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Abstract

We present the first nearly optimal differentially private PAC learner for any concept class with VC di-
mension 1 and Littlestone dimension d. Our algorithm achieves the sample complexity of Õε,δ,α,δ(log

∗ d),
nearly matching the lower bound of Ω(log∗ d) proved by Alon et al. [1] [STOC19]. Prior to our work, the
best known upper bound is Õ(V C · d5) for general VC classes, as shown by Ghazi et al. [13] [STOC21].

1 Introduction

Differentially private learning, introduced by Kasiviswanathan et al. [17], studies the task of learning a
hypothesis from data while preserving the privacy of individual entries in the dataset. Formally, the goal
is to construct a learner that satisfies the requirements of PAC learning and, simultaneously, differential
privacy.

Definition 1 (PAC learning [21]). Given a set of n points S = (X × {0, 1})n drawn i.i.d. from an un-
known distribution D and labels that are given by an unknown concept c ∈ C, we say a learner L (possibly
randomized) (α, β)-PAC learns C if h = L(S) and

Pr[errorD(c, h) ≤ α] ≥ 1− β.

Definition 2 (differential privacy [11]). A randomized algorithm M is called (ε, δ)-differentially private if
for any two dataset S and S′ that differ on one entry and any event E, it holds that

Pr[M(S) ∈ E] ≤ eε · Pr[M(S′) ∈ E] + δ.

Specifically, when δ = 0, we call it pure-differential privacy. When δ > 0, we call it approximate-differential
privacy

Definition 3 (differentially private learning [17]). We say a learner L (α, β, ε, δ)-differentially privately
PAC learns the concept class C if

1. L (α, β)-PAC learns C.

2. L is (ε, δ)-differentially private.

We call the dataset size of the learning task the sample complexity, which is a fundamental question
in learning theory. For non-private PAC learning, it is well-known that the sample complexity is linear to
the VC dimension of the concept class [21]. However, the sample complexity is less well understood in the
differentially private setting. Kasiviswanathan et al. [17] define the private learning and give a general upper
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bound O(log |C|), which works for pure differential privacy (δ = 0). This bound is tight for several natural
concept classes [2, 12].

In the approximate privacy regime (δ > 0), several works [4, 8, 3, 16, 15, 9, 19] show that the sample
complexity can be significantly lower than that in the pure setting. Alon et al. [1] and Bun et al. [7]
find that the sample complexity of approximately differentially private learning is related to the Littlestone
dimension [18] of the concept class C. In detail, for a concept class C with Littlestone dimension d, Alon et

al. [1] prove a lower bound Ω(log∗ d) and Bun et al. [7] provide an upper bound Õ(22
d

). Subsequently, Ghazi
et al. [13] improve the upper bound to Õ(V C · d5).

This leaves a large gap between the lower bound Ω(V C + log∗ d) and the upper bound Õ(V C · d5), even
when the VC dimension is as small as 1. The main question is: what is the correct dependence on d? One
important example is the halfspaces class, which can be privately learned with poly(V C, log∗ d) examples by
the work of Nissim et al. [19]. So it’s natural to ask:

Could we privately learn any concept class with sample size poly(V C, log∗ d)?

Unfortunately, the technique of Nissim et al. [19] cannot extends to the general VC class because it
depends on the data structure of halfspaces. However, the work by Nissim et al. [19] also shows an upper
bound of Õ(log∗ |X |) for any VC 1 class. Although |X | can be infinitely larger than d for the general concept
class, and a significant gap remained between log∗ d and min{d5, log∗ |X |}, it shows that in some cases (say
when log |X | = d), the sample complexity of of private learning depends on log∗ d.

To the target of fully understand the sample complexity of differentially private learning, the first step
is to ask:

Could we privately learn VC 1 class with sample size poly(log∗ d)?

In this work, we give a positive answer to this question and give a nearly tight bound θ̃α,β,ε,δ(log
∗ d).

1.1 Our result

Theorem 1. For any concept class C with VC dimension 1 and Littlestone dimension d, there is an (ε, δ)-
differentially private algorithm that (α, β)-PAC learns C if the given labeled dataset has size

N ≥ O

(
log∗ d · log2( log

∗ d
εβδ )

ε
· 48
α

(
10 log(

48e

α
) + log(

5

β
)

))
= Õβ,δ

(
log∗ d

αε

)

1.2 Overview of Technique

The key observation is that any concept with VC dimension 1 has a tree structure, which is observed by
Ben-David [5]. In the tree structure, each node is a point from the domain X , and each hypothesis is a
path from one node to the tree’s root. We show that the tree’s height is upper bounded by the threshold
dimension of the concept class, which has an upper bound O(2d) [20, 14, 1].

We use the partition and aggregate method to construct the private learner. The labeled dataset S is
randomly partitioned into subsets S1, . . . , St, where t = O(log∗ d). Each subset has a set of ”deterministic
points”, whose labels are fixed to be 1 by the given labeled points. We show that the deterministic points
can be used to construct an accurate hypothesis, and all the sets of deterministic points of S1, . . . , St are on
the same path. Since the length of the path is at most O(2d), we use the private median algorithm [9] to
select a ”good length” with sample size Õ(log∗ d). Then we can use the choosing mechanism [4] to select a
”good path” with the ”good length” with a sample size O(1) because the deterministic points of S1, . . . , St

are on the same path. Finally, we show that the selected ”good path” is an accurate hypothesis.
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Figure 1: Example of tree structure

1.2.1 Example

Here we give an example. Let X = {x1, x2, x3, x4, x5, x6, x7}. Let I(f) = {x : f(x) = 1}. Then H =
{h1, h2, h3, h4, h5, h6, h7, h8}, where I(h1) = {x1}, I(h2) = {x2}, I(h3) = {x3}, I(h4) = {x1, x4}, I(h5) =
{x1, x5}, I(h6) = {x1, x5, x6}, I(h7) = {x1, x5, x7}, I(h8) = ∅. The tree structure is shown in Figure 1. In
the tree structure, each concept can be represented by a path from one node to the root (For example, h5

is the path x5 → x1 → ∅. That means h5 gives x1, x5 label 1 and gives other points label 0.). The tree
structure has four layers. The first layer has ∅, the second layer has x1, x2, x3, the third layer has x4, x5,
the fourth layer has x6, x7. We will show that the layer number cannot be ”too large” if the Littlestone
dimension is bounded.

Let the underlying concept be h7, for all subsets of the given dataset, the deterministic points set can
only be ∅ or {x1} or {x1, x5} or {x1, x5, x7}. For instance, if we have S1, S2 and their deterministic points
are {x1} and {x1, x5, x7}. We record the maximum number of layers of deterministic points, which are 2
and 4. We can privately output the median of the layer numbers, say it is 3. Then we only consider the
points on the third layer, which are x4 and x5. Notice that x4 will never be the deterministic point, and
approximately half of the subsets will make x5 the deterministic point (because layer 3 is the median layer).
Then we can use the choosing mechanism to select x5. We consider the corresponding path to the root and
its hypothesis h5. Notice that if S1 and S2 contain enough points, we can show that h1 and h7 have high
accuracy by VC theory. Then we can show h5 also has high accuracy because it is in the middle of h1 and
h7 (see Figure 2).

Figure 2: Example of output hypothesis
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2 Notations

In learning theory, we call X a domain. The element x ∈ X is the point. The concept c is a function
c : X → {0, 1}. The concept class C is a set of concepts. We call a learned function h a hypothesis. For any
function f , we denote I(f) = {x : f(x) = 1}

3 Preliminary

3.1 Learning theory

Definition 4 (Error). Let D be a distribution, c be a concept and h be a hypothesis. The error of h over D
is defined as

errorD(c, h) = Pr
x∼D

[c(x) ̸= h(x)].

For a finite set S, the error of h over S is defined as

errorS(c, h) =
|{x ∈ S : c(x) ̸= h(x)}|

|S|
.

We write it as errorS(h) because c(x) is given as the label of x in S.

Definition 5 (PAC Learning [21]). Given a set of n points S = (X × {0, 1})n sampled from distribution D
and labels that are given by an underlying concept c, we say a learner L (L could be randomized) (α, β)-PAC
learns C if h = L(S) and

Pr[errorD(c, h) ≤ α] ≥ 1− β.

Definition 6 (VC Dimension[22]). For a domain X and a concept class C, We say x1, . . . , xk is shattered if
for any subset S ⊆ {x1, . . . , xk}, there exists a concept c ∈ C, such that c(x) = 1 for any x ∈ S and c(x) = 0
for any x ∈ {x1, . . . , xk}\S. The maximum size of the shattered set is called VC dimension.

Theorem 2 ([6]). Let C be a concept class, and let D be a distribution over the domain C. Let α, β > 0,

and m ≥ 48
α

(
10V C(X , C) log( 48eα ) + log( 5β )

)
. Let S be a sample of m points drawn i.i.d. from D. Then

Pr[∃c, h ∈ C s.t. errorS(c, h) ≤ α/10 and errorD(c, h) ≥ α] ≤ β.

Definition 7 (Thresholds Dimension). For x1, . . . , xk ∈ X and c1, . . . , ck ∈ C, if for any i ∈ [k], we
have ci(xj) = 1 for all j ≥ i and ci(xj) = 0 for all j < i, then we call ((x1, . . . , xk), (c1, . . . , ck))
as a class of thresholds. The thresholds dimension TD(X , C) = argmaxk{∃x1, . . . , xk ∈ X , c1, . . . , ck ∈
C, ((x1, . . . , xk), (c1, . . . , ck)) is a thresholds class}, i.e. the length of the longest thresholds in (X , C).

Definition 8 (Online Learning [18]). In the ith turn of the online learning setting, the learner receives a
data point xi and predicts the label of xi. Then the learner receives the true label of xi.

Definition 9 (Littlestone Dimension [18]). In online learning, we say the learner makes a mistake if the
learner’s prediction is different from the true label in one turn. We say a learner is optimal if the learner can
make the minimum number of mistakes when the learner outputs the true concept. The maximum number of
mistakes the optimal learner makes is called the Littlestone dimension of (X , C). We denote it as dL(X , C).

Theorem 3. [20, 14, 1] ⌊log dL(X , C))⌋ ≤ TD(X , C) ≤ 2dL(X ,C)+1.

Corollary 1. O(log∗(TD(X , C))) = O(log∗(dL(X , C)))
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3.2 Differential privacy

Definition 10 (Differential Privacy [11]). A mechanism M is called (ε, δ)-differentially private if for any
two dataset S and S′ that differ on one entry and any event E, it holds that

Pr[M(S) ∈ E] ≤ eε · Pr[M(S′) ∈ E] + δ.

Definition 11 (Differentially Private PAC Learning [17]). Given a set of n points S = (X ×{0, 1})n sampled
from distribution D and labels that are given by an underlying concept c, we say a learner L (α, β, ε, δ)-
differentially privately PAC learns the concept class C if

1. L (α, β)-PAC learns C.

2. L is (ε, δ)-differentially private.

Theorem 4 (Post-processing [11]). For any (ε, δ)-differentially private mechanism M and any function A
(A could be randomized), the mechanism A ◦M is (ε, δ)-differentially private.

Theorem 5 (Composition [10]). For an (ε1, δ1)-differentially private mechanism M1 and an (ε2, δ2)-differentially
private mechanism M2, the composed mechanism M(X) = (M1(X),M2(X)) is (ε1+ε2, δ1+δ2)-differentially
private.

Definition 12 (α-median). For a set of number S = {x1, . . . , xn}, we say a number x̂ is an α-median of S
if min{|{x : x ≤ x̂, x ∈ S|, |{x : x ≥ x̂, x ∈ S|} ≥ (1/2− α) · |S|

Fact 1. For any set of number S = {x1, . . . , xn}, there exists a 1/2-median.

Theorem 6 ([9]). Let X be a finite ordered domain. There exists an (ε, δ)-differentially private algorithm
PrivateMedian1 that on input S ∈ Xn outputs an α-median point with probability 1 − β provided that n >

nPM (|X |, α, β, ε, δ) for nPM (|X |, α, β, ε, δ) ∈ O

(
log∗ |X |·log2(

log∗ |X|
βδ )

αε

)
.

Definition 13 (k-bounded function). We call a quality function q : X∗ × Z → R is k-bounded if adding a
new element to the data set can only increase the score of at most k solutions, Specifically, it holds that

1. q(∅, z) = 0 for every z ∈ Z.

2. If D′ = D ∪ {x}, then q(D′, z) ∈ {q(D, z), q(D, z) + 1} for every z ∈ Z, and

3. There are at most k solutions z such that q(D′, z) = q(D, z) + 1

Lemma 1 (Choosing Mechanism [4]). Let ε ∈ (0, 2) and δ > 0. Let q : X∗ ×Z → R be a k-bounded quality
function. There is an (ε, δ)-DP algorithm A, such that given a dataset D ∈ Xn, A outputs a solution z and

Pr[q(D, z)] ≥ max
z∈Z

{q(D, z)} − 16

ε
log(

4kn

βεδ
)] ≥ 1− β

4 Structure of Classes with VC Dimension 1

Without loss of generality, we have the following two assumptions. So that every point in the domain X is
different and every concept in C is different.

Assumption 1. Assume for any two different points x1, x2 ∈ X , there exists a concept c ∈ C makes
c(x1) ̸= c(x2). Otherwise, we can replace all x2 by x1 in the given dataset and remove x2 from X .

1In [9], they provide an algorithm that can privately select interior point. That is given x1, . . . , xk, the algorithm privately
outputs a number x̂ satisfying min{xi} ≤ x̂ ≤ max{xi}. It can be extended to the median by removing the smallest and largest
(1/2− α/2) fraction of numbers. This reduction is found by Bun et al. [8].
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Assumption 2. Assume for any point x, there exists two different c1, c2 ∈ C make c1(x) ̸= c2(x). Otherwise,
we can remove c2 from C.
Definition 14 (Partial Order). Given X , C and x1, x2 ∈ X , we say x1 ⪯ x2 under C if for all c ∈ C,
(c(x1) = 1) ⇒ (c(x2) = 1)

Example 1. For thresholds ((x1, . . . , xk), (c1, . . . , ck)), we have x1 ⪯ · · · ⪯ xk.

We say x1 and x2 are comparable under C if x1 ⪯ x2 or x2 ⪯ x1 under C.
Definition 15 (f -representation). For function c, f : X → {0, 1}, the f -representation of c is

cf (x) =

{
1 f(x) ̸= c(x)
0 f(x) = c(x)

For the class of function C, the f -representation of C is Cf = {cf : c ∈ C}.
Given f and cf , we can transform cf to f :

c(x) =

{
1 f(x) ̸= cf (x)
0 f(x) = cf (x)

Given the pair of the point and label (x, c(x)) that is labeled by c, we can transform it to a corresponding
pair labeled by cf : let label be 1 if c(x) ̸= f(x) and be 0 if c(x) = f(x).

Lemma 2. V C(X , C) = V C(X , Cf ) and dL(X , C) = dL(X , Cf ) for any f .

Proof. Since C is the f -representation of Cf , we only consider one direction.

1. VC dimension. Let x1, . . . , xV C(X ,C) be a set of points shattered by C. For any set of dichotomy(
c(x1), . . . .c(xV C(X ,C))

)
, there exists a concept c′ ∈ C makes

(
c′(x1), . . . .c

′(xV C(X ,C))
)
=
(
(cf (x1), . . . .cf (xV C(X ,C))

)
because x1, . . . , xV C(X ,C) are shattered. Thus, the corresponding c

′
f ∈ Cf makes

(
c′f (x1), . . . .c

′
f (xV C(X ,C))

)
=(

(c(x1), . . . .c(xV C(X ,C))
)
. So that all 2V C(X ,C) dichotomies can be labeled by concepts of Cf , which

implies x1, . . . , xV C(X ,C) can be shattered by Cf . Therefore V C(X , C) ≤ V C(X , Cf ).

2. Littlestone dimension. Assume for C, there is an optimal function O : (X × {0, 1})∗ ×X → {0, 1}2
that receives pairs of points and labels and one new point and outputs a prediction label of the new
point. Then, we can construct the corresponding Of :

(a) for any pair of (x, cf (x)), if cf (x) = 1, set the label to 1− f(x), if cf (x) = 0, set the label to f(x).

(b) feed all pair of points and labels and the new point xnew to O, receive a label y.

(c) output 1 if y ̸= f(xnew), otherwise output 0.

So that for the concept class Cf , the number of mistakes made by Of is at most dL(X , C), which implies
dL(X , Cf ) ≤ dL(X , C).

In the remaining part of this paper, we only consider f ∈ C.
Observation 1. When f ∈ C, there exists a function c ∈ Hf , such that c(x) = 0 for all x ∈ C
Proof. ff is such a function.

Lemma 3. [5] When f ∈ C, if x1 and x2 are incomparable under Cf , then there is no c ∈ Cf , such that
c(x1) = 1 and c(x2) = 1.

Proof. If x1 and x2 are incomparable, then there exists c1 makes c1(x1) = 1 and c1(x2) = 0 (and c2 makes
c2(x1) = 0 and c2(x2) = 1, respectively). If there is c ∈ Cf , such that c(x1) = 1 and c(x2) = 1, then x1, x2

are shattered because ff ∈ Cf . It makes the VC dimension at least 2.
2Littlestone [18] provides a general method to achieve the optimal number of mistakes called standard optimal algorithm

(SOA).
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4.1 Tree Structure

Then, we can build the tree structure of Cf according to the partial order relationship. Specifically, for any
point x, if there is no x′ makes x ≺ x′, we define x ≺ ∅.

Algorithm 1: MakeTree

/*In this algorithm, we call a node a leaf if the node does not have children.*/
Inputs: a concept class C with VC dimension 1

1. Select a function f ∈ C, construct Cf according to Definition 15. In this algorithm, all the partial
order relationships are under Cf .

2. add ∅ to the tree T .

3. If there is x ∈ X and x /∈ T :

(a) Let L be the set of leaves of the tree. For ℓ ∈ L:

i. select all the points x′ satisfying x′ ≺ ℓ and there is no x′′ makes x′ ≺ x′′ ≺ x. Then make
x′ to be the child of ℓ.

4. Output the tree T .

Definition 16 (Deterministic Point). For a point x and a labeled dataset S, we say x is deterministic by S
in C if, for all h ∈ {c ∈ C : errorS(c) = 0} (that is all concepts that agrees with S), we have h(x) = 1.

Definition 17 (Distance). For an ordered sequence x ≺ x1 ≺ · · · ≺ xk ≺ ∅ under Cf . We define dCf
(x) =

max k + 1 as the distance of a point x in Cf . Specifically, d(∅) = 0.

Lemma 4. maxx∈X dCf
(x) ≤ TD(X , Cf )

Proof. It is equivalent to show for any x0 ≺ x1 · · · ≺ xk ≺ ∅, there exist corresponding c0, . . . , ck ∈ Cf make
ci(xj) = 1 if and only if i ≤ j.

We first select c0. There must exist a c0 ∈ Cf makes c0(x0) = 1, otherwise all concepts cf ∈ Cf make
cf (x0) = 0, which makes corresponding c(x0) = f(x0) for all c ∈ C. It contradicts Assumption 2. By
Definition 14, c0(xi) = 1 for all i ≥ 0.

Assume we already find c0, . . . , ck′ , by Assumtion 1, there exist a concept c′ makes c′(xk′) ̸= c′(xk′+1).
Since c(xk′) = 1 ⇒ c(xk′+1) = 1, it must be that c′(xk′) = 0 and c′(xk′+1) = 1. By Definition 14, c′(xi) = 1
for all i ≥ k′ + 1 and we can set c′ to be ck′+1.

At the end, we have ff (xi) = 0 for all i.

5 Private learner

Theorem 7. OPTPrivateLearner is (2ε, 2δ)-differentially private.

Proof. For each different entry of S, there is at most one different element in yi, . . . , yt and q1, . . . , qt.
Thus by Theorem 6, z is (ε, δ)-differentially private in Step 4. Notice that q1, . . . , qm is 1-bouned function
(Definition 13). By Lemma 1, xgood is (ε, δ)-differentially private in Step 7. By the composition (Theorem 5)

and post-processing (Theorem 4), ĥgood is (2ε, 2δ)-differentially private.

Lemma 5. [5] For every c ∈ Cf and the corresponding set I(c) = {x1, . . . , xr}, the following two statements
are true:

1. There is an order π(1), π(2), . . . , π(r) to make xπ(1) ≺ · · · ≺ xπ(r).

7



Algorithm 2: OPTPrivateLearner

Parameter: Confidence parameter β > 0, privacy parameter ε, δ > 0,

nPM (d, 1/3, β, ε, δ) = O

(
log∗ d·log2( log∗ d

βδ )

ε

)
and number of subsets

t = max
{
nPM (d, 1/3, β, ε, δ), O

(
1
ε log(

4nPM (d,1/3,β,ε,δ)
βεδ )

)}
= O

(
log∗ d·log2( log∗ d

εβδ )

ε

)
, where

d = TD(X , Cf ) + 1.

Inputs: Labeled dataset S ∈ (X × {0, 1})N , where N = t · 48
α

(
10 log(48eα ) + log( 5β )

)
Operation:

1. construct tree according to Algorithm 1

2. randomly partition S into S1, . . . , St

3. For i ∈ [t]

(a) Let Bi be the set of points deterministic by Si in Cf . Let yi = maxx∈Bi
d(x), that is the largest

distance of a point in Bi.

4. compute the 1/3-median z = PrivateMedian(y1, . . . , yt) with parameter ε, δ, β.

5. let P = {x : dCf
(x) = z}, i.e. the set of points with distance z. Define P = {x1, . . . , xm} and

q1 = q2 = · · · = qm = 0

6. For i ∈ [t]:

(a) if yi ≥ z:

i. for j ∈ [m], if xj ∈ Bi, make qj = qj + 1.

(b) if yi < z, do nothing.

7. run choosing mechanism on (q1, q2, . . . , qm) with parameter ε, δ, β, select pgood and the corresponding
point xgood.

8. let Igood = {x|xgood ⪯ x}. Construct Îgood = {x : (x ∈ Igood ∧ f(x) = 0) ∨ (x /∈ Igood ∧ f(x) = 1)}.

9. construct and output

ĥgood(x) =

{
1 x ∈ Îgood
0 x /∈ Îgood

8



2. There is no x̂ ∈ X to make xπ(r) ≺ x̂.

Proof. By Lemma 3, every x, x′ ∈ I(c) are comparable. Sort all points in I(c) by their distances and it is
the order required.

There is no x̂ ∈ X to make xπ(r) ≺ x̂ because if there is a xπ(r) ≺ x̂, by Definition 14, we have x̂ ∈ I(c).
Then xπ(r) is not the last point in this order sequence.

Lemma 6. For every deterministic point x, we have x ∈ I(c∗f ), where c∗ is the underlying true concept and
c∗f is the f -representation of c∗.

Proof. For a dataset S, a point x is deterministic if c(x) = 1 for any c with errorS(c, c
∗
f ) = 0. The lemma

can be concluded by substituting c with c∗f .

Lemma 7. Let hi be the hypothesis with I(hi) = Bi, then with probability 1−βt, all hi are α-good hypothesis.

Proof. Let c∗f be the f -representation of the underlying true concept. If hi = c∗f , then we are done. Otherwise,
note that yi is the point with the largest distance in Bi. It means for any x ≺ yi with c∗f (x) = 1, there exists
one h′ ̸= c∗f makes h′(x) = 0 and errorSi

(h′, c∗f ) = 0 (otherwise x is also deterministic, but dCf
(x) > dCf

(yi),
contradicting to yi is the point with largest distance). By Theorem 2, with probability 1−β, hi is an α-good
hypothesis.

Notice that Bi ⊆ I(h′). Consider the set I(h′)\Bi. For all x ∈ (h1\Bi), we have c∗f (x) = 0 because
x /∈ I(c∗f ). Therefore errorD(hi, c

∗
f ) ≤ errorD(h

′, c∗f ) ≤ α (because for all points that h′ and hi make
different predictions, hi gives the correct label).

Finally, the lemma can be concluded by union bound.

Lemma 8. For all y1, . . . , yt, there is an order π(1), π(2), . . . , π(t) to make yπ(1) ⪯ · · · ⪯ yπ(t).

Proof. By Lemma 6, all yi ∈ I(c∗f ). By Lemma 5, there is an order π(1), π(2), . . . , π(t) to make yπ(1) ⪯ · · · ⪯
yπ(t) (here it is possible to have yi = yj for i ̸= j).

Lemma 9. Let hi be the hypothesis with I(hi) = Bi and hgood be the hypothesis with I(hgood) = Igood,
when all hi are α-good hypothesis, with probability 1− 2β, we have errorD(hgood, c

∗
f ) ≤ α.

Proof. Let π(1), π(2), . . . , π(t) be the order in Lemma 8. By Theorem 6, with probability 1− β, there are at
least t/6 yi’s make yi ⪯ xgood. It means

∑m
i qi ≥ t/6.

We claim that every different point in S makes at most one qi different. Otherwise, there exist different
x, x′ with distance z and one Bi to make x, x′ ∈ Bi. By Lemma 3, x and x′ are comparable. Assume x ≺ x′,
it makes dCf

(x) > dCf
(x′).

So that we can apply the choosing mechanism. For any x ̸= xgood, they will get a 0 score. For xgood,

it will get a score of at least t/6 ≥ 16
ε log( 4nPM (d,1/3,β,ε,δ)

βεδ ). By Lemma 1, with probability at least 1 − β,
choosing mechanism outputs xgood.

Since there is at least one yi make xgood ⪯ yi, we haveBi ⊆ Igood. Thus errorD(hgood, c
∗
f ) ≤ errorD(hi, c

∗
f ) ≤

α because for all points that hgood and hi make different predictions, hgood gives the correct label

Corollary 2. With probability 1−(t+2)β, OPTPrivateLearner outputs ĥgood satisfying errorD(ĥgood, c
∗) ≤ α.

Proof. The accuracy is because errorD(ĥgood, c
∗) = errorD(hgood, c

∗
f ). The confidence is by the union

bound.

Substitute ε by ε/2, δ by δ/2, and β by β/(t+ 2), and considering Corollary 1, we have the main result.

Theorem 8. For any concept class C with VC dimension 1 and Littlestone dimension d, and given labeled
dataset with size

N ≥ O

(
log∗ d · log2( log

∗ d
εβδ )

ε
· 48
α

(
10 log(

48e

α
) + log(

5

β
)

))
= Õβ,δ

(
log∗ d

αε

)
there is an (ε, δ)-differentially private algorithm that (α, β)-PAC learns C.
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