being accessed by the current state
is inside its basic block set, we assume the state is moving
towards the target end point in the right direction, otherwise,
the state will be dropped for the sake of appropriate memory
cost. Listing 2 shows the detailed algorithm.

B. High-level Constraints Recording

Due to the exploration scheme mentioned in section VI-A,
IoTBolt limits its symbolic execution to codes that directly
deals with request parsing and service triggering. This can not
fully simulates the running of a real-world network-related
binary. For instance, a web server usually does some initial-
ization work during its start up, like reading configurations
from local file system and setting up necessary environment
variables. Due to such “tedious” jobs are usually not included
inside the selected code paths for IoTBolt , the symbolic
solver is prone to fail in determining the possible values when
the constraints contain those unknown values.

6

Algorithm 2 The Algorithm of generating multi-stage
chopped CFGs
Require:

1: endpoint: the service end point;
2: callgraph: the call graph of a function;
3: cfg: the control flow graph of the whole binary
4: function BACKWARDTRACE(endpoint, callgraph)
5: get the function involving the endpoint
6: func← endpoint.function
7: traces ← DFS(endpoint) //Use Depth-First-Search

to find all function traces to endpoint
8: return traces
9: end function

10: function GENCHOPPEDCFG(traces)
11: addrs← []
12: for trace in traces do
13: for i = 0; i < trace.length− 1; i++ do
14: chopped← DFS(tracei, tracei+1)
15: addrs = addrs+ chopped
16: end for
17: end for
18: return addrs
19: end function

Another consideration is the external functions and unre-
lated functions along the code path. On one hand, diving
into these functions might significantly increase the time and
memory cost of the symbolic execution, on the other hand,
these functions can have influence on the further execution of
a normal program.

To fix the issues above, we take the strategy of high-level
constraints recording. The strategy includes two aspects:

First, IoTBolt provides an int-type user-controlled param-
eter called step-depth. This parameter decides whether the
symbolic execution engine should step into a function and by
default it is set to zero for the sake of high efficiency. For a
function to be bypassed , IoTBolt will assign a symbolic
variable to the register containing the return value of that
function. All these symbolic variables will participate in the
following symbolic execution. Using this approach, on one
hand, we ignore the internal details of a function so that
the chance of getting stuck in “local” subroutines can be
significantly reduced, on the other hand, provides a high-level
abstract of data flow for the further execution by symbolizing
the return value of that function. The user-controlled parameter
can be tuned when needed, for example, analyzing small-sized
binaries with not-too-many branches.

For function arguments, we only symbolize the arguments
of the start point function. The reason comes from the obser-
vation that for a network-related binary, requests or request-
like objects are more frequently “read” (compared with certain
keywords/values) than “written” by a function. In that case,
bypassing a certain function usually does not hinder us from
recovering critical information of a request, like its keywords
and URLs.

Second, we create a tree data structure recording high-level
constraints along a certain path. The motivation is that angr’s
solver engine Claripy [2] and Z3 [12] back-end provide
byte- or bit-level constraints, which are hard for analysts to
understand [16].For example, the code in Listing 5 produces
31 constraints at 0x46e534, among which there are tedious
descriptions of certain memory locations like Listing 3 shows.

1 <Bool !(!(!(48 <= mem_fff00002_39_8{
UNINITIALIZED})||(!(mem_fff00002_39_8{
UNINITIALIZED}[5:0] <= 57)||!(
mem_fff00002_39_8{UNINITIALIZED}[7:6] ==
0)))||(!(num_bytes_38_32 == 0x1)||(!(

mem_fff00001_37_8{UNINITIALIZED}[7:6] ==
0)||... (mem_fff00002_39_8{

UNINITIALIZED}[5:0] <= 57) ||(!(
mem_fff00001_37_8{UNINITIALIZED}[5:0] <=
57)||!(48 <= mem_fff00001_37_8{

UNINITIALIZED})))))))))))))))))))>

Listing 3. An example of a tedious constraints by angr symbolic execution
engine

The constraints generated by angr’s symbolic execution are
hard to understand by analysts. To supplement its constraint
representation, we record the critical high-level semantics
along a certain code path and restore the dependencies among
high-level constraints. The approach works in three steps:

1) During the symbolic execution at each basic block,
IoTBolt maintains a set of symbolic variables. If a symbolic
variable is generated by bypassing the function as previously
mentioned, its arguments will also be recorded. In Listing 5,
we show a real example from boa2. The code has been
manually recovered to C language from the disassembly.

2) When a branch instruction (jz and jnz in x86, bez and
bnez in MIPS, etc.) is hit, there are usually two successor
states generated, one following the “True” branch and the other
taking the “False” branch. We select the constraints from two
states that own the same set of variables and totally-opposite
operations (like “==” and “!=”), recovered the arguments
and record them. In the case below, they are strcmp(nptr,
“0”)==0 and strcmp(nptr, “0”)!=0.

3) When the symbolic engine has reached the end point,
we iterate all the basic blocks in its access history, collect
all the high-level constraints and construct the constraint
dependency tree. The final tree structure can clearly show the
data dependency along a certain code path, which is shown in
figure 5.

Although angr does not record dependencies between
constraints explicitly, we restore them by two means – on
one hand, the recovered arguments of a function call main-
tained an implicit connection of two constraints, shown by
the edge between node “0x46e450:websGetVar” and node
“0x46e534:strcmp == 0” in Figure 5, on the other hand,
during the symbolic execution, we collect the current address
of a symbolic state when a new constraint is generated and
therefore maintains a mapping from constraints to their code
locations. When constructing the constraint dependency tree,

2DLink DIR-619L B1 FW206WWb01 f58h

7

if two basic blocks are connected in the control flow graph,
the constraint of the successor node will be dependent on that
of the predecessor node.

1 char* __nptr = (char*)websGetVar(param_1, "
start_time");

2 char* __nptr_00 = (char*)websGetVar(param_1,
"end_time");

3 int iVar5 = strcmp(__nptr, "0");
4 if (iVar5 == 0){
5 iVar5 = strcmp(__nptr_00, "86400");
6 if (iVar5 != 0) goto LAB_0046e540;
7 else{
8 //do something at 0x46e534
9 }

10 }

Listing 4. An example of high-level constraints recording

0x4b03bc:
“86400”

0x46e534:
strncmp_ret_259_32 == 0

0x46e450:
websGetVar

0x4b03a8:
“end_time”

0x46e514:
strncmp_ret_240_32 == 0

0x4b03b8:
“0”

0x46e418:
websGetVar

0x4b039c:
“start_time”

Fig. 5. The high-level constraints collected by IoTBolt

VII. NORMAL USER VIEW EMULATION

For the sake of finding services that are transparent to
normal users. It is essential to realize what a normal user
sees at the client side. In this section, we illustrate the hybrid
approach of IoTBolt to do normal user view emulation.

Previous work [23] has summarized several approaches
of running web interfaces. Different from their scenario of
penetrating the firmware by web interfaces, we only care about
thoroughly collecting network requests that can be triggered by
normal users, and leave the CGI-like binaries to the symbolic
execution module of IoTBolt , and therefore, we propose
the following strategies:
Strategy 1. Local Web Server Hosting. We referenced the
idea of how to run web interfaces in [23]. After locating the
document root in the file filtering phase, IoTBolt launches a
simple web server under the document root directory using the
Express module provided by node-js [10]. With the web server,
all html and js files can be accessed. IoTBolt then takes a
DFS-based iteration approach to traverse all these interface
files and collect generated network requests.
Strategy 2. Qemu Emulation. Strategy 1 can only solve the
issue of html and js file emulation. For web interface files that
need the support of certain modules, like asp and php, we

decide to take advantage of tool Firmadyne proposed by Chen
et al. [19]. Firmadyne provides a system-level emulation given
a firmware. Using this approach, asp and php files can both run
due to the successful recovery of its web server environment.
Strategy 3. Static Analysis. Firmadyne has a limitation of
run-time successful rate due to various layouts of firmware
samples. When Firmadyne fails to emulate a firmware, we
leverage the signature-based static analysis to uncover user
requests.

VIII. EVALUATION

We evaluate IoTBolt on 3 firmware from two different
vendors, D-Link and Netgear. Two of them have been reported
as vulnerable. Our goal is to test whether we could find
security-critical issues with the help of IoTBolt .

A. D-Link DIR-619L wireless N300 Cloud Router

D-Link has a long history in home-use router development
and manufacturing. DIR-619L is a popular brand released
by D-Link in 2012. According to statistics provided by [4],
there are in total three vulnerabilities presented by previous
researchers from 2015 to 2018, whose vulnerability types are
all Exec Code.

We use the firmware of version 2.06.B01 to conduct the
evaluation. After unpacking the firmware, IoTBolt first
locates the document root path as /web with 168 asp files, 3
html files and one cgi file. Unfortunately, both the strategy 1
and strategy 2 fail to emulate the normal user view, IoTBolt
then takes the third approach – static analysis. After statically
analyzing the web interface files, IoTBolt recovers 758
requests in total, including 662 asp requests and 96 html
requests (html form request). In the table III, we show the
top 5 most-frequently invoked asp handlers and html urls by
this firmware.

ASP handlers times HTML URLs times
getInfo 170 /goform/formEasySetupWizard 8

getIndexInfo 157 /goform/formdumpeasysetup 3
firewallRule row 50 /goform/formSetEasy Wizard 2

getWizardInformation 35 /goform/formWlSiteSurvey 2
staticRouteList 32 /goform/form mydlink sign 2

TABLE III
TOP-5 MOST-WIDELY INVOKED ASP HANDLERS AND HTML URLS IN

DIR-619L

IoTBolt then runs its service recognition module and
symbolic execution engine on the filtered service binary, which
is boa in this case. The results show that all asp handlers and
HTML urls are captured by IoTBolt due to the function used
to define them websAspDefine and websFormDefine have been
recognized as request-handler binders.

1 void websAspInit(void){...
2 websFormDefine("formSetHNAP11",

formSetHNAP11);
3 websAspDefine("getInfo",getInfo);
4 websAspDefine("getIndexInfo",getIndexInfo);
5 ... }

8

6 void formSetHNAP11(char* param1){...}
7 void getInfo(char* param1){...}
8 void getIndexInfo(char* param1,char* param2,

char* param3){...}

Listing 5. The usage of websAspDefine and websFormDefine

We then analyze the results given by IoTBolt to see
if there are “hidden” services inside the firmware. To our
surprise, IoTBolt emits two alerts:

1) Accessing “/common/info.cgi”, “/version.txt” and “Dev-
Info.txt” can lead to information disclosure, some of which
are sensitive, like the WPS password of the current WiFi.

After checking the function invocation trace we find that this
hidden service is of the type “persistent output” since a call to
open with write capability(0x302) is captured by IoTBolt .

2) A function table structure is recognized at address
0x4f9014. The symbolic execution module of IoTBolt in
total recovers 21 handlers from the function table. We then
observe that this function table is looked up inside the form
handler of url “formSetHNAP11”, which is also not used by
web interface files. Our manual code analysis reveals that such
services can be utilized to set new passwords or DoS the
device.

B. D-Link DIR-823G Dual Band Smart Wireless Router

The firmware we use to evaluate IoTBolt is version
A1 FW102B03, IoTBolt first recognizes a request-handler
binder sub 40b1f4. Tracking the usage of that function, we
find handlers of four types of urls – “/HNAP1/*”, “/goform/*”,
“/cgi-bin/*”, “/EXCU SHELL”.

Different from DIR-619L, DIR-823G firmware can be suc-
cessfully emulated by Firmadyne. Using the automatic trig-
gering scripts, IoTBolt collects network requests generated
by a normal user when accessing the web interface.

After comparing against the services found by IoTBolt ,
we find “/EXCU SHELL” is a hidden service which can be
utilized to remotely execute arbitrary Linux commands. After
searching recent CVE reports, we found the exploitation has
been released in 2018 [3] but tested with different brands,
which also reveals the code reuse issue among D-Link devices.

C. D-Link 8010LH Wi-Fi Camera

8010LH is a recent Wi-Fi camera released by D-Link.
Different from other two samples, IoTBolt does not find
any web servers inside the firmware, however, there are three
service binaries found – “Rtk MainProc”, “StreamProxy” and
“TW Monitor”. All of them are recorded inside the system
initialization configuration file “/init.d/rcS” to launch during
the starting process.
IoTBolt found one hidden service inside “Rtk MainProc”

belonging to system command execution. Tracking the traces
output by IoTBolt , we find that inside the “main” func-
tion of “Rtk MainProc”, when the binary detects that file
.tw enable telnet exists, telnet service will be enabled by
system(“telnetd &”). We further try cracking the credentials
of root user and find the password can be cracked within two
seconds.

IoTBolt finds another hidden service inside the service
binary “StreamProxy” that creates new network activities. By
tracing back from the call to “SSL connect”, IoTBolt finally
recovers a HTTP packet that can establish an unauthenticated
RTSP channel with a remote server. The recovered HTTP
request is as the listing 6.

1 [LAN ip]:7000/command=rtsp_start_viewing
2 &rtsp_host=[remote IP]
3 &rtsp_port=[remote port]
4 &code=0

Listing 6. Recovered HTTP request

IX. RELATED WORK

Firmware analysis has become a hot topic in recent years.
Costin et al. [22] conducted a large-scale security assessment
on a dataset with more than 320,000 firmware samples. Their
results show vulnerabilities are pervasive in firmware and
should be attached with enough notice. Shoshitaishvili et
al. [25] proposed an automatic tool called Firmalice to de-
tect authentication bypass vulnerabilities in a firmware. Their
work shed a light on symbolically-executing firmware codes.
Furthermore, their group presented a binary code analysis
framework called angr in [18], which is also the back-end of
our framework. D. Chen et al. [19] presented a qemu-based
emulation tool Firmadyne. The tool can globally simulate a
firmware and well capture the behaviors of that firmware.
However, it still suffers from the success rate, due to the
variety in firmware layout. Redini et al. [24] proposed a taint-
based static analysis tool capable of finding insecure multi-
binary interactions. However, they get rid of all firmware
sample of MIPS architecture, which takes up more than 79.4%
in a recent released data set [19]. Different from their work,
our framework can well handle MIPS firmware samples.

Apart from direct analysis on firmware binaries, researchers
propose other approaches targeting at different interfaces.
J. Chen et al. [20] presented a mobile-based fuzzing tool
IoTFuzzer, which can trigger vulnerabilities of IoT devices
by mutating mobile-side messages. Similarly, Wang et al. [26]
proposed a novel approach of finding vulnerabilities inside
firmwares by analyzing companion mobile apps.

REFERENCES

[1] “Advantages of Embedded MTP Non-Volatile Memory for IoT
SoC Designs,” https://www.synopsys.com/designware-ip/technical-
bulletin/advantages-of-mtv.html.

[2] “Claripy,” https://docs.angr.io/advanced-topics/claripy.
[3] “CVE-2018-19300: Remote Command Execution Vulnerability in D-

Link DWR and DAP Routers,” https://community.greenbone.net/t/cve-
2018-19300-remote-command-execution-vulnerability-in-d-link-dwr-
and-dap-routers/1772.

[4] “Dlink Dir619l Firmware: List of security vulnerabilities,”
https://www.cvedetails.com/vulnerability-list/vendor id-899/product id-
31627/D-link-Dir-619l-Firmware.html.

[5] “DLink firmware repository,” ftp://ftp2.dlink.com/.
[6] “fprintf-C++ Reference,” http://www.cplusplus.com/reference/cstdio/fprintf/.
[7] “GoAhead Web Server,” https://www.embedthis.com/goahead/.
[8] “How to extract firmware from a device,”

https://ianhowson.com/iot/extracting-firmware/.

9

[9] “Intro to Hardward Hacking - Dumping your First Firmware,”
https://nvisium.com/blog/2019/08/07/extracting-firmware-from-iot-
devices.html.

[10] “Run JavaScript Everywhere,” https://nodejs.dev/.
[11] “TP-Link Product Support - Download Center,” https://www.tp-

link.com/us/support/download/.
[12] “Z3Prover/z3,” https://github.com/Z3Prover/z3.
[13] “Memory Options for the IoT,” https://www.synopsys.com/designware-

ip/technical-bulletin/memory-options.html, Accessed: May 2020.
[14] “ReFirmLabs/binwalk,” https://github.com/ReFirmLabs/binwalk, Ac-

cessed: May 2020.
[15] “Google Home,” https://home.google.com/welcome/, Accessed: May

2025.
[16] T. Amon and T. Loffredo, “Creating human readable path constraints

from symbolic execution,” 01 2020.
[17] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A

survey of symbolic execution techniques,” ACM Comput. Surv., vol. 51,
no. 3, 2018.

[18] D. Brumley, H. Wang, S. Jha, and D. X. Song, “Creating vulnerability
signatures using weakest preconditions,” in 20th IEEE Computer
Security Foundations Symposium, CSF 2007, 6-8 July 2007, Venice,
Italy. IEEE Computer Society, 2007, pp. 311–325. [Online]. Available:
https://doi.org/10.1109/CSF.2007.17

[19] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards
automated dynamic analysis for linux-based embedded firmware,”
in 23rd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016. The Internet Society, 2016. [Online]. Available:
https://www.ndss-symposium.org/wp-content/uploads/2017/09/towards-
automated-dynamic-analysis-linux-based-embedded-firmware.pdf

[20] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C.
Lau, M. Sun, R. Yang, and K. Zhang, “Iotfuzzer: Discovering
memory corruptions in iot through app-based fuzzing,” in 25th Annual
Network and Distributed System Security Symposium, NDSS 2018,
San Diego, California, USA, February 18-21, 2018. The Internet
Society, 2018. [Online]. Available: http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2018/02/ndss2018 01A-1 Chen paper.pdf

[21] J. Chen, C. Zuo, W. Diao, S. Dong, Q. Zhao, M. Sun, Z. Lin,
Y. Zhang, and K. Zhang, “Your iots are (not) mine: On the remote
binding between iot devices and users,” in 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN
2019, Portland, OR, USA, June 24-27, 2019. IEEE, 2019, pp.
222–233. [Online]. Available: https://doi.org/10.1109/DSN.2019.00034

[22] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A
large-scale analysis of the security of embedded firmwares,”
in Proceedings of the 23rd USENIX Security Symposium, San
Diego, CA, USA, August 20-22, 2014, K. Fu and J. Jung,
Eds. USENIX Association, 2014, pp. 95–110. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/costin

[23] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: A case study on embedded web interfaces,” in
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, AsiaCCS 2016, Xi’an, China, May 30 - June
3, 2016, X. Chen, X. Wang, and X. Huang, Eds. ACM, 2016, pp.
437–448. [Online]. Available: https://doi.org/10.1145/2897845.2897900

[24] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna, “Karonte: Detecting insecure multi-
binary interactions in embedded firmware,” in 2020 IEEE Symposium
on Security and Privacy (SP), pp. 431–448.

[25] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware,” in 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA,
February 8-11, 2015. The Internet Society, 2015. [Online]. Avail-
able: https://www.ndss-symposium.org/ndss2015/firmalice-automatic-
detection-authentication-bypass-vulnerabilities-binary-firmware

[26] X. Wang, Y. Sun, S. Nanda, and X. Wang, “Looking from the mirror:
Evaluating iot device security through mobile companion apps,” in
28th USENIX Security Symposium, USENIX Security 2019, Santa
Clara, CA, USA, August 14-16, 2019, N. Heninger and P. Traynor,
Eds. USENIX Association, 2019, pp. 1151–1167. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/wang-
xueqiang

10

