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Abstract
Large Language Models (LLMs) that can be deployed lo-

cally have recently gained popularity for privacy-sensitive
tasks, with companies such as Meta, Google, and Intel play-
ing significant roles in their development. However, the se-
curity of local LLMs through the lens of hardware cache
side-channels remains unexplored. In this paper, we unveil
novel side-channel vulnerabilities in local LLM inference:
token value and token position leakage, which can expose
both the victim’s input and output text, thereby compromising
user privacy. Specifically, we found that adversaries can infer
the token values from the cache access patterns of the token
embedding operation, and deduce the token positions from
the timing of autoregressive decoding phases. To demonstrate
the potential of these leaks, we design a novel eavesdropping
attack framework targeting both open-source and proprietary
LLM inference systems. The attack framework does not di-
rectly interact with the victim’s LLM and can be executed
without privilege.

We evaluate the attack on a range of practical local LLM
deployments (e.g., Llama, Falcon, and Gemma), and the re-
sults show that our attack achieves promising accuracy. The
restored output and input text have an average edit distance
of 5.2% and 17.3% to the ground truth, respectively. Further-
more, the reconstructed texts achieve average cosine similarity
scores of 98.7% (input) and 98.0% (output).

1 Introduction

Large Language Models (LLMs), such as OpenAI’s Chat-
GPT [14], Meta’s Llama [8], Google’s Gemma [4], and Mis-
tral AI’s Mistral [13], have enabled a broad spectrum of ap-
plications ranging from chatbots to personal agents. Their
ability to follow human instructions and make decisions has
garnered substantial attention from the public, reshaping the
digital landscape.

� Corresponding authors.

However, users may unintentionally disclose private data
while interacting with LLMs. For instance, Samsung Elec-
tronics exposed its confidential data to a cloud-based LLM
service in 2023, resulting in a ban on employee use of gener-
ative AI tools [23]. To mitigate the risk of sharing sensitive
data with third parties, locally deployed LLMs have garnered
increasing attention for their suitability in privacy-critical
tasks [57, 72, 79, 81]. This paradigm is supported by corpora-
tions such as Meta, Google, and Microsoft. Local LLMs are
suited for handling sensitive tasks such as editing confidential
emails, seeking advice on personal matters, and assisting with
financial analysis [57, 80].

Unfortunately, we find a new security threat in which
LLMs’ sensitive input and output text during inference can
be leaked through hardware cache side channels, which has
not been previously reported, to the best of our knowledge.
Specifically, we shed light on several fundamental character-
istics of LLM inference that cause the side-channel leakage:
(i) LLMs depend on token embedding [34, 42, 52, 68, 76],
which is essential for converting text into semantic represen-
tations that the model can process. However, this embedding
operation creates secret-dependent data access, exposing the
input’s token (akin to words) values through cache access
patterns. (ii) LLM inference generally follows the autoregres-
sive paradigm, where each output token is recursively fed into
the model and passed through the token embedding, enabling
the side-channel leakage for both the input and output tokens.
Moreover, the autoregressive generation is inherently sequen-
tial and unfolds over multiple time steps, implying that the
timing of embedding operations correlates with the position
of the output token. Exploiting these characteristics, adver-
saries can launch a spy application co-located with the LLM
to probe cache access timing and form cache traces, then map
the cache traces to the victim’s input and output text.

Challenges. We need to overcome several unique chal-
lenges to realize the attack in practical scenarios. First, the
cache side-channel exhibits a relatively low signal-to-noise ra-
tio (SNR) due to system activities during LLM inference. This
noise can result in missing or randomly valued words in the re-
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sulting text.Second, in practical systems, the time order of the
token embedding operation for the model input is interleaved
or overlapped in the time axis of the cache trace, resulting in
a shuffled order of the mapped input tokens. The root cause
lies in the batching of input tokens. Their batched process-
ing through parallel computing results in closely clustered
execution times and an unpredictable sequence of operations.

Solution. To address the first challenge, we propose a novel
text reconstruction algorithm that fuses both the timing signal
and token list mapped from the cache trace. Specifically, we
utilize Power Spectral Density (PSD) in signal processing to
analyze the trace’s timing signal (time series of the cache hit
events). We find that the timing signal during the LLM de-
code phases exhibits strong periodicity, whereas false positive
noise shows randomness with an evenly distributed spectrum.
Leveraging these findings, we synthesize a dataset to train
LLMs to capture the timing patterns and reconstruct the clean
text. During dataset synthesis, we sample tokens from pub-
licly available textual corpora and assign each token a periodic
timestamp to simulate the timing signal. Then, we remove a
random subset of the tokens to simulate false negative noise,
and insert random tokens at uniformly distributed time points
to simulate false positive noise. We then fine-tune LLMs on
the synthesized dataset to reduce noise and reconstruct the
victim mode’s output text from the nosy cache trace.

To address the second challenge, we exploit the contextual
dependence between model input and output text. Specifi-
cally, we fuse the token list mapped from the cache trace and
the reconstructed output text as a whole context, then fine-
tune LLMs on a randomly synthesized dataset to restore the
original response from the context.

After overcoming the above challenges, we present the first
LLM-targeted hardware cache side-channel eavesdropping
framework. The attack does not directly interact with the
victim model. Instead, it only passively (i.e., being stealthy)
observes the behavior of the hardware cache shared with the
LLM inference process and does not rely on profiling the
victim.

Evaluations. We demonstrate the feasibility of the eaves-
dropping attack on a range of popular LLMs (e.g., Meta
Llama, Google Gemma, and Microsoft Phi) deployed on a
variety of popular LLM frameworks, such as HuggingFace
transformers, Intel IPEX-LLM, open-source llama.cpp. Our
empirical experiments show that the attack can effectively
restore the full text of the model output and reconstruct the
model input with approximate semantics. When attacking
llama.cpp, our method achieved an average Levenshtein simi-
larity (1 - Edit Distance) of 94.8% and 82.7% for the restored
output and input text, respectively. Furthermore, our method
reached an average cosine similarity score of 98.7% (out-
put) and 98.0% (input), demonstrating significant information
leakage.

Contributions. In a nutshell, the contributions of this paper
include:

• Novel Side-Channel Attack. We introduce a new side-
channel attack against LLM inference, which leaks both
the model input and output text via hardware cache side-
channels.

• New End-to-end Attack Framework. We present the first
hardware cache side-channel attack framework targeted
both model input and output of various currently de-
ployed LLMs, without profiling or directly interacting
with the victim model.

• Efficient Dataset Synthesis Strategy. We innovate in au-
tomatically synthesizing datasets and train LLMs to cap-
ture the timing patterns of the cache trace and reconstruct
the model output text from the noisy cache trace.

• New Input Reconstruction Strategy. We fine-tune LLMs
to reconstruct the original order of shuffled input tokens
via the contextual dependence between model input and
output text.

• Empirical Study. We conduct experiments in real-world
scenarios to evaluate the threat of the proposed attack
strategies. Additionally, we discuss mitigation of the
attack and security recommendations for LLM inference
framework implementations.

2 Background

2.1 Large Language Model Inference
An LLM is typically a generative model that estimates the
probability distribution of the next token (akin to words) con-
ditioned on the given model input and context. Based on
the token distribution, LLMs sample new tokens to generate
model output.

Token and Tokenization. A token is the smallest meaning-
ful unit of natural language, which can be a word or a part of
the word. Tokens are generated by a process named tokeniza-
tion, which segments a text into a sequence of individual units
denoted by [t1, t2, ..., tN ], where for each 1≤ i≤N, ti ∈V , and
V is the vocabulary. For example, a text tokenized by a Byte
Pair Encoding (BPE) tokenizer is shown as follows:

[′The′,′ quick′,′ fox′,′ jumps′,′ over′,′ the′,′ lazzy′,′ log′]

Similarly, the above token sequence can be mapped back
to the original text through de-tokenizers, which implement
the inverse function of the tokenizers.

We note that tokenizers and de-tokenizers used by different
LLMs generally follow similar principles of segmenting the
text into meaningful units. Moreover, most LLM vendors do
not consider the tokenizers to be secrets. Even proprietary
vendors like OpenAI have made their tokenizers public [58].

Model Input. The input to the LLM is a token sequence,
denoted as I = [t1, t2, ..., tN ], where N is the input length. The



input commonly contains system and user prompts, which can
be human instructions or other requests that the user wants
the LLM to respond to.

Model Output. In response to the input, the LLM generates
an output text, also denoted as O= [tN+1, tN+2, ...tN+M] where
M is the output length.

Model Inference. LLM inference refers to the process
where the model accepts the given input and context and
generates responses, wherein the context consists of previ-
ously generated text. Generally, LLM inference follows the
autoregressive paradigm that can be divided into two phases.

In prefill phase, LLM accepts all the input tokens in
this phase. It estimates the distribution P(tN+1|t1, t2, ..., tN)
through neural networks. This distribution decides the first
new token tN+1 ∼ P(tN+1|t1, t2, ..., tN).

In decode phases, LLMs output the subsequent tokens au-
toregressively one at a time until encountering an end-of-
sentence (EOS) token. The i-th token in the output is obtained
by decoding the distribution tN+i ∼ P(tN+i|t1, t2, ..., tN+i−1).
Then, the sampled token tN+i is fed into the model again to
compute P(tN+i+1|t1, t2, ..., tN+i) and produce the next token
tN+i+1. Tokens must be into the numerical representation that
the neural networks can process; therefore, LLMs fundamen-
tally require the token embedding operation to retrieve the
embedding vectors for each token.

Local Inference. Traditionally, LLMs were deployed in
expensive high-end hardware in data centers [66]. With the
evolution of LLM quantization [33], pruning [55], and opti-
mizations of operators [31, 50], local LLM inference has be-
come feasible on more accessible hardware such as consumer-
grade PCs. For example, Intel has released a white paper
on CPU-based LLM inferences [71]. Furthermore, there is
a growing trend toward AI PCs [17] that deploy LLMs in
low-cost personal devices.

Unlike cloud LLMs, local LLMs avoid sending private data
to third parties on the Internet, therefore reducing the attack
surfaces associated with remote services. Hence, local LLMs
are preferred by privacy-critical tasks [57, 72, 79, 81].

2.2 Cache Side-Channel Attacks
Modern processors extensively use caches to mitigate the
high latency and inadequate bandwidth of off-chip memories
(e.g., DRAMs). When the processor loads or stores memory
locations, it first attempts to access the data from the caches.
If the desired data are present in the caches (on local or remote
cores), it can be directly accessed on the chip with minimal
latency. We refer to this case as cache hit. Conversely, if
cache miss occurs, the processors will fetch the data from
the off-chip memories, which incurs latency of an order of
magnitude higher than that of a cache hit. Moreover, cache
coherence protocols allow the sharing of remote cache con-
tents across process cores and sockets within a machine. Once
attackers share memory and machine with the victim, they can

probe the memory’s load latency to infer whether the victim
program accesses the data unit, resulting in cross-core and
cross-socket side-channel attacks such as flush+reload [78],
flush+flush [39], and invalidate+transfer [48]. The cross-core
attacks apply to both same-core (with shared local caches) and
different-core (with coherent caches) co-location scenarios.

Secret-Dependent Data Access. Adversaries may infer
confidential data of a program if secret values influence its
memory access. For example, the Rijndael Advanced Encryp-
tion Standard (AES) proposal employs several pre-computed
lookup tables, namely T-box, to optimize performance [30].
However, without proper protections, the table-lookup imple-
mentation exposes secret-dependent data access. By inferring
which data unit the victim program visits, adversaries can
ultimately recover the secret key [44, 59].

3 Attack Overview

In this section, we provide an overview of the eavesdropping
attack. We first illustrate the threat model. Then, we present a
high-level description of the vulnerability and the workflow
of attack phases.

3.1 Threat Model
As shown in Figure 1, we investigate the feasibility of the
eavesdropping attack in real-world scenarios where a victim
is using a locally deployed LLM. In this scenario, the operat-
ing system isolates the adversary and victim processes. We
assume that the unprivileged adversary cannot compromise
the victim’s LLM inference system.

Spy ApplicationVictim Application

Hello,...

LLM

LLM Inference
Systems

Hardware Platform

Cache Trace...

...

Hi,...

Hello,...

Hi,...

Figure 1: The threat model of our eavesdropping attack. Up
and down arrows denote information leakage paths. Dashed
line in the middle represents OS process isolation.

Adversary. We assume that a spy application made by the
adversary can be installed and executed on the victim machine.
Adversaries can create a benign application within popular
categories and implant malicious code. Since the spy applica-
tion does not tamper with the software libraries used by LLM
inference, and only involves legitimate system operations, it
can be safely published to the public (e.g., Microsoft Store).
Once launched, the spy application will stealthily eavesdrop



on the LLM in the background but will not interact with the
victim LLM. The attack does not require any special privi-
leges, and the spy’s virtual address space is isolated from the
victim process by the OS. Consequently, the victim will be
unaware of the attack.

Adversary’s Capability. The adversary cannot trigger
requests to the victim LLM and also cannot tamper with
the LLM software. However, aligned with the standard
flush+reload attack model, we make the following assump-
tions: (i) The adversary can execute malicious code on the
victim machine. (ii) The malicious code can open the model
file in read-only mode and call mmap. (iii) If mmap is unavail-
able, the adversary can leverage page deduplication to access
shared memory. (iv) The adversary can execute the cache line
flushing instruction clflush.

Additionally, the adversary does not need to know the
model architecture and source code or binary of the LLM
inference framework, but he/she has access to the publicly
available information to compute the address offset of embed-
ding table elements in the model files. The rules for deriving
the offset are not secret for mainstream LLMs [2, 15, 16].

Victim. The victim interacts with a locally deployed LLM
for various purposes, such as seeking personal advice and writ-
ing sensitive emails. We assume that the token embedding
operation in the LLM inference is offloaded to CPU while
other layers of the models can be sent to any device. This
assumption is realistic because it is the default behavior of
the mainstream locally-deployed LLM inference frameworks,
mainly due to the optimum cost-effectiveness of CPU opera-
tions in local deployment scenarios supported by Intel [71],
Meta [9], Numenta [67], and the community [18, 37].

3.2 The Vulnerability
By studying how LLM inference generally works, we reveal
novel side-channel leakage sources that unveil token value
and position, enabling reconstruction of the original text.

Token Value Leakage. LLMs depend on token embedding
to convert token sequences into semantic representations that
the model can process. The token embedding is essentially a
linear projection that maps one-hot-encoded token lists into
its dense representation. Suppose that the token list is encoded
as the one-hot matrix x, where xi = [0 · · ·1(ti) · · ·0]

T and ti is
the i-th token index. Then, the token embedding is formulated
as E = Wx.

Due to the sparsity of one-hot encoding, it is common
to simplify the matrix multiplication into the table lookup
Ei = W[ti], i.e., retrieving the ti-th row of W. Since only the
requested row vectors are loaded and cached on the chip,
adversaries can infer the token index ti by monitoring which
row of embedding table W has been recently accessed by the
victim.

Moreover, due to the autoregressive characteristic, all the
newly produced tokens are fed back into the model, where

each new token is sent to the token embedding operation.
Therefore, the token embedding operation leaks both the vic-
tim’s input and output tokens.

Without any privilege, the spy process cannot directly mon-
itor the memory access of the victim process. Fortunately,
cache side-channel attacks can be exploited to indirectly infer
the victim’s memory access. Once a cache hit of the j-th row
of W is observed, it can be inferred that the embedding oper-
ation has processed the token with the index of j. Moreover,
the token embedding operation is typically offloaded into the
CPU, due to the optimum cost-effectiveness of CPU comput-
ing. In contrast, other layers of the model can be offloaded to
GPUs. Hence, the adversary can mount cache side-channel
attacks on CPU only to cover scenarios where the victim uses
GPU to accelerate the model inference.

Token Order Leakage. The above leakage unveils values
of input and output tokens, but their positions in the original
sequence remains unknown. We seek another leakage source
in the temporal domain to recover the token order. Specifically,
LLM inference generally follows the autoregressive paradigm,
which consists of a prefill phase and a series of decode phases.
These phases are inherently serialized. The decode phases
will not begin until the prefill is complete. Similarly, the i+
1-th decode phase will wait for the completion of the i-th
token. Therefore, the time points of these distinct phases
are distinguishable in the time dimension, leaking: (1) the
boundary between input and output tokens, and (2) the order
of output tokens.

However, it is non-trivial to implement the attack by ex-
ploiting the above leakages, given the following unique chal-
lenges:

Challenge 1 (C1). Noise in the side channels introduces
errors. We deduce the token values by monitoring the cache
access of each row of W. However, the cache side-channel
presents noise, i.e., false positives and false negatives, which
leads to randomly-valued and missing tokens.

Challenge 2 (C2). From the side-channel observer perspec-
tive, the order of input tokens is scrambled. During model
inference, input tokens of the LLM are batched and computed
in parallel. Therefore, the token embedding operation for
each input token is randomly interleaved or overlapping in
the time axis, prohibiting adversaries from restoring the token
positions via the timing of token embedding operations.

3.3 Attack Workflow

In this work, we address C1 by fine-tuning LLMA on a syn-
thetic dataset to capture the cross-modality features, namely
timing signal and token text, with the aim of reconstructing
the original text from the noisy cache trace. We tackle C2
by fine-tuning LLMB on the synthetic dataset to exploit the
contextual dependence between model output and input, and
restore the position of input tokens. The workflow of our
attack consists of the following phases, shown in Figure 2.



   Measuring

Cache Timing

    Identifying

Prefill and Decode 

     Extracting Token List

and Timing Signal 

    Reconstructing Victim's

LLM Input and Output Text
Victim

Application

Figure 2: Workflow of our eavesdropping attack.

1. Execute the spy process that co-locates with the victim
and collects the cache trace o during LLM inference.

2. Identify cache trace segments oP and oD that correlate
with the prefill and decode phases of the victim.

3. Map the cache trace to the ordered token list KD and
the timing signal TD for the decode phase of the victim.
Additionally, derive the unordered token list KP for the
prefill phases.

4. Reconstruct the victim’s model output by fusing KD and
TD and infer the text via Ô = LLMA(KD,TD).

5. Reconstruct the victim’s model input by fusing Ô and
KP, and deduce the text by Î = LLMB(Ô,KP).

4 Attack Implementation

In this section, we elaborate on the implementation of the
attack phases presented in the workflow.

4.1 Measuring Cache Timing
To exploit the leakage source described in §3.2, the adversary
should infer the victim’s cache accesses to |V | rows in the
embedding table W. These accesses can be deduced from the
cache trace that is captured by shared-memory-based cache
side-channel attacks. We use this kind of attack because it
offers spatial granularity of cache line. This fine spatial gran-
ularity enables the differentiation of distinct rows in W. In
this work, we use flush+reload [78], but we expect that the at-
tack can also be implemented via other shared-memory cache
attacks, such as flush+flush [39] and evict+reload [40].

Before mounting the attack, the adversary should compute
a total of |V | target addresses using publicly available in-
formation about the model file format [2, 15, 16]. Suppose
that the start address of the shared memory region is p1,
and the address offset of W is p2. For the i-th row of W
(0 < i < |V |), if the W is in row-major order, the target ad-
dress Ai can be selected in the range p1 + p2 + iDb ≤ Ai <

p1 + p2 +(i+1)Db, where D is the dimension of the embed-
ding vector, and b is the size of the vector element. Similarly,
if the W is in column major order, we select the address
Ai ∈ {p|p = p1 + p2 +(i+ j|V |)b,0 ≤ j < D}. For each i,
only one deterministic address within the ranges or sets is
chosen. However, we retain the ranges and sets and will re-
solve Ai in the next phase.

Evading Hardware Prefetchers. Interestingly, we reveal
that the standard flush+reload implementation failed to main-
tain the required precision on Intel’s recent microarchitecture,
namely Raptor Lake. After implementing state-of-the-art ad-
versarial strategies, the standard flush+reload implementa-
tion [77] achieves near-zero precision in probing |V |= 32768
addresses (the vocabulary size of Llama2), as the average
false positive count reaches 5,612,394 per second, indicating
high noise from prefetcher activities.

The root cause of this failure is that Intel has employed
Array-of-Pointers (AoP) prefetchers in hardware [27], which
unfortunately degrades the flush+reload attacks. Specifically,
the attack program depends on a pointer array to store the shuf-
fled target addresses, which is required to overcome stream-
ing and spatial prefetchers [77]. When the program visits
the array, the AoP prefetcher automatically dereferences the
memory pointers in the pointer array, leading to a cache hit
for almost every target address.

To overcome the AoP prefetchers, we calculate the mini-
mum value of all target addresses as the offset, subtract this
offset from each address, and store the subtracted results in
an array. When each target address is required in the attack,
the original address is restored by adding the offset to the
corresponding value in the array. This ensures that the array
no longer contains valid pointers, thereby preventing prefetch
triggering by the AoP.

For other types of prefetcher, we follow previous works,
i.e., we choose the target addresses Ai such that no adjacent
pages are probed [40], and randomize the order of probing
sequence [64].

Allocate Shared Memory. To achieve the shared memory
relied on the cache attacks, we employ two orthogonal strate-
gies: (i) We note that the memory content of W is loaded from



model files on the disk. Currently deployed LLM frameworks
typically adopt the zero-copy loading technique to optimize
the loading performance, eliminating extra data moving via
virtual memory mapping and demand paging. Inspired by this
observation, the spy process can share memory with the vic-
tim by simply calling mmap on the model file. Once the victim
process maps to the same file, the adversary will automatically
share the physical frames of the file with the victim due to
the page cache. In this case, page duplication is unnecessary.
(ii) In rare cases where the victim does not support zero-copy
model loading, we utilize page deduplication [21,62] provided
by OS to obtain the shared memory.

A detailed pseudocode for the trace acquisition process
using standard flush+reload with conventional multithreaded
partitioning is provided in the Appendix E.

Example of Cache Trace. The obtained cache trace o is a
L×|V |matrix, where each row denotes the memory accessing
latency of |V | target addresses at L time points, which is shown
in Figure 3. Additionally, the physical timestamp of each time
point is captured by rdtsc instruction and recorded in the
vector t to facilitate subsequent attack phases.
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Figure 3: An example of cache trace. A deeper color indi-
cates a higher probability that the token embedding operation
accesses the token. For clarity, tokens are sequentially re-
indexed.

4.2 Identifying Prefill and Decode Phase
According to our threat model, the spy process does not need
to interact with the victim process, i.e., it neither controls
the start of the victim process, nor conducts inter-process
communication with the victim. Like preceding studies, this
setting belongs to asynchronous attack [44]. Therefore, the
adversary needs to identify the start time of LLM inference
phases, particularly the boundary of prefill and decode phases.

We design a pattern-matching algorithm to find the cache
trace segment oP and oD that correlates with prefill and decode
phases, respectively. Our algorithm exploits the behavior of
autoregressive generation. Particularly, prefill phase batches
input tokens as a whole and compute token embedding in
parallel. Therefore, the prefill phase causes abnormally dense

cache hit events that cluster around a short period (e.g., around
time step 130 in Figure 3). Meanwhile, decode phases produce
output tokens serially, correlating with cache hit events much
sparser than the prefill phase in the time axis (e.g., one cache
hit per time point).

We match oP and oD in the o via time interval between
each two consecutive cache hit events, i.e., ti− ti−1,0 < i < L.
The start point of oP is matched if no less than K consecutive
events after the point have time intervals that are all less than
a threshold α1. Meanwhile, the start point of oD is matched
if at least one subsequent event has a time interval greater
than α1. The parameter K is the minimum allowed number of
input tokens (K = 4 in our implementation), and the threshold
α1 is no greater than the minimum time of one model forward
propagation (α1 = 10−3 in our settings).

4.3 Mapping Token Lists and Timing Signal
Having obtained the oP and oD, we now map the cache trace to
the token lists and timing signal for further text reconstruction.

As discussed in §3.2, the cache hit of the target address Ai
indicates that the token embedding operation has accessed
the i-th row of W, and hence implies that the token i has
appeared in the model input or output. We define a cache hit
event as the time points where the memory access latency
is lower than a predefined threshold α2, following previous
cache attacks [78]. The threshold can be obtained by micro-
benchmarks for caches [20].

Token Lists. The mapping of token lists consists of
two steps. First, we compute K(oD) = [k1,k2, · · · ], ki =
{T −1( j)|oDi j < α2,0≤ j < |V |}, where α2 is the cache hit
threshold, T −1 is the de-tokenizer that converts the token in-
dex into the token text. Second, we remove all the empty sets
in the K(oD) to derive the resulting token list KD. Similarly,
we can derive the unordered token list KP = [T −1( j)|oPi j <
α2,0≤ i < L,0≤ j < |V |], where L is the length of the cache
trace.

Timing Signal. We extract the timing signal by deriving
cache hit events’ timestamps corresponding to each token.
Formally, TD = [ti|Ki(oD) /∈ /0,0≤ i < L].

4.4 Reconstructing Model Output
As mentioned in C1 (§3.2), the cache side-channel contains
noise, specifically false positive and false negative noise,
which induces errors in the token lists and complicates the
attack. A false positive noise indicates an observed cache hit
event that is not attributed to the victim’s token embedding op-
eration. According to our token list mapping approach, false
positives induce randomly inserted tokens in the resulting
KD or KP since the victim has not processed the token at all.
Meanwhile, a false negative noise implies that the cache hit
is not successfully observed. Therefore, false negative noise
causes missing tokens in the results.



To identify the noise, we scrutinize the timing signal of the
cache trace. Intuitively, the autoregressive token generation
can be approximated as periodic events, since the forward
propagation of LLMs is data-flow-oriented and uses regular
pipelines, which differs from control-flow-oriented programs.
To validate the periodicity of the autoregressive generation,
we study the timing signal in the frequency domain using
Fourier transformation. Mainly, we utilize the Power Spectral
Density (PSD), which is a measure used in signal process-
ing to describe how the power (or “strength”) of a signal is
distributed across different frequencies. If the signal exhibits
periodicity, the PSD will show a peak.

We model the timing signal of cache trace oD as a Dirac
impulse train T ′D(t) = ∑

|TD|
k=1 δ(t−TDk). Then, we can derive

the Fourier transform of the timing signal using the sifting
property of Dirac functions:

F(ω;TD) =
∫

∞

−∞

T ′D(t)e
− jωtdt =

|TD|

∑
k=1

e− jωTDk

which transforms the timing signal into its frequency domain,
and further enables the estimation of PSD. Figure 4 shows the
PSD estimation of timing signal corresponding to the decode
phases of LLM inference.
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Figure 4: PSD of the timing signal derived from the cache
trace oD. The signal is windowed by the Hann function.

The top of Figure 4 presents the timing signal collected
from the llama.cpp that runs Phi-3.5-mini model on an Intel
13900K platform with NVIDIA RTX3060 GPUs. The aver-
age time per output token (TPOT) is about 10 microseconds.
Thereby, we expect a peak at the frequency of 100Hz in the
PSD.

The bottom of Figure 4 shows the PSD of the cache traces
respective to the true positives and false positives, from the
left to the right, respectively. We clearly observe the expected
peak at the base frequency of about f0 = 100Hz and harmonic
frequencies at k f0,k = 2,3, ... in the PSD of the true positive
trace. Therefore, we argue that the true positives of the investi-
gated decoding phases exhibit strong periodicity. Meanwhile,
in the PSD of false positive trace, the frequency components
are relatively evenly distributed across the entire frequency
range, implying that false positives are close to white noise.

The PSD offers an effective method for extracting periodic
components from the timing signals that contain noise. To
further investigate the remaining noise, we now remove the
periodic components by computing the normalized first-order
difference of the timing signal, as follows:

T̂Dk = f0(TD) · (TDk−TDk−1) (1)

Leveraging the PSD, we normalize the first-order differ-
ence by multiplying it with the extracted fundamental fre-
quency ( f0). This normalization renders the results that were
previously susceptible to hardware-specific TPOT relatively
hardware invariant. The base frequency is extracted from
the PSD using Sawtooth Waveform Inspired Pitch Estimator
Prime (SWIPE’) algorithm [25]. The resulting signal is shown
in Figure 5.
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Figure 5: An example of the pre-processed timing signal.
False positive (FP) noise likely aligns with the valley. False
negative (FN) noise likely aligns with the peak.

We can find that false positive noise correlates with the
peaks in the waveform of T̂D. The underlying reason is that
true positives are periodic, i.e., are highly likely to occur at
regular time points near kT +ϕ (where ϕ represents the ini-
tial phase). Assuming that we remove the i-th true positive
to create a false positive, then a gap would appear between
t1 = (i−1)T and t2 = (i+1)T , and therefore the first-order
difference would rise to t2− t1 = 2T . If such a blank is de-
tected, we can eliminate the corresponding false positive by
first predicting its missing token using the context of the pre-
ceding and subsequent tokens, then inserting the predicted
token to KD. The token prediction aligns with fill-in-the-blank
NLP tasks, which interpolates the token sequence.

Similarly, we can find that most false negatives correlate
with the valleys of T̂D, because true positives are highly likely
to occur at the periodic time points, while false positives
are relatively uniformly distributed at the time axis. A false
positive occurring between t1 = kT +ϕ and t2 = (k+1)T +ϕ

will result in a first-order difference t2− t1 < T . If a false
positive is detected, it should be removed from the KD.

The analysis implies that, depending on the waveform of
T̂D, adversaries must choose one of three actions at each time
point: fill a blank, remove a false positive, or leave the token
unchanged. We found that this problem can be uniformly
formulated as a sequence-to-sequence task. Given the timing
signal T̂D and the token list KD, the resulting text is:

Ô∼ P(O|T̂D1 ,KD1, T̂D2 ,KD2, · · ·)



where P is implemented by the LLMA fine-tuned to capture
the timing patterns of T̂D and remove noise.

Training Set Synthesis. We need to synthesize data for
the training model P because the adversary cannot access
the actual victim models or systems, thereby not being able
to profile them to collect the training data. Fortunately, the
timing patterns revealed by the PSD enable the automatic
synthesis of training samples.

Algorithm 1: Dataset Synthesis
Input: The probability of noise p, the standard

deviation of duration σ, the corpus dataset C,
and the size of LLM vocabulary |V |.

Output: The synthesized training dataset T
// U denotes uniform distribution, N is

normal distribution. s(·) is a sample.
1 for c ∈C do
2 Init L← φ // Generated cache trace
3 Init ctime← 0 // Current timestamp
4 Init mtime← |c|+1 // Maximum length
5 for token ∈ c do
6 if s(U [0,1])≥ p then
7 L← L∪{(ctime, token)}
8 end
9 if s(U [0,1])< p then

10 L← L∪{(s(U [0,mtime]),s(U [0, |V |−1])}
11 end
12 ctime← ctime+ s(N (1,σ2)) // Simulate

the periodicity of decode phases
13 end
14 T ← T ∪{(L[0],L[1],c)}// Get a (TD,KD,O)
15 end

The training set synthesis consists of three steps. First, we
collect LLM input and output text pairs (I,O) to form the
textual corpus. We query general-purpose LLMs with various
prompts from public datasets (like UltraChat) as input I to
obtain the model output O. Second, we leverage the periodic-
ity revealed by the PSD (Figure 4) to generate the simulated
timing signal TD. As shown in Algorithm 1, we generate the
timestamps of token generation by accumulating Gaussian
noise that simulates the minor fluctuations of TPOT. Mean-
while, we randomly add false positives and false negatives
with probability p to simulate the noise, and generate KD Fi-
nally, after generating the training samples (TD,KD,O), we
encode the samples into LLM training pairs (P,R) that con-
sist of prompts and ground-truth responses. We encode the
numerical timing signal TD as textual prompts, similar to the
previous work on time series [41, 73]. For example, we en-
code the TD = {1.3,1.2} and KD = {′Hello′,′World′} into
the following textual prompt:

{(1.3,’Hello’),(1.2,’World’)}→ ’1 3:Hello<s>1 2:World<s>’

LLM Fine-tuning. Having obtained the synthesized train-
ing set, we fine-tune the base LLM (e.g., Llama) to obtain the
LLMA. We utilize LoRA to fine-tune the LLM, which allows
us to retain most of the knowledge from the pre-trained model
while mitigating overfitting. Finally, during the attack, the
adversary can obtain the reconstructed model output of the
victim via Ô = LLMA(TD,KD), as shown in Figure 2.

4.5 Reconstructing Model Input
Unlike the output text, reconstructing the input text is more
challenging. As mentioned in C2 (§3.2), the parallel comput-
ing of token embedding operation results in unordered input
tokens in the side-channel attacking results.

The model of unordered tokens aligns with the bag-of-
words language model. A bag-of-words model discards the
sequential order and assumes that tokens are independent
of one another. Without the token order, the bag-of-words
model can still reveal latent semantic structures, and is widely
applied in the topic models. For instance, Latent Dirichlet Al-
location (LDA) automatically identifies topic or theme words
from a collection of documents, aiding in understanding the
main content of textual data [26].

However, the loss of token order can often impact the lin-
guistic structure and precise semantics of sentences. For in-
stance, the sentences "A chased B" and "B chased A" have
the same token set but different semantics. We expect to re-
construct the full text of the model input instead of a series of
discrete words.

Fortunately, the LLM input generally correlates with its
output in the same context. For example, LLMs tend to repeat
the question before proceeding [70]. We formulate the prob-
lem of reconstructing model input as a sequence-to-sequence
model that restores the positions of each input token. The
model is as Î ∼ P(I|KP, Ô), where KP is the unordered set of
input tokens, and Ô is the reconstructed model output, P is
implemented by the LLMB fine-tuned on a synthetic training
set.

We encode the token list KP as a text sequence for the
LLM prompt delimited by <s> token. Then, we insert the
reconstructed model output Ô at the beginning of the encoded
KP, providing the context for the model to infer the token
order.

Training Set Synthesis. Similar to the strategy of dataset
synthesis in §4.4, we randomly shuffle token positions of the
prompt I in the corpus dataset to obtain K′P, which simulates
the characteristic of cache trace obtained from the prefill
phase. Then, we feed the prompt into a general LLM as its
input to obtain the corresponding output text O′, and add the
training sample (K′P,O

′, I) to the resulting dataset, where I is
the ground-truth of the input reconstruction.

Fine-tune LLM. We fine-tune the pre-trained LLM to
obtain the LLMB, in the similar process described in §4.4.
Finally, during the attack, the adversary can obtain the recon-



structed model input of the victim via Î = LLMB(KP, Ô), as
shown in Figure 2.

5 Experiment Setup

In this section, we introduce the experiment setup of the eval-
uations for our eavesdropping attack framework.

Environment. We tested the attack on the machine
equipped with an Intel(R) 13-Gen 13900K 5.8GHz CPU
(with the latest BIOS microcode: 0x129), an NVIDIA 3060
GPU (with 12GiB GPU memory), and 32GiB of dual-channel
DDR4-3200 memories on a Maxsun(R) H610ITX baseboard.
In §6.5, CPUs (except for the 13900K) were tested on a Gi-
gabyte(R) H610M K DDR4 motherboard equipped with an
NVIDIA 3060 GPU and 16GiB of single-channel memory.
These machines runs Ubuntu 22.04 (with Linux 5.18.0-38-
generic kernel) OS, NVIDIA GPU driver v525.89.02, and
CUDA v12.0.

Dataset Construction. We synthesize the dataset for fine-
tuning LLMA and LLMB via processes described in §4.4
and §4.5. Specifically, we sample prompt text I from Ultra-
Chat [35], NQ-Open [49] (belonging to Natural Question),
SIQA [61], SQuAD2 [60], and ChatGPT-Roles [1] datasets
for our purpose. The synthesized dataset was randomly parti-
tioned into training, validation, and test sets at ratios of 60%,
20%, and 20%, respectively. Details of dataset synthesis set-
tings and data cleaning can be found in Appendix A.

Model Fine-tuning. The fine-tuning is conducted on an
AutoDL cloud server with NVIDIA H800 computing card,
300GB CPU memory, and AMD EPYC 9K84 CPU. Hyper-
parameters of the fine-tuning can be found in Appendix C.

Metrics. We evaluate the fidelity of the reconstructed
model input and output using metrics of different granulari-
ties: In character-level, we used Levenshtein Similarity (LS =
1 - Edit Distance). In token-level, we used ROUGE, a measure
of n-gram similarity between the reconstructed text and the
ground-truth. Specifically, we used R1 and RL metrics, which
evaluate F1-score via n-grams and the longest sub-sequence.
In semantic-level, we employed cosine similarity (φ) of sen-
tence embedding to evaluate how effectively the semantics of
the text have been reconstructed. We employed the state-of-
the-art embedding model AngleIE-Llama-7B [51] to compute
the sentence embedding of both the ground-truth text and the
reconstructed text, then compute their normalized dot prod-
uct to obtain the cosine similarity −1≤ φ≤ 1, where φ = 1
indicates a perfect match.

To objectively determine which value of φ indicates a suc-
cessful attack where the semantics of the text have been
leaked, we conducted a survey study inspired by previous
works [70]. Using test results, we uniformly sampled 50 sen-
tences across the range φ = [0.5,1.0], and recruited 100 ran-
dom participants on Prolific to vote on whether the attack
results accurately capture the privacy contents of the ground-
truth sentence. Figure 6 plots the relationship between the

human-evaluated privacy exposure and the cosine similarity.
This linear relationship indicates that a majority of partici-
pants believe privacy information is accurately captured when
φ is above 0.77. Thus, we define the attack success rate (ASR)
as the proportion of testing samples where φ > 0.77.
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Figure 6: The relationship between human-evaluated privacy
exposure and cosine similarity, with a Pearson Correlation of
0.771.

6 Evaluation

In this section, we evaluate the threat of our LLM eaves-
dropping attack and aim to answer the following Research
Questions (RQs):

• RQ1 [Attack Performance] What is the attack perfor-
mance against different types of victim LLMs in practi-
cal systems?

• RQ2 [Parameter Analysis] How do different hyperpa-
rameters affect the attack performance?

• RQ3 [Ablation Study] What is the contribution of key
components to the attack performance?

• RQ4 [Framework Evaluation] Which LLM frameworks
are affected by the side-channel vulnerability?

• RQ5 [Hardware Evaluation] What is the applicability of
the attack to other machines?

• RQ6 [Attack Examples] How can concrete examples be
used to understand the privacy leakage?

6.1 RQ1: Attack Performance in Practical Sys-
tems

In the evaluation of attack performance, we execute the vic-
tim and co-located spy process on the victim machine. The
victim process runs a real-world LLM framework (llama.cpp
in our settings). During experiment, we send testing prompts
to the victim process, and wait for the model output, acting



Table 1: Attack performance of each victim LLM, using GPT-4o-mini-2024-07-18 as the base model of LLMA and LLMB. NI
and NO denotes the average number of input and output tokens, respectively. An underline represents the minimum value of each
metric, while the maximum value is represented by bold text.

Victim LLM Dataset
Output Reconstruction Input Reconstruction

NO R1 (%) RL (%) LS (%) φ (%) ASR (%) NI R1 (%) RL (%) LS (%) φ (%) ASR (%)

Google
Gemma2-9B

[4]

UltraChat 243 98.2 98.2 97.0 99.6 99.8 20 93.5 90.2 87.4 99.2 100.0
NQ-Open 79 95.9 95.9 94.3 98.7 99.3 13 94.6 93.0 91.3 99.0 100.0

SIQA 193 96.4 96.4 94.2 98.8 99.1 31 86.6 79.2 74.8 96.9 100.0
SQuAD2 55 91.5 91.5 89.8 98.2 100.0 183 57.1 47.7 34.4 94.9 100.0

ChatGPT-Roles 222 98.7 98.7 98.0 99.6 100.0 48 85.4 79.7 70.6 99.1 100.0

Meta
Llama-3.1-8B

[8]

UltraChat 253 99.0 99.0 98.9 99.2 99.3 19 94.5 91.9 89.5 99.2 100.0
NQ-Open 162 97.4 97.4 96.9 98.1 98.0 12 94.8 93.4 91.4 99.0 100.0

SIQA 64 98.1 98.1 97.6 98.9 99.1 30 86.1 78.5 73.6 96.6 99.7
SQuAD2 20 90.1 90.1 90.4 96.7 96.4 180 55.8 46.4 33.2 94.3 100.0

ChatGPT-Roles 215 99.5 99.5 99.6 99.8 100.0 48 86.3 80.7 72.3 99.0 100.0

TII
Falcon3-10B

[3]

UltraChat 175 98.4 98.4 97.3 99.6 99.6 20 94.8 92.1 90.2 99.3 100.0
NQ-Open 109 98.2 98.1 97.7 99.7 99.9 13 94.3 92.6 91.1 99.0 100.0

SIQA 140 98.9 98.9 97.9 99.7 100.0 31 86.2 78.6 75.5 96.7 100.0
SQuAD2 62 90.6 90.6 93.2 98.0 96.4 185 54.6 44.9 33.5 93.8 100.0

ChatGPT-Roles 67 98.9 98.8 99.3 99.6 100.0 48 86.8 82.3 73.9 99.0 100.0

Mistral-7B
[13]

UltraChat 256 94.6 94.6 91.6 98.2 98.7 20 91.6 87.7 84.4 98.7 100.0
NQ-Open 120 95.1 95.1 94.6 97.1 96.8 12 89.1 84.0 80.8 97.3 99.8

SIQA 65 98.7 98.7 98.2 99.4 99.7 32 85.9 77.6 73.7 96.2 100.0
SQuAD2 57 91.4 91.4 90.1 96.9 98.2 204 51.3 43.2 32.4 92.7 98.2

ChatGPT-Roles 243 94.6 94.6 91.6 98.9 100.0 54 83.2 78.4 69.7 97.9 100.0

Microsoft
Phi-3.5-mini-3B

[12]

UltraChat 263 93.5 93.5 88.9 99.0 100.0 21 90.5 87.2 84.3 98.2 99.6
NQ-Open 194 93.9 93.9 90.9 98.7 99.3 12 88.0 82.9 79.8 97.0 99.8

SIQA 253 92.7 92.7 87.7 98.5 99.4 33 85.2 78.5 75.4 96.5 99.7
SQuAD2 137 93.5 93.5 90.6 97.6 98.2 209 51.0 42.4 32.2 92.1 96.4

ChatGPT-Roles 263 94.6 94.6 92.1 98.8 100.0 57 80.6 75.0 65.7 97.6 100.0

Average 165 96.3 96.3 94.8 98.7 99.1 24 89.9 85.8 82.7 98.0 99.9

as a regular user. Meanwhile, the spy process performs the
eavesdropping attack. The setting parameters of llama.cpp are
kept by default, with a batch size of 256 for the prefill. Table 1
shows the resulting performance of attacking different victim
models, using GPT-4o-mini as the base model of LLMA and
LLMB.

[RQ1-1] Reconstruction Accuracy. We first analyze the
performance of output reconstruction. Table 1 shows that the
ROUGE-1 and ROUGE-L values of the output reconstruction
are all higher than 90.1%, and the Levenshtein similarity is
no less than 87.7%, which means that our method can restore
high-fidelity target output text at both the character and token
levels. We can observe that cosine similarity φ for all 5 types
of victim models is higher than 96.7%, implying that the
semantics of text has been leaked. The lowest ASR is 96.4%,
indicating that we can successfully infer most of the privacy
contents of the tested samples.

We then describe the performance of input reconstruction.
As presented in Table 1, the average ROUGE-1 and Leven-
shtein similarity reach 89.9% and 82.7%, indicating reason-

able token-level and character-level reconstruction accuracy.
Meanwhile, our method achieves high cosine similarity (the
worst is 92.1%) to the ground-truth text. We can observe
that the average ASR achieves 99.9%, meaning the topics of
99.9% of tested sentences were leaked.

Nevertheless, we observed a negative correlation between
the number of input tokens and the attack performance. In
the worst case (Phi-3.5-mini on SQuAD2), the ROUGE-1
and Levenshtein similarity metrics drop to 51.0% and 32.2%.
This can be attributed to the reconstruction challenge, which
resolves the results in a search space that increases factorially,
i.e., on the order of O(NI!). Nonetheless, the worst cosine
similarity reaches 92.1%, since our model can restore the
semantics of original sentences using different textual expres-
sions and can still leak the sentences’ topic or semantics.

[RQ1-2] Different Prefill Bach Sizes. We investigate the
impact of varying prefill batch sizes (b), as shown in Figure
7. As b goes up exponentially, the evaluation metrics settle
on stable values with a range of only 4%. However, when b
is small, a slight decline in overall accuracy is noted. This



outcome may be attributed to a shift in the training data dis-
tribution. Specifically, the synthetic training data involves a
random permutation of input tokens, which aligns well with
real-world scenarios that usually use larger b values. In con-
trast, smaller b values necessitate execution through multiple
sequential batches when the number of input tokens exceeds b.
In such cases, the extracted input tokens TP display increased
sequentiality, deviating from the training data distribution.
Fortunately, empirical results suggest that this deviation does
not lead to significant performance degradation.
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Figure 7: The correlation between the prefill batch size b and
the attack performance. We use gpt-4o-mini-2024-07-18 as
the base model. The tested victims are Gemma2-9B and Phi-
3.5-mini-3B.

6.2 RQ2: Parameter Analysis

In this research question, we evaluate the impact of hyperpa-
rameters in our method.

We have introduced two hyperparameters: p and σ involved
in the dataset synthesis (Algorithm 1) for the output recon-
struction. To evaluate how these hyperparameters affect attack
performance, we conducted a series of training sessions on
Llama3.1-8B-Instruct using a set of different hyperparame-
ters. All the evaluations in the following experiments used
Gemma2-9B and Phi-3.5-mini as victim models.

[RQ2-1] Different Values of p. We first analyze the sensi-
tivity of the hyperparameter p with σ set to a fixed value (0.08
in our settings). We synthesized several training sets using dif-
ferent σ. For each training set, we fine-tuned a pair of LLMA
and LLMB, then evaluated these models on the validation set.

Figure 8b shows the evaluation results. As p increases
exponentially, we observe that the overall accuracy remains
consistently high when p is set in a wide range (10% to
40%). When p reaches larger values (>50%), the overall per-
formance begins to decline. This is likely because more than
half of the simulated cache hit events are false positives, in-
troducing additional noise during training and requiring more
data for the model to converge. The findings suggest that in
practical scenarios, the parameter p can be safely set within
the range of 10% to 40%.
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(c) Output Reconstruct (p = 0.2).
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(d) Input Reconstruction (p = 0.2).

Figure 8: Correlation between attack performance and the
parameter p and σ. We use Llama3.1-8B-Instruct as the base
model of LLMA and LLMB.

[RQ2-2] Different Values of σ. We then analyze the hy-
perparameter σ. For our purpose, p is fixed to 0.1, and we
fine-tuned Llama3.1 on a set of σ values. Figure 8d shows the
testing result on the validation set.

We can observe that the output reconstruction performance
peaks at s = 0.08 and then declines. This occurs because
σ controls the standard deviation of the decode phase pe-
riod, normalized to [0,1] in Equation 1. A smaller σ implies
greater period certainty; σ = 0 enforces strict periodicity,
while σ > 0.5 weakens periodicity and hinders the model’s
ability to capture desired patterns. Also, the performance of
reconstructing the input is not very sensitive to σ because
the output reconstruction only serves as an extra reference
context.

[RQ2-3] Different Base Models. To study how model
selection impacts the attack performance, we finetuned and
compared two base models: open-source Llama-3.1-8B and
close-source GPT-4o-mini.

Figure 9 shows that our LLMA and LLMB fine-tuned on two
different base models exhibit relatively consistent attack per-
formance. We find that specific model architectures decouple
the text reconstruction performance.

6.3 RQ3: Ablation Study

To demonstrate the effectiveness of each component, we con-
duct the ablation study. We removed each critical attack phase
and re-evaluated the attack performance, to demonstrate the
contribution of the proposed components.

[RQ3-1] Ablation Study of Output Reconstruction. As
shown in Figure 10a, after only removing the pre-processing
phase (Equation 1) of timing signal TD, the Levenshtein sim-
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Figure 9: Comparative evaluation of different base models.

ilarity dropped -3.0% and -1.0% for the output and input
reconstruction, respectively. After removing timing signal TD
(do not include TD in the encoded prompts) in the output
reconstruction, the Levenshtein similarity dropped -12.7%
(output) and -1.2% (input). These results show that fusing the
token list with the timing signal leads to better performance.
Additionally, we completely removed the LLMA (assembling
the resulting text from the KD only) and observed a drop of
-10.3% in the average Levenshtein similarity. These results
demonstrate the performance gain of our LLM-based text
reconstruction model.
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Figure 10: Ablation study using Llama3.1-8B-instruct as the
base model of LLMA and LLMB.

[RQ3-2] Ablation Study of Input Reconstruction. To
validate the contribution of the reconstructed output in re-
constructing the order of KP, we removed the reconstructed
output from the prompt of LLMB, and observed that the Lev-
enshtein similarity dropped -17.1%. This result confirms the
validity of utilizing the reconstruct output to assist in the input
reconstruction. Finally, we completely removed the LLMB,
and assembled the extracted KP as the reconstructing result.
We clearly observed that Levenshtein similarity dropped -
46.4%, implying the significant performance gain brought
by LLMB. Additional results pertaining to the pure SCA are
provided in the Appendix D.

To demonstrate the performance gain of the side-channel
attack (SCA) data, we excluded the SCA data and used only
the generated output to reconstruct the input. As illustrated
in Table 2, we observed that the Levenshtein similarity of
the pure output-based attack dropped -21%, while the cosine
similarity dropped -5.4%. These results show that the SCA

data indeed enhances the performance, particularly at the
character and token levels. This improvement is likely due to
the SCA’s ability to provide concrete tokens that narrow the
search space for the target text.

Table 2: Ablation study on the SCA data.

Configuration Input Recovery Performance (%)
R1 RL LS φ ASR

LLMB (SCA + Output) 82.8 78.5 76.2 96.9 99.7

LLMB (Output) 54.8 51.9 55.2 91.5 95.8

6.4 RQ4: Framework Evaluation
In this research question, we validate the attack in practical
scenarios, examining its viability across various LLM frame-
works and computing hardware. All victims’ settings were
maintained at their default values to align with the most prob-
able real-world scenario.

Microbenchmark. To quickly examine whether a target
framework or application is vulnerable to the side-channel, we
uniformly sampled 20 samples in all the test sets to construct
a microbenchmark for performance evaluation.

Results. Table 3 summarizes the results across different
LLM inference frameworks. We successfully attacked all 10
frameworks on CPU, 9 of them on GPU. We failed on one
GPU target called Transformers because it conducted the
embedding lookup on the GPU, which cannot be probed by
CPU cache side channels.

Table 3: Evaluation on various LLM inference frameworks
and different computing device. Statistics for Github starts
are current until January 21, 2025.

Framework Github
Stars

CPU GPU
φO φI φO φI

LM Studio [54] N/A† 96.6 97.0 97.4 97.3

HuggingFace
Transformers [5] 138k 98.0 74.5 N/A N/A

Ollama [19] 108k 92.0 95.7 99.7 96.1
llama.cpp [37] 71k 99.5 95.2 99.2 97.8
GPT4All [57] 71k 97.6 95.6 98.9 94.3
LocalAI [10] 28k 99.1 97.6 99.0 96.4

Microsoft
BitNet [11] 12k 96.1 76.0 98.3 74.5

PowerInfer [66] 8k 98.0 96.5 98.5 96.2
Intel

IPEX-LLM [6] 7k 88.6 93.8 96.6 96.1

koboldcpp [7] 6k 97.6 94.9 99.1 95.5
† LM Studio is close-source.



6.5 RQ5: Hardware Evaluation

We evaluated the same attack across different hardware ma-
chines, utilizing the microbenchmark dataset (§6.4) and target-
ing llama.cpp. Table 4 shows that cosine similarity is at least
96.5%, and the ASR remains 100%. These results are consis-
tent across different hardware configurations, demonstrating
the broad applicability of our attack methodology.

Table 4: Evaluation on different hardware machines.

CPU Output Recovery Input Recovery
φI (%) ASR(%) φO(%) ASR(%)

Intel 14900K 99.2 100.0 96.5 100.0

Intel 13900K 99.2 100.0 97.8 100.0

Intel 12700KF 99.3 100.0 96.7 100.0

6.6 RQ6: Attack Examples

In this research question, we present concrete examples to
better understand the privacy leakage. Figure 11 illustrates
both success and failure samples of prompts. It is intriguing to
see that the model perfectly recovered unique n-grams (such
as “freddy krueger” and “e5”) that were not present in the syn-
thetic training set. These examples highlight the potential to
steal Personally Identifiable Information (PII). Additionally,
we observed that the model can maintain semantic similar-
ity while replacing synonyms or varying grammar structures;
thus, R1 and LS can drop while φ remains high in the suc-
ceeded samples. For more detailed examples of the results
from LLMA and LLMB, please refer to Appendix F.

7 Discussion

7.1 Countermeasures

We provide recommendations on mitigating the proposed
attacks during the deployment and implementation of local
LLM inference.

Disable Zero-Copy Loading. One feasible defense is to
remove the zero-copy model loading that relies on mmap in
the LLM inference framework. This method can eliminate the
shared-memory-based cache attacks such as flush+reload and
flush+flush that use mmap. However, removing the zero-copy
will significantly harm performance in both temporal and spa-
tial. According to our evaluation results, turning off the zero-
copy results in 17% performance drops in loading latency
in llama.cpp. Moreover, the non-zero-copy version creates
nearly 32% extra memory overhead compared to the zero-
copy version when launching two or more LLM instances
for multiple users simultaneously. Additionally, this defense

Attacks on Prompts

φ : 100% R1: 100% LS: 100% (Succeeded)
who played

::::
freddy

::::::
krueger in the 2010 nightmare on elm street?

who played
::::

freddy
::::::
krueger in the 2010 nightmare on elm street?

φ : 98% R1: 96% LS: 87% (Succeeded)
How can I manage my weight and avoid gaining excess body
fat?
How can I manage my weight and avoid excess body fat?
φ : 87% R1: 78% LS: 28% (Succeeded)
what rank is an

::
e5 in the air force?

an
::
e5 in the air force is what rank?

φ : 76% R1: 57% LS: 31% (Failed)
context:Remy enhanced their understanding of the scientific
subjects. question:What will happen to Remy?
What will happen to Remy when they have enhanced their
understanding of scientific subjects?
φ : 75% R1: 93% LS: 70% (Failed)
What are the best times of year to visit the Grand Canyon for
outdoor activities?
Zoeken What two times of year are best to visit the Grand
Canyon for outdoor activities?
φ : 64% R1: 47% LS: 56% (Failed)
who is the national ffa president and where is he from?
headerwhere is fa president and who is he?

Figure 11: Examples of reconstructed prompts.

cannot eliminate shared memory created by page duplication
in OS [21, 62].

Deploy Role-Based Access Control. A better mitigation
is role-based access control (RBAC), which limits memory
page sharing within a safe scope. The RBAC guarantees that
only designated programs are permitted to share the mem-
ory frames of the model file. We can authenticate programs
per session (through kernel hooks via eBPF) to control mem-
ory sharing access. Unfortunately, such access control is still
lacking in today’s local LLM inference frameworks.

Use Hardware-based Mitigation. Intel has developed the
Cache Allocation Technology (CAT) for the Xeon sever-grade
CPUs, which allows software to control the LLC partition.
Based on the CAT, we can isolate the LLM inference frame-
works from shared cache resources, eliminating the attacks
on LLC (such as flush+reload and prime+probe). However,
CAT for LLC is typically unavailable for consumer-grade
productions [43], on which local LLMs are mainly deployed.

7.2 Limitation and Future Work
Measurement Challenges. The input reconstruction has rela-
tively low accuracy in character-level and token-level metrics,
which is limited by the temporal resolution of the cache attack
and the parallel execution characteristic of the prefill phase.
However, the attack can still restore the input with high cosine



similarity (94.8% on average) across long text (nearly 6000
characters), resulting in an ASR of 99.1%, i.e., the attack can
successfully reveal the semantics of 99.1% sentences under
the human-evaluated cosine similarity threshold. This high
semantic similarity indicates the potential to directly extract
privacy information.

Using Other CPU Side Channels. The attack relies on
shared-memory-based cache attacks for distinguishing be-
tween different rows in the embedding table. Future work
could explore other CPU cache attacks, such as those without
shared memory, but needs to address the following challenges:
(i) Conflict-based attacks (e.g., Prime+Probe) typically offer
set-level spatial resolution. Given that the embedding table
size is much larger than the way size, each cache set will be
mapped to multiple embedding rows, resulting in a search
space consisting of many grammatically correct sentences.
To mitigate this challenge, future work could leverage LLMs
to predict the sentence using inter-sentence context [70]. (ii)
Without shared memory, Address Space Layout Randomiza-
tion (ASLR) and discontinuous page frame allocation can
obscure the address mapping between cache sets and embed-
ding rows. To address this challenge, future work may require
extra runtime profiling to learn the address mappings.

Attacking LLM Inference that Uses GPU-side Embed-
ding. Discrete GPUs have dedicated caches that are not co-
herent with the CPU’s caches, making traditional CPU cache
attacks infeasible for probing the discrete GPU’s memory.
However, future work may explore state-of-the-art GPU cache
attacks, such as Invalidate+Compare [82], to monitor the mem-
ory access patterns of the token embedding. Note that Invali-
date+Compare is based on set conflicts and thus encounters
the previously described challenge (i). Despite this, Inval-
idate+Compare provides the additional per-set contention
intensity, which could potentially reduce the search space.
Moreover, NVIDIA drivers allocate GPU page frames with
less randomness, favoring physical contiguity and using con-
sistent starting addresses [82]. This deterministic behavior is
beneficial for learning the address mapping between cache
sets and embedding table rows.

8 Related Work

LLM Prompts or Responses Leakage. Existing studies on
breaching the confidence of LLM prompts and responses fun-
damentally fall under software-level vulnerabilities, which
can be divided into two categories. One category requires
access to the target model that is shared with the vic-
tim [29, 32, 47, 65, 75, 83]. In this attack vector, adversaries
must trigger requests to the model service and observe its
behavior (such as response text [32, 47] or timing [65, 83]) to
infer the confidential information. However, one main limi-
tation of these types of attacks is the need for access to the
victim model, which can render the malicious requests visible
to the victim services. Instead, this paper is the first to reveal

both the prompts and responses via the hardware cache side-
channel without directly interacting with the victim models.

Another category avoids accessing the victim model, but
generally depends on intercepting network traffic or exploit-
ing software vulnerabilities. The keylogging attack on re-
mote AI assistants has demonstrated the passive acquisition
of model responses via intercepting encrypted network traf-
fic [70]. This work exploits the packet-length side-channel
to infer the response of online AI assistants. Nevertheless, it
relies on tapping the network communication between remote
LLMs and clients, which has a threat model different from
that of local LLMs.

Hardware Side-channel Attacks on Deep Learning. Sev-
eral studies have demonstrated side-channel information leak-
age in deep-learning hardware, which aims to extract model
structures or parameters [22, 36, 45, 46, 74], to infer classifica-
tion labels [53,56,63,69], or to infer hardware design of DNN
accelerator [38]. However, they fundamentally target discrim-
inative Deep Neural Networks (DNNs). Instead, LLMs are
generally generative and follow the unique autoregressive
paradigm. We also found that the cache access patterns of
token embedding operation leak token values, and the tim-
ing of autoregressive generation leaks token positions. These
leakages have still not been explored by previous hardware
side-channel works. To the best of our knowledge, this work
is the first hardware cache side-channel eavesdropping attack
on full text of LLM input and output.

9 Conclusion

This paper presents a novel side-channel attack to steal the
model input and output text of local LLMs by leveraging the
fundamental characteristics of LLM inference, including the
timing of autoregressive generation and the cache access pat-
terns of token embedding computation. To demonstrate the
feasibility, we design an eavesdropping attack framework that
utilizes a new cross-modality de-noising algorithm to recon-
struct the model output from the noisy cache trace. Moreover,
we fine-tune the pre-trained LLM to capture the context de-
pendence between model input and output and reconstruct the
model input from the shuffled tokens. Finally, to overcome
the lack of training data, we propose a new dataset synthesis
process to obtain the training set without profiling the vic-
tim. Our empirical evaluations across a range of mainstream
LLMs demonstrated that the attack can restore high-fidelity
text of model output (with an average Levenshtein similarity
of 94.8%), and reconstruct the model input with highly sim-
ilar semantics (with an average cosine similarity of 98.0%).
Our results reveal critical vulnerabilities in widely used local
LLM inference frameworks (e.g., llama.cpp), highlighting the
pressing necessity of improving security measures to defend
against such risks.
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In adherence to best practices for vulnerability disclosure,
we have reported the identified issues to all relevant software
developers and are actively collaborating with them to miti-
gate the vulnerabilities.

12 Open Science

We have made our research artifact publicly available on Zen-
odo for permanent retrieval: https://doi.org/10.5281/
zenodo.15610475. The artifact contains:

• Complete Datasets. Including the corpus dataset, the
synthesized datasets, and the collected cache traces.

• Full Source Code. Including the implementation of the
proposed attack and the evaluation scripts or tools for
experiment replication.

• Models. For the Llama-3.1-8B-Instruct model, full
adapter weights and configuration files are provided. For
the fine-tuned OpenAI’s GPT-4o-mini, we are bound by
proprietary restrictions that prevent sharing the model
weights. As an alternative, we release the original
JSONL training data files, scripts, and documents neces-
sary to reproduce this model.

• Evaluation Data. We provide the original experiment
results and anonymous survey results.

• Documentations. A comprehensive README file is
available, which guides other researchers to reproduce
and build upon our work.
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A Dataset Construction Process

We used all the 2,727 testing prompts of UltraChat, and 4,425
samples in the NQ-Open, 254 prompts (12,394 tokens) in the
ChatGPT-Roles, 1682 prompts in the SIQA, and 277 prompts
(19,029 tokens) in the SQuAD2. The number of total tokens
is 212535.

To obtain ground-truth LLM output corresponding to dif-
ferent input prompts, We send each prompt to the the general-
purpose LLM (named Llama3.1-8B-Instruct for our purpose)
as its input in the separated context (independent with its
preceding prompts).

B Dataset Cleaning

To prevent data contamination of the training dataset from
the testing samples, we dropped all the contaminated samples
from the training set. Similar to GPT-3 and PaLM [24, 28],
we consider a training sample as contaminated if either its
user prompts has more than 70% 8-grams overlapping with
the user prompt of testing set, or it shares at least the first 8
words with one of the testing samples.

C Hyperparameters of Fine-tuning

We fine-tune OpenAi GPT-4o-mini-2024-07-18 in 3 epochs,
each with a batch size of 5. We set the learning rate multiplier
as 1.8.

We fine-tune Llama-3.1-8B-Instruct in 3 epochs for LLMA
and 2 epochs for LLMB, each with a batch size of 2. We set
the learning rate as 0.0002 for LLMB and 0.00008 for LLMA.

D Additional Results

Impact of Embedded Vector Quantization. We evaluated
the attack on other embedding vector quantization types be-
yond F16. The experiment setup was aligned with §6.4. The
attack targets the llama.cpp that uses GPU acceleration. For
Q8_0, we skip L1 cache hits to omit extra prefetching.

Table 5 shows that the quantization has a minor impact on
the cosine similarity.

Table 5: Impact of embedded vector quantization.

Quantization Output Reconstruction Input Reconstruction
φ (%) ASR (%) φ (%) ASR (%)

F16 99.2 100.0 97.8 100.0

Q8_0 98.6 100.0 96.6 100.0

BF16 99.3 100.0 96.5 100.0

F32 98.7 100.0 96.2 100.0

Other Operating Systems. We evaluated the attack on
other operating systems, leveraging the same model and
datasets in §6.4 and fixing the victim as llama.cpp that uses
GPU acceleration. Table 6 shows that the attack is applicable
to a range of operating systems.

Table 6: Evaluating the attack against other systems.

Operation System Output Recovery Input Recovery
φ (%) ASR (%) φ (%) ASR (%)

Ubuntu 22.04 99.2 100.0 97.8 100.0

Windows 11 99.4 100.0 95.4 100.0

Debian 12 (in Docker) 97.0 100.0 96.3 100.0

Input Reconstruction via Pure SCA. Experiments show
that the proposed attack significantly outperforms the pure
SCA, as shown in Table 7. The setups were aligned with §6.3.



Table 7: Ablation study on the SCA data.

Configuration Input Recovery Performance (%)
R1 RL LS φ ASR

LLMB (SCA + Output) 82.8 78.5 76.2 96.9 99.7

Pure SCA 50.4 28.7 29.8 66.1 29.3

E Detailed Implementation of Flush+Reload

In this section, we detail the implementation for obtaining
cache traces using the pseudocode presented in Listing 1.

Listing 1: C++ pseudo code of the flush+reload attack
1 probe ( l l m _ m o d e l _ f i l e ) {
2 / / 1 . Achieve t h e s h a r e d memory ( d e t a i l e d

e r r o r h a n d l i n g l o g i c s were o m i t t e d h e r e
)

3 fd = open ( l l m _ m o d e l _ f i l e , O_RDONLY) ;
4 f s t a t ( fd , &s t _ b u f ) ; / / g e t f i l e s i z e
5 i m a g e _ p t r = mmap(NULL, s t _ b u f . s t _ s i z e ,

PROT_READ, MAP_PRIVATE , fd , 0 ) ;
6
7 / / 2 . Get t h e params of embedding t a b l e
8 [ emb_ptr , e m b _ s t r i d e , num_vocabs ] =

p a r s e _ m o d e l _ f i l e ( i m a g e _ p t r ) ;
9

10 / / 3 . G e n e r a t e t h e t a r g e t a d d r e s s r a n g e s
11 s o r t e d _ s e g = { } ;
12 f o r ( v = 0 ; v < num_vocab ; v ++) {
13 p s t a r t = emb_ptr + v * e m b _ s t r i d e [ 1 ] ;
14 pend = p s t a r t + e m b _ s t r i d e [ 1 ] − 1 ;
15 s o r t e d _ s e g = s o r t e d _ s e g ∪ { s t r u c t

AddressRange ( v , p s t a r t , pend ) }
16 }
17
18 / / 4 . Choose t a r g e t a d d r e s s e s t h a t s a t i s f y

t h e c o n s t r a i n t s t o overcome p r e f e t c h e r s
19 v i s i t e d = { } ;
20 maxpage = p a g e _ o f f s e t ( emb_ptr + e m b _ s t r i d e

[ 1 ] * num_vocab + e m b _ s t r i d e [ 1 ] − 1 ) +
PAGE_SIZE ;

21 f o r ( cp = p a g e _ o f f s e t ( emb_ptr ) )
22 cp <= maxpage ; cp += PAGE_SIZE ) {
23 p _ c e n t e r = cp + PAGE_SIZE / 2 ;
24 / / f i n d t a r g e t a d d r e s s from r a n g e s
25 b i n a r y _ s e a r c h t a r g e t i n s o r t e d _ s e g ,

maximiz ing ( t a r g e t . s t a r t ) s . t . t a r g e t .
s t a r t <= p _ c e n t e r

26 i f ( t a r g e t i s found && t a r g e t −>vocab n o t
i n v i s i t e d ) {

27 v i s i t e d += { t a r g e t −>vocab } ;
28 t a r g e t _ a d d r [ t a r g e t −>vocab ] = p _ c e n t e r ;
29 }
30 }
31
32 / / 5 . Avoid s t o r i n g v a l i d p o i n t e r s i n t h e

a r r a y , t o overcome AoP p r e f e t c h e r s
33 f o r ( s i z e _ t v = 0 ; v< num_vocab ; ++v )
34 p t r _ o f f s e t [ v ] = ( t a r g e t _ a d d r [ v ] − emb_ptr

)
35
36 / / 6 . C o l l e c t t h e cache t r a c e
37 c a c h e _ t r a c e = { } ;

38 n u m _ p a r t i t i o n s = 1 5 ;
39 f o r ( t = 0 ; t < n u m _ p a r t i t i o n s ; ++ t ) {
40 / / C o n v e n t i o n a l s e t t i n g s f o r t h e f l u s h +

r e l o a d a t t a c k
41 c l o n e ( t h r e a d ) ;
42 p t h r e a d _ s e t a f f i n i t y _ n p ( p t h r e a d _ s e l f ( ) ,

mask ( t ) ) ;
43 s c h e d _ s e t s c h e d u l e r ( s c h e d _ g e t _ p r i o r i t y _ m a x

(SCHED_OTHER) ) ;
44 c l f l u s h _ a l l _ t h e _ t a r g e t _ a d d r ( ) ;
45
46 m = c e i l ( num_vocabs / n u m _ p a r t i t i o n s )
47 n = ( t == n u m _ p a r t i t i o n s − 1) ?

num_vocabs % m : m;
48 w h i l e ( r u n n i n g ) {
49 f o r ( v = 0 ; v < n ; ++v ) {
50 / / Pseudo random p e r m u t a t i o n
51 s = t * m + ( v * 167 + 13) % n ; / /

Two random copr ime i n t e g e r s
52 r e g i s t e r p = p t r _ o f f s e t [ s ] ;
53 asm {
54 / / r e s t o r e t h e p o i n t e r
55 add emb_ptr , p
56 / / r e l o a d
57 mfence
58 r d t s c
59 l f e n c e
60 mov %eax ,% e s i
61 mov %edx ,% e d i
62 mov ( p ) ,%ax
63 mfence
64 r d t s c
65 c l f l u s h ( p )
66 }
67 t i m e p o i n t = UINT64(%eax ,% edx ) ;
68 c a c h e _ t r a c e [ t i m e p o i n t ] [ s ] = t i m e p o i n t

− UINT64(% e s i ,% e d i ) ;
69 }
70 }
71 }
72 r e t u r n c a c h e _ t r a c e ;
73 }

F Attack Examples and Failure Modes

Additional concrete examples, along with an analysis of
failure modes of LLMA and LLMB, were made publicly
available for permanent retrieval in the permanlink: DOI
10.5281/zenodo.15646979.

https://doi.org/10.5281/zenodo.15646979
https://doi.org/10.5281/zenodo.15646979
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