
ar
X

iv
:2

50
5.

06
74

7v
1

 [
cs

.C
R

]
 1

0
M

ay
 2

02
5

DPolicy: Managing Privacy Risks Across Multiple Releases with Differential Privacy

Nicolas Küchler1, Alexander Viand2, Hidde Lycklama1, Anwar Hithnawi3

1ETH Zurich 2Intel Labs 3University of Toronto

Abstract—Differential Privacy (DP) has emerged as a robust
framework for privacy-preserving data releases and has been
successfully applied in high-profile cases, such as the 2020
US Census. However, in organizational settings, the use of
DP remains largely confined to isolated data releases. This
approach restricts the potential of DP to serve as a framework
for comprehensive privacy risk management at an organiza-
tional level. Although one might expect that the cumulative
privacy risk of isolated releases could be assessed using DP’s
compositional property, in practice, individual DP guarantees
are frequently tailored to specific releases, making it difficult
to reason about their interaction or combined impact. At the
same time, less tailored DP guarantees, which compose more
easily, also offer only limited insight because they lead to
excessively large privacy budgets that convey limited meaning.
To address these limitations, we present DPolicy, a system
designed to manage cumulative privacy risks across multiple
data releases using DP. Unlike traditional approaches that
treat each release in isolation or rely on a single (global)
DP guarantee, our system employs a flexible framework that
considers multiple DP guarantees simultaneously, reflecting
the diverse contexts and scopes typical of real-world DP
deployments. DPolicy introduces a high-level policy language
to formalize privacy guarantees, making traditionally implicit
assumptions on scopes and contexts explicit. By deriving the DP
guarantees required to enforce complex privacy semantics from
these high-level policies, DPolicy enables fine-grained privacy
risk management on an organizational scale. We implement
and evaluate DPolicy, demonstrating how it mitigates privacy
risks that can emerge without comprehensive, organization-
wide privacy risk management.

1. Introduction

Remarkable algorithmic advances in data analytics over
the past decade, paralleled with an unprecedented capacity
to capture and process large-scale data, have shed light
on the impact that data-driven approaches can have in
addressing a wide range of complex societal problems. This
progress has, in turn, fueled a surge in the adoption of
data-driven analytics, reshaping virtually every sector of
society. This rapid adoption of data-driven applications did
not materialize without issues and has amplified concerns
about individual privacy. In response, privacy regulations,
such as the European General Data Protection Regulation

(GDPR), the California Consumer Privacy Act (CCPA), and
others, have been enacted to ensure organizations handle
data responsibly. In addition to this regulatory pressure, the
rising liability associated with data misuse and breaches
is prompting organizations to adopt more systematic ap-
proaches for managing the risks inherent in the collection
and processing of personal data. While end-to-end encryp-
tion and secure computation can address these issues in a
variety of settings, they are not sufficient on their own in
scenarios where data must be not only processed but also
shared or released [35], [70]. For these settings, privacy tools
such as Differential Privacy have shown to be promising.

Differential Privacy (DP) is a mathematically rigorous
framework designed to protect individual privacy in scenar-
ios where data analysis results are shared or released [29]. It
is widely accepted today as the state-of-the-art solution for
privacy-preserving data releases. Its impact is already ap-
parent through notable success in high-profile applications,
including the US Census [69], COVID-19 reporting [6],
[14], and numerous industrial use cases [5], [11], [65], [73].
Regulatory bodies are increasingly endorsing DP in data-
sharing practices, as seen in the EU Data Governance Act
(DGA), highlighting its growing acceptance within the legal
framework [2]. This rapid adoption of DP can be attributed
to its ability to provide robust privacy protections for a wide
variety of complex applications. In contrast to prior ad-
hoc approaches to privacy guarantees, DP provides a formal
framework for defining and quantifying privacy loss. This
allows DP to provide strong guarantees that hold against all
possible attack strategies, including attackers with auxiliary
information. In addition, DP defines formal composition
properties, which enable precise reasoning about the cumu-
lative effects of multiple different releases. While deriving
DP guarantees for applications can be highly involved, the
resulting guarantees can be expressed in a small number of
privacy parameters, independently of application details.

DP was originally considered in the context of assessing
the privacy risk of participating in a release from the per-
spective of an individual. However, DP also holds significant
potential as a tool for organizations to quantify and manage
privacy risks at an organizational level. By protecting the
privacy of any user, DP naturally allows one to make state-
ments about the privacy risks associated with performing
a data release. More importantly, due to its composition
properties, DP enables reasoning about the cumulative pri-
vacy risks of performing a release in the context of other

https://arxiv.org/abs/2505.06747v1

releases. Despite this, DP has not yet been systematically
used or integrated into organizations for this purpose. There
exists a significant gap between the conceptual potential of
DP as a comprehensive privacy risk management framework
and the way DP is being implemented and used in practice.
Currently, organizations primarily consider DP from the
perspective of individual releases, similar to how prior ad-
hoc anonymization techniques were used. However, this
approach fails to capitalize on DP’s potential for evalu-
ating and assessing cumulative privacy risks. Shifting to
an organization-wide perspective requires a fundamentally
different approach to DP guarantees as, in practice, there are
significant gaps between the isolated guarantees provided by
current practices and the desired global guarantees.
DP at Organizational Scale. In current organizational
practices, differentially private data releases are generally
reported in isolation, describing the datasets, algorithms, and
corresponding privacy guarantees. However, this approach is
only justified if the releases are independent, an assumption
that may not always hold in practice. If any of these implicit
assumptions fail to hold, the actual privacy risk associated
with the release may significantly exceed what the per-
release privacy guarantees suggest. For example, multiple
releases over related datasets can jointly enable practical
reconstruction attacks, even if each release’s privacy guar-
antees are sufficiently strong to prevent such attacks when
considered in isolation (c.f. §2). Although one might expect
that, for a small number of releases, the cumulative privacy
risk could be easily assessed under different independence
assumptions due to the compositional property of DP, in
practice, the privacy guarantees reported for real-world data
releases are often highly tailored to the specific use case.
For example, the recent Wikimedia statistics release [5],
[23] describes the privacy guarantees for viewing and editing
statistics using several complex, state-of-the-art approaches.
In particular, they define the protected change (i.e., privacy
unit) that is at the root of DP guarantees in project- and
release-specific ways, which vary across different data re-
leases. This is essential for achieving tight privacy bounds
but complicates the task of interpreting or comparing privacy
guarantees across releases. For instance, in the Wikimedia
example, the releases on editing and viewing statistics apply
different definitions of users and time scales and employ
varied geographic groupings. While each guarantee is in-
terpretable and reasonable in isolation, these differences
make it challenging, if not impossible, to assess cumulative
privacy risks across multiple releases.

Relying on complex privacy units for DP analysis not
only complicates cumulative privacy impact assessments,
it can also create a false sense of privacy: while narrow
privacy units enable attractive privacy loss parameters, the
actual protection offered may be significantly weaker if any
of their underlying assumptions fall short. Even when all
implicit independence assumptions hold and the individual
privacy guarantees employ compatible privacy units, it can
be challenging to obtain a useful understanding of the
overall privacy implications solely from these guarantees.
Even with state-of-the-art composition theorems [18], [27],

[51], the cumulative effect of multiple data releases causes
the privacy parameters (e.g., ϵ) to increase rapidly to levels
that are no longer meaningful on their own. This is because
the guarantees provided by DP degrade exponentially with
increasing ϵ. This severely limits the range of meaningful
privacy parameters, for example, at ϵ ≥ 7, the privacy
leakage for the worst-case attacker considered in DP is
already effectively no longer meaningfully bounded mathe-
matically [25].

For simple applications such as counting queries, it is
easy to observe that, as the privacy parameters increase,
the amount of noise required to satisfy the DP defini-
tion becomes too small to hide individual contributions in
practice. Empirical privacy auditing has shown that this
also holds for more complex applications such as machine
learning (ML) [53]. Specifically, in the worst-case scenario,
there is no gap between the theoretical differential privacy
upper bounds and the practical success rates of attacks
against the DP-SGD algorithm [53]. However, depending
on certain (reasonable) deployment assumptions, the cur-
rently best-known privacy attacks indicate that there may
be a significant gap in more constrained settings, making
larger privacy budgets justifiable and generally accepted in
practice in these contexts [52], [53], [54]. In real-world
deployments, there is a variety of contexts that one might
want to consider, e.g., privacy guarantees appropriate for in-
ternal (exploratory) releases frequently differ from those for
external public releases. This poses a fundamental challenge
in applying DP for privacy risk management at an orga-
nizational scale, as privacy losses appropriate for different
contexts cannot be directly combined: privacy parameters
appropriate for counting queries are unlikely to be sufficient
to allow meaningful ML training. Meanwhile, generally
accepted privacy parameters for ML training would be
highly inappropriate if applied to a single counting query
release. As a result, considering only a single global privacy
guarantee across different contexts is generally not a viable
approach to DP at an organizational level.
Our Approach. In this work, we enable DP to deliver on its
potential as a risk management tool for organizational-scale
data operations. The key insight of our approach is that, to
provide meaningful DP guarantees at this scale, we are not
limited to individual DP guarantees. Instead, we can achieve
this by leveraging the combined effect of a set of guarantees
specifically designed to complement each other. We make
the typically implicit assumptions underlying state-of-the-art
DP analysis visible and manageable by explicitly defining
the scope and context of each guarantee. We refer to the
combination of scope, context, and DP guarantee as a rule,
and the overall privacy guarantee achieved by a set of
such rules as the privacy semantics. By considering sets of
rules rather than individual guarantees, our approach enables
effective management of different contexts within the same
system. For example, this flexibility allows ML applications
to use empirically motivated, higher privacy loss parame-
ters, while simultaneously enforcing stricter constraints for
releases requiring a worst-case attacker model. Similarly, we
can simultaneously consider multiple scopes, such as vary-

2

ing independence assumptions, to express more nuanced pri-
vacy semantics that incorporate both privacy loss parameters
and the risks arising from potentially flawed assumptions.
Our approach utilizes narrow scopes (that are meaningless
by themselves) to control privacy risks at a more granular
level, even down to specific data attributes. Finally, our
approach can provide release-specific guarantees (i.e., as
in current practice) while still maintaining comparability
of different releases, by also considering less specialized,
compatible privacy units. Beyond this, by viewing releases
through the lens of multiple privacy units simultaneously,
our approach provides combined guarantees beyond what is
possible to obtain from any given privacy unit individually.

DPolicy. In this work, we introduce DPolicy, a privacy risk
management system which presents three key contributions:

(i) DP Policy Language: Capturing the desired overall pri-
vacy semantics can require a large number of different
scopes and contexts and, therefore, result in a large number
of rules to consider. At the organizational level, manually
specifying and managing such a rule set is impractical, as
ensuring that the rule set is permissive enough to accommo-
date intended use cases without inadvertently creating gaps
in privacy guarantees poses a significant challenge. DPolicy
addresses this by providing a high-level policy language
to describe the desired privacy semantics in a concise and
interpretable manner. Our system translates a small set of
policies into the large and complex set of interrelated rules
necessary to encode the specified privacy semantics.

(ii) Policy Enforcement: In DPolicy, achieving the privacy
semantics defined by the policy set requires checking each
release against all rules in the generated rule set. Specifi-
cally, this requires considering the composition of all prior
releases in a rule’s scope, making enforcement inherently
stateful. As enforcement complexity scales with the size of
the rule set, which can be very large for complex policies,
this can introduce scalability issues. We introduce an op-
timization that exploits the significant potential to reduce
the size of the rule set by considering that the privacy
guarantee of a rule might already be implied by another rule.
Specifically, our optimization reduces the rule set size while
preserving its privacy semantics by carefully identifying and
pruning non-constraining rules.

(iii) Integration with existing DP Systems: DPolicy can
manage privacy risks for large-scale, complex one-off data
releases (e.g., Census releases), or integrate with existing
DP budget allocation systems. To demonstrate its practical
applicability and effectiveness, we implemented DPolicy
and integrated it with Cohere, a state-of-the-art system for
allocating limited privacy budgets across applications [43].
We make our implementation of DPolicy available as open
source1 and evaluate it on a series of workloads to demon-
strate that DPolicy effectively prevents privacy risks that can
occur with simpler approaches to privacy management.

1. https://github.com/pps-lab/dpolicy

2. Background

Below, we provide a brief overview of DP and refer to
Dwork et al. [31] for a comprehensive formal treatment.
Differential Privacy. DP is a mathematical definition of
privacy in the context of statistical data releases. Informally,
the definition captures that the result of an analysis should
stay approximately the same, independent of whether or not
any one individual contributed their data. More formally,
a randomized algorithm M is a (ϵ, δ)-differentially private
mechanism [31] if, for any set of results S ⊆ Range(M)
and any two neighboring datasets D,D′, it holds that:

Pr[M(D) ∈ S] ≤ exp(ϵ) · Pr[M(D′) ∈ S] + δ.

The privacy guarantees are determined by the parameters
ϵ > 0 and δ ∈ [0, 1) that bound the privacy loss of the
release and by the definition of neighboring datasets, which
describes the protected change. Neighboring datasets are
expressed in terms of a distance metric between databases,
which captures two aspects: (i) what is the protected privacy
unit, and (ii) how can the privacy unit change.

There are two commonly used ways for defining the
change in neighboring datasets: In bounded DP, the dataset
size is known, and neighboring datasets differ by the sub-
stitution of a single unit. In unbounded DP, the database
size is unknown, and a single unit is either removed or
added (rather than substituted). Note that a privacy guarantee
for unbounded DP implies a guarantee for bounded DP by
observing that one addition and one removal corresponds to
a substitute-one operation, i.e., an application of group pri-
vacy of size two [26]. However, in bounded DP, algorithms
can leverage the fixed dataset size to enable a more refined
analysis, making the two definitions not directly compara-
ble. Moreover, there are different models of DP differing
in trust assumptions. Two widely adopted models are the
central model of DP, in which the party computing the DP
mechanism has access to the raw underlying data, and the
local model, where no such trusted party is required but
achieving similar utility requires larger privacy parameters.
Composition and Group Privacy. DP composition theo-
rems provide a method for bounding the cumulative privacy
cost of multiple data releases. For instance, by sequen-
tial composition, a series of ϵi DP mechanisms, satisfies
(
∑

i ϵi)-DP. By parallel composition, a series of ϵi DP
mechanisms that operate on disjoint parts of a database
satisfies (maxi ϵi)-DP. Beyond the (ϵ, δ) - DP variant, there
are additional DP variants with more attractive composi-
tion properties such as Rényi DP (RDP) [51] and Zero-
Concentrated DP (zCDP) [18], which bound the average pri-
vacy loss using the Rényi divergence, or f -DP [27], which
follows the hypothesis testing interpretation of DP. These
definitions provide different tradeoffs between flexibility,
tightness, and composition complexity. Conversions between
different variants are possible in some directions, and all can
be converted back into an (ϵ, δ) - DP guarantee.

DP guarantees are fundamentally concerned with the
privacy loss between neighboring datasets, i.e., differing
in one privacy unit. Group privacy extends this notion by

3

https://github.com/pps-lab/dpolicy

allowing up to k differences, where k is the group size.
Any (ϵ, 0)-DP mechanism, is (k · ϵ, 0)-DP [31]. For other
DP variants, or when δ ̸= 0 in (ϵ, δ) - DP, group privacy is
more involved and is separate from k-fold composition [18],
[27], [51]. For example, the k-fold composition of a ρ-zCDP
mechanism results in (k · ρ)-zCDP, while k-group privacy
for the same mechanism results in (k2 · ρ)-zCDP.
Privacy Units. In DP, the natural privacy unit is the
user, meaning all records associated with an individual are
protected. However, in practice, the privacy unit is often
relaxed, which allows achieving smaller privacy parameters
at the cost of providing protections only for certain changes2

and frequently harder to interpret privacy semantics [9].
Deployments that perform releases regularly, e.g., monthly,
frequently resort to time-based privacy units, where they,
e.g., protect all user contributions of a single month instead
of all user contributions. Implicitly, such deployments make
the assumption that the individual releases are hard to link
across these time boundaries. Without resorting to time-
based privacy units, continuously applying new mechanisms
under a finite budget is generally only possible through
user rotation, where users are retired and replaced with new
users as their budget is depleted [43], [47]. Another form
of privacy unit relaxation can consider that only part of
the data is protected. Kifer et al. define Attribute-DP [41],
where the focus is on protecting only an individual attribute
of a database. Label-DP [20] is a variant of this, where
only the label of a supervised machine learning task is
protected. In addition, there are generalizations of the notion
of neighboring datasets that can model various approaches,
including time- and attribute-based privacy units [37], [42].
Privacy Attacks. DP guarantees hinge on privacy param-
eters, such as the choice of privacy unit and the value of
ϵ. If these are not chosen appropriately, even DP-protected
releases can become vulnerable to privacy attacks. Several
works have demonstrated this phenomenon across various
domains, including aggregate location data [62], [63], tabu-
lar data [10], [66] and machine learning models [19], [39],
[52], [53]. Such vulnerabilities have also been demonstrated
in real-world DP deployments. For instance, Gadotti et al.
showed that repeated observations can be exploited to ex-
tract sensitive information from Apple’s data collection [32].
Moreover, Houssiau et al. demonstrated that incorrect as-
sumptions about the privacy unit led to a false sense of
privacy in Google’s DP-based location data release [38].
While most attack literature focuses on specific releases,
in practice, the line between a single release with multiple
queries and multiple releases is blurry, and most existing
attack literature also directly applies to the multi-release
setting considered in this paper, as we illustrate below.

First, we consider how neglecting privacy across mul-
tiple releases can trivially empower attackers by demon-
strating how membership inference attacks can be easily
combined across different machine learning models, even
when the models operate in entirely different domains.

2. Using group privacy allows obtaining an upper bound on the privacy
loss across multiple privacy units.

For example, the likelihood ratio attack (LiRA) [19] trains
shadow models on datasets that either include or exclude
the target sample. It then performs a likelihood ratio test
between the target sample’s loss on the actual model and
the loss distributions generated by the two sets of shadow
models. In a multi-release setting, the confidence of such an
attack can be significantly amplified if the adversary knows
that an individual is either included in the training data of
both models or neither. For example, if independent attacks
on each model result in a 75% belief, Bayesian inference
can combine these probabilities to increase confidence to
90%. Per-release management approaches are fundamentally
incapable of addressing this, requiring an approach that can
track risks across different releases.

Second, we consider how underlying user data can be
recovered even from DP-protected synthetic data releases
unless privacy is considered at a fine-grained per-attribute
level. For example, Annamalai et al. demonstrate an attack
on the “select-measure-generate” approach [45] used by
most synthetic data generation algorithms [10]. In each
round (which we can consider a release), these algorithms
select a set of attributes and release their marginals to refine
the synthetic representation. By default, these algorithms do
not provide a mechanism to control how often specific at-
tributes are selected. As a result, there is a risk that the target
attribute in an attribute-inference attack may accumulate a
disproportionate share of the overall privacy cost, leading
to a successful attack. Preventing such issues requires a
substantially more fine-grained approach to privacy risk
management, that can prevent the accumulation of privacy
loss and ensure a more even distribution.

3. Related Work

Below, we discuss work relevant to DPolicy, including
existing DP policy and management approaches.
Semantic Structure of the Privacy Budget. The most
closely related line of work to DPolicy includes approaches
that augment guarantees over large privacy parameters with
additional fine-grained information. Ghazi et al., define per-
attribute Partial-DP [33], which enables them to assign a
smaller per-attribute budget, ϵ0, while permitting a larger
overall ϵ. Their approach justifies a higher total ϵ by showing
that privacy loss is not disproportionately concentrated on
any single attribute. Our approach similarly ensures that
high overall ϵ is not concentrated on individual attributes,
but also supports a much wider set of additional budgets,
does not require specific algorithmic support and can support
both bounded and unbounded DP. Kifer et al., conducted
an ex-post case study on the 2020 Census redistricting data
release to examine the attribute-based privacy semantics of
the release in finer detail [40]. They define eight scenarios,
each corresponding to a unique combination of attributes,
and accumulate privacy loss from queries influenced by
these attributes. This approach is similar in spirit to our
approach in DPolicy, but their work only considered a
small set of manually selected ad-hoc scenarios and lacks a
systematic method for defining scenarios. In addition, they

4

only support attribute-based constraints and do not consider
policy definition or constraint enforcement.

Policy Frameworks for DP. Unlike common cryptographic
parameters, DP parameters are widely accepted to be highly
context-dependent and cannot be chosen in an application-
agnostic manner. This has resulted in a wide proliferation of
approaches to determining and reporting DP guarantees. To
promote transparency, accountability, and comparability of
these parameters, prominent DP researchers have called for
the creation of an “epsilon registry” [17], [23]. Currently,
most DP deployments are documented in technical blogs
or research papers. These documents serve as informal DP
policies, which minimally specify critical aspects [60] such
as the DP model (e.g., central or local DP), the neighboring
relation (e.g., add/remove or replace-one), the privacy unit
(e.g., user-level), and the privacy parameters (e.g., ϵ, δ).
In some cases, additional information is provided, includ-
ing hyperparameter tuning, the type of accounting used,
and specific mechanisms. Such details enhance transparency
and provide a richer context for evaluating DP guarantees.
Standardization bodies, such as the National Institute of
Standards and Technology (NIST), are also working to im-
prove this area. For example, NIST is developing guidelines
for evaluating DP guarantees [55]. Most of this documen-
tation covers individual deployments; hence, obtaining an
aggregated view of privacy risk requires piecing together
information from multiple sources. Apple is a notable ex-
ception, as they provide a consolidated document listing
all their DP applications [11]. However, even in this case,
the cumulative privacy impact across all deployments is not
explicitly discussed and would require further analysis of
the individual parameters. DPolicy not only facilitates per-
release policies but also provides structured, comprehensive
global policies, allowing for a cohesive overview of aggre-
gate DP usage. Beyond current DP reporting practice, Ben-
thall et al. consider an integration of DP with the conceptual
framework of contextual integrity (CI) [15]. This establishes
a theoretical model considering DP based on the context in
which data is used. In their framework, CI views privacy as
appropriate information flow within a specific social context.
Their approach augments CI with a descriptive transmission
property that dictates that only information flows under a
DP guarantee are considered appropriate in certain contexts.
While this could be seen as a type of policy, their work is
purely conceptual and orthogonal to the concrete challenges
of providing meaningful guarantees over multiple releases.

Privacy Management for DP. Recent research has fo-
cused on treating the DP budget as a shared resource and
consequently proposes the design of systems that manage
access [49] or address the allocation of this resource to
applications for optimized efficiency [43], [68], [72] and/or
fairness [46], [47], [61]. For example, Küchler et al. pro-
pose Cohere, which focuses on unifying the allocation of a
wide range of different DP mechanisms. These approaches
are orthogonal to our work, as DPolicy only provides the
constraints and is independent of the concrete (manual or
automated) allocation strategy used.

4. Policy Language

In this section, we introduce the policy language em-
ployed by DPolicy to specify desired privacy semantics.
Defining DP policies enables a structured approach to man-
aging privacy constraints without the need to specify an
extremely large set of rules manually. This approach mir-
rors the advantages of defining access control policies via
Attribute-based Access Control (ABAC) rather than manag-
ing an Access Control List (ACL) directly.3 In addition to
providing a formal specification, we discuss how our policy
language facilitates expressing complex privacy semantics
and illustrate its use through concrete examples.

4.1. Core Concepts

At the core of DPolicy is a policy language that allows
admins to specify the desired DP guarantees through a set
of high-level policies. From these policies, our system gen-
erates a set of concrete rules that correspond to individual
DP guarantees. A series of releases satisfies a set of policies
only if it satisfies all rules generated by those policies. That
is, DPolicy ensures that each individual guarantee holds
independently of any other rules present in the system. In
addition to policies that apply across all releases, we also
support per-release policies. These can model the type of
isolated guarantees common in current approaches to DP
management. DPolicy supports the same features for both
per-release and across-release policies, so we focus on the
latter in the following discussion. Policies are divided into
base and extension policies. Base policies directly generate
(intermediate) rules, while extension policies act on the rules
generated by the base policies and expand each into multiple
new rules. DPolicy uses extension policies to efficiently
express privacy guarantees in a context-specific manner. In
Section 5.1, we discuss how DPolicy applies a series of
optimizations that eliminate redundant rules to minimize the
size of the final set of rules.
Formal Definition. In DPolicy, the fundamental unit is a
rule. Each rule defines a DP budget (e.g., an ϵ limit) for a
specific scope, which determines which DP applications are
covered by this guarantee, and a context, which encodes
assumptions about the setting of these DP applications.
Formally, we consider a multimap of labels on the DP
mechanisms that make up the DP applications. Let M
denote this universe of labeled DP mechanisms. We then
model scopes and context as a predicate ϕk :M→ {0, 1}
over the mechanisms’ labels. A rule rk is defined as a
tuple (ϕk, Uk, Bk), consisting of such a predicate and a
privacy budget Bk relative to a privacy unit Uk. Note that the
budget can be expressed in any variant of DP (e.g., (ϵ, δ)
- DP, RDP, zCDP). Given a composition of mechanisms
M = (m1,m2, . . . ,mN), the rule rk requires that the (sub)

3. Note that DPolicy is designed to complement, not replace, existing
access control systems.

5

{

"type": "Custom",

"predicate": "true",

"budget": {"User": {"ε": 10.0, "δ": 1e-7}}

},

{

"type": "PerAttribute",

"attributes": {"a1": "HR", "a2": "LR", "a3": "LR"},

"budget": {

"HR": {"User": {"ε": 3.0, "δ": 1e-7}},

"LR": {"User": {"ε": 7.0, "δ": 1e-7}}

}

},

(a) Base Policies [1/2]

{

"type": "PerCategory",

"categories": {"cat1": "LR", "cat2": "HR"},

"budget": {

"HR": {"User": {"ε": 3.0, "δ": 1e-7}},

"LR": {"User": {"ε": 5.0, "δ": 1e-7}}

},

"assignment": {

"cat1": {"L1": ["a1", "a2"], "L2": ["a3"]},

"cat2": {"L1": ["a3"], "L2": []}

}

}

(b) Base Policies [2/2]

{

"name": "MLExtension",

"extensions": [

{

"predicate": "'std' in m.deployment",

"function": "{'ε': budget.ε, 'δ': budget.δ}“

},

{

"predicate": "true",

"function": "{'ε': 10.0*budget.ε, 'δ': budget.δ}"

}

]

}

(c) Extension Policy

Figure 1: An example policy set in DPolicy, demonstrating a custom policy defining a global user budget, per-attribute and
per-category policies and an extension policy for differentiating between standard and “black-box” ML contexts.

composition of the mechanisms Mk matching the predicate
ϕk, satisfies the privacy budget Bk

4.
In DPolicy, rules are derived from the set of policies

provided by the admin. Let R denote the universe of rules.
There are two types of policies in DPolicy: (i) base policies,
and (ii) extension policies. Formally, each base policy PB

defines a set of intermediate rules:

R̂ = {(ϕ1, U1, B1), (ϕ2, U2, B2), . . .} (1)

An extension policy PE with ℓ extensions defines a map-
ping extend : R → Rℓ, which maps each intermediate
rule to a set of ℓ extended intermediate rules (c.f. §4.2).
In DPolicy, the simplest type of policy is a custom base
policy that directly specifies the predicate (using CEL [3]),
privacy unit, and budget (c.f. Figure 1a). For example, a DP
bound for a global scope can be expressed using a predicate
ϕ∗(m) 7→ 1, which matches on all mechanisms. However,
our system primarily relies on significantly more powerful
policies to concisely specify the intended privacy guarantees.
We discuss the policies and their use in the following.

4.2. Context-specific Privacy Budgets

Although DP, in theory, provides a unified, application-
independent approach to privacy, it is generally accepted
that, in practice, adequate privacy budgets cannot be deter-
mined without additional context. For example, privacy bud-
gets suitable for counting queries (e.g., ϵ < 1) are typically
insufficient to allow meaningful ML training. Empirical
privacy auditing has shown that DP analyses of complex
applications, such as the DP-SGD algorithm, are tight for
worst-case attackers [53]. However, the best-known privacy
attacks [52], [53], [54] suggest that a significant gap may
exist for less powerful adversaries. Therefore, depending
on certain (reasonable) deployment assumptions, the use of
larger privacy budgets for ML might be justifiable and is
generally accepted in practice [60].
Context-aware Rules. Although the context-sensitive na-
ture of DP budgets might suggest that managing privacy
risks in a unified, global manner is fundamentally impossi-
ble, in DPolicy we show how we can effectively model and
address this complexity by leveraging context-aware rules.

4. This is similar to applying a privacy filter only within the specific
scope and context defined by the predicate.

Consider, for example, a scenario where we aim to enforce
a strict privacy budget for general applications (“standard”
setting) while permitting a relaxed privacy budget in justified
cases, such as in ML deployments that limit an attacker’s
access capabilities (e.g., “black-box” setting). An intuitive
solution might involve defining a rule with a relaxed privacy
budget that matches only “black-box” ML deployments
alongside a rule with a strict privacy budget that matches
any mechanism. However, this approach does not succeed
because the strict rule would also apply to ML mechanisms,
thereby inadvertently enforcing the strict privacy budget on
them.5 Instead, we introduce a rule with a strict budget that
tracks only applications that fall into the standard setting,
and a second rule with the relaxed budget that tracks the
privacy costs of both the standard and the black box ML
releases. Note that, by themselves, neither rule provides
sufficient guarantees: the first rule omits many mechanisms
from its accounting, and the second rule does not guarantee
appropriate privacy loss for applications in the standard
setting (e.g., count queries). However, when these rules are
employed together, they achieve the desired effect. Black-
box ML applications can utilize relaxed budgets appropriate
for their context, while all other applications remain con-
strained by the stricter budget.
Extension Policies. Manually specifying, for each (base)
policy in the system, how budgets change across different
settings does not scale well in practice. This is because it
permits inconsistencies in both the assumptions underlying
each setting and the degree of relaxation applied, making it
challenging to specify complex policy sets. To address this
issue, DPolicy adopts a different approach. As illustrated in
Figure 1c, admins can create extension policies by defin-
ing various settings (e.g., “standard” and “black-box”) and
specifying how they affect the corresponding budgets. This,
however, raises the question of how to express this budget
adjustment. In DPolicy, we enable the admin to provide a
custom function that maps a base budget to a new budget.
To configure these functions, admins can leverage insights
from empirical privacy auditing [53]. Formally, an extension
policy PE is defined by a set of extensions:

E = {(ϕ1, U1, f1), (ϕ2, U2, f2), . . . , (ϕℓ, Uℓ, fℓ)}

5. Recall that in DPolicy, mechanisms must satisfy the privacy guaran-
tees of all rules they match.

6

Each extension is a pair (ϕk, Uk, fk) consisting of a predi-
cate over the mechanisms ϕk :M→ {0, 1}, and a function
fk : B → B on privacy budgets for the privacy unit Uk.
For each (intermediate) rule in our system, an extension
policy with ℓ extensions generates a set with ℓ new rules by
applying the extend : R 7→ Rℓ mapping:

extend ((ϕk, Uk, Bk)) 7→

(ϕ1 ∧ ϕk, Uk, f1(Bk)),

(ϕ2 ∧ ϕk, Uk, f2(Bk)),

· · ·
(ϕℓ ∧ ϕk, Uk, fℓ(Bk))

Note that every extension policy must contain an exten-

sion (ϕ∗, Uk, fk) that applies to all mechanisms and bounds
the total privacy budget, i.e., ϕ∗ 7→ 1. This is necessary
to ensure that if a mechanism was part of the scope of
the original intermediate rule, it is also guaranteed to still
be in the scope of at least one of the new rules. Without
this requirement, applying an extension policy might have
unintended consequences. Similarly, each extension policy
typically contains an extension (ϕk, Uk, fid), where the
function on privacy budgets is the identity function. This
ensures that the original budget specified in the intermediate
rule is preserved in at least some setting.
Combining Extension Policies. In general, contexts in DP
depend not only on a single factor (e.g., ML deployment
assumptions) but on a combination of multiple factors (e.g.,
public release vs. internal exploratory use and/or current data
vs. historical data). For example, most applications require
some form of DP hyperparameter selection [44], [59]. Ac-
counting for this selection in DP guarantees typically ne-
cessitates significantly larger privacy budgets, as worst-case
attacks may exploit hyperparameter choices. However, many
reported DP guarantees implicitly assume that such attacks
are impractical and present their guarantees using the data
custodian model, i.e., without accounting for hyperparame-
ter tuning. Similarly, it is often assumed that historical data
is less privacy-sensitive, permitting higher privacy budgets.
While an extension policy can represent arbitrarily complex
contexts by considering multiple dimensions, expressing
this complexity within a single policy quickly becomes
impractical. Instead, in DPolicy, we support the automatic
combination of different extension policies, each addressing
a single dimension. For example, one can define a policy
for ML deployment budget relaxations and another policy
to differentiate between the budget allocated to the final re-
leased mechanisms and the budget including hyperparameter
tuning. This approach enables DPolicy to construct complex
contexts concisely.

Algorithm 1 demonstrates how DPolicy combines mul-
tiple extension policies to expand an initial intermediate
set of rules (for the same privacy unit). The algorithm
sequentially applies the mapping of each extension policy
extend : R 7→ Rℓ, replacing each intermediate rule, with a
set of newly generated intermediate rules. Formally, let R̂
be a set of base (intermediate) rules, and (E1, E2, . . . , EM)
represent a sequence of M extension policies. The resulting
rule set R contains a (final) rule for each element in the

Algorithm 1 The DPolicy intermediate rule expansion.
1: function APPLYEXTENSIONS(irules, epolicies)
2: for EXTEND in epolicies do
3: IR ← ∅
4: for irule in irules do
5: IR ← IR ∪ EXTEND(irule)
6: irules ← IR
7: return irules

Cartesian product of R̂ and the extensions, i.e., |R| =
|R̂|× |E1|× . . .×|EM |. Each (final) rule (ϕk, Uk, Bk) ∈ R
contains a predicate:

ϕk = ϕ
(B)
kB
∧ ϕ

(1)
k1
∧ . . . ∧ ϕ

(M)
kM

(2)

which is the conjunction of the base rule predicate ϕ
(B)
kB

and
predicates from each extension policy, and a budget:

Bk = f
(M)
kM

(
. . . f

(2)
k2

(
f
(1)
k1

(
B

(B)
kB

))
. . .

)
(3)

defined by applying the composition of the budget functions
of the different extensions to the base budget B(B)

kB
.

4.3. Supporting Multiple Scopes

Even with state-of-the-art approaches to DP composi-
tion, analyzing a large organization’s use of DP at the global
scope (i.e., across all releases) will generally result in a
privacy budget that is so high as to be meaningless, even
if the budget is adjusted appropriately for the context. On
the other hand, only considering releases in isolation, as
in current practice, introduces non-trivial privacy risk due
to implicit independence assumptions. As a result, it may
seem that we are fundamentally limited to either providing
guarantees that provide meaningful privacy parameters (but
at a very narrow scope) or that consider the cumulative
impact at a broad scope (but with excessively high privacy
parameters). While we cannot overcome the fundamental
constraints of DP for any given scope, we can nevertheless
improve our understanding of the privacy risks involved by
considering DP guarantees at multiple scopes. For example,
Kifer et al. consider a set of ad-hoc scopes in their ex-post
case study on the 2020 Census redistricting data release in
an attempt to provide more nuanced guarantees on specific
(categories of) privacy-sensitive data [40]. In DPolicy, we
systematize this approach and provide the ability to consider
a large number of scopes simultaneously, as well as the
ability to define them in a structured and automated way.
Scope-aware Rules. In DPolicy, we can represent scopes
via (intermediate) rules that select only the mechanisms
belonging to that scope, using predicates over the labels of
the mechanisms. This can support arbitrary custom scopes
an organization requires, e.g., scopes for specific analysts or
purposes. Beyond such organization-specific scopes, scopes
in DPolicy can be used to track guarantees on specific
(categories of) sensitive data as in Kifer et al. [40]. Towards
this, we require each mechanism to be labeled with the

7

data attributes it accesses. This information should already
be available, as it is required to perform a meaningful DP
analysis. At the most basic level, such scopes can establish
per-attribute privacy budgets. Let A = {a1, a2, . . .} denote
the attributes of the database. For each attribute ak, we
can establish an (intermediate) rule (ϕk, Uk, Bk), where
the predicate ϕk(m) selects only mechanisms that use the
attribute ak. We require that the composition of the selected
mechanism remains below the budget Bk (for privacy unit
Uk). This can be seen as a form of attribute DP [41], where
the privacy unit between neighboring databases is re-defined
to be any attribute. While attribute DP is usually used with
bounded-DP, modeling such rules as scope (instead of as
unit) allows for such attribute constraints in both bounded-
and unbounded-DP.6

Per-Attribute Policies. While it would be possible to define
individual per-attribute budgets, an organization will typi-
cally have a significant number of attributes, and it would
be neither scalable nor meaningful to assign each attribute
an individual privacy budget. Alternatively, existing work on
attribute DP typically assumes the same budget for every
attribute [33], [41], which may be too limiting. In DPol-
icy, we instead introduce privacy risk levels that classify
attributes in the data schema based on their sensitivity. Each
risk level r (e.g., low, medium, and high) is associated with
a budget Br. By default, attributes receive their budget
based on risk levels. However, admins can alternatively
also provide custom budgets for specific attributes. A per-
attribute policy (c.f. Figure 1a) defines a per-attribute budget
of Br for a privacy risk level r and refers to the set of
attributes Ar = {a1, a2, . . .} with this risk level. For each
per-attribute policy, DPolicy automatically derives the per-
attribute intermediate rule set R̂A, which contains a rule per
attribute. The subset of rules R̂Ar

⊆ R̂A, corresponding to
attributes at the same risk level r, all share the same budget:

R̂Ar = {(ϕ1, U1, Br), (ϕ2, U2, Br), . . . , (ϕ|Ar|, U|Ar|, Br)}

Attribute Category Policies. Per-attribute scopes by them-
selves are limited in their expressiveness, as they do not
model the dependencies (or lack thereof) between different
data attributes. In DPolicy, we use categories to make
these traditionally implicit independence assumptions ex-
plicit. Specific categories might include biometrics, finan-
cial, health, personal, demographics, activity, location, etc.
but will naturally be organization-specific. Similar to the
attribute privacy risk levels, our system offers the ability
to use category risk levels to remove the requirement of
defining a budget for every category individually. An at-
tribute might naturally belong to multiple categories, but
even then, cleanly assigning attributes into categories may
often be difficult due to edge cases, where an attribute is
related to a category but not strictly a member. To address
these edge cases, DPolicy supports multiple membership
levels, for example: member, strong connection, and weak
connection. Each attribute can be either a direct member of

6. c.f. §2 for the difference between bounded- and unbounded DP.

a category, have a strong connection or weak connection, or
be assumed to be independent.

DPolicy translates each category into separate cumula-
tive (intermediate7) rules: (i) a rule for members, (ii) a rule
for members and attributes with a strong connection, and
(iii) a rule for attributes with any connection. The category
rule predicate ϕ(m) for the membership level strong con-
nection, for example, selects any mechanism relying on an
attribute that is a member of the category, or has a strong
connection to the category. While it is possible to configure
a budget for each category risk level, and for each member-
ship level, DPolicy applies the budget extension functions
introduced for context (c.f. §4.2), also for extending the
budget from the member membership level to the strong-
connection and weak-connection membership levels. This
allows an admin to explicitly encode their assumptions about
when cumulative privacy loss tracking is necessary, where
higher privacy loss can be tolerated given weaker depen-
dencies, and when independence assumptions are justified
as attributes are unrelated.

A category policy (c.f. Figure 1b) defines per-category
budgets Br based on the category risk level r. Let Cr =
{c1, c2, . . .} denote the categories with category risk level
r, and let L = {l1, l2, l3} denote the membership levels. A
rule for the level lj of category ci is a tuple (ϕij , Ui, fj)
consisting of a predicate over the mechanisms ϕij :M→
{0, 1}, and a function fj : B → B on privacy budgets
for unit Ui. DPolicy derives the (intermediate) rule set R̂C ,
which contains |L| rules per category. The subset of rules
R̂Cr ⊆ R̂C corresponding to categories of the same risk
level r, all share the same budget fj(Br) per membership
membership level j:

RCr =

(ϕ11, Br), (ϕ12, f2(Br)), (ϕ13, f3(Br)),

(ϕ21, Br), (ϕ22, f2(Br)), (ϕ23, f3(Br)),

...

 8

Note that per-attribute and per-category policies can be
seamlessly combined with context policies, as they simply
define new intermediate rules, and the extension policies in-
troduced in Section 4.2 apply to the union of all intermediate
rules defined by the base policies.

4.4. Multiple Privacy Units

So far, we have mostly omitted the privacy unit from
our considerations and treated scope- and context policies
and the rules they generate as if they were based on a
single, universally used privacy unit. In real-world appli-
cations, however, data releases often use different privacy
units [23]. In DPolicy, we can quantify and control the pri-
vacy guarantee associated with multiple privacy units simul-
taneously, which DP experts consider essential for future use
of DP [22]. Specifically, DPolicy supports arbitrary privacy

7. These rules are further extended by context policies.
8. With a slight abuse of notation, we abbreviate the identity function for

the member level as Br = fid(Br), and omit the unit Ui for conciseness.

8

units as long as each mechanism m ∈ M can calculate
its privacy cost across all privacy units used in the system.
Typically, user-level privacy units are relaxed across three
dimensions (c.f. §2): (i) attribute-based privacy units, (ii)
release-specific privacy units, and (iii) time-based privacy
units. In DPolicy, we can express the semantics of attribute-
based privacy units using scope policies.9 Release-specific
privacy units inherently lack meaning across releases and
can, therefore, only be used to report guarantees of indi-
vidual releases. In the following, we focus specifically on
time-based privacy units, which are frequently used in real-
world DP deployments. Time-based privacy units are based
on the assumption that it is difficult to link users across
time boundaries (e.g., that a user’s data distribution changes
significantly over time). They require that each record has
a user ID and a timestamp convertible to the desired time
unit, which (in combination) serves as the record’s privacy
ID. While timestamps are inherent in data streams, static
data (e.g., country of residence) generally lacks meaningful
timestamps. However, it is common practice to treat static
data as if it were part of the data stream for each time unit.
For example, for page view data, each record contains the
geo-location and the browser, even though the location and
browser do not change with every visit of a page. However,
the independence assumption of the privacy unit will not
hold for such static data, and so the DP guarantee relative
to this privacy unit does not provide additional benefits.
Converting between Privacy Units. In practice, it might
be hard to judge for which (if any) time-based privacy
unit the independence assumptions hold, e.g., at which time
scales the data distribution of all users incurs sufficient
changes between two units to be considered independent.
However, DP guarantees for time-based privacy units can be
converted to guarantees for different time scales, allowing
us to understand how these guarantees change depending on
which assumptions we are willing to make. By group privacy
(c.f. §2), a privacy parameter for a privacy unit usrc implies
a privacy parameter for a privacy unit udst if udst can be
seen as a combination of a group of k instances of usrc. For
example, converting from user-day to user-month requires
applying group privacy with a group size of 31. Note that
we can technically also convert to smaller time scales via
group privacy, e.g., a user-month guarantee implies the same
(group size one) privacy parameter for the user-day privacy
unit. Converting from user-month to user-week, however,
would require a group size of two, as a week might span
two months. Note that the conversion using group privacy
provides only an upper bound on the privacy loss, while the
loss may be much lower concretely. For example, Wikimedia
currently releases daily page view statistics with ρd = 0.015,
equivalent to (ϵd = 0.8, δ = 10−6), using a UserDay privacy
unit. 10 Under group privacy, this daily guarantee implies
a UserMonth privacy loss of ρm = 312 · ρd = 14.415,

9. The advantage of scope policies is that it naturally allows per-attribute
(group) restrictions for bounded and unbounded DP (c.f. §2).

10. We convert the zCDP guarantees to (ϵ, δ) - DP using a (non-tight)
conversion [24] for a fixed δ = 10−6 to aid intuitive understanding.

or (ϵm = 41.94, δ = 10−6), which may be excessive and
overly pessimistic, as group privacy must assume users view
Wikimedia to the same extent every single day. However,
user activity often fluctuates, with high activity on some
days and lower activity on others [1]. As a result, one would
expect to be able to achieve much better guarantees than
what can be achieved purely via group privacy.
Quantifying Privacy for Multiple Privacy Units. Im-
proving upon group-privacy-based bounds requires adapting
mechanisms to consider multiple privacy units simultane-
ously. For example, if, in addition to the contribution bound
of 10 visits per user and day considered in the Wikimedia
release [5], we also bound the monthly visits to 70 we
can provide a UserMonth guarantee of ρM = 0.735, e.g.,
(ϵm = 6.72, δ = 10−6), significantly improving on the
group-privacy-based bound without meaningfully impact-
ing utility. In Appendix A, we discuss how the program-
ming framework [36] underlying the state-of-the-art DP
libraries [16], [56] can be generalized to support multiple
privacy units to achieve these improved bounds.

DPolicy leverages this approach to enable policies to
constrain budgets for small and large privacy units simul-
taneously, which is essential for fine-grained privacy risk
management. For example, only considering small privacy
units does not provide a useful understanding of how guar-
antees are affected should the underlying assumptions fall
short. On the other hand, only considering larger privacy
units is also insufficient: releases might concentrate the com-
paratively high privacy-loss parameters necessary to express
guarantees at this level into a small time scale, violating
privacy expectations. By considering both small and large
guarantees simultaneously, DPolicy provides a significantly
more nuanced approach to privacy units.

5. Policy Enforcement

In this section, we consider the enforcement of a pol-
icy set expressed in the policy language for organization-
wide privacy risk management introduced in Section 4.
In DPolicy, a policy set defines a (potentially very large)
number of scope- and context-aware rules, and the system
needs to check that no rule is violated for any series of
releases. We first present an optimization that reduces the
size of this rule set while maintaining the privacy semantics,
generically reducing the problem size for any enforcement
algorithm. Afterward, we describe how DPolicy efficiently
enforces complex policies even while providing a fine-
grained privacy analysis. Finally, we discuss how DPolicy
can be employed to manage the privacy risk of complex one-
off releases that include multiple mechanisms (e.g., queries),
or be integrated with existing privacy management systems
that allocate limited budgets among DP applications.

5.1. Rule Pruning

The challenge for policy enforcement is that it naturally
scales with the size of the rule set. Even without considering

9

per-release policies, the set of rules R derived from the
policies can become very large.

R = {(ϕ1, U1, B1), (ϕ2, U2, B2), . . .} (4)

Specifically, if the policy set tracks: (i) |Unit| privacy
units (c.f. §4.4), (ii) separate scopes for |Attr| attributes,
|Cat| categories each with |Lvl| membership levels, and
potentially a global scope (c.f. §4.3), and (iii) in total
|Ext| = |E1|∗ |E2|∗ . . . extensions (c.f. §4.2) corresponding
to the product of the number of settings from each extension,
the DPolicy rule set has size:

|R| = |Unit| ∗ (1 + |Attr|+ |Cat| ∗ |Lvl|) ∗ |Ext|

Since DPolicy needs to check each rule for each release,
the large number of rules could become a scalability prob-
lem when deploying DPolicy. However, there is a significant
optimization potential to reduce the size of the rule set
by considering that the privacy guarantee of a rule might
already be implied by another rule. We identify such rules
and prune them from the rule set, as they cannot become a
deciding factor in a policy decision. For example, it is easy
to see if the rule set contains two rules (ϕ1, U1, B1) and
(ϕ2, U2, B2) that have the same privacy unit and equivalent
predicates, it is sufficient to track only the more restrictive
rule with the smaller budget and prune the other. More
generally, we can define a partial order on rules that allows
us to formally describe which rules can be pruned safely.
Formal Definition. The predicate set Φ forms a partially
ordered set (Φ;⊑), with the partial order relation ⊑, where
∀ϕ1 ∈ Φ, ∀ϕ2 ∈ Φ:

ϕ1 ⊑ ϕ2 ⇐⇒ {m ∈M| ϕ1(m)} ⊆ {m ∈M| ϕ2(m)}

Similarly, a privacy unit set U also forms a partially ordered
set (U ;≤), u1 ≤ u2 if privacy unit u2 covers u1. For ex-
ample, for the set U = {UserWeek, UserMonth, User},
the partial order would be UserMonth ≤ User and
UserWeek ≤ User, but there is no order between
UserWeek and UserMonth, as a week can span two
months. By combining these two partial orders, the set of
rules R forms a partially ordered set (R;⪯), with the partial
order relation ⪯, where ∀r1 = (ϕ1, U1, B1) ∈ R, ∀r2 =
(ϕ2, U2, B2) ∈ R:

r1 ⪯ r2 ⇐⇒ ϕ1 ⊑ ϕ2 ∧ U1 ≤ U2 (5)

If the base policies define a global scope, and each extension
policy contains an extension with ϕ∗ 7→ 1, and the privacy
units have a maximal element, e.g., User, then the (R;⪯) is
a bounded join-semi-lattice, where r∗ = (ϕ∗, u∗, B∗) is the
greatest element.

Definition 5.1. In a rule set R, a rule r is called non-
constraining if there exists no composition of mechanisms
M = (m1,m2, . . . ,mN) that satisfies all rules in R \ {r}
but violates rule r.

Due to the structure of the rule set, we can determine
whether a rule is non-constraining purely by considering
the partial order relation and budgets.

(ϕ1, u1, ϵ = 7)

(ϕ2, u2, ϵ = 7) (ϕ3, u3, ϵ = 7) (ϕ4, u4, ϵ = 5)

(ϕ5, u5, ϵ = 7) (ϕ6, u6, ϵ = 3) (ϕ7, u7, ϵ = 5)

Figure 2: Hasse diagram of a rule poset (R,⪯): non-
constraining rules are shown in grey, with the path to the
more general rule under a stricter budget highlighted in bold.

Theorem 5.1. In a rule poset (R,⪯), a rule ri =
(ϕi, ui, Bi) ∈ R is non-constraining if ∃rj ∈ R \ {ri} such
that ri ⪯ rj and Bi ≥ Bj .

Proof. See Appendix B.

In Figure 2, we show an example of a rule poset,
distinguishing between constraining and non-constraining
rules. Theorem 5.1 lies the groundwork for an algorithm
that sequentially identifies a rule that is non-constraining
and thus can be pruned, repeating this until there are no
non-constraining rules left. However, implementing this al-
gorithm efficiently hinges on evaluating r1 ⪯ r2 efficiently,
which requires computing ϕ1 ⊑ ϕ2 and U1 ≤ U2 (Eq.
5). While the partial order for the privacy units can be
explicitly encoded by the admin as the set is generally
small, determining the partial order between the predicates
is more involved. Determining whether ϕ1 ⊑ ϕ2 on arbitrary
predicates is a hard problem as it requires showing that
ϕ1 ∧ ¬ϕ2 is not satisfiable.
Rule Decomposition. In DPolicy, we can exploit the fact
that the vast majority of rules are generated from extension
policies on base policies (c.f. Equation (2)) to significantly
simplify this computation. This allows decomposing the
problem of determining ϕ1 ⊑ ϕ2 for such rules. Specifically,
the poset (Φ;⊑) over these rules can be decomposed into a
poset (Φℓ+1;≤) defined on ΦB × Φ1 × . . .× Φℓ, where:

(ϕ
(1)
B , ϕ

(1)
1 , . . . , ϕ

(1)
ℓ) ≤ (ϕ

(2)
B , ϕ

(2)
1 , . . . , ϕ

(2)
ℓ)

⇐⇒ ϕ
(1)
B ⊑ ϕ

(2)
B ∧ ϕ

(1)
1 ⊑ ϕ

(2)
1 ∧ . . . ∧ ϕ

(1)
ℓ ⊑ ϕ

(2)
ℓ

This decomposition allows us to significantly reduce the
number of predicates we need to compare by applying
basic memoization. Let R̂ denote the set of intermedi-
ate rules generated by the base policies (c.f. §4.3), and
let Ei denote the set of extensions from the i-th exten-
sion policy (c.f. §4.2). Instead of computing the pred-
icate relation ϕ1 ⊑ ϕ2 for each pair of rules, which

would require O
((
|R̂| ∗ |E1| ∗ . . . ∗ |Eℓ|

)2
)

comparisons,

this decomposition reduces the number of comparisons
to O

(
|R̂|2 + |E1|2 + . . .+ |Eℓ|2

)
. Beyond this asymptotic

advantage, decomposing the predicates in this way also

10

Algorithm 2 The DPolicy rule set pruning algorithm.
1: function RULESETPRUNING(rules)
2: ⊤ ← GREATEST(rules)
3: DEACTIVATECOVEREDRULES(⊤, ⊤.budget)
4:
5: function DEACTIVATECOVEREDRULES(rule, budget)
6: for crule in LOWERCOVER(rule) do
7: if budget ≤ crule.budget then
8: DEACTIVATERULE(crule)
9: cbudget ← budget ▷ implied budget

10: else
11: cbudget ← crule.budget
12: DEACTIVATECOVEREDRULES(crule, cbudget)

makes it straightforward to compute most of the individ-
ual partial order relations. Each extension policy typically
defines only a small set of extensions (e.g., a “standard”
and a “black-box” ML setting), and admins can easily
annotate each extension to define the partial order. 11 In
contrast to extension policies, base policies generate a large
intermediate rule set defining different scopes. To compute
ϕ
(1)
B ⊑ ϕ

(2)
B , requires a partial order on the predicates

of these base rules. However, both per-attribute policies
and attribute category policies, which are responsible for
the large majority of predicates, generate predicates where
each one simply specifies a set of attributes to which its
scope applies. Thus, we can use the subset relation on these
attribute sets to establish the partial order. For additional
custom scoping policies, we again rely on the admin to
annotate the order directly (potentially using the help of a
SAT solver if necessary).
Pruning Algorithm. In Algorithm 2, we introduce the
DPolicy rule set pruning algorithm, designed to identify
and deactivate rules that can be safely removed according
to Theorem 5.1. The algorithm takes as input a partially or-
dered set of rules (R;⪯) and starts at the greatest element.12

The algorithm proceeds recursively to smaller rules, pruning
those that do not constrain the composition further while
also updating (implied) budgets as it traverses. For rule r,
we determine its lower cover, i.e., find the rules rc ∈ R\{r},
for which no intermediate rule ri ∈ R \ {r, rc} exists such
that rc ≤ ri ≤ r. For each of the rules in the lower cover
of r, we compare whether the rule has a stricter budget
than the budget of the rule r, and otherwise prune the rule.
When a rule is pruned, it means that there is a greater rule
with a stricter budget that also implies a stricter budget for
this rule and all its successors; hence, we propagate this
implied budget further. Specifically, for every rule rc in the
lower cover, we call the recursive function with the (implied)

11. An annotation is an integer tuple such that one extension is smaller
or equal to another if each integer in its tuple is smaller than or equal to
the corresponding integer in the other’s tuple.

12. Note that by including the global scope ϕ∗ 7→ 1 as a custom base
policy, and tracking a greatest privacy unit (e.g., user), the poset forms a
bounded join semi-lattice, which guarantees a greatest element. Otherwise,
a special ∞ element can be added to ensure a maximal element exists.

budget. The recursion stops when it reaches minimal rules,
which have no lower cover. In this algorithm, a rule is only
pruned if a more general rule has a stricter budget, and
hence, according to Theorem 5.1, can be safely removed. By
propagating the (implied) budget downward, also rules are
pruned where the covering rule is not a direct predecessor.

5.2. Policy Decision Point

In this section, we discuss the design of a policy de-
cision point for enforcing a policy set. The policy decision
point determines whether to allow or reject release requests,
where each release request contains one or more labeled DP
mechanisms and the multiset of labels for each mechanism
defines its context and associated scopes (c.f. §4). The policy
decision point proceeds in two stages, first checking each
mechanism’s compliance with the configured per-release
policies. If any per-release rule is violated, the entire release
request is denied. The policy decision point’s second stage
checks the policies that take into account the cumulative
impact of releases. In DP terminology, this operates akin
to a privacy filter, which, given a sequence of adaptively
chosen mechanisms, ensures that a pre-specified budget for
privacy parameters is not exceeded [34], [48], [64]. For the
remainder of the section, we focus on the second stage of
the policy decision point, as enforcing per-release policies
is straightforward.
Rules Checking Engine. While the rule set optimization
discussed in Section 5.1 can significantly prune the rule set,
a considerable number of rules may remain to be checked
for every release request. Determining whether a given
rule applies to a mechanism requires evaluating the rule’s
predicate on the mechanism’s labels. Instead of performing
a linear scan through all rules, we can exploit the fact that
the rule set forms a partially ordered set (R;⪯) (c.f. §5.1).
The algorithm starts at the maximal rules in the poset and
proceeds to smaller rules, evaluating the predicate when
visiting a rule for the first time. If the predicate is true,
it checks the rule for a potential violation and continues to
the rules in its lower cover. If the predicate is false, we
can skip not only that rule but also all smaller rules in
the poset. This algorithm is sufficient to integrate DPolicy
with simple budget tracking systems where checking release
requests only requires comparing the privacy cost of the
mechanism with the remaining budget. For example, this
approach is used in Tumult Analytics [16], and we could
easily configure the session with a DPolicy policy set instead
of a global privacy budget. However, this simple budget-
tracking approach does not allow for automatically applying
parallel composition across queries.

Using a more fine-grained accounting approach based
on block composition [49] can leverage cross-query data
access patterns to achieve a tighter privacy analysis. For
example, if two queries each access only individuals from
two different countries, then block composition allows the
costs to be tracked in two separate blocks, one for each
of the two countries. More generally, a set of partitioning
attributes (PAs) can be defined that partition users (or other

11

privacy units) into blocks. If we track privacy loss for
each possible block13 separately, we can fully leverage the
potential of parallel composition this introduces. However,
this straightforward approach scales poorly, especially so
when considering that, in DPolicy, we would need to track
a full set of blocks for each rule. Instead, we build upon
an optimized tracking approach proposed by Küchler et
al. [43], which allows dynamically adjusting the granularity
of the block tracking based on the concrete set of mech-
anisms and their data access patterns. We extend this idea
to include rules as another dimension alongside the domain
of PAs, applying the proposed segmentation algorithm on
the combined space. Rather than tracking a large set of
individual blocks for each rule, we can track a small number
of segments that can span multiple blocks across rules,
significantly reducing the total number of privacy filters we
need to consider. In the worst-case, the total number of
segments to track remains unchanged, however, in practice,
we anticipate notable reductions by integrating rules and
PAs, as requests with similar data-access patterns can be
expected to match similar rules.

While each rule can, in principle, define its own unique
set of PAs, this level of flexibility is often unnecessary as
typical PAs (e.g., country of origin), are not rule-specific.
However, for rules with a time-based privacy unit (c.f. §4.4),
integrating the time steps as a PA can be beneficial. By
considering time steps as a PA, we can also leverage parallel
composition on time steps across queries. For composition
efficiency, ideally, we would track each time step individ-
ually; however, this poses a challenge for tracking because
time steps are an infinite sequence. To balance tracking
complexity with composition efficiency, we track specific
(e.g., recent) time steps in a more granular level and collapse
more distant time steps into broader intervals. For example,
let t1, t2, . . . , t∞ denote the sequence of time steps in a
time-based privacy unit (e.g., months). We might represent
this as [t1, tk−1], tk, tk+1, . . . , tp, [tp+1, t∞]. 14 This exploits
the natural tendency of requests to consider “current” time
steps more selectively, while requests for “historical” time
steps are more likely to span across larger intervals already,
in which case there is no loss of tracking precision.

5.3. System Integration

DPolicy can be employed to manage the privacy risk
of complex one-off releases that include multiple mecha-
nisms (e.g., queries), or be integrated with existing privacy
management systems to support ongoing data releases over
time. Several systems already provide authorization work-
flows for DP releases [13], [57], requiring a data owner or
privacy officer to approve or deny analysts’ release requests.
DPolicy enhances these workflows by enabling the control
and monitoring of privacy risks across multiple releases.
Note that privacy risk management inherently depends on

13. Note that we need to consider the full domain of PAs, as data access
patterns are generally not known in advance.

14. The inner time steps can also be collapsed into intervals if desired.

high-quality data and request annotations. In DPolicy we
assume mechanisms are labeled with the correct privacy
loss, scope, and context, however, hardening the approval
process is an interesting direction for future work. For
example, combinations of view-based access control and
data management systems with support for fine-grained
logical partitioning of the database [7] may be promising
in addressing this gap. Recent work has also investigated
advanced automated privacy management systems that treat
DP budgets as resources and frame the decision process
as an allocation problem [43], [47]. This includes solutions
that can prevent budget depletion, even for finite user-
level DP budgets, through techniques such as user rotation.
DPolicy integrates seamlessly with these approaches, as
the constraints imposed by our system can be expressed
as a variant of the multidimensional knapsack formulation
which also underlie the block-composition-based allocation
problem that these solutions operate on.
Policy Management & Governance. The effectiveness of
DPolicy depends to a large extent on a well-defined policy
set. In general, navigating the privacy-utility tradeoff in DP
is non-trivial and has been studied extensively [12], [50].
However, this challenge already occurs when considering
single releases and is, for the most part, orthogonal to
our work. Nevertheless, managing DP at an organizational
scale does introduce new complexities. Similar challenges
occur in all large-scale policy-based systems, including well-
established domains such as access control and firewall con-
figuration. Just as a misconfigured access control rule can
cause data leakages, a misconfigured DP policy can result
in unintended privacy loss. These risks can be mitigated
through widely established best practices, e.g., incorporating
multiple decision points and robust review processes. As
DP matures, we anticipate such practices becoming more
standardized, as has been the case in other domains.

In an ideal world, an organization would adopt DPol-
icy before any releases occur, fully defining all policies
including contexts and scopes in advance, all data would
be properly tagged, and the data schema would remain
fixed permanently. However, in practice, this is unrealistic
as organizations frequently have prior releases, and correctly
tagging all data at once is a significant challenge. Instead,
DPolicy supports incremental rollouts, including accounting
for prior DP releases. 15 An organization can re-analyze
prior data releases within DPolicy similar to how a new
release would be analyzed, i.e., identifying the relevant at-
tributes, categories, contexts, and defining the privacy units.
The only difference between past and future releases is that
past releases have already consumed privacy budget, so they
cannot be rejected and their costs must be accounted for. As
more releases are considered, the initial set of policies can be
refined, with most updates proceeding smoothly. However,
some changes may lead to rule conflicts, where a rule’s
privacy budget is exceeded based on the previously accepted

15. DP composition theorems are usually formulated for an ideal world.
Recent work has shown that most state-of-the art composition theorems
also hold for less idealized models [34], and extending this to even more
realistic settings remains an interesting avenue for future work.

12

set of requests. In this case, DPolicy identifies the policy
elements at fault, offering a choice of either discarding the
change or adjusting the conflicting policies.

More generally, it is always possible to loosen restric-
tions (e.g., increase privacy budgets, drop attributes from
categories, or remove entire categories) or to introduce
new restrictions on attributes, categories, contexts, etc. that
have not been used in prior releases. Conflicts can only
occur when attempting to tighten constraints affecting past
releases. Clearly, one cannot undo privacy losses incurred by
past releases, yet policy adjustments are possible with some
caveats. For example, it is possible to move an attribute to a
different category, though this might require increasing that
category’s budget. One can also introduce a new context
even for past releases, though this may require adding new
labels to past releases. Beyond this, it is even possible to
introduce new privacy units, though privacy costs for past
releases can only be computed using group privacy, which
may be suboptimal. A more precise analysis would require
additional contribution bounds, which generally cannot be
introduced retroactively (c.f. §4.4).

6. Evaluation

In this section, we evaluate the performance of DPolicy,
highlighting how its three core policy features effectively
mitigate privacy risks that can emerge without comprehen-
sive, organization-wide privacy risk management.

6.1. Evaluation Setup

We concentrate on a setting where DPolicy is integrated
with an advanced privacy management system that treats
DP budgets as resources requiring careful management, as
this represents the most complex deployment scenario. We
compare DPolicy against a state-of-the-art system automated
privacy management system, Cohere [43], which manages
the allocation of privacy resources under a single global
user-level budget but does not support more fine-grained
DP policies.
Implementation. We implement DPolicy’s policy language
frontend in Python and use the SageMath library [67] for
policy optimization. We map the constraints resulting from
the policy language to a block-composition-based multidi-
mensional knapsack formulation. We then solve this for-
mulation using a Rust implementation of the DPK algo-
rithm [68]. We also extend Cohere’s workload generator
with support for sampling the context, attribute, category
and time period annotations. We run DPolicy on a scientific
cluster backed by host machines with 128core AMD EPYC
CPUs (2.60GHz), with 256 GB memory running Ubuntu
22.04, of which the experiments use 12 virtual cores and
64GB of RAM. We make all our implementations and
benchmarking configurations available as opensource 16.
Evaluation Setting. While DPolicy is more generally ap-
plicable, for a fair comparison, we evaluate DPolicy in

16. https://github.com/pps-lab/dpolicy

the setting of Cohere [43]. Specifically, we consider un-
bounded DP in the central model, focus on user-level guar-
antees, and configure privacy budgets in (ϵ, δ) - DP with
δ = 10−7, while using RDP-based privacy filters17 for
composition [48]. We follow Cohere’s notion of allocation
rounds, simulating 20 weekly rounds in which batches of
candidate requests, modeled as a Poisson process with an
expected 504 requests per round, compete for privacy re-
sources. Similarly, we adopt the 12 rounds (i.e., weeks) user
and budget unlocking model from Cohere, where, in each
round, some users are activated while others are retired,
and at least a fixed fraction of the overall privacy budget
is guaranteed to be available in each allocation round.

Cohere considers four different workloads modeling dif-
ferent mixes of request. In our evaluation, we consider their
most complex workload (c.f. W4:All with PAs in [43])
which combines the other three workloads and models the
wide variety of different types of DP applications that
we would expect in a deployment in a large organization.
Specifically, it includes an equal mix of a variety of DP
mechanisms (Gaussian Mechanism [28], Laplace Mecha-
nism [29], Sparse Vector Technique [30], Randomized Re-
sponse [71], DP-SGD [4], PATE [58]) and captures variabil-
ity in privacy requirements across requests by categorizing
requests into three levels of low, medium, and high pri-
vacy costs. In addition, each mechanism category has vary-
ing degrees of partitioning, controlling how well requests
can leverage parallel composition. Specifically, Laplace and
Gaussian mechanisms represent highly partitioned counting
queries. On the other hand, the sparse vector technique
and randomized response mechanisms, which are frequently
used in database query tasks, feature less partitioning. Fi-
nally, DP-SGD and PATE represent machine learning tasks
with minimal partitioning. Their workload also assigns each
request a utility score, taking into account the request cost
and the amount of data accessed. We refer to Appendix C
for a more detailed description of the evaluation setup.
Scenarios. We consider three scenarios that augment Co-
here’s workload with labels and policies, each highlighting
a specific aspect of DPolicy’s privacy risk management.
In S1: Context, we consider the “standard” and “black-box
ML” settings and define an extension policy (c.f. §4.2) that
relaxes budgets based on the empirical findings of Nasr et
al. [53]. Specifically, we define the budget extensions as
[1.7 7→3, 1.8 7→5, 1.9 7→7, 2.0 7→10, 2.3 7→15, 2.5 7→20]. We
randomly augment 80% of the requests belonging to the ML
mechanisms (i.e., NoisySGD and PATE) with a black-box
ML label, while all other requests are labeled as standard.
In S2: Scope, we consider ten categories of attributes, in
addition to 150 per-attribute scopes. We set 80% of the
attributes to low-risk (ϵ ≤ 20), and 10% each to medium-risk
(ϵ ≤ 9) and high-risk (ϵ ≤ 3). For the categories, we assign
half of them budgets of ϵ ≤ 12, four a budget of ϵ ≤ 10 and
one a budget of ϵ ≤ 5. We also define extension functions
of 1.5 ·b for strong connection, and 2 ·b for weak connection
membership, where b is the member budget. In Appendix D,

17. We use α orders {1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 8, 16, 32, 64, 106, 1010}.

13

https://github.com/pps-lab/dpolicy

DPolicy Cohere
7t: 3 10 t: 3 1020 2015 155 57

0

5

10

15

20

Pr
iv

ac
y

Co
st

 (
)

Context
Blackbox ML
Standard

DPolicy Cohere
7t: 3 10 t: 3 1020 2015 155 57

0

5

10

15

20

=5.0
=7.5
=10.0

Scope
Weak Connection
Strong Connection
Member

DPolicy Cohere
7t: 3 10 t: 3 1020 2015 155 57

0

2

4

6

8

=3.0

(Time-based) Privacy Unit
UserMonth

DPolicy Cohere
7t: 3 10 t: 3 1020 2015 155 57

0

2M

4M

6M

8M

10M

Ut
ilit

y

DPolicy Cohere
7t: 3 10 t: 3 1020 2015 155 57

0

2M

4M

6M

8M

10M

DPolicy Cohere
7t: 3 10 t: 3 1020 2015 155 57

0

2M

4M

6M

8M

10M

Figure 3: Privacy cost (top) and utility (bottom) for DPolicy and Cohere in our three scenarios. For the S1: Context scenario,
we report the global user-level privacy cost. For the S2: Scope scenario, we show the privacy cost of the high-risk category
with the largest privacy cost. Finally, for the S3: (Time-based) Privacy Units scenario, we show the user-month privacy cost
(for time-based data) for the month with the highest privacy cost. We also show the maximum privacy costs acceptable
under the scenario’s policy as a dashed line. For Cohere, we indicate privacy costs that violate the scenario’s policy with
hatched bars. Similarly, we show Cohere’s utility in a lighter tone if it was achieved by violating the scenario’s policy.

we describe how we sample attributes and categories when
assigning request labels.
In S3: (Time-based) Privacy Units, we consider a user-month
privacy unit with a user-month privacy budget of ϵ ≤ 3 in
addition to the global user-level privacy budget. Half of the
requests select some time-based data from a single month
in a window of seven months around the current month.
Requests select the current month with a higher probability
(p = 1

3) than other months (p = 1
9), modeling a natural

tendency for requests to focus on current data. The other
half of the requests selects static data that does not overlap
with the time-based requests.

6.2. Evaluation Results

We compare DPolicy with Cohere [43] on the scenarios
described above, considering a range of total privacy budgets
ϵt ∈ [3, 5, 7, 10, 15, 20] and report the utility and privacy cost
of the requests (c.f. Figure 3). The performance of DPolicy
(and of Cohere) depends on the complexity of the specific
problem instance, with the number of (final) rules and the
flexibility afforded by the budgets impacting the allocation
complexity. For the three scenarios we consider, DPolicy
finished each weekly allocation round in less than 15 min.

S1: Context. We report the cumulative global user-level pri-
vacy cost, differentiating between the cost when considering
only “standard” requests and the combined cost (including
both “standard” and “blackbox ML” requests). Naturally,
DPolicy enforces the appropriate, tighter, budget on “stan-
dard” requests (indicated in Figure 3 as a dashed line)
while permitting the “blackbox ML” requests to use higher

budgets. Cohere, however, lacks this context awareness and
allocates “standard” requests way beyond this bound, which
is clearly inappropriate for this context and would result
in significant privacy risk. Note that instantiating Cohere
with the tighter “standard” budgets instead would essentially
prevent it from allocating ML requests. On the other hand,
DPolicy offers an attractive trade-off between utility and
privacy risk management.

S2: Scope. We report the privacy cost of the high-risk
category with the largest privacy cost. While this is naturally
tracked in DPolicy, we compute the equivalent in Cohere
by considering the category of allocated requests post-hoc.
In Appendix E, we additionally report results for high-risk
attributes. We indicate the per-category budget (ϵ ≤ 5) and
its extension to attributes of different membership levels
(ϵ ≤ 7.5 for strong connections and ϵ ≤ 10 for weak
connections) with dashed lines in Figure 3. In this scenario,
Cohere trivially satisfies these bounds when the global
bound is lower but starts to violate them as the global
budget increases, concentrating undue privacy risks on spe-
cific types of data. DPolicy, on the other hand, performs
as expected and uses the increased budget in line with
the intended privacy semantics. This allows our system to
achieve considerably higher utility than what Cohere (with
ϵ ≤ 5) can achieve.

S3: (Time-based) Privacy Units. We report the privacy
cost for the user-month privacy unit, which has an intended
budget of ϵ ≤ 3 (indicated by a dashed line in Figure 3).
We omit reporting the (user-level) privacy cost of the non-
time-based requests, as no additional constraints are acting
on them beyond the global budget. As a result, both Cohere

14

and DPolicy trivially satisfy the user-level constraints. For
the user-month privacy unit, however, Cohere’s allocation
eventually violates the intended budget bound as it cannot
differentiate between time-based requests for the same vs
different months. Consequently, Cohere cannot prevent the
concentration of privacy loss on specific months, increasing
privacy risks for those months. By tracking multiple privacy
units and, for the time-based unit, multiple time steps,
DPolicy can exploit parallel composition in an additional
dimension and achieve more nuanced privacy semantics.

7. Conclusion
Managing privacy risks across multiple data releases

remains a critical challenge for organizations deploying DP.
Most deployments today treat each release in isolation,
making it difficult to assess cumulative privacy risks across
an organization. While one might expect that defining a
single large privacy budget could address this issue, in
practice, this approach leads to excessive privacy loss pa-
rameters that quickly fail to provide meaningful guarantees.
Moreover, appropriate privacy parameters vary significantly
across different contexts, requiring a more flexible and struc-
tured approach. To address these challenges, we introduced
DPolicy, a system designed to manage cumulative privacy
risks by simultaneously considering multiple DP guarantees
and making traditionally implicit assumptions about scopes
and contexts explicit through a high-level policy language.
DPolicy enables organizations to implement and enforce
fine-grained, organization-wide privacy risk management.

Acknowledgments
We thank the reviewers for their feedback and our sponsors
for their generous support, including Meta, Google, and
SNSF through an Ambizione Grant No. PZ00P2 186050.

References

[1] Wikipedia siteviews analysis. https://pageviews.wmcloud.org/sitevi
ews/?platform=all-access&source=pageviews&agent=user&sites=en
.wikipedia.org. Accessed: 2024-11-12.

[2] Data governance act, 2022.
[3] CEL: Common expression language, 2024.
[4] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya

Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page 308–318,
New York, NY, USA, 2016. Association for Computing Machinery.

[5] Temilola Adeleye, Skye Berghel, Damien Desfontaines, Michael
Hay, Isaac Johnson, Cléo Lemoisson, Ashwin Machanavajjhala,
Tom Magerlein, Gabriele Modena, David Pujol, Daniel Simmons-
Marengo, and Hal Triedman. Publishing wikipedia usage data with
strong privacy guarantees. In Theory and Practice of Differential
Privacy (TPDP), 2023.

[6] Ahmet Aktay and others. Google COVID-19 community mobility
reports: Anonymization process description. arXiv [cs.CR], 2020.

[7] Kinan Dak Albab, Ishan Sharma, Justus Adam, Benjamin Kilimnik,
Aaron Jeyaraj, Raj Paul, Artem Agvanian, Leonhard Spiegelberg, and
Malte Schwarzkopf. K9db: Privacy-compliant storage for web appli-
cations by construction. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), pages 99–116, 2023.

[8] Kareem Amin, Alex Kulesza, Andres Munoz, and Sergei Vassilvtiskii.
Bounding user contributions: A bias-variance trade-off in differential
privacy. In Proceedings of the 36th International Conference on
Machine Learning, pages 263–271. PMLR, 2019.

[9] Kareem Amin, Alex Kulesza, and Sergei Vassilvitskii. Practical
considerations for differential privacy. arXiv [cs.CR], 2024.

[10] Meenatchi Sundaram Muthu Selva Annamalai, Andrea Gadotti, and
Luc Rocher. A linear reconstruction approach for attribute inference
attacks against synthetic data. In Proceedings of the 33rd USENIX
Conference on Security Symposium, SEC ’24, USA, 2024.

[11] Apple. Learning with privacy at scale, 2017.

[12] Brendan Avent, Javier I González, Tom Diethe, Andrei Paleyes, and
Borja Balle. Automatic discovery of Privacy–Utility pareto fronts.
Proceedings on Privacy Enhancing Technologies, 2020:5–23, 2019.

[13] Damien Aymon, Dan-Thuy Lam, Lancelot Marti, Pauline Maury-
Laribière, Christine Choirat, and Raphaël de Fondeville. Lomas: A
platform for confidential analysis of private data. arXiv [cs.CR], 2024.

[14] Shailesh Bavadekar and others. Google COVID-19 search trends
symptoms dataset: Anonymization process description (version 1.0).
arXiv [cs.CR], 2020.

[15] Sebastian Benthall and Rachel Cummings. Integrating differential
privacy and contextual integrity. In Proceedings of the Symposium
on Computer Science and Law, CSLAW ’24, page 9–15, New York,
NY, USA, 2024. Association for Computing Machinery.

[16] Skye Berghel, Philip Bohannon, Damien Desfontaines, Charles Estes,
Sam Haney, Luke Hartman, Michael Hay, Ashwin Machanavajjhala,
Tom Magerlein, Gerome Miklau, Amritha Pai, William Sexton, and
Ruchit Shrestha. Tumult analytics: a robust, easy-to-use, scalable, and
expressive framework for differential privacy. arXiv [cs.CR], 2022.

[17] Nicolas Berrios, Jack Fitzsimons, and Shlomi Hod. Oblivious: The
privacy deployments registry. https://registry.oblivious.com/, 2024.
Accessed: 2024-10-28.

[18] Mark Bun and Thomas Steinke. Concentrated differential privacy:
Simplifications, extensions, and lower bounds. In International Con-
ference on Theory of Cryptography, page 635–658, Berlin, Heidel-
berg, 2016. Springer-Verlag.

[19] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas
Terzis, and Florian Tramèr. Membership inference attacks from first
principles. In 2022 IEEE Symposium on Security and Privacy (SP),
pages 1897–1914, 2022.

[20] Kamalika Chaudhuri and Daniel J Hsu. Sample complexity bounds
for differentially private learning. Conf Learn Theory, 2011.

[21] Charles W Cobb and Paul H Douglas. A theory of production. Am.
Econ. Rev., 18(1):139–165, 1928.

[22] Rachel Cummings, Damien Desfontaines, David Evans, Roxana
Geambasu, Matthew Jagielski, Yangsibo Huang, Peter Kairouz, Gau-
tam Kamath, Sewoong Oh, Olga Ohrimenko, Nicolas Papernot,
Ryan Rogers, Milan Shen, Shuang Song, Weijie Su, Andreas Terzis,
Abhradeep Thakurta, Sergei Vassilvitskii, Yu-Xiang Wang, Li Xiong,
Sergey Yekhanin, Da Yu, Huanyu Zhang, and Wanrong Zhang. Chal-
lenges towards the next frontier in privacy, 2023.

[23] Damien Desfontaines. A list of real-world uses of differential privacy.
https://desfontain.es/privacy/real-world-differential-privacy.html,
2022. Accessed: 2024-10-31.

[24] Damien Desfontaines. Converters between differential privacy vari-
ants. https://desfontain.es/blog/converters-differential-privacy.html,
2024.

[25] Damien Desfontaines. What’s up with all these large privacy budgets?
https://desfontain.es/blog/large-epsilons.html, 2024.

[26] Damien Desfontaines and Balázs Pejó. SoK: Differential privacies.
Proceedings on Privacy Enhancing Technologies, 2019.

[27] Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential
privacy. arXiv [cs.LG], 2019.

15

https://pageviews.wmcloud.org/siteviews/?platform=all-access&source=pageviews&agent=user&sites=en.wikipedia.org
https://pageviews.wmcloud.org/siteviews/?platform=all-access&source=pageviews&agent=user&sites=en.wikipedia.org
https://pageviews.wmcloud.org/siteviews/?platform=all-access&source=pageviews&agent=user&sites=en.wikipedia.org
https://registry.oblivious.com/
https://desfontain.es/privacy/real-world-differential-privacy.html
https://desfontain.es/blog/converters-differential-privacy.html
https://desfontain.es/blog/large-epsilons.html

[28] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya
Mironov, and Moni Naor. Our data, ourselves: Privacy via distributed
noise generation. In Advances in Cryptology - EUROCRYPT, 2006.

[29] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Calibrating noise to sensitivity in private data analysis. In Proceedings
of the Third conference on Theory of Cryptography, TCC’06, pages
265–284, Berlin, Heidelberg, 2006. Springer-Verlag.

[30] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N Rothblum, and
Salil Vadhan. On the complexity of differentially private data release.
In Proceedings of the 41st annual ACM symposium on Symposium on
theory of computing - STOC ’09, New York, New York, USA, 2009.
ACM Press.

[31] Cynthia Dwork and Aaron Roth. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci., 9(3-4):211–
407, 2014.

[32] Andrea Gadotti, Florimond Houssiau, Meenatchi Sundaram
Muthu Selva Annamalai, and Yves-Alexandre de Montjoye. Pool
inference attacks on local differential privacy: Quantifying the
privacy guarantees of apple’s count mean sketch in practice. In 31st
USENIX Security Symposium (USENIX Security 22), 2022.

[33] Badih Ghazi, Ravi Kumar, Pasin Manurangsi, and Thomas Steinke.
Algorithms with more granular differential privacy guarantees. In
Yael Tauman Kalai, editor, ITCS 2023, volume 251 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 54:1–54:24,
Dagstuhl, Germany, 2023.

[34] Samuel Haney, Michael Shoemate, Grace Tian, Salil Vadhan, Andrew
Vyrros, Vicki Xu, and Wanrong Zhang. Concurrent composition for
interactive differential privacy with adaptive privacy-loss parameters.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’23, page 1949–1963, New York,
NY, USA, 2023. Association for Computing Machinery.

[35] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve
Zdancewic. SoK: General purpose compilers for secure multi-party
computation. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 1220–1237. IEEE, 2019.

[36] Michael Hay, Marco Gaboardi, and Salil Vadhan. A programming
framework for OpenDP, 2020.

[37] Xi He, Ashwin Machanavajjhala, and Bolin Ding. Blowfish privacy:
tuning privacy-utility trade-offs using policies. In ACM SIGMOD,
New York, NY, USA, 2014. ACM.

[38] Florimond Houssiau, Luc Rocher, and Yves-Alexandre de Montjoye.
On the difficulty of achieving differential privacy in practice: user-
level guarantees in aggregate location data. Nat. Commun., 2022.

[39] Bargav Jayaraman and David Evans. Evaluating differentially private
machine learning in practice. In Proceedings of the 28th USENIX
Conference on Security Symposium, SEC’19, page 1895–1912, USA,
2019. USENIX Association.

[40] Daniel Kifer, John M Abowd, Robert Ashmead, Ryan Cumings-
Menon, Philip Leclerc, Ashwin Machanavajjhala, William Sexton,
and Pavel Zhuravlev. Bayesian and frequentist semantics for common
variations of differential privacy: Applications to the 2020 census.
arXiv [cs.CR], 2022.

[41] Daniel Kifer and Ashwin Machanavajjhala. No free lunch in data
privacy. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, SIGMOD ’11, pages 193–204,
New York, NY, USA, 2011. Association for Computing Machinery.

[42] Daniel Kifer and Ashwin Machanavajjhala. Pufferfish: A framework
for mathematical privacy definitions. ACM Trans. Database Syst.,
39(1):1–36, 2014.

[43] Nicolas Küchler, Emanuel Opel, Hidde Lycklama, Alexander Viand,
and Anwar Hithnawi. Cohere: Managing differential privacy in large
scale systems. In 2024 IEEE Symposium on Security and Privacy
(SP), volume 0, pages 122–122, 2024.

[44] Jingcheng Liu and Kunal Talwar. Private selection from private candi-
dates. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, pages 298–309, New York,
NY, USA, 2019. Association for Computing Machinery.

[45] Terrance Liu, Giuseppe Vietri, and Zhiwei Steven Wu. Iterative
methods for private synthetic data: unifying framework and new
methods. In Proceedings of the 35th International Conference on
Neural Information Processing Systems, Red Hook, NY, USA, 2021.

[46] Yu Liu, Zibo Wang, Yifei Zhu, and Chen Chen. DPBalance: Efficient
and fair privacy budget scheduling for federated learning as a service.
In IEEE INFOCOM, 2024.

[47] Tao Luo, Mingen Pan, Pierre Tholoniat, Asaf Cidon, Roxana Geam-
basu, and Mathias Lécuyer. Privacy budget scheduling. In 15th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 21), pages 55–74. USENIX Association, 2021.

[48] Mathias Lécuyer. Practical privacy filters and odometers with rényi
differential privacy and applications to differentially private deep
learning. arXiv [stat.ML], 2021.

[49] Mathias Lécuyer, Riley Spahn, Kiran Vodrahalli, Roxana Geambasu,
and Daniel Hsu. Privacy accounting and quality control in the sage
differentially private ML platform. SOSP ’19, page 181–195, New
York, NY, USA, 2019. Association for Computing Machinery.

[50] Gerome Miklau. Negotiating Privacy/Utility Trade-Offs under differ-
ential privacy. Santa Clara, CA, 2022. USENIX Association.

[51] Ilya Mironov. Renyi differential privacy. In 2017 IEEE 30th Computer
Security Foundations Symposium (CSF), pages 263–275. IEEE, 2017.

[52] Milad Nasr, Jamie Hayes, Thomas Steinke, Borja Balle, Florian
Tramèr, Matthew Jagielski, Nicholas Carlini, and Andreas Terzis.
Tight auditing of differentially private machine learning. In 32nd
USENIX Security Symposium (USENIX Security 23), 2023.

[53] Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papernot,
and Nicholas Carlin. Adversary instantiation: Lower bounds for
differentially private machine learning. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 866–882, 2021.

[54] Milad Nasr, Thomas Steinke, Borja Balle, Christopher A
Choquette-Choo, Arun Ganesh, Matthew Jagielski, Jamie Hayes,
Abhradeep Guha Thakurta, Adam Smith, and Andreas Terzis. The
last iterate advantage: Empirical auditing and principled heuristic
analysis of differentially private SGD. In The Thirteenth International
Conference on Learning Representations, 2025.

[55] Joseph Near, David Darais, and Naomi Lefkovitz. Guidelines for
evaluating differential privacy guarantees, 2023.

[56] Team OpenDP. The OpenDP white paper, 2020.

[57] OpenMined. PySyft: Perform data science on data that remains in
someone else’s server, 2024.

[58] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan,
Kunal Talwar, and Úlfar Erlingsson. Scalable private learning with
PATE. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, 2018.

[59] Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with
renyi differential privacy. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022, 2022.

[60] Natalia Ponomareva and Alex Kurakin. Making ML models dif-
ferentially private: Best practices and open challenges. h t tps :
//research.google/blog/making-ml-models-differentially-private
-best-practices-and-open-challenges/, 2023. Accessed: 2024-10-17.

[61] David Pujol, Yikai Wu, Brandon Fain, and Ashwin Machanavajjhala.
Budget sharing for multi-analyst differential privacy. Proceedings
VLDB Endowment, 14(10):1805–1817, 2021.

[62] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro.
What does the crowd say about you? evaluating aggregation-based
location privacy. Proceedings on Privacy Enhancing Technologies,
2017.

16

https://research.google/blog/making-ml-models-differentially-private-best-practices-and-open-challenges/
https://research.google/blog/making-ml-models-differentially-private-best-practices-and-open-challenges/
https://research.google/blog/making-ml-models-differentially-private-best-practices-and-open-challenges/

[63] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro.
Measuring membership privacy on aggregate location time-series.
Proc. ACM Meas. Anal. Comput. Syst., 2020.

[64] Ryan Rogers, Aaron Roth, Jonathan Ullman, and Salil Vadhan.
Privacy odometers and filters: pay-as-you-go composition. In Pro-
ceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, 2016.

[65] Ryan Rogers, Subbu Subramaniam, Sean Peng, David Durfee, Se-
unghyun Lee, Santosh Kumar Kancha, Shraddha Sahay, and Parvez
Ahammad. LinkedIn’s audience engagements API. JPC J. Planar
Chromatogr. - Mod. TLC, 11(3), 2021.

[66] Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. Synthetic
data – anonymisation groundhog day. In 31st USENIX Security
Symposium (SEC’22), Boston, MA, 2022.

[67] The Sage Developers. SageMath, the Sage Mathematics Software
System (Version 9.5), 2022. https://www.sagemath.org.

[68] Pierre Tholoniat, Kelly Kostopoulou, Mosharaf Chowdhury, Asaf
Cidon, Roxana Geambasu, Mathias Lécuyer, and Junfeng Yang.
DPack: Efficiency-oriented privacy budget scheduling. In EuroSys
’25. ACM, 2025.

[69] US Census Bureau. Census.gov. https://www.census.gov/, 2022.
Accessed: 2022-12-21.

[70] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. SoK: Fully
homomorphic encryption compilers, 2021.

[71] Stanley Warner. Randomized response: a survey technique for elimi-
nating evasive answer bias. J. Am. Stat. Assoc., 60(309):63–66, 1965.

[72] Linchang Xiao, Xianzhi Zhang, Di Wu, Miao Hu, Yipeng Zhou, and
Shui Yu. History-aware privacy budget allocation for model training
on evolving data-sharing platforms. IEEE Trans. Serv. Comput., 2024.

[73] Zheng Xu and Yanxiang Zhang. Advances in private training for
production on-device language models. https://blog.research.goog
le/2024/02/advances-in-private-training-for.html, 2024. Accessed:
2024-2-27.

Appendix A.
Multiple Privacy Units in DP Libraries

This section describes how the programming frame-
work [36] underlying the state-of-the-art DP libraries [16],
[56] can be generalized to support multiple privacy units.
The high-level idea of this DP programming framework is
to decompose a DP algorithm into a transformation stage
and a measurement stage. In the transformation stage, a
chain of stable transformations is applied to the dataset,
computing the algorithm’s raw result (before adding noise).
Each transformation offers a stability guarantee: if the input
distance between any two datasets is bounded by din, then
the output distance is bounded by dout. The chain’s overall
sensitivity, defined as the maximum distance between any
two neighboring datasets, can then be derived by composing
these stability functions. In the measurement stage, a single
DP mechanism is applied to introduce the noise, and the
noise is calibrated according to the sensitivity of the (chain
of) transformations. For example, in the case of the Gaussian
mechanism, let △2 denote the ℓ2 sensitivity of a transfor-
mation chain T (D). The mechanism M(D) = T (D) + x,
where x ∼ N (0, σ2) satisfies (ϵ, δ) - DP [31] for:

σ2 = △2 ·
2 log 1.25/δ

ϵ2
(6)

A challenge for DP algorithms is that in many datasets,
the number of contributions per user can be unbounded,
leading to unbounded sensitivity and, consequently, infinite
noise. To address this, a contribution-bounding transfor-
mation can be applied to retain only k contributions per
user [8]. Contribution bounding is frequently implemented
based on a privacy ID column in each record, ensuring that
only k records with the same privacy ID are retained [16].
The current programming framework assumes only a single
privacy unit, with sensitivity calculated relative to that unit.
However, we can generalize this approach and calculate the
sensitivity for different privacy units, such as user-level and
user-month-level. To realize this, we introduce a privacy
ID for each privacy unit and apply a contribution-bounding
transformation that limits the contributions at each level. For
example, we might enforce that each user-month privacy
ID is limited to kM records, while each user privacy ID is
limited to k records. In the measurement stage, the noise
is calibrated with respect to the sensitivity △2 of the main
privacy unit. By rearranging the parameter calibration for ϵ
and substituting the primary unit’s sensitivity (△2) with the
auxiliary unit’s sensitivity (△̂2), we obtain the privacy loss
parameter ϵ̂ for the auxiliary privacy unit. For example, for
the Gaussian Mechanism:

ϵ̂ =

√
△̂2 ·

2 log (1.25/δ)

σ2

Appendix B.
Proof of Theorem 5.1

Proof. Assume, for contradiction, that there exist two rules
ri ∈ R and rj ∈ R \ {ri} such that ri ⪯ rj and Bi ≥
Bj , but ri is constraining (i.e., not non-constraining). By
Definition 5.1, this implies that there exists a composition
of mechanisms M = (m1,m2, . . . ,mN) that violates rule
ri but satisfies all rules in R \ {ri}. Since ri ⪯ rj , by
Equation (5), every mechanism matching the predicate of
rule ri must also match the predicate of rule rj , and the
privacy unit of rule ri is smaller or equal to that of rj , i.e.,
ui ≤ uj . As shown in Section 4.4, ui ≤ uj implies that
privacy loss parameters in unit uj are at least as large as
in unit ui. Note that privacy parameters for all common DP
variants trivially define a partial order.

Let ci and cj denote the cumulative privacy loss for
the (composition of) mechanisms matching the predicates of
rules ri and rj , measured in units ui and uj , respectively.
Since the composition associated with ri is the same- or
a sub-composition of that associated with rj , privacy loss
parameters are non-negative, and privacy loss parameters for
unit uj are at least as large as for unit ui, it follows that
cj ≥ ci. Moreover, because the composition does not violate
rule rj , we have cj ≤ Bj . However, since the composition in
unit ui violates rule ri, it must be that ci ≰ Bi. Combining
these, we obtain Bj ≥ cj ≥ ci ≰ Bi which implies Bj ≰
Bi, contradicting the assumption that Bi ≥ Bj . Thus, our
assumption that ri is constraining must be false, and ri is
indeed non-constraining, as required.

17

https://www.census.gov/
https://blog.research.google/2024/02/advances-in-private-training-for.html
https://blog.research.google/2024/02/advances-in-private-training-for.html

DPolicy Cohere
710 1020 2015 155 5: 3 : 3 7

0

2.5

5

7.5

10

12.5
Pr

iv
ac

y
Co

st
 (

)

=3.0

Scope (Attribute)

DPolicy Cohere
710 1020 2015 155 5: 3 : 3 7

0

2M

4M

6M

8M

10M

Ut
ilit

y

Figure 4: Privacy cost for the largest-cost high-risk attribute
(top) and utility (bottom) for DPolicy and Cohere.

Appendix C.
Workload Configuration

We use the most complex workload W4:All from Co-
here [43] with the same configuration. Table 1 provides a
complete overview of all parameters. Each request has a
scalar utility representing its expected organizational value
if accepted. The workload models utility using the Cobb-
Douglas production function [21], Y = A · LβKα, where
L is the privacy cost, K is the amount of data, and
A ∼ Beta(0.25, 0.25) captures application-level variations.
The parameters are fixed at α = 1 and β = 2. Requests are
assigned one of three privacy cost levels, each with a differ-
ent ϵ, while δ = 10−9 remains fixed. Not all requests target
all users; instead they select subsets based on PAs (e.g.,
only US users). The PA domain is represented as a vector
of size 204,800. Each request selects a consecutive range of
⌊s · 100⌋ elements, starting at a uniformly random position
and wrapping around the edges, with s ∼ Beta(a, b).

Mechanism Privacy Cost (ϵ) PA

Gaussian Mech. [28] 0.05, 0.2, 0.75 Beta(1, 10) (high)
Laplace Mech. [29] 0.01, 0.1, 0.25 Beta(1, 10) (high)
SVT [30] 0.01, 0.1, 0.25 Beta(1, 0.5) (mid)
Rand. Response [71] 0.01, 0.1, 0.25 Beta(1, 0.5) (mid)
DP-SGD [4] 0.05, 0.2, 0.75 Beta(2, 2) (low)
PATE [58] 0.05, 0.2, 0.75 Beta(2, 2) (low)

TABLE 1: The workload consists of an equal mix of request
categories, each defined by these parameters.

Appendix D.
Attribute and Category Sampling

Each request selects a set of attributes from the data
schema through a Bernoulli process with continuation prob-
ability pA = 0.75 and attribute selection probabilities
[p(a1), . . . , p(a150)]. This selection process results in k + 1
attributes per request where k ∼ geometric(pA), amounting
to 5 attributes per request on average. We assume that
attributes are non-uniformly selected by the requests by
modeling the probability of attributes as a Zipf distribution,
i.e., p(ai) = 1

iα for i ∈ [1, 150] where the skewness
parameter α equals 1. We assume the risk levels are equally
distributed among the selection probabilities. Each attribute
in the data schema is associated with one or more categories,
with membership level member, strong connection, or weak
connection that represent the attributes’ dependency assump-
tions. We assign attributes to categories through a second
Bernoulli process with continuation probability pC = 0.6
(i.e., 3.5 categories per attribute on average) and category se-
lection probabilities [p(c1), . . . , p(c10)]. also sampled from
a Zipf distribution with α = 0.1. Each attribute is member
of its first sampled category, while additional category asso-
ciations are classified as either strong connection or a weak
connection based on an equal split.

Appendix E.
Additional Evaluation Results

We report the privacy cost of the high-risk attribute with
the largest privacy cost for Scenario S2: Scope in Figure 4.

18

Appendix F.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

F.1. Summary

This paper introduces DPolicy, a privacy risk manage-
ment framework that applies differential privacy (DP) at
an organizational scale to address cumulative privacy risks.
It introduces a DP Policy Language to define privacy se-
mantics, an optimized Policy Enforcement mechanism for
scalability, and integration with existing DP systems to man-
age privacy budgets effectively. By considering the scope
and context of data releases, DPolicy enhances privacy risk
assessment across various data-sharing scenarios, including
machine learning and public data releases.

F.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

F.3. Reasons for Acceptance

Overall, the reviewers were positive of the paper, appre-
ciating its focus on ensuring privacy across multiple data
releases with related fields and its development of a frame-
work based on predicate logic for composing differential
privacy guarantees.

19

	Introduction
	Background
	Related Work
	Policy Language
	Core Concepts
	Context-specific Privacy Budgets
	Supporting Multiple Scopes
	Multiple Privacy Units

	Policy Enforcement
	Rule Pruning
	Policy Decision Point
	System Integration

	Evaluation
	Evaluation Setup
	Evaluation Results

	Conclusion
	References
	Appendix A: Multiple Privacy Units in dp Libraries
	Appendix B: Proof of thr:cover
	Appendix C: Workload Configuration
	Appendix D: Attribute and Category Sampling
	Appendix E: Additional Evaluation Results
	Appendix F: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

