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Abstract

Coded computing is one of the techniques that can be used for privacy protection in Federated Learning. However, most of
the constructions used for coded computing work only under the assumption that the computations involved are exact, generally
restricted to special classes of functions, and require quantized inputs. This paper considers the use of Private Berrut Approximate
Coded Computing (PBACC) as a general solution to add strong but non-perfect privacy to federated learning. We derive new
adapted PBACC algorithms for centralized aggregation, secure distributed training with centralized data, and secure decentralized
training with decentralized data, thus enlarging significantly the applications of the method and the existing privacy protection tools
available for these paradigms. Particularly, PBACC can be used robustly to attain privacy guarantees in decentralized federated
learning for a variety of models. Our numerical results show that the achievable quality of different learning models (convolutional
neural networks, variational autoencoders, and Cox regression) is minimally altered by using these new computing schemes, and
that the privacy leakage can be bounded strictly to less than a fraction of one bit per participant. Additionally, the computational
cost of the encoding and decoding processes depends only of the degree of decentralization of the data.

I. INTRODUCTION

Coded computing has recently received attention as an effective solution to solve privacy and security problems in centralized
and decentralized computing systems, especially in machine learning frameworks [1]–[5]. By using computations in the coded
domain, these systems can work robustly against the presence of servers or clients that delay their responses or fail to finish a
local computing task [5] (straggler nodes), can be protected against adversarial servers that corrupt the information that the
learning algorithm uses [6], and can enforce privacy guarantees to the input and output values in multi-party computation
schemes [7], [8].

Most of the existing coded computing techniques seek exact recovery of the outputs, where one or more servers attempt to
obtain the exact value of some function from its encoded arguments. Examples of broad classes of functions that are amenable to
this requirement of perfect recovery are typically structured computing tasks, like matrix multiplications [9]–[13] or polynomial
evaluations [14]–[16]. However, these methods operate with the restriction that the input/output values must belong to a certain
finite field, and additionally suffer from a crisp threshold for recovery, since exact values can be calculated only if the number of
stragglers or malicious nodes is below a limit. Above such limit, the computing task fails and no useful value is produced [15].

These limitations are not well matched to the requirements of current distributed machine learning applications, in which
many algorithms rely on computations lacking a specific structure or a decomposition property that simplifies the task. In these
contexts, additionally, the computations often involve non-linear functions (e.g., ReLU units in a neural network [17]) not
supported by classical coded computing methods, and operate over real or complex numbers directly instead of on discrete
or quantized samples. Moreover, when computations are performed over the real numbers domain, approximate values for
both the input and output values suffice, because the algorithms are iterative and not particularly sensitive to small errors in
each round [8]. In response to this, approximate coded computing has emerged as a generalized approach to handle computing
problems over a wider class of real- and complex-valued functions and, with the relaxation consisting of performing only
approximate computations, to reduce significantly the amount of computing resources needed for completion of the task [18],
[19]. While approximate recovery introduces errors in the computed function values, this error vanishes as the number of honest
or non-straggler nodes increases, which is beneficial and practical for large distributed computing applications composed of
hundreds of nodes.

Two approaches, Berrut Approximated Coded Computing (BACC [4]) and Learning Theoretic Coded Computing (LeTCC [20])
have been proposed in the recent literature as general approximate coded computing solutions. BACC uses a barycentric
approximation to evaluate the target function and has an approximation error that decreases quadratically in the number n
of honest nodes. LeTCC, in contrast, adopts an original approach in which the encoding and decoding functions used for
computations and recovery are learned under the constraint of minimizing a loss function. As a consequence of being formulated
as an optimization problem, its approximation error is lower, it decreases as n−3.
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However, neither BACC nor LeTCC provide input or output privacy guarantees to the approximately computed values. In our
previous work [21] we extended BACC to support privacy, where the privacy metric is specified as a bound on the mutual
information between the encoded inputs and the output values. Yet, although our PBACC (Private BACC) provides input privacy
in federated learning (FL) scenarios, this is not sufficient for exploiting the advantages of generalized coded computing in other
important distributed computing systems, like in distributed learning with or in learning over decentralized private data. In this
paper, we solve the integration of PBACC in this broader setting, focusing on decentralized federated learning architectures
with privacy-preserving training and aggregation. Specifically,

• We extend and adapt PBACC to distributed computing tasks where data is decentralized, i.e., there are many data owners
who in addition wish to preserve privacy on their data. The improved PBACC scheme can therefore be used for secure
aggregation and for secure training in distributed learning systems.

• PBACC is then integrated within Convolutional Neural Networks (CNN) and Variational Auto Encoders (VAE), including
the loss function and gradient calculation. Thus, we demonstrate the usefulness of the scheme for arbitrary function
evaluations.

• Our extensive numerical experiments show that PBACC can actually be leveraged in a variety of distributed computing
cases, both for centralized and decentralized data, and for secure aggregation of models or secure training at the clients as
well. It also works efficiently for different machine learning models. The experimental tests comprise a variety of network
configurations, where the main threat comes from a fraction of honest but curious nodes.

The rest of the paper is organized as follows. Section II briefly reviews some relevant literature related to our work. Section III
describes PBACC, the selected scheme to be integrated in the distributed learning scenarios, and this is generalized in Section IV
to make it feasible and practical for different types of configurations and ML models. Section V presents in detail the different
versions of our scheme as they have to be used into centralized aggregation, decentralized aggregation, and decentralized
training. This is followed by a discussion on their privacy properties and the form that PBACC should be integrated in each
case, in Section VI. In Section VII, we describe all the tests performed for PBACC, and we discuss the results obtained. To
finish, Section VIII summarizes the main conclusions of this work, and outlines some future work.

II. RELATED WORK

Private Coded Distributed Computing (PCDC) refers to a subset of methods within the Coded Distributed Computing (CDC)
framework [22], developed to incorporate randomness to ensure a certain level of privacy and security. These methods play a
crucial role in mitigating key challenges in distributed learning [23], such as communication overhead, straggler issues, and
privacy risks [2]. Lagrange Coded Computing (LCC) [7] is a prominent method in the PCDC domain that offers a unified
approach to evaluate general multivariate polynomial functions. LCC leverages the Lagrange interpolation polynomial to
introduce redundancy in computations. It is resilient to stragglers, secure against malicious actors, and ensures input privacy
while minimizing storage, communication, and randomness overheads. Nevertheless, LCC faces significant drawbacks: (i) it
cannot handle ML activation functions, (ii) it exhibits numerical instability when working with rational numbers or in networks
with a considerable number of nodes, and (iii) it requires input quantization into a finite field.

Analog LCC (ALCC) [24] emerges as a solution to enable the application of LCC in the analog domain, but it does not
resolve the other interpolation-related limitations. It is the Berrut Approximated Coded Computing (BACC) [4] which tackles
the challenges of both LCC and ALCC in a different way. BACC enables the approximate computation of arbitrary target
functions by distributing tasks across a potentially unlimited number of nodes, maintaining a bounded approximation error.

Unfortunately, BACC lacks any privacy guarantee, this is why we developed PBACC [25]. PBACC extends BACC to include
input privacy and generalizes the scheme for configurations with multiple data owners, making it suitable for distributed learning
systems such as FL and decentralized FL. A critical feature of PBACC is its ability to compute non-linear functions while
balancing privacy, precision, and complexity.

There are alternative approaches to the already mentioned ones that were specifically designed to the machine learning field.
Some authors propose an optimal linear code for private gradient computations [26] or a secure aggregation framework that
leverages Lagrange Coding [27] that is able to break the quadratic barrier of aggregation in Federated Learning. Within the
FL field, there is an approach [28] that proposes applying Coded Federated Learning to mitigate the impact of stragglers in
Federated Learning, and another, coined as CodedFedl [29], that enables non-linear federated learning by efficiently exploiting
distributed kernel embeddings. Another work focused distributed learning is [30], which proposes Analog Secret Sharing for the
private distributed training of a machine learning model in the analog domain. More recently, [20] explores optimal strategies for
designing encoding and decoding schemes in broader machine learning settings. Specifically, the problem of designing optimal
encoding and decoding functions is treated as a learning problem, with the clear advantage that the resulting encoder/decoder
pair is adapted to the statistical distribution of the data.

However, [26] works only for gradient-type function and uses incremental redundancy that grows in harmonic progression,
i.e., it cannot be used with other machine learning models and increases significantly the length of the messages between the
master and the workers. [27] can provide privacy for aggregation at the master, not for general computations, and [28], [29]
are schemes resilient to stragglers but without privacy guarantees. Secret evaluation of polynomials over the real or complex
numbers is the focus in [30], but this work leaves out the problem of computing other types of functions.
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III. BACKGROUND: CODED-COMPUTING WITH PRIVACY-AWARE BERRUT APPROXIMATION

Our previous research work, Privacy-aware Berrut Approximated Coded Computing (PBACC) [25], has shown promising
results in FL settings using a Convolutional Neural Network (CNN) and two aggregation strategies (FedAvg and FedMedian) [21].
In this paper, we go a step further to provide a suitable solution for any decentralized machine learning scenario, which we
have coined as Generalized PBACC.

In order to include privacy in the BACC scheme, we work with the following threat model. It is assumed that from the
N total worker nodes, up to c nodes can be honest but curious. Curious nodes respect the computation protocol, so they are
practically impossible to detect, but they can exchange messages to collaboratively work to disclose information (colluding
behaviour). This implies that these nodes attempt to infer information on the private data, denoted by X, by observing the
encoded information received Y. Under this scenario, the objective is PBACC be ϵ-secure under a privacy metric denoted as
iL, i.e. that PBACC be iL ≤ ϵ.

In this background section, we firstly overview the original BACC scheme (Sect. III-A), in which we based our previous
research work to add privacy: PBACC, summarized in Sect. III-B. Finally, we describe in Sect. III-C the privacy metric iL we
have defined to assess the proposal.

A. BACC: Berrut Approximated Coded Computing

BACC works on a network of one master node (owner of the data) and N worker nodes that are in charge of computing an
objective function f : V → U over some input data X = (X0, . . . , XK−1), where U and V are vector spaces of real matrices.
BACC approximately computes f̃(X) ≈

(
f(X1), . . . , f(XK−1)

)
, with a bounded error. This scheme is numerically stable,

as it provides a result even in scenarios with high number of nodes N and K. It also resists stragglers, as the error depends
on the number of received results, and it allows to approximate any arbitrary function f under some conditions (this will be
further explained in Sect. V). The BACC protocol works in three stages or phases, as follows:

[1] Encoding and Sharing. To perform the encoding operation over the input data X, the master node computes the rational
function u : C → V, defined as

u(z) =

K−1∑
i=0

(−1)i

(z−αi)∑K−1
j=0

(−1)j

(z−αj)

Xi, (1)

for some distinct interpolation points α = (α0, . . . , αK−1) ∈ RK . It is straightforward to verify that this mapping is exact,
u(αj) = Xj , for j ∈ {0, . . . ,K − 1}. As per [4], these decoder mapping points α are selected as the Chebyshev points of first
kind

αj = Re

{
cos

(
(2j + 1)π

2K

)
+ ı sin

(
(2j + 1)π

2K

)}
,

j = 0, . . . ,K − 1

(2)

where ı =
√
−1. Then, the master node selects another set of N distinct encoder mapping points β = {β0, . . . , βN−1},

computes each share u(βj), and sends it to worker j. In [4], it is suggested to choose {zj : j = 0, . . . , N − 1} as the Chebyshev
points of second kind

βj = Re

{
cos

(
jπ

N − 1

)
+ ı sin

(
jπ

N − 1

)}
,

j = 0, . . . , N − 1.

(3)

[2] Computation and Communication. Each worker j receives the share u(βj), and computes the result vj = f
(
u(βj)

)
applying the target function f(·), for j ∈ {0, 1, . . . , N − 1}. Then, each worker j sends the result vj to the master node.

[3] Decoding. When the master collects n ≤ N results from the subset F of fastest nodes, it approximately calculates f(Xj),
for j = {0, . . . ,K − 1}, using the decoding function based on the Berrut rational interpolation

rBerrut,F (z) =

n∑
i=0

(−1)i

(z−β̃i)∑n
j=0

(−1)j

(z−β̃j)

f(u(β̃i)), (4)

where β̃i ∈ S are the evaluation points S = {cos jπ
N−1 , j ∈ F} corresponding to the n faster nodes. The result of this decoding

operation is the approximation f(Xi) ≈ rBerrut,F (αi), for i ∈ {0, . . . ,K − 1}.
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B. PBACC: Privacy-aware Berrut Approximated Coded Computing
Our objective to add privacy in the BACC scheme found a critical challenge: since it deals with rational functions, it cannot

achieve perfect information-theoretical privacy, where the adversaries cannot learn anything about the local input. Therefore, our
objective was change to achieve a bounded information leakage lower than ϵ, a target security parameter. This value represents
the maximum amount of leaked information per data point that is allowed for a fixed number of colluding semi-honest nodes
c. The PBACC protocol we proposed [25] works in three stages or phases, exactly as the BACC protocol. In fact, stage [2]
Computation and Communication and stage [3] Decoding, are the same as it was previously detailed (Sect. III-A). The changes
are only located in the first step, as follows:

[1] Encoding and Sharing To perform the encoding of the input data X, the following rational function u : C → V is
composed by the master node

u(z) =

K−1∑
i=0

(−1)i

(z−αi)∑K+T−1
j=0

(−1)j

(z−αj)

Xi +

T−1∑
i=0

(−1)K+i

(z−αK+i)∑K+T−1
j=0

(−1)j

(z−αj)

Ri

=

K+T−1∑
i=0

(−1)i

(z−αi)∑K+T−1
j=0

(−1)j

(z−αj)

Wi,

(5)

where W = (X0, . . . , XK−1, R0, . . . , RT−1) = (W0, . . . ,WK+T−1). Here, {Ri : i = 1, . . . , T − 1} are random data points
independently generated according to a Gaussian distribution N (0,

σ2
n

T ) with zero mean and variance σ2
n

T , for some distinct
points α = (α0, . . . , αK+T−1) ∈ RK+T . The data decoder mapping points of X are chosen again as Chebyshev points of first
kind

αj = Re

{
cos

(
(2j + 1)π

2K

)
+ ı sin

(
(2j + 1)π

2K

)}
, (6)

for j ∈ {0, . . . ,K − 1}, whereas the decoder mapping points of R are chosen as shifted Chebyshev points of the first kind

αj = b+Re

{
cos

(
(2j + 1)π

2T

)
+ ı sin

(
(2j + 1)π

2T

)}
, (7)

where b ∈ R, for j = 0, . . . , T − 1. By definition, it also holds that decoding is exact u(αj) = Xj , for j ∈ {0, . . . ,K − 1}.
Then, the master node selects N distinct points β = {β0, . . . , βN−1}, computes u(βj), and assigns this value to worker j. The
encoding mapping points β are chosen as the Chebyshev points of second kind

βj = Re

{
cos

(
jπ

N − 1

)
+ ı sin

(
jπ

N − 1

)}
, 0 ≤ j ≤ N − 1. (8)

C. Privacy metric
We defined a privacy metric [25] based on the worst-case achievable mutual information for the subset of colluding nodes

c. In order to bound this mutual information IL, we leverage on results about the capacity of a Multi-Input Multi-Output
(MIMO) channel under some specific power constraints [31]. From an information-theoretic perspective, a MIMO channel with
K transmitter antennas and c receiver antennas is equivalent to a signal composed of K encoded element of the input, and a
cooperative observation of this signal by the c semi-honest colluding nodes. Given this conceptualization, the encoded noise of
the scheme provides privacy, as it reduces the capacity of the channel, which implies that less information is received by the c
colluding nodes.

Assuming that the noise introduced by PBACC is Gaussian, we have therefore an Additive White Gaussian Noise (AWGN)
vector channel. This allows to bound the mutual information using known results on the capacity of a MIMO channel with
correlated noise and uniform power allocation [31],

C = sup
PX

I(Y;X) = log2 |Ic + PHΣ−1
Z H†|, (9)

where X is the private input, Y is the encoded output, P is the maximum power of each transmitter antenna, Ic the identity
matrix of order c and | · | the determinant of a matrix.

By the definition of IL (worst-case achievable for c colluding nodes), we can define it as

IL ≜ max
C

sup
PX:||Xi|≤s|,∀i∈[K]

I(Y;X), (10)

where PX is the probability density function of X, s determines the interval Ds ≜ [−s, s] from which the input random variable
can take values, and the maximization applies to any set of colluding nodes C ⊂ [N ]. As ∥Xi∥ ≤ s, the power E[∥Xi∥]2 ≤ s2.
Thus, the previous equation can be re-written as

IL ≤ max
C

sup
PX:E[∥Xi∥2]≤s2

I(Y;X). (11)
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Combining (9) and (11), and assuming the noise is uncorrelated, we can write

IL ≤ max
C

log2
∣∣IC +

s2T

σ2
n

Σ̃−1
C ΣC

∣∣, (12)

where IC is the identity matrix of size C × C, T is the number of random coefficients, σn the standard deviation of the noise,
and Σ̃C and ΣC are the covariance matrices of the encoded input and noise respectively. These matrices are defined as

Σc ≜


q0(βi1) . . . qK−1(βi1)
q0(βi2) . . . qK−1(zβ2

)
...

. . .
...

q0(βic) . . . qK−1(βic)


c×K

,

Σ̃c ≜


qK(βi1) . . . qK+T−1(βi1)
qK(βi2) . . . qK+T−1(βi2)

...
. . .

...
qK(βic) . . . qK+T−1(βic)


c×T

,

(13)

where

qi(z) =

(−1)i

(z−αi)∑K+T−1
j=0

(−1)j

(z−αj)

, (14)

and {βih} are the evaluation points of the c colluding nodes.
The final privacy metric is defined as the normalized iL = IL

K , that denotes the maximum information leakage per data
element in presence of c colluding nodes. Therefore, PBACC is ϵ-secure if iL ≤ ϵ.

IV. GENERALIZED PBACC

Since our purpose is generalizing the PBACC scheme for any computation configuration, we need to tackle two aspects: (i)
the number of input sources, and (ii) the input data. The former entails the system would operate for multiple data owners
and was already solved in our previous research work [25]. The latter entails accepting tensors instead of matrices, which is
essential to support encoding any parameter or dataset, is the one we describe in this section.

We assume a set of N nodes with their own private data tensor

X
(j)
k0k1...kL−1

=


X

(i)
0k1...kL−1

...
X

(i)
K−1k1...kL−1

 (15)

where the input data X(i) ∈ RK×k1...×kL−1 is owned by node i, for i ∈ {0, . . . , N − 1}, and L denotes the rank of the tensor.
Note that we fix k0 = K, to indicate that the scheme operates (and compresses) the first dimension of the tensor, but any other
dimension can used as well. The generalized scheme consists of three phases, that are detailed in the following.

[1] Encoding and Sharing. The client node i composes the following encoded polynomial quotient

uX(i)(z) =

K−1∑
j=0

(−1)j

(z−αj)∑K+T−1
k=0

(−1)k

(z−αk)

X
(i)
jk1...kL−1

+

T−1∑
j=0

(−1)j+K

(z−αj)∑K+T−1
k=0

(−1)j

(z−αk)

R
(i)
jk1...kL−1

,

(16)

for some distinct interpolation points associated to the the data X
(i)
k0k1...kL−1

, data decoder mapping points α = (α0, . . . , αK−1) ∈
RK , which we choose also in this case as the Chebyshev points of first kind αj = cos

(
(2j+1)π

2K

)
, and distinct noise encoder

mapping points associated to the randomness R
(i)
Tk1...kL−1

, αK , . . . , αK+T−1 ∈ R, which are selected as the shifted Chebyshev

points of first kind αK+j = b+cos
(

(2j+1)π
2T

)
. The rational function uX(i)(z) is evaluated at the set of encoder mapping points

β = {βj}, for j = 0, . . . , N − 1, using βj = cos( jπ
N−1 ), the Chebyshev points of second kind. Finally, the random coefficients

R
(i)
jk1...kL−1

are distinct tensors drawn from a Gaussian distribution N (0,
σ2
n

T ). The evaluation uX(i)(βj) is the share created
from the client node i and sent to the node j, as explained below.
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[2] Computation and communication. In this phase, node i calculates an arbitrary function f using a set of polynomial
quotient evaluations shared from the rest of nodes {uX(0)(βi), uX(1)(βi), . . . , uX(N−1)(βi)}, where uX(j)(βi) is the evaluation
of the rational function corresponding to the input X(j) owned by the j-th node, and shared with node i. The client node i
computes f

(
uX(0)(βi), uX(1)(βi), . . . , uX(N−1)(βi)

)
and sends the result to the master node.

[3] Decoding. In this last phase, the master node reconstructs the value of desired function over all the inputs using the results
obtained from the subset F of the fastest workers, computing the reconstruction function

rBerrut,F (z) =

n∑
i=0

(−1)i

(z−β̃i)∑n
j=0

(−1)j

(z−β̃j)

f
(
uX(0)(β̃i), uX(1)(β̃i), . . . ,

uX(N−1)(β̃i)
)
, (17)

where β̃i ∈ S = {cos jπ
N−1 , j ∈ F} are the evaluation points of the fastest nodes. After this, the master node finds the

approximation f
(
X

(0)
jk1...kL−1

, X(1)
jk1...kL−1

, . . . , X
(N−1)
jk1...kL−1

)
≈ rBerrut,F (αj), for all j ∈ {0, . . . ,K − 1}.

V. INTEGRATING PBACC IN DECENTRALIZED LEARNING SETTINGS

One of the criteria to classify decentralized learning scenarios is the owner of the data. When there is only one data owner
(named as master), it distributes the computation, training the machine learning model, among a set of other nodes. Otherwise,
when there are different datasets owned by different nodes, there is also a master role, adopted by one of the nodes, whereas
the others are in charge of computing the machine learning training. In this case, the master can be leveraged for some specific
tasks like obtaining the global aggregated model. According to this classification, there are three different approaches to secure
the decentralized learning settings:

1) Secure the training phase when there is only one owner (master). The data owner does not have enough computing
resources or it want to speed up the computation. Thus, the training is delegated to a number of workers who must not
learn any significant information about the data.

2) Secure the model or parameters aggregation task when there are multiple data owners. Here, the training phase is
locally performed by each owner using its own data, but the synthesis of the global model takes place at a central node.
Neither honest-but-curious nodes nor malicious nodes must learn statistically significant information on this global model
if they have access to some of the local models.

3) Secure the whole training phase when there is only one owner (master). The master node reveals the global model
under an encoded form, and the other nodes do the local training directly on the coded domain, i.e., without disclosing
such global model, which is therefore kept private.

We can categorize these three approaches and their corresponding unsecure (uncoded) versions into two categories:
1) Distributed Learning over Centralized Data (DLCD). This category comprises all the approaches where the master is the

unique owner of the data, and shares it to the nodes to distribute the learning task.
2) Distributed Learning over Dentralized Data (DLDD). This category comprises all the approaches where the nodes are the

owners of the data, and the master shares the global model to distribute the learning task. Please, note that this is in fact
Federated Learning, but we rename it to maintain a consistency with the other option.

For simplicity, we use the following notation: the aggregation function is agg(), ML model parameters are denoted by θ,
and the training function by Fθ(). The latter can in turn be composed of one or many of the following functions for each of
its steps: model computation, evaluation of the loss function, calculation of gradients and model optimization. The degree of
decentralization in the training phase is higher if Fθ subsumes a higher number of these steps. So, we consider the possibility
of computing multiple epochs of the local model before sharing the result, which this would heavily reduce the communication
costs. This introduces a trade-off with precision, since computation of a more complex function induces lower model accuracy,
generally. The only assumption common to these three cases is that the model training follows a typical mini-batch Gradient
Descent configuration.

A. DLCD: Distributed Learning over Centralized Data

In this scenario there is only one data owner (master) of the whole dataset Xk0k1...kL−1
that wants to distribute the training

of a machine learning model to a network of N nodes. The rank of the tensor L will depend on the nature of the dataset
(e.g., records, images, etc.) The master node splits the dataset into N parts, and sends each X

(j)
k0/Nk1...kL−1

along with the
parameterized global model fθ to node j ∈ {0, 1, . . . , N − 1} (θ denotes the vector of parameters for the function class). Each
node j computes its part of the training obtaining a new model f (j)

θ , and sends it back to the master. This entity aggregates
all of the received model parameters into a new global model fθ. This process continues until convergence is achieved. The
detailed steps on how it has been secured with PBACC are explained next, and are summarized in Figure 1. To achieve input
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Fig. 1. Distributed training over centralized data

privacy, it suffices to encode the input dataset Xk0k1...kL−1
with PBACC and let the nodes operate with their encoded versions

of it.
Depending on wether we want to prioritize reducing computation cost or communication cost, the encoding will be done

differently. One option is to encode the whole dataset in a single interpolation point using (16), so K = 1 and α = α0. This
way of encoding will allow the worker nodes to compute the whole training task (model computation, loss function, gradient
calculation and model update) by themselves, without any interaction with the master. Then, the master will receive the results
from the nodes and reconstruct the new global model using (17). This implies that the communication cost is very similar
to the non-secured approach, but the nodes will have to compute the whole dataset in each round, so the computation cost
increases substantially.

Another possibility is to split the dataset in batches of size K, and then encoding each element of the batch into a distinct
αj = {α0, . . . , αK−1}, using (16). Each node j will receive an encoded version of the dataset uX(βj) of reduced size D

K × 1,
for j ∈ {0, . . . , N − 1}. In this case, each node j will just compute the model execution part of the training, and send the
obtained result back to the master. The reason the nodes cannot continue with the rest of the execution is due to the loss
function merging the results of the model execution into one single value. This implies that the encoding coefficients are merged
together as well, so the result is no longer encoded into a known interpolation point, which makes decoding impossible. Once
the master has received all of the results corresponding to a batch, it will reconstruct the K outputs of the model using (17).
Then, it will evaluate the loss function over the reconstructed results, calculate the gradients, update the model, and send this
updated version back to the nodes, thus they can continue training with the next encoded batch. Obviously, this interaction
between nodes and master after each model computation increases the communication costs. The greater the batch size is, less
communication and computation cost is required, so this configuration will benefit from large networks and datasets, where
large batch sizes can be chosen without affecting too much into the precision of the scheme. Compared to the other possibility,
this one will heavily reduce computation costs in exchange for communications costs. Hence, this will be the option evaluated
in Section VII.

B. DLDD: Distributed Learning over Decentralized Data

In a scenario with multiple owners (decentralized data) the input data is the one that needs to be protected. To this end, two
distinct approaches can be followed: (i) secure the aggregation phase, or (ii) secure the training stage. Clearly, both options
have their advantages and disadvantages, and choosing one or another depends on the specific network and on the application
domain of the data.

Thus, there is a master node that owns the global model fθ,k0k1...kL−1
and wants to distribute the training to a set of

nodes. Each node j receives the global model, and trains an updated one with its own private data batch X
(j)
k0k1...kL−1

, for
j ∈ {0, 1, . . . , N − 1}. Then, each node j sends its updated model fθ(j),k0k1...kL−1

back to the master, so this entity can
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Fig. 2. Secure aggregation over decentralized data

aggregates all of the locally trained model parameters into the new global model. This process continues until convergence. The
detailed steps on how PBACC can enforce privacy in these two configurations are explained next.

1) Secure aggregation over decentralized data: In this case, the master sends the global model fθ,k0k1...kL−1
to each node j,

which then performs the training using its input dataset X(j), for j ∈ {0, 1, . . . , N−1}. This training task ends with each node j
obtaining its own version of the model f

θ(j),k0k1...k
(j)
L−1

. To perform the aggregation in a secure way, each node j encodes its model
parameters into distinct αj = {α0, . . . , αK−1}, using (16), which results in N shares uj = [uj(β0), uj(β1), . . . , uj(βN−1)],
that each of them is sent to a different node. Each node j ends up with N shares ui(βj), for i, j ∈ {0, 1, . . . , N −1}, aggregates
them all using some known strategy agg(·) (e.g., FedAvg [32], FedProx [33], SCAFFOLD [34], FedGen [35], etc.), and sends
the result back to the master. The master collects the received results agg(u1(βj), . . . , uN−1(βj)), for j ∈ {0, 1, . . . , N − 1}, to
reconstruct the new global model fθ using the decoding function (17). The complete set of operations is depicted in Figure 2.

This procedure to secure the aggregation stage increases the communication cost, as N(N − 1) additional messages will
have to be sent in order to compute the aggregation. However, the shares have a reduced size k0

K k1 . . . kL−1, where K the
number of distinct decoder mapping points α used to encode the data. Increasing K would decrease the communication cost in
exchange for precision on the aggregation, since more decoder mapping points will have to be processed. This factor K would
also affect the aggregation cost, which decreases in K.

2) Secure Training over decentralized data: In this case, the master encodes the global model fθ,k0k1...kL−1
into one single

interpolation point α, using (16), resulting in N shares uθ = [uθ(β0), uθ(β1), . . . , uθ(βN−1)], and the master sends each of
them to a different node. Then, each worker j performs the whole training task using its encoded model uθ(βj), and its own
private dataset X(j). This training function includes the model computation, the loss function, the gradient calculation, and
the model update. Finally, each node j sends the encoded result full_train(uθ(βj)) back to the master. This entity collects all
results and decodes the new global model fθ′ using the reconstruction function (17). As this function is not the same for every
worker j, this would appear to be a problem but actually, since the Berrut rational interpolation (17) is δ-stable, and is based
on the barycentric interpolation, the resulting decoded output is theoretically similar to an average of all the trained models.

The reason behind the model being encoded into one single interpolation point relies on the fact that we are not dealing with
model splitting in this work. Since each node trains a local model of the same size as the global one, if the encoded version
uses more than one interpolation point, these will be merged together during the calculation of the loss function, and will
propagated back to the model parameters during the model update step. Again, this would hinder the decoding step, because
the data to be interpolated is not in the expected decoder mapping points anymore. Since all the models have the same size,
even if it was possible to encode the model at various points, we could not compress the shares sent, for that would alter the
model size. The improvement would be in the sharing phase, where the results would get compressed by a factor K.
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Fig. 3. Secure Training over decentralized data

VI. COMPARISON OF PBACC DECENTRALIZED LEARNING MODELS

Once the different operation models have been described, we provide a comparison according to privacy and efficiency from
a theoretical perspective. The privacy analysis considers input privacy, taking into account who owns the data and if it reveals it
to another entity. The efficiency analysis has been focused on each round of the protocol, putting together the computation and
the communication costs.

A. Analysis of the Input Privacy

In DLCD settings, the master reveals both global model and input data to the worker nodes. After these nodes locally train
their models, they also reveal them to the master. However, in our proposal the master encodes the input data using PBACC,
so it only shares the encoded version with the nodes. Since the nodes train their local models with the encoded data, the
updated trained models are also in the encoded domain, so they are not directly transmitted to the master in clear. Hence, in
this configuration, the global model constructed by the master is the only element revealed to the nodes. Thus, only attacks over
the global model would be possible, which are less harmful than attacks over the input data or local models. As an example to
illustrate this, a membership inference attack over a global model might reveal if some data element was used in the training
set, but it does not identify which node owns it.

In DLDD scenarios, datasets are private, but the nodes reveal their local models to the master (i.e., aggregator) so it can
aggregate a global model, and additionally, the master will reveal this global model to the nodes so they can train their
local models. Consequently, the master has access to the local models and attacks, like membership inference, can now
identify the owner of the data element that was used to train the model. Most of the input privacy concerns are solved by our
proposal of secure aggregation, where local models are encoded and exchanged to securely compute some arbitrary aggregation
function. This implies that the global model is the only element leaked to the nodes, so the privacy concerns are smaller than
in non-secured FL. It should also be noted that, depending on the aggregation function, the aggregated model reveals less
information from the local models than having them in clear. This fact also affects attacks like membership inferences based
on shadow models, as it will be harder for them to learn to identify if data elements were used or not in the training phase.
However, our secure training approach for DLDD is even better privacy-wise, as we ensure the input privacy of all the data
elements treated in the configuration. Since the master encodes the global model using PBACC, this object is not reveal to the
nodes either. Similarly, as the nodes train their local models taking an encoded global model as a basis, the resulting computed
models are also in the encoded domain, so they are not known to the master. Additionally, the master can only decode an
aggregated model which provides some degree of output privacy (see Section VII), making clear that this configuration is the
most secure option. Table I lists the features of the presented comparison.
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TABLE I
COMPARISON OF THE SENSIBLE ELEMENTS AND THE ENTITY TO WHICH IS REVEALED IN BOTH DISTRIBUTED AND DLCD SCENARIOS.

SCENARIO INPUT LOCAL MODEL GLOBAL MODEL
Uncoded DLCD Public (nodes) Public (master) Public (nodes)
Secure training Private Private Public (nodes)
Uncoded DLDD Private Public (master) Public (nodes)
Secure aggregation Private Private Public (nodes)
Secure training Private Private Private

B. Efficiency Analysis

For the centralized scenarios, uncoded decentralized learning has a communication cost of N messages of size L
N once,

corresponding to the sharing of the split dataset to each of the nodes, plus 2N messages of the model size W each round,
corresponding to the exchange of the global model from the master to the nodes (N messages), and the exchange of the local
models from the nodes to the master (N additional messages). Regarding computation, the whole task is composed of training
the local machine learning models by the nodes, and performing the aggregation operation to construct the global model by the
master. Our proposal for secure training increases the communication cost to N L

K messages of size W in each round, and
N L

K of the model inference size (B), as the nodes require from the master to decode the result of the model execution and
apply the optimization step, as discussed in V. This implies that for each model execution of an encoded batch, there are N
messages exchanged from the master to the nodes with the global model, and N messages from the nodes to the master with
the outcomes. Additionally, N messages of size L

K are sent once to share the encoded inputs. Regarding computation load,
only one encoding of the dataset has to be done, and can be reused in several experiments, while L

K decoding operations of
size K have to be done so the master can optimize the model after each distributed model execution.

For decentralized scenarios, normal FL has the same communication and computation cost of the DL case, but without
the input sharing messages. Our proposal for secure aggregation increases the communication cost in N(N − 1) messages
of the model size W divided by K each round, required to perform the secure aggregation. This messages are the result of
each node having to exchange an encoded share of its local trained model with every other node. However, as the aggregation
is then computed over the received shares, the obtained result is then sent to the master so it can decode the global model,
which reduces the size of the N messages required to exchange the model from the the nodes to the master, to L

K size. The
computation cost, in this case, is increased by an additional encoding operation of the model size W and a decoding operation
of W

K , both performed by all of the nodes in each round. Although the efficiency of the secure aggregation is already decent,
especially in terms of computational cost, it is much more improved in the second approach (secure training). In this case, the
communication cost remains the same as in normal FL, as the encoded model has the same size of the original model, and the
computation cost is only increased by an encoding operation and a decoding operation of the model size W , both performed by
the master. Additionally, it also removes the computational cost of the aggregation, since this operation is done directly within
the decoding step. The conclusions of this analysis are contained for reference in Table II.

TABLE II
COMMUNICATION COMPARISON OF BOTH DISTRIBUTED AND DLCD SCENARIOS.

SCENARIO COMMUNICATION COST COMPUTATION COST
Uncoded DLCD 2N ×W per round Training and aggregation each round
Secure train. N L

K
× (W +B) per round plus N × L

K
once One dataset encoding size L + training, aggregation and L

K
decodings size K each round

Uncoded DLDD 2N ×W per round Training and aggregation each round
Secure Agg. (2N +N(N − 1))×W/K per round Training, aggregation, encoding and decoding model size (W ) each

round
Secure Train. 2N ×W per round Training, encoding and decoding of model size (W ) each round

VII. RESULTS

We have performed extensive experimental tests to demonstrate the viability of our proposals for secure DL and FL. Our
three different configurations have been tested with two representative ML models: (i) a convolutional neural network (CNN)
using the MNIST dataset, a (ii) a Variational AutoEncoder using the Fashion MNIST dataset, and (iii) a Cox Regression using
the METABRIC 1 dataset, a public dataset for the gene expression in primary breast cancers. The secure approaches have been
compared with their non-secure counterparts, so that it is easier to see the real cost of adding the different forms of privacy in
terms of efficiency and model accuracy.

Since the measured privacy gives the estimated leakage per data element, we can reuse them for both networks. This also
allows us to compare how the different secure approaches behave depending on the ML model used, which is very helpful to

1https://ega-archive.org/studies/EGAS00000000083

https://ega-archive.org/studies/EGAS00000000083
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understand how different architectures affect PBACC performance, and to assess if the scheme ready for real-world DL and FL.
All configurations have been tested with an NVIDIA RTX 3090 of 24 GB of RAM, for different network sizes. Since all nodes
are running on the same machine, in parallel, when the master node makes operations, it will have much more computational
power at its disposal than the nodes. This matches with many common scenarios, where the server nodes have much more
computational power than their client nodes. Communication among entities is performed using remote procedure calls (RPC)
over HTTP.

For every set of experiments, we have measured the convergence rounds required to achieve the value of that metric, the
computation times of the different phases of PBACC and the training of the model, and the sharing times of whole distributed
task. These latter times comprise the serialization and parsing times of the information that has to be exchanged, and the actual
communication time. In all the DLDD test cases, the dataset has been split equally among each participating node.

A. Experiments with CNNs

TABLE III
CNN EXPERIMENT PARAMETERS

SCENARIO N BS E γ K T σn LEAKAGE

Uncoded DLCD 50 10 1 10−3 n/a n/a n/a n/a
Secure Train. 50 10 1 10−3 10 30 30 ≤ 0.70 bit
Uncoded DLDD 50 10 1 10−3 n/a n/a n/a n/a
Secure Agg. 50 10 1 10−3 1 30 10 ≤ 0.60 bit
Secure Train. 50 10 1 10−3 1 30 10 ≤ 0.60 bit

The parameters chosen for the experiments with CNNs are listed in Table III. Every configuration has a fixed number of
nodes N , equal batch size BS and epochs E so we can make a fair comparison between the computational cost. The learning
rate γ has been chosen so it minimizes the convergence round, given the other parameters. In all the test cases, it was found
out that γ = 10−3 was the best option except in the secure training over DLCD, where a higher learning rate (2.5× 10−2)
improved the convergence speed considerably. This difference in behaviour is clearly related with how the aggregation is done
in this configuration, which is not implicitly calculated, but obtained from the Berrut rational interpolation of each encoded local
model. One possible interpretation is related to the fact that having lower learning rates increases the likelihood to avoid local
minima, which makes the convergence slower. Another well-known way of avoiding local minima and helping in generalization
involves adding some controlled noise, as in differential privacy schemes. As the native aggregation is introducing a bounded
noise in the decoded model, increasing the learning rate also increases the convergence speed without inducing the loss function
to find local minima.

The number of random coefficients T and the standard deviation σn have been chosen to ensure that the leakage is less than,
at least, 1 bit for any group of 10 honest-but-curious nodes (20% of total). Each secure configuration has T = 30 random
coefficients, and σn = 10, except the secure training over DLCD, which requires higher security (σn = 30) due to K being
higher.

TABLE IV
PERFORMANCE AND COMPUTING TIMES FOR CNN PER ROUND. Tc IS THE AVERAGE CONVERGENCE ROUND FOR EACH SCHEME, A IS THE ACCURACY

CONVERGENCE RUNNING TIMES
SCENARIO Tc A ENC. SHAR. COMP. DEC. TOTAL
Uncoded DLDD 13.6 0.98 n/a 3.31 s 3.32 s n/a 80.88 s
Secure Agg. 12.2 0.98 12.37 s 38.76 s 3.48 s 87.5µs 742.70 s
Secure Train. 47.1 0.86 0.02 s 29.29 s 7.30 s 30.06µs 1724.33 s
Uncoded DLCD 11.8 0.98 n/a 3.33 s 3.32 s n/a 83.91 s
Secure Train. 1.0 0.98 111.89∗ s 6449.87 s 268.65 s 4.3 ms 6830.85 s
∗ Only once.

TABLE V
CONVERGENCES OF CNN WITH T = 30 AND DIFFERENT VALUES OF σn

σn Secure Agg. (DLDD) Secure Train. (DLDD) Secure Train. (DLCD)
10 0.98 (13.6) 0.86 (47.1) 0.98 (1)
50 0.95 (17.1) 0.73 (100.3) 0.98 (2)
100 0.86 (30.2) 0.45 (78.9) 0.98 (3)
200 0.83 (64.9) 0.24 (45) 0.98 (4)
400 0.83 (162.5) 0.10 (16.7) 0.94 (4)
(·) Average convergence round
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Fig. 4. Comparison of the Accuracy evolution of all scenarios for the CNN experiments

The first interesting finding about the CNN tests reported in Table IV is that all configurations achieve the same accuracy,
except the secure training over DLDD, which converges at a lower value. Therefore, for almost all configurations and this
security threshold, the bounded error introduced by PBACC allows the CNN to converge without deteriorating the final accuracy.
Additionally, the configuration that actually diminishes the final accuracy by a 12% is the one with a higher level of privacy,
since the end nodes do not see the global model. This accuracy loss is related to the noise introduced by this native aggregation
performed at the decoding step, and it implies that the decoded global model provides some degree of output privacy. However,
it would be necessary to implement membership inference attacks over the different trained models to confirm this fact [36].

Given that each configuration distributes the computation of different functions, it can be concluded that the errors of
approximating single functions are correlated instead of accumulated. Another interesting fact is the impact of the error
introduced by PBACC in the convergence round. We observe, in the secure aggregation DLDD case, that the errors introduced
by PBACC have almost no impact on the convergence round compared to the uncoded DLDD and DLCD. In contrast, the
secure training over DLCD only requires one round to converge, since this configuration is equivalent, from a model training
perspective, to a normal centralized training by a single entity. As with accuracy, the outlier is the secure training over DLDD,
where the convergence increases by approximately 35 rounds. Although the convergence is slower, it still reaches a good
accuracy thanks to the adjustment of the learning rate.

The measured results for the training time match the theoretical expected behaviour for all configurations. Uncoded DLDD
and DLCD present similar values in the sharing and training phases. The first one corresponds to the exchange of the global
model and the local models, and the second one corresponds to the computation of the training task. In both cases, the
aggregation of the model has a negligible value in comparison with the rest of the computation times. Uncoded DLCD has
an additional 5.44s of input sharing time that only happens once, corresponding to the exchange of the split dataset to the
worker nodes. Looking at the DLDD scenarios, we see that the secure aggregation does not affect the computation task, as the
training has a similar cost as in the uncoded DLDD, and the aggregation done by the nodes is not significant. However, it
introduces a new encoding operation in the nodes that adds an overhead (12.37 s), and a very fast decoding step done by the
master. Regarding communication, the main overhead introduced appears on the sharing phase, as it now includes the sharing
of the encoded models among nodes. Comparing it with the secure training approach, it is more efficient from the perspective
of a DLDD round, as the only overheads introduced are an encoding and a decoding step done by the master. Although the
communication time of this configuration is similar to the uncoded DLDD, in this case the aggregation has to serialize N
models before sharing, instead 1.

Looking at the secure training over DLCD, we see that the overheads are noticeably higher. The encoding of the input
dataset is much slower than encoding the model parameters, but it only has to be done once, and the dataset can be reused for
different experiments. The encoded dataset has to be also shared once with the nodes (16.85 seconds) in contrast with the
input sharing done in uncoded DLCD (5.45 seconds). As the secure training is iterative, we see that the repetitive sharing and
decoding phases have increased these times (6449.87 s and 4.3 ms respectively). It has also increased the training time, since
in uncoded DLCD each node has L

N = 1200 entries, whereas in secure training this raises to L
K = 6000 entries. Combining the

measurements of both times and convergence rounds the overall behaviour shows that, for DLDD scenarios, secure training is
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more efficient per round, but the time is greater than with secure aggregation. Figure 4 depicts the evolution of the model
accuracy over the training rounds.

We also analyzed the convergence of the model as a function of the target privacy leakage. We set T = 30 random coefficients
and ran experiments for different values of the standard deviation of the noise σn = {10, 50, 100, 200, 400}. The results can be
observed in Table V. As we increase the level of privacy in secure DLDD, the precision decreases and convergence is slower,
yet the utility of the model is still reasonable with very high privacy levels. These precisions could be improved if we increase
K, as in the DLCD case. Thus, most of the cost of adding privacy is related to an overhead of the convergence round.

For secure training over DLDD, the quality of the model reduces substantially as σn increases. This is consistent with the
overall behaviour of this configuration, and suggest that training is much more sensitive to noise perturbations. It is also clear
that having K = 1 affects the precision of this configuration, but contrary to what happens in the secure aggregation, we cannot
increase this value to improve it due to the training function being approximated. In secure training over DLCD, PBACC is
very robust in precision. This behaviour might seem surprising, as this case deals with a more complex function than the secure
aggregation over DLDD. The explanation is twofold: (i) K = 10 in this case, which clearly favors the decoding operation
thanks to the well distributed points, and (ii) this is the only configuration where the results obtained from the master are
composed from evaluations of the same function.

B. Experiments with Variational Autoencoders
To demonstrate the validity of our encoded scheme with other ML models, we tested the system with a categorical VAE

based on the Gumbal-Softmax reparametrization. The reason for avoiding the vanilla VAE is that its reparametrization becomes
very unstable for the Secure training scenario over DLDD. In that configuration, the model parameters are encoded using
PBACC, which leads to the internal encoder of the VAE to generate values in the encoded domain. As a result. the vanilla
VAE must compute some exponential functions of large value, causing numerical overflow. The actual parameters chosen for
the VAE experiments are listed in Table VI. We considered in this case a smaller network of N = 30 nodes, so this will allow
us to evaluate the behaviour of the scheme with less worker nodes but with higher computational power. The learning rate γ
was picked to minimize the convergence round. As with CNNs, we empirically found that 10−3 was the best choice, except for
the secure training over DLDD.

TABLE VI
VAE EXPERIMENT PARAMETERS

SCENARIO N BS E γ K T σn LEAKAGE ϵ
Uncoded DLDD 30 10 1 10−3 n/a n/a n/a n/a
Secure Agg. 30 10 1 10−3 1 18 10 ≤ 1.0 bit
Secure train. 30 10 1 2.5 · 10−2 1 18 10 ≤ 1.0 bit
Uncoded DLCD 30 10 1 10−3 n/a n/a n/a n/a
Secure train. 30 10 1 10−3 10 18 30 ≤ 1.0 bit

TABLE VII
PERFORMANCE AND COMPUTING TIMES FOR VAE PER ROUND. Tc IS THE AVERAGE CONVERGENCE ROUND FOR EACH SCHEME, L IS THE TEST LOSS

CONVERGENCE RUNNING TIMES
SCENARIO Tc L ENC. SHAR. COMP. DEC. TOTAL
Uncoded DLDD 25.8 289.77 n/a 40.40 s 19.46 s n/a 1544.39 s
Secure Agg. 35.8 289.81 20.12 s 140.50 s 20.26 s 0.601µs 6475.50 s
Secure Train. 2.6 461.07 0.027 s 104.21 s 21.45 s 0.82µs 326.79 s
Uncoded DLCD 26.2 289.66 n/a 36.11 s 18.47 s n/a 1430 s
Secure Train. 2 290.00 50.12∗s 62904.54 s 1907.81 s 0.18 s 129675.18 s
∗ Only once.

Like in the CNN test, we see (Table VII) that the VAE converges to a similar test loss, except in the case of secure training
over DLDD, where it is much greater. This confirms the idea that this configuration is providing some degree of output privacy
since, from a theoretical perspective, a variational auto encoder is a model that learns the distribution of the data which is
being trained with, a task similar to what an attacker seeks in a membership inference attack with a shadow model [36]. Recall
the high complexity of the function being computed in this configuration, where the scheme has to approximate several rounds
of the encoding, reparametrization, decoding, loss function calculation and optimization step. The convergence round show a
pattern also similar to that with CNN, suggesting that errors introduced by PBACC do not have a significant impact on the
evolution of the secure configurations, with the exception of secure training over DLDD. This configuration seems to stop
learning too early, and the resulting quality is low. The secure training over DLCD again requires only 2 to learn the model,
thanks to the training task being done as if the master was the only one executing this task.

Regarding the time measurements of the different computation and communication phases for this experiment, uncoded
DLDD and DLCD present similar values in the sharing and training phases, as expected. The values are higher than for the
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Fig. 5. Comparison of the Accuracy evolution of all scenarios for the VAE experiments

TABLE VIII
CONVERGENCES OF VAE WITH T = 30 AND DIFFERENT VALUES OF σn

σn Secure Agg. (DLDD) Secure Train. (DLDD) Secure Train. (DLCD)
10 289.81 (35.8) 461.07 (2.6) 289.77 (2)
50 371.95 (7.2) 608.86 (3.3) 290.00 (3)
100 736.07 (7.1) 614.29 (4.7) 289.18 (4)
200 7084.40 (1) 946.40 (9.8) 290.08 (8)
400 8980.47 (15.4) 23361.69 (14.5) 293.60 (25.7)
() Convergence round

CNNs, though this is compensated by shorter training times. The aggregation times continue to be negligible for the non-secure
configurations, while the uncoded DLDD adds an additional overhead due to the exchange of the initial dataset among workers.

Looking at the DLDD scenarios, we see that the secure aggregation presents a similar behavior to that of CNN, where
the encoding presents an overhead of 20.12 s due to being held in the workers, the sharing time is the greatest overhead
with a value of 140.50 s, the training is not being affected, and the decoding adds a small value of 0.601µs. In contrast, the
secure training approach only provides a significant overhead in sharing phase (104.21 s), due to having to serialize N models,
and the encoding and decoding steps increase small times (0.027 s and 8.20µs). Here, we can start to observe the previous
statement about this configuration behaving better, with more powerful nodes, than the secure aggregation. It is easy to check
that the secure training is 34.82% faster than the secure aggregation in the sharing phase, while it was a 32.33% in the CNN
experiment. Looking at the secure training over DLCD, the encoding of the input dataset is faster by the smaller network size.
For the VAE, the repetitive sharing and decoding phases have a greater increase mainly due to the greater size of the model.
However, the training task is proportionally reduced. Note that in this case each node has L

N = 2000 entries, and, in secure
training, each node has L

K = 6000 entries. Figure 5 depicts the evolution of the test loss over the rounds of the training task.
We also analyzed the convergence of the VAE in function of the target security level. To that end, we set T = 18 random

coefficients and ran the experiments for different values of noise, σn = {10, 50, 100, 200, 400}. The results are collected in
Table VIII. Secure aggregation over DLDD, turns out to be highly sensitive to the error as the level of privacy increases. the
model is much more sensitive to the error introduced than in the CNN case but, unlike the CNNs, we do not see degradation on
the utility. For the secure aggregation over DLDD, convergence is reached earlier. The secure training over DLDD is consistent
with the results obtained previously. In secure training over DLCD, PBACC is very robust in precision, since almost all levels
of security tested converge with a test loss of 290. The only one that presents slightly worse results is the one tested with
σn = 400, but the test loss obtained is still quite similar. Here, the cost of adding this privacy is visible in the convergence
round.
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TABLE IX
COX EXPERIMENT PARAMETERS

SCENARIO N BS E γ K T σn LEAKAGE ϵ
Normal FL 70 10 10 10−2 n/a n/a n/a n/a
Secure Aggregation 70 10 10 10−2 1 42 10 ≤ 0.60 bit
Secure training (dec.) 70 10 10 10−2 1 42 10 ≤ 0.60 bit
Normal DL 70 10 10 10−2 n/a n/a n/a n/a
Secure training (cent.) 70 10 10 10−2 10 42 30 ≤ 0.70 bit

Fig. 6. Comparison of the Accuracy evolution of all scenarios for the COX experiments

TABLE X
PERFORMANCE AND COMPUTING TIMES FOR COX REGRESSION PER ROUND. Tc IS THE AVERAGE CONVERGENCE ROUND FOR EACH SCHEME, L IS THE

TEST LOSS

CONVERGENCE RUNNING TIMES
SCENARIO Tc L ENC. SHAR. COMP. DEC. TOTAL
Uncoded DLDD 10 0.0 n/a 2.61 s 3.59 s n/a 62 s
Secure Agg. 10 0.0 17.34 s 38.68 s 3.82 s 1.10× 10−4s 598.40 s
Secure Train. 13.6 0.0 0.02 s 4.26 s 3.43 s 4.9× 10−4 s 104.86 s
Uncoded DLCD 10 0.0 n/a 2.49 s 3.67 s n/a 61.6 s
Secure Train. 1 0.0 1.88∗ s 15.23 s 21.10 s 3.6× 10−4 s 38.21 s
∗ Only once.

TABLE XI
CONVERGENCES OF VAE WITH T = 30 AND DIFFERENT VALUES OF σn

σn Secure Agg. (DLDD) Secure Train. (DLDD) Secure Train. (DLCD)
10 0.0 (10) 0.0 (13.6) 0.0 (1)
50 0.0 (10) 0.73 (1) 0.0 (1)
100 9.38 · 10−10 (15.8) 4.45 (1) 0.0 (1)
200 3.75 · 10−9 (12.6) 4.60 (1) 0.0 (1)
400 2.01 · 10−7 (10.5) 5.49 (1) 0.0 (1)
() Convergence round

C. Survival Analysis

The last model chosen is a Cox-Time regression model from [37]. The parameters used for this COX regression experiments
can be found in Table IX. The model size is smaller than the others, and we test each configuration for a higher number of
nodes.

Contrary to what happened in previous experiments, there is no difference in the final achieved quality of the model. This
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model is much easier to approximate than the previous ones, and even the secure training over decentralized shows a similar
convergence round compared to the other options. So, regardless the configuration, for this security threshold, the bounded
error introduced by PBACC allows the COX regression to converge without having an important impact on the final precision
or the convergence round. Table X shows the measured times. As this is the smallest of the tested models, it has substantially
less overheads in comparison. The results obtained are nevertheless consistent with the previous experiments, with uncoded
DLDD and uncoded DLCD showing similar performance in every phase of the round and negligible aggregation times; their
secure counterparts are only a little slower in some of the phases. Focusing now on the DLCD scenarios, the secure training
configuration benefits from larger networks with smaller models. This means that this scenario will behave better in cross-device
FL rather than in cross-silo FL, as their overheads will be less significant.

Looking at the overall behavior in Table X, we see a similar tendency than in the VAE experiments, with the exception that
the secure training over DLCD even outperforms the normal configurations. This occurs thanks to the sharing and computation
phases being much more efficient in this configuration, allowing the training operation to compensate the slower learning given
by the fact that the other configurations have to aggregate a global model. Figure 6 depicts the evolution of the model test loss
over the rounds of the training task.

Analyzing the precision of the model for the different levels of privacy, we measured the best results from all the models.
In Table XI, we see that all levels of privacy tested for the secure aggregation over DLDD provide test losses very close to
0. Additionally, the convergence round increases less than in the other models when increasing privacy. Secure training over
DLDD presents a similar test loss and convergence round for σn = 10 than in the other cases, but gets worse as we increase
privacy. Secure training over DLCD attains the best results in terms of the privacy precision exchange. The model converges at
the same test loss and convergence round independently of the noise added.

VIII. CONCLUSIONS

In this paper, we have extended the scope for the application of approximate coded computing (and particularly Private
Berrut Approximate Coded Computing) to decentralized computing systems. The new encoding and decoding algorithms can be
implemented either in centralized or in fully decentralized forms and arranged to work with tensors, and still meet tight bounds
on the privacy leakage metric. We presented in detail the application to secure aggregation and secure training, in distributed or
centralized forms. Through numerical experiments, we have demonstrated that the scheme is flexible and robust, so that it can
be incorporated into disparate learning models at scale. One advantage of our method is that, opposite to other forms of added
noise like differential privacy, the error does not accumulate with an increasing number of nodes. In contrast, one limitation of
PBACC is that the model quality deteriorates if the privacy leakage threshold is very close to 0. Future work will address this
issue along with the combination of PBACC with algorithms for verify the computations.
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