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Abstract. Security information and event management (SIEM) sys-
tems serve as a critical hub, employing rule-based logic to detect and
respond to threats. Redundant or overlapping rules in SIEM systems
lead to excessive false alerts, degrading analyst performance due to
alert fatigue, and increase computational overhead and response la-
tency for actual threats. As a result, optimizing SIEM rule sets is
essential for efficient operations. Despite the importance of such op-
timization, research in this area is limited, with current practices re-
lying on manual optimization methods that are both time-consuming
and error-prone due to the scale and complexity of enterprise-level
rule sets. To address this gap, we present RuleGenie, a novel large
language model (LLM) aided recommender system designed to op-
timize SIEM rule sets. Our approach leverages transformer models’
multi-head attention capabilities to generate SIEM rule embeddings,
which are then analyzed using a similarity matching algorithm to
identify the top-k most similar rules. The LLM then processes the
rules identified, utilizing its information extraction, language under-
standing, and reasoning capabilities to analyze rule similarity, evalu-
ate threat coverage and performance metrics, and deliver optimized
recommendations for refining the rule set. By automating the rule
optimization process, RuleGenie allows security teams to focus on
more strategic tasks while enhancing the efficiency of SIEM sys-
tems and strengthening organizations’ security posture. We evaluated
RuleGenie on a comprehensive set of real-world SIEM rule formats,
including Splunk, Sigma, and AQL (Ariel query language), demon-
strating its platform-agnostic capabilities and adaptability across di-
verse security infrastructures. Our experimental results show that
RuleGenie can effectively identify redundant rules, which in turn de-
creases false positive rates and enhances overall rule efficiency.

1 Introduction
In today’s rapidly evolving digital landscape, enterprises must im-
plement robust security measures to combat increasingly sophisti-
cated cyber threats [20]. As organizations scale, their IT infrastruc-
ture correspondingly expands, encompassing a range of components
such as networking devices, cloud computing environments, and end-
points. This expansion of IT infrastructure generates a diverse and
vast stream of security events.

To cope with the increasing volume of security data, enterprises
depend heavily on security information and event management
(SIEM) systems [25]. SIEM systems are specifically designed to han-
dle the challenges of processing diverse, high-volume data by aggre-
gating events from multiple sources, each of which may use a unique
vendor-specific schema. The ability of SIEM systems to standardize
diverse data formats into a unified representation plays a vital role
in modern enterprise security operations, enabling streamlined event
analysis, storage, and incident response [9].

The operational core of SIEM architecture is anchored in its so-
phisticated rule-based system, where specialized rule engines serve
as a critical bridge between raw security data and actionable intel-
ligence [3]. This rule-based processing capability enables security
operations center (SOC) analysts to detect and respond to threats
more effectively. Therefore, the efficacy of a SIEM’s detection and
response capabilities depends on well-structured rule sets that elimi-
nate redundancy, maximize coverage, and ensure maintainability.

Organizations continuously integrate new rules into their SIEM
environment to adapt to emerging threats, accommodate new in-
frastructure components, and comply with regulatory requirements.
While adopting an incremental approach to threat detection can en-
hance coverage, it also introduces significant operational challenges.
As the amount of detection rules increases, overlapping logic, redun-
dant conditions, and conflicting alerts may emerge, placing a burden
on SOC analysts, who must filter through redundant alerts, a process
consuming critical time and resources. The resulting alert fatigue can
compromise analysts’ ability to recognize genuine threats [2]. This
increases the risk that serious security incidents will be undetected,
threatening the organization’s overall security posture.

Addressing theses challenges requires a systematic approach to
optimizing rule sets and eliminating redundancies. Currently, SIEM
system rule optimization relies heavily on manual efforts by analysts
who must sift through entire rule sets to identify redundancies, merge
similar rules, and remove unnecessary rules.

This process, which is both time-consuming and prone to human
error, requires significant expertise and experience, resulting in the
inefficient allocation of human resources and an increased workload
for analysts. This ultimately affects the overall efficiency of cyberse-
curity operations. While both SQL and SIEM systems fundamentally
deal with pattern matching and data filtering at scale, but the SIEM’s
operational contexts differ significantly. The extensive research per-
formed on SQL query optimization underscores the significance of
automated maintenance for optimized rule sets.

Traditional databases prioritize static, structured data, whereas
SIEM systems manage real-time, heterogeneous security data
streams, introducing complexities that extend beyond the scope of
conventional SQL optimization methods. This unique technical dis-
tinction underscores the need for SIEM rule optimization, yet despite
the critical operational importance of optimized SIEM rule sets in
cybersecurity infrastructure, research in this domain remains notably
limited.

To bridge this research gap, we present RuleGenie, a novel human-
in-the-loop (HITL) system [21] that performs both retrospective and
prospective analysis of SIEM rules. The proposed system retrospec-
tively analyzes existing rule sets for potential redundancies while
prospectively recommending optimizations when new rules are in-
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troduced, thereby continuously ensuring rule set efficiency.
RuleGenie implements a robust pipeline to optimize and remove

duplicate SIEM rules. It leverages an encoder-decoder transformer
model [5] to generate embeddings of rules, enabling efficient syn-
tactic representation. RuleGenie employs a distance-based similarity
detection algorithm [23] to identify potentially redundant or overlap-
ping rules in relation to a target rule in a rule set. The target rule may
represent a newly proposed rule or an existing rule from the rule set
being analyzed.

Each rule pair, consisting of the target rule and a potentially sim-
ilar rule identified through similarity matching is then analyzed us-
ing a structured chain-of-thought (CoT) [29] reasoning process per-
formed by an LLM. This CoT analysis is performed in three key
steps. First, the LLM evaluates functional and semantic overlap be-
tween the rules. Second, it assesses platform specificity and hier-
archical relationships between target environments. Finally, it com-
pares the rules based on operational metrics including coverage, the
false positive rate, and computational efficiency. By integrating these
aspects of analysis, RuleGenie produces data-driven recommenda-
tions for rule set optimization, ensuring that no blind spots emerge
in an organization’s threat detection capabilities while maintaining
SIEM systems’ operational efficiency.

RuleGenie was assessed across diverse SIEM rule formats, in-
cluding Sigma [4], Splunk [26], and AQL (Ariel query language)
rule definitions. The evaluation encompassed 2,347 Sigma rules and
1,640 Splunk security content rules, with respectively 139 and 58
redundant rules demonstrating overlapping functionalities expressed
via identical query structures or detection objectives. To validate the
platform-agnostic nature of our approach, we converted the 2,347
Sigma rules into AQL security rules used by QRadar and examined
RuleGenie’s ability to identify redundant rule pairs across multiple
SIEM environments. In addition, we evaluated RuleGenie using two
LLMs: a proprietary model and a local open-source model. The pro-
prietary model achieved over 90% recall and 65% precision across
all SIEM rule formats. The local open-source model achieved over
80% recall and 75% precision across all SIEM rule formats, while
also ensuring data privacy and reduced costs.
The main contributions of this paper can be summarized as follows:
• A novel application of LLMs for SIEM rule set optimization:

We introduce a context-aware LLM-based approach for detecting
similar rules and providing recommendations that reduces redun-
dancies while maintaining high precision in evolving SIEM envi-
ronments.

• A code-based embedding technique for syntactic comparison
of SIEM rules: We propose the use of advanced code-based
embedding techniques to enable syntactic comparisons of SIEM
rules, ensuring more accurate and context-rich rule matching.

• Real-world applicability: We rigorously tested and validated
RuleGenie in real-world SIEM environments, demonstrating its
effectiveness in handling large-scale rule sets typical of enterprise
deployments.

2 Related Work
To our knowledge, no prior work has directly addressed SIEM rule
optimization, even though rule redundancy has long been recognized
as a critical issue in cybersecurity.

Existing research in related areas such as firewall rule manage-
ment, where research has shown that rule redundancy minimization
significantly reduce noise and improve system efficiency [17, 18, 22].
Unlike firewall rules, which are relatively simple, SIEM rules involve

intricate event aggregation, data transformation, and multi-source
data correlation logic. Consequently, the optimization approaches
that work well for firewall rules are often unsuitable for SIEM en-
vironments. But these studies reveal key insight that more security
rules does not necessarily correlate with better security, but can in-
stead introduce performance degradation and increase the likelihood
of false positives. These methods, while effective for well-defined
rule sets, face significant limitations when applied to the complex
logic of SIEM rules.

Recent work has demonstrated the applicability of LLMs in a
range of cybersecurity tasks, including log analysis [24, 15, 11, 19,
10, 6], and modeling threat behavior [8]. LLMs have shown the abil-
ity to understand and manipulate structured queries and configura-
tions, including security rule formats like Sigma. However, their po-
tential for automated rule optimization in operational security con-
texts particularly for identifying redundancy, semantic overlap, or
logical inefficiencies in detection rules remains largely unexplored.

3 Methodology
3.1 RuleGenie Overview

The RuleGenie pipeline comprises three phases: rule embedding
generation, similarity detection, and LLM analysis, as illustrated in
Figure 1. In the first phase, SIEM rules are transformed into embed-
ding representations in a high-dimensional vector to facilitate syn-
tactical analysis. In the second phase, the vectorized embedding rep-
resentations of target rule and existing rule set is compared using
similarity matching algorithm. Once a target rule has been compared
to an existing rule set, a cluster of potentially similar rules is gener-
ated. In the final phase, LLM-aided analysis is performed to evaluate
both the target rule and the cluster of similar rules.

The RuleGenie pipeline leverages transformer models for SIEM
rule vectorization and uses LLMs for semantic analysis.

3.2 Rule Embedding Generation

In the initial phase, RuleGenie utilizes a transformer-based architec-
ture to generate rule embeddings. This embedding process forms the
cornerstone of the pipeline, ensuring that downstream tasks benefit
from comprehensive and context-rich representations of SIEM rules
and enhancing the overall pipeline’s effectiveness. In the subsections
below, we describe the model selection and validation framework,
implementation architecture, and overflow management pipeline, all
of which are employed when generating transformer embeddings.

3.2.1 Model Selection and Validation

We conducted a comparative analysis of state-of-the-art transformer
models to identify the most suitable architecture for encoding SIEM
rule syntax. The evaluation included general-purpose language mod-
els (BERT [7]), security-specific model (SecBERT [13]), and code-
oriented models (CodeT5 [28]).

The vector distance analysis between redundant Sigma rules
demonstrated that code-based models achieve superior performance
in maintaining vector proximity for syntactically similar rules.
CodeT5 emerged as the optimal choice for our pipeline based on
several key attributes:

1. Architecture design: Its pretrained encoder-decoder transformer
architecture, derived from T5, excels at both comprehension and
generation tasks.
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Figure 1. An overview of RuleGenie’s three-phase pipeline.

2. Token processing: Its identifier-aware training objective enables
precise token distinction and recovery.

3. Dual-modality training: Its training on both code and natural
language facilitates effective alignment between natural and pro-
gramming language constructs.

3.2.2 Implementation Architecture

Our embedding framework employs an adaptive segmentation strat-
egy coupled with a conditional processing pipeline to accommodate
SIEM rules of varying complexity while ensuring consistent vector
representations. The architecture implements two processing mecha-
nisms based on input dimensionality:

• Standard processing mechanism. The RuleGenie pipeline uses an
advanced segmentation approach to handle SIEM rules that ex-
ceed standard token length limits (512-4096 tokens). The system
employs a sophisticated chunking mechanism designed to pre-
serve logical boundaries within each segment. After segmentation,
each partition is processed independently through the encoder,
which captures the salient features of the input. These encoded
segments are then recombined to preserve the relationships be-
tween chunks and maintain the overall context of the rule.

• Overflow management mechanism. To maintain models’ robust-
ness when processing exceptionally complex SIEM rules (exceed-
ing 4096 tokens), we employ a graceful degradation [12] protocol
that initiates a controlled fallback to a near null-space representa-
tion. In critical security contexts, these instances are flagged for
optional manual review.This overflow management mechanism
ensures that system integrity is upheld even under extreme load
conditions.

This dual-architecture for embedding generation ensures consis-
tent processing capabilities across SIEM rules of varying complexity
while preserving the dimensional structure of the vector space rep-
resentation. The system design prioritizes both processing efficiency
and representation uniformity, making it well-suited for security op-
erations.

3.3 Similarity Detection

In this phase of the pipeline, cosine similarity [16] is used to quantify
the syntactic relationships between SIEM rule embeddings.

Cosine similarity was chosen as the metric, because it is agnos-
tic to vector magnitude, making it particularly robust for comparing
embeddings of varying complexities.

To operationalize this similarity measure, we implement a top-k
retrieval mechanism (in our evaluations we set k = 5) for each SIEM
rule. The selection of k and its impact on precision and recall is sys-
tematically analyzed in Section 4.3, where we present empirical evi-
dence supporting this choice through an ablation study.

Additionally, our experimental investigation of transformer selec-
tion reveals that the embedding space exhibits interesting topological
properties, where syntactical related rules form well-defined clusters.

3.4 Redundancy Analysis Using LLM

The last phase of our framework leverages an LLM enhanced with
CoT reasoning to perform fine-grained semantic and functional anal-
ysis of security rules. We initially used GPT-4o [14], which demon-
strated exceptional performance in understanding complex security
rule semantics and generating nuanced recommendations. However,
operational constraints—particularly data privacy requirements and
cost considerations necessitated the exploration of alternative solu-
tions. Our subsequent evaluation of open-source models focused on
three criteria: (1) context length capacity for handling extensive rule
descriptions; (2) analytical capabilities for semantic analysis; and (3)
computational efficiency and resource optimization.

After testing multiple candidates, including Llama 8B fine-tuned
[27] and Qwen models [30], we selected Qwen-2.5-14B-Instruct as
our primary LLM. This model demonstrated superior performance in
our specific security rule analysis tasks, offering an optimal balance
between computational efficiency and analytical capability.

To maximize the effectiveness of the Qwen-2.5-14B-Instruct
model, we developed prompting strategies that leverage its context
understanding capabilities and a standardized JSON response format
that structures the model’s outputs across all analytical stages while
maintaining computational efficiency. This structured approach en-
sures consistent, machine-readable outputs while preserving the so-



phisticated analytical capabilities required for security rule optimiza-
tion.

The LLM-driven redundancy analysis consists of four stages
which are described below.

3.4.1 Deep semantic analysis and functional mapping

The process begins with the LLM evaluating a pair of rules (r, r′),
where r represents the current rule and r′ represents a candidate
from the k-similar neighbors identified using the similarity matching
algorithm. The LLM performs semantic analysis, considering both
syntactic structure and functional intent. The rules are compared by
LLM for structural matching, semantic equivalence and conditional
overlap necessary to establish whether r and r′ exhibit a signifi-
cant degree of similarity. This analysis yields two key outputs: (a)
a boolean classification indicating semantic and functional overlap;
and (b) similarity score s ∈ [0, 100], where 0 indicates no similarity
and 100 indicates perfect similarity.

Through evaluation on Sigma rules, we established a minimum
similarity threshold of 75, which effectively identifies significant rule
overlaps while minimizing false positives as discussed in Section
4.3.4. Rules with s ≥ 75 proceed to subsequent analysis stages,
while others are pruned to maintain computational efficiency and en-
sure meaningful comparisons.

3.4.2 Hierarchical dependence recognition

For qualifying rule pairs, we employ a novel hierarchical relation-
ship detection algorithm that examines both structural and semantic
dependencies. The analysis focuses on identifying three primary re-
lationship patterns:

1. Platform-specific independence, where rules serve similar secu-
rity objectives but operate within distinct technological contexts.

2. Generalization relationships, where one rule subsumes or ex-
tends another functionality. For example, consider the Splunk
rules Abnormally High AWS Instances Terminated by User
(AWS-specific) and Abnormally High Cloud Instances Termi-
nated by User (covers AWS, Azure, GCP, etc.). Here, the sec-
ond rule generalizes the first by applying the same detection logic
across multiple cloud providers.

3. Cross-platform dependencies, which reveal potential optimiza-
tion opportunities across different security platforms.

This hierarchical mapping enables sophisticated rule organization
strategies and forms the foundation for optimization decisions.

3.4.3 Performance and quality optimization

In this stage a comprehensive evaluation framework for dependent
rule pairs is implemented to analyze their operational effectiveness.
Comparative evaluation is conducted across three performance met-
rics:

1. Coverage Analysis: The scope and comprehensiveness of each
rule’s detection capabilities are assessed. Broader coverage is pri-
oritized.

2. Efficiency Metrics: Execution times and resource consumption
are evaluated to minimize operational overhead.

3. False Positive Mitigation: The potential for false positive gen-
eration is rigorously assessed based on three key aspects: condi-
tional statement scope, filtering criteria, and validation logic im-
plementation. Each rule is further analyzed for its effectiveness in

minimizing blind spots and ensuring robust validation logic. After
evaluating both the target rule r and candidate rule r′ against these
criteria, the results are compared to identify the superior rule, with
a preference for rules that maintain high accuracy while reducing
noise.

3.4.4 Rule recommendation for SIEM environments

Integrating insights from semantic analysis, hierarchical dependency
mapping, and performance evaluation, the final stage of RuleGenie
focuses on generating finely tuned recommendations. By carefully
balancing trade-offs between conflicting metrics such as efficiency
and accuracy, RuleGenie provides systematic and targeted strategies
for optimizing SIEM rules.

For each rule pair analyzed, recommendations are generated based
on their relationship:

1. Keep superior rule: If one rule demonstrates superior coverage
and false positive handling, the recommendation is to retain the
better-performing rule.

2. Merge complementary rules: If a rule pair is similar but not en-
tirely redundant and could offer enhanced coverage when com-
bined, RuleGenie recommends merging the rules.

3. Keep both rules: For rule pairs that are clearly distinct and serve
different detection purposes, the recommendation is to retain both
rules.

This structured framework enables precise reasoning that im-
proves rule relevance and operational effectiveness, addressing the
challenges of modern cybersecurity environments and resulting in
a high-confidence rule deployment strategy designed to be robust,
adaptable, and contextually aligned with operational requirements.
This ensures that recommendations are not only balanced and action-
able but also tailored to the dynamic demands of security operations,
fostering advanced threat detection and mitigation.

4 Evaluation
4.1 Experimental Setup

RuleGenie was implemented using Python 3.11. We preprocess
SIEM rules to extract key features. Embeddings for these rules
are generated using the encoder component of Salesforce’s CodeT5
model. We employed two large language models for rule similarity
comparison, performance analysis, and recommendation generation:
OpenAI’s GPT-4o, accessed via the Azure OpenAI API, and a local
deployment of Qwen-2.5-14B-Instruct, managed using the Hugging
Face library. The locally deployed Qwen model can run efficiently
on a single NVIDIA RTX 3080 GPU.1

4.2 Dataset

To address security considerations surrounding sensitive SIEM in-
frastructure, we limited our experimental analysis to detection rules
sourced from public security repositories. Our data acquisition
framework leveraged two prominent open-source security initiatives:
the Sigma detection framework [4] and Splunk Security Content
repository [26]. The integration of these complementary sources
yielded 3,987 detection rules, which we methodically pre-classified
into three distinct categories: (1) foundational detection rules for
baseline security monitoring, (2) advance threat hunting rules, and

1 Code will be made available once the paper is accepted.



(3) emerging threat rules targeted at time-critical vulnerabilities and
exploits.

For the initial evaluation of RuleGenie pipeline Splunk and Sigma
rules were used. Through rigorous analysis of 2,347 Sigma rules,
130 Windows-specific rules were identified as new, and the other
2,217 were incorporated in the existing rule set. The Splunk Secu-
rity Content repository contributed an additional 100 new rules, com-
plemented by 1,540 existing rules. To validate the platform-agnostic
nature of our methodology, we converted all 2,347 Sigma rules into
AQL queries. We utilized pySigma [1], a Python package maintained
by the Sigma repository authors, to convert the Sigma rules into
both AQL and Splunk query formats. which are methodically pre-
classified into three categories: (1) foundational detection rules for
baseline security monitoring, (2) advance threat hunting rules, and
(3) emerging threat rules targeted at time-critical vulnerabilities.

We partitioned the dataset to simulate real-world task of integrat-
ing new detections into an existing SIEM environment. We manually
curated 230 rules (130 Sigma, 100 Splunk) representing recent addi-
tions typically seen in production environments. These form the new
evaluation set, while the remaining 3,757 detections constitute the
existing rule set for comparison. To assess platform-agnostic capa-
bilities, all Sigma detections were programmatically converted into
both AQL and Splunk query formats using pySigma [1], a Python
package maintained by the Sigma repository authors.

Table 1. Comparison of SIEM rule sets in terms of redundancy and new
rules.

SIEM Rule Set Non-Redundant
Existing Rules

Non-Redundant
New Rules

Redundant
Existing Rules

Redundant
New Rules

Sigma 2167 41 50 89
Splunk 1517 65 23 35
AQL 2167 41 50 89

This comprehensive classification and conversion process facili-
tated the development of a robust input dataset analysis and experi-
mentation. Table 1 categorizes SIEM rules into redundant and non-
redundant groups across Sigma, Splunk, and AQL datasets, covering
both newly introduced and existing rules.

4.3 Ablation Study

This subsection details the empirical evaluation used to optimize the
configuration of RuleGenie. We present the selection process for key
components, including: the embedding generation model, the simi-
larity matching parameter (k), the operational similarity threshold,
and the large language model for recommendations. We utilize stan-
dard precision and recall metrics throughout this evaluation since es-
tablished SIEM rule optimization benchmarks are not available.

4.3.1 Embedding Model Selection

We evaluated three transformer models for generating SIEM rule em-
beddings: the general-purpose BERT, the security-focused SecBERT,
and the code-focused CodeT5. Figure 2 illustrates the perfor-
mance differences between these models in identifying redundant
SIEM rules. The figure displays a 2D representation of the high-
dimensional rule embeddings generated by each model, obtained us-
ing principal component analysis (PCA).The embedding space pro-
jections, has target rule under evaluation marked in red, while the
rule that is redundant to target rule is represented in green.The visu-
alizations show CodeT5 embeddings place the redundant rule signif-
icantly closer to target rule compared to BERT and SecBERT em-
beddings.

This closer proximity indicates that CodeT5 produces embeddings
that better capture the similarities relevant for identifying redundancy
specifically within SIEM rule syntax and structure. CodeT5’s effec-
tiveness likely stems from its pre-training on programming language
structures and keywords, which align well with typical SIEM rule
syntax, enabling it to represent rule features more effectively for this
task than the general-purpose or security-text-focused models.

4.3.2 Value selection for k

The optimal value of k was empirically determined through analysis
of precision-recall trade-offs across different k values for the Sigma
rule set as shown in Figure 3. The results demonstrate that the recall
metric values consistently improved as k increases from one to five,
with recall values showing substantial improvement from 0.382 to
0.966, representing a 152.94% increase. Similarly, precision showed
a generally positive trend up to k = 5, starting at 0.810 for k = 1 and
reaching its peak of 0.887 at k = 5, representing a 9.5% improve-
ment. This simultaneous enhancement in both precision and recall
metrics up to k = 5 indicates strong classifier performance.

While the recall metric values plateau at 0.966 for k ≥ 5, preci-
sion begins to deteriorate for k > 5, dropping to 0.843 at k = 10.
This represents a 4.9% decrease in precision with no corresponding
gain in recall, suggesting that k = 5 represents an optimal balance
point. The deterioration in precision beyond k = 5 can be attributed
to the inclusion of more distant neighbors in the classification deci-
sion, which may introduce noise and reduce the classifier’s ability to
maintain clear decision boundaries.

4.3.3 LLM model selection

While our analysis confirms that embeddings generated by CodeT5
effectively capture syntatic patterns and locality in SIEM rules with
rules sharing similar syntax clustering together (see Figure 2), rely-
ing solely on embedding similarity presents several limitations. This
syntactic matching lacks a deeper understanding of rule semantics
and operational context, risking false positive recommendations or
the removal of rules with unique defensive value, potentially creat-
ing security blind spots.

To overcome these limitations, we leverage LLMs trained on both
natural language and cybersecurity domain knowledge. These mod-
els offer a more nuanced interpretation of SIEM rule semantics, con-
sidering technical implementation details alongside the security im-
plications of potential modifications. This approach aims to enhance
the quality and safety of rule recommendations.

We evaluated three candidate LLMs:
First, we assessed OpenAI’s GPT-4o via the Azure API. While

demonstrating high accuracy in identifying redundancies and provid-
ing contextually relevant recommendations, its operational cost was
prohibitive. Processing our complete rule set incurred an estimated
cost of $142.5 per analysis iteration (based on standard API pricing
of $0.03/1K input tokens and $0.06/1K output tokens). Additionally,
the average processing time of 70 minutes made it unsuitable for fre-
quent or large-scale use.

Given the cost constraints of GPT-4o, we next investigated smaller
models to assess if a more cost-effective open-source solution could
be viable. We experimented with Llama 3.1 8B as a lightweight open-
source alternative. However, the base model exhibited a high hallu-
cination rate (70%) when interpreting rule semantics and operational
context. Subsequent fine-tuning yielded only marginal performance



Figure 2. An example of a randomly selected rule. Sigma rule "New Service Uses Double Ampersand in Path" embedding using transformer models.

Figure 3. Precision-recall curve for k in Sigma rule set.

improvements. The model’s non linear time complexity proved com-
putationally inefficient for enterprise-scale deployments, particularly
when processing large rule sets. This computational constraint, cou-
pled with persistent hallucination issues, rendered the model unsuit-
able for production environments requiring reliable rule analysis.

Finally, our evaluation focused on Qwen-2.5-14B-Instruct de-
ployed locally. This model demonstrated performance comparable
to GPT-4o in identifying relevant rules while satisfying crucial con-
straints of data privacy via on-premises deployment and operational
cost. Specifically, in our rule recommendation task, Qwen achieved
a minimum precision of 72%, and recall of 80% (see Table 4). These
performance metrics, combined with the practical advantages of lo-
cal deployment, establish Qwen-2.5-14B-Instruct as the most viable
LLM solution for RuleGenie within an enterprise context.

4.3.4 Similarity Threshold Selection

To determine the optimal similarity threshold for identifying redun-
dant SIEM rules, we evaluated multiple threshold values using the
Sigma rule set, analyzing the resulting precision and recall for each
candidate.

As detailed in Table 2, the analysis revealed the expected trade-
off: lower thresholds (e.g., 65) increased recall at the cost of preci-
sion, while higher thresholds (e.g., 85) improved precision but re-
duced recall. Based on these results, we selected a threshold of 75
as providing the optimal balance. This value is therefore used as the

operational similarity threshold in RuleGenie.

Table 2. Performance of RuleGenie for different similarity score.

Similarity Threshold Precision Recall
65 0.454 0.733
75 0.818 0.733
85 0.840 0.635

4.4 Evaluation Metrics

Our evaluation assesses the performance of RuleGenie pipeline in
two stages: (a) the identification of potentially similar or redundant
rules, and (b) the quality of the optimization recommendations pro-
vided for the identified rules. We evaluate the system’s output against
a ground truth established through expert analyst review.

To quantify RuleGenie’s performance, we utilize metrics that re-
flect both its ability to accurately detect redundancy and the correct-
ness of its recommendations. While we adopt the terminology of pre-
cision and recall for evaluating our method, we define these metrics
in a task-specific manner due to the absence of prior baselines.

First, we measure the RuleGenie’s ability to identify truly redun-
dant rules using Recall, consistent with its standard definition in clas-
sification tasks. Recall quantifies the proportion of actual redundant
rules in the dataset that our system successfully identifies:

Recall =
# of correctly identified redundant rules

# of correctly identified redundant rules + # of missed redundant rules
(1)

Second, to quantify the quality of the optimization recommenda-
tions provided by RuleGenie for the rules it identifies, we define Pre-
cision. This metric specifically measures the proportion of recom-
mendations that were validated as correct by human analysts based
on three critical matrices: (a) detection coverage; (b) false positive
rate reduction; and (c) computational efficiency, out of all the rules
the system flagged as potentially redundant:

Precision =
# of correct recommendations

# of correct recommendations + # of incorrect recommendations
(2)

By quantifying both Precision and Recall, we aim to provide a
comprehensive view of the pipeline’s effectiveness in supporting hu-
man analysts in SIEM rule set optimization.



5 Results
5.1 Adding new rules to an existing rule set

Our experimental evaluation, the results of which are summarized in
Table 3, examines the performance of various LLMs in generating
security rule recommendations for newly implemented SIEM rules.
The results show that Qwen-2.5-14B-Instruct outperforms GPT-4o
in terms of precision across all evaluated rule sets, with comparable
recall performance between the two models.

Table 3. Adding new rules to an existing rule set. Comparison of models
on different rule sets in terms of precision and recall. Bold numbers indicate
best performance and underlined numbers indicate second-best performance.

Model SIEM Rule Set Precision Recall
GPT-4o Sigma 0.886 0.966

Splunk 0.673 1.000
AQL 0.886 0.966

Qwen-2.5-14B-Instruct Sigma 0.941 0.910
Splunk 0.795 0.886
AQL 0.941 0.910

Llama 3.1 8B-Instruct
Fine-tuned

Sigma 0.450 0.483

Splunk 0.315 0.398
AQL 0.450 0.483

5.2 Optimizing existing rule set

Based on the cost analysis presented in Section 4.3, which re-
vealed significant operational expenses associated with GPT-4o, and
the high hallucination rates observed in Llama 3.1 8B, we selected
Qwen-2.5-14B-Instruct to optimize the existing SIEM rule set. The
results of our evaluation of Qwen-2.5-14B-Instruct’s performance in
rule set optimization are presented in Table 4 and demonstrate its
effectiveness as a cost-efficient and reliable alternative.

Table 4. Optimizing existing rule set. Performance of
Qwen-2.5-14B-Instruct on different rule sets.

Model SIEM Rule Set Precision Recall
Qwen-2.5-14B-Instruct Sigma 0.947 0.850

Splunk 0.726 0.804
AQL 0.947 0.850

6 Discussion
6.1 Impact of Embedding Generation and Similarity

Matching

This study aimed to investigate the effectiveness and efficiency of
RuleGenie for identifying similar rules within a rule set. A key ob-
jective is to quantify the contribution of each phase.

To evaluate the impact of our embedding-based pre-processing
strategy, we conducted a comparative analysis between two work-
flows as summarized in Table 5:

• Baseline Workflow: Brute-force analysis of SIEM rules, requir-
ing pairwise comparisons across the entire rule set without initial
filtering or dimensionality reduction.

• Proposed Pipeline: Incorporates the following pre-processing
steps: (a) generation of vector embeddings for each rule, (b) re-
trieval of the top-5 most similar rules via cosine similarity and (c)
run downstream analysis exclusively on these top candidate rules

Table 5. Performance comparison between baseline and proposed pipeline
(Qwen-2.5-14B-Instruct).

Workflow Sample
Size

Total Time
(min)

Avg. Time
per Rule

(min)
Throughput
(rules/min)

Speed-up
(per-rule)

Baseline
(brute force)

7 224 32.0 0.22 –

Proposed pipeline
(embedding + top-5)

100 40 0.4 2.50 80×

The baseline experiment was limited to a sample size of 7 rules
due to the prohibitive computational cost of a full 100-rule brute-
force analysis. An estimated 100×32.0 = 3200 min (approximately
53.3h) would have been required, rendering it infeasible within prac-
tical time constraints.

The performance improvements shown in Table 5 derive from
embedding-based dimensionality reduction, which compacts the
search space, and from similarity pruning, which restricts com-
parisons to the top five most similar rules thereby mitigating the
quadratic time complexity of brute-force, all-pairs evaluation.

6.2 Enhancing Analysis Quality with
Chain-of-Thought

The second study evaluated the impact of integrating a CoT prompt-
ing strategy compared to a naive single-prompt baseline. The results
shown in Table 6 shows the dramatic increase in evaluation metrics
of recall and precision discussed in Section 4.4.

The stepwise reasoning inherent in the CoT methodology en-
ables the model to better understand nuanced relationships between
rules, particularly where redundancy stems from semantic equiva-
lence rather than syntactic similarity, thus providing better recom-
mendations. This effectiveness stems from the principle discussed
by [29] that decomposing complex tasks, into simpler steps allows
LLMs to process information more reliably and accurately.

Table 6. Performance of baseline and chain-of-thought prompts
(Qwen-2.5-14B-Instruct).

Prompt Type Precision Recall
Single prompt 0.250 0.533
CoT prompt 0.818 0.733

In conclusion, the combined contributions of the efficient pre-
processing and the sophisticated reasoning are essential components
of the RuleGenie pipeline. The first phase addresses the critical chal-
lenge of scalability and computational cost while, second phase ad-
dresses the equally important challenge of analytical accuracy and
the quality of the recommendations. Together, these phases create a
robust and effective system for large-scale rule optimization.

7 Conclusion and Future Work
In this paper, we introduced RuleGenie, a novel HITL method
that leverages LLMs generated recommendations to optimize SIEM
rule sets. Our experimental results demonstrate that RuleGenie can
streamline SOC workflows by minimizing multiple redundant alerts
through intelligent rule recommendation.

Building on our findings, future research will focus on two key
dimensions: automated implementation of LLM-generated recom-
mendations and optimization of rule execution sequences. This dual
approach aims to enhance both the accuracy and computational ef-
ficiency of SIEM infrastructure. By developing intelligent orches-
tration mechanisms for rule execution, we anticipate achieving im-



proved detection capabilities while minimizing system resource uti-
lization. This advancement could significantly enhance an orga-
nization’s security posture by establishing a more responsive and
resource-efficient security monitoring framework.
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