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Abstract—Safety-critical applications such as healthcare and
autonomous vehicles use deep neural networks (DNN) to make
predictions and infer decisions. DNNs are susceptible to evasion
attacks, where an adversary crafts a malicious data instance to
trick the DNN into making wrong decisions at inference time.
Existing defenses that protect DNNs against evasion attacks are
either static or dynamic. Static defenses are computationally
efficient but do not adapt to the evolving threat landscape, while
dynamic defenses are adaptable but suffer from an increased
computational overhead. To combine the best of both worlds,
in this paper, we propose a novel risk profiling framework that
uses a risk-aware strategy to selectively train static defenses using
victim instances that exhibit the most resilient features and are
hence more resilient against an evasion attack. We hypothesize
that training existing defenses on instances that are less vulner-
able to the attack enhances the adversarial detection rate by
reducing false negatives. We evaluate the efficacy of our risk-
aware selective training strategy on a blood glucose management
system that demonstrates how training static anomaly detectors
indiscriminately may result in an increased false negative rate,
which could be life-threatening in safety-critical applications. Our
experiments show that selective training on the less vulnerable
patients achieves a recall increase of up to 27.5% with minimal
impact on precision compared to indiscriminate training.

Index Terms—risk profiling, evasion attacks, anomaly detec-
tors, selective training, and blood glucose management.

I. INTRODUCTION

Deep neural networks (DNNs) have gained traction in
safety-critical applications such as healthcare [1]–[5] and au-
tonomous vehicles (AVs) [6]–[8]. However, DNNs are highly
susceptible to adversarial attacks [9]–[11], especially evasion
attacks [12]–[14], which are prevalent since they are relatively
easy to execute during deployment [15], [16]. In evasion
attacks, a DNN is tricked into misclassifying an adversarial
sample at inference time, leading to poor accuracy [17], [18].
For example, an adversary may target DNN models that
predict blood glucose values to cause insulin overdose or
underdose by manipulating patients’ vital signs like previous
blood glucose values or administered insulin dosage while

ensuring the resulting glucose is within physiological limits
to evade detection, leading to catastrophic consequences [19].

Researchers have proposed defense strategies to make
DNNs resilient against evasion attacks including adversarial
training [20]–[22], training dataset strengthening [23]–[26],
model algorithm enhancement [27]–[30], and anomaly detec-
tors [31]–[37]. These defenses are either static or dynamic in
nature. Static defenses are easier to implement, demonstrate
higher accuracy on benign data, and are more computation-
ally efficient. However, they cannot adapt to different attack
strategies or the evolving behavior of victim instances [38].
Dynamic defenses, on the other hand, are more robust to
evasion attacks because they adapt to evolving attack and
victim behaviors. However, they suffer from degradation of
benign data accuracy and high computational overhead at
inference time. Therefore, they are not suitable for time-
sensitive safety-critical applications [39].

To bridge the gap between static and dynamic defenses,
we propose a novel risk-aware selective training strategy that
improves the adaptability of static defenses, while retaining
their computational efficiency in the presence of an attack. Our
risk-aware strategy is powered by a risk profiling framework
that selects training instances that show more resilience to the
attack. The key idea is that instances that are less vulnerable
to the evasion attack are usually a better representation of
a typical distribution of benign data. As a result, training
static defenses to recognize a better distribution of benign
data makes it easier for the defense technique to recognize
malicious patterns generated by evasion attacks.

In this work, we focus on training anomaly detectors
for attack detection in safety-critical applications, e.g., kNN,
OneClassSVM, and MAD-GAN [31]. The main issue with ex-
isting anomaly detectors is that they are often indiscriminately
trained on the entire dataset to capture the full spectrum of
possible risk scenarios [40]–[42]. However, this strategy has
three major problems. First, it often yields detectors that are
less robust against evasion attacks due to the presence of noisy
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data samples which obscure learning meaningful patterns for
malicious data detection [43], [44]. Second, it degrades the
model’s generalizability, which is crucial for deploying models
in diverse adversarial settings [45]. Third, it incurs increased
computational cost during training [46]. We hypothesize that
training anomaly detectors using less vulnerable instances
can improve malicious data detection by lowering the false
negative rate. We prioritize lower false negatives since higher
false negatives in safety-critical applications may lead to
deadly consequences whereas higher false positives may lead
to denial of service attacks and lack of availability, which are
less severe in such systems.

Thus, our goal is to maximize the recall of existing anomaly
detectors without causing much degradation to their precision.
Towards this goal, we introduce a risk profiling framework
that selectively trains existing anomaly detectors on the most
resilient instances to help them better differentiate between
benign and malicious samples. This boosts the detection rate
while overlooking noisy samples that impede the learning
process. Our risk profiling framework consists of five steps.
First, it simulates the evasion attack. Second, it quantifies the
risk of manipulating data points at every point in time. Third,
it constructs a time-series risk profile for every victim. Fourth,
it groups risk profiles depending on their level of vulnerability
to the attack. Fifth, it uses instances that are less vulnerable
to the attack to selectively train the anomaly detectors.

We evaluate the efficacy of our proposed risk profiling
framework on a blood glucose management system (BGMS)
exposed to evasion attacks against Type-1 diabetes patients.
In the context of a BGMS, we define evasion attacks as
intentional glucose manipulations designed to deceive DNNs
into predicting future glucose levels that result in an altered
patient diagnosis. We use the OhioT1DM dataset [47] which
includes physiological measurements of 12 Type-1 diabetes
patients (six from 2018 and six from 2020). We also use a
blood glucose prediction model from prior work [48], which
predicts future blood glucose values.

In summary, the contributions of this paper are twofold:

1) A risk profiling framework to quantify the risk of an
evasion attack on victims of safety-critical applications
and group them into different vulnerability clusters.

2) A strategy to selectively train anomaly detectors on in-
stances with the most resilient features against the attack
as identified by the risk profiling framework.

The results of our experiments show that compared to
indiscriminate training, selective training guided by our risk
profiling framework achieves a recall increase of 27.5% and
16.8% on kNN and OneClassSVM, respectively, with little to
no impact on precision. Furthermore, when trained on the less
vulnerable patients, a MAD-GAN detector maintains a false
negative rate of zero with no change to its precision, at a 75%
reduction in training set size as opposed to indiscriminately
training it on the entire dataset. Therefore, our risk profiling
framework helps static anomaly detectors achieve lower false
negatives with minimal impact on false positives.
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Fig. 1. The five steps of the proposed risk profiling framework.

II. PROPOSED FRAMEWORK

In this section, we present our risk profiling framework for
selective training of existing anomaly detectors to improve
their detection capabilities. We rely on anomaly detectors that
work in conjunction with the main DNN prediction model. The
main DNN model remains unmodified since our proposed risk
profiling framework is only used to train the anomaly detectors
used to defend against adversarial attack samples. The key
idea of the proposed framework is to identify instances that
are more resilient due to their natural physiology or driving
habits. To do so, the proposed framework categorizes victim
instances into clusters of different risk levels depending on
their vulnerability to the evasion attack. Once it determines
the most resilient instances, the framework uses their past data
to selectively train anomaly detectors to recognize the robust
features that allow the instances to combat the evasion attack.

Figure 1 shows the proposed risk profiling framework,
which consists of five steps. First, the framework simulates
the evasion attack by generating manipulated inputs to deceive
the main DNN model and evaluate its vulnerabilities. Second,
it quantifies the amount of risk imposed on a victim by
calculating the risk metrics at each time stamp to assess the
impact of adversarial manipulations on individual data points.
Third, it constructs a continuous risk profile for each victim to
capture their temporal patterns. The risk profile is a time-series
representation of all risk values calculated in step 2. Fourth,
it uses unsupervised machine learning techniques to cluster
time-series risk profiles into distinct risk categories, enabling
differentiation of vulnerability levels. Fifth, it incorporates
clustering insights by selectively training anomaly detectors
on the less vulnerable instances to learn robust features that
improve resilience against evasion attacks.

III. BLOOD GLUCOSE MANAGEMENT SYSTEM

To evaluate the efficacy of our proposed risk profiling
framework in enhancing the performance of existing anomaly
detectors, we adopt and extend the case study presented in
Elnawawy et al. [49] to simulate evasion attacks. We consider
a BGMS (shown in Figure 2) that consists of a continuous
glucose monitor (CGM) that measures glucose at regular
intervals and transmits it to a smart app running on a mobile
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Fig. 2. A BGMS that uses a glucometer, insulin pump, DNN for insulin
recommendations, and an anomaly detector to detect adversarial samples.

device via Bluetooth. The app sends the measured glucose to
the cloud, where an anomaly detector inspects glucose samples
to flag any malicious patterns. If a glucose sample is deemed
to be benign by the anomaly detector, it is used by the main
DNN model for processing and future glucose predictions.
Next, the DNN model sends the predicted future glucose to the
mobile app, which calculates the recommended insulin dose
and enables the patient to approve it before the insulin pump
infuses the corresponding insulin into his/her body.

Threat model. The attacker’s goal is to deceive the BGMS
into mistakenly recommending an excessively high insulin
dose which could lead the patient into a coma or even death.
The attacker’s strategy is to cause the glucose prediction DNN
to predict a high future blood glucose level (hyperglycemia),
when in reality the patient has a low (hypoglycemia) or normal
blood glucose. To do so, the adversary manipulates the victim’s
blood glucose levels to values that exceed 125 mg/dL (hyper-
glycemic in a fasting state) or 180 mg/dL (hyperglycemic two
hours postprandial). We assume minimal capabilities where
the adversary can only manipulate the CGM measurements
by compromising the Bluetooth stack via known exploits [50],
[51] to intercept and manipulate glucose measurements since
many CGM devices use Bluetooth to transmit unencrypted glu-
cose values [52]. Manipulating other features remains beyond
the attacker’s capabilities. However, we assume the adversary
can compromise the smartphone [53] to read these features and
ensure the soundness of the generated adversarial samples.

Target glucose model. Since the glucose prediction algo-
rithm used by smart apps is often confidential [54], we ap-
proximated it using a time-series prediction model developed
by Rubin-Falcone et al. [48], which uses a bidirectional long
short-term memory (LSTM) architecture. Rubine-Falcone et
al. [48] built two types of models: (i) a personalized model
for each patient trained on the patient’s individual data, and
(ii) an aggregate model trained on the data of all patients. We
use both types of models to simulate the evasion attack.

Dataset. To demonstrate the effect of adversarial glu-
cose values on the target model’s predictions, we use the
OhioT1DM dataset [47], which was also used by the target
model [48] to evaluate its accuracy. The dataset comprises
physiological measurements of 12 Type-1 diabetes patients
(six from 2018 and six from 2020). For the rest of this
paper, we refer to the 2018 and 2020 patients as Subset A
and Subset B, respectively. The main features are the CGM
measurements, finger-based measurements, basal insulin, bo-

lus dose, carbohydrate intake, heart rate, sleeping patterns
and acceleration, besides other physiological, and self-reported
life-event features. The dataset spans eight weeks and consists
of ≈10000 samples for training, and 2500 samples for testing,
recorded at approximately five-minute intervals per patient.

Attack algorithm. As for the evasion attack, we use the
universal robustness evaluation toolkit (URET), which is a
general-purpose evasion attack framework for manipulating
data points at inference time [55]. To ensure that manipulated
CGM values respect physiological levels, we constrain them
to be between 125 and 499 mg/dL for fasting scenarios,
since a hyperglycemic glucose level in a fasting state is
greater than 125 mg/dL, and between 180 and 499 mg/dL for
postprandial scenarios, since a hyperglycemic glucose level in
a postprandial state is greater than 180 mg/dL (499 mg/dL is
the highest reported glucose level in the OhioT1DM dataset).

Anomaly detectors. To test our framework, we use three
anomaly detectors, kNN, OneClassSVM, and MAD-GAN
[31]. We use kNN, for its strength in handling sparse neigh-
borhoods [56], which better represent anomalies in medical
data [57]–[59], OneClassSVM for its strength in learning
decision boundaries near benign data, making it effective for
detecting rare or unusual patterns [60], and MAD-GAN for its
strength in capturing multivariate time-series feature depen-
dencies, which is well suited for safety-critical applications
like healthcare and AVs [31].

IV. EVALUATION

In this section, we ask the following research questions:
RQ1: Does indiscriminate training of anomaly detectors
result in a higher false negative rate? If so, when?

RQ2: What is the most suitable selective training strategy
to prioritize lower false negatives in anomaly detectors?

To answer the questions, we apply our proposed risk pro-
filing framework to the BGMS discussed in Section III and
show how it can be used to enhance the performance of static
anomaly detectors using selective training.

Step 1: Attack Simulation. In their demonstration of the
URET evasion attack on the OhioT1DM dataset using the
attack settings presented earlier, Elnawawy et al. [49] show
that patients respond differently to the same attack settings
as they show different vulnerability levels to the attack. In
particular, Elnawawy et al. [49] report attack success rates
of mispredicting normal glucose as high glucose reaching up
to 100.0% while fasting, and 97.9% postprandial on some
patients of Subset B, while others show success rates of only
67.4% while fasting, and 44.2% postprandial. This suggests
that it is more challenging for URET to attack specific patients
who show more resilience to the attack [49]. We extended their
experiments to test the URET attack on Subset A (Appendix
A). The results confirm that different patients of Subset A also
show different vulnerability levels to the same evasion attack.

Steps 2 and 3: Risk Quantification. To quantify the instan-
taneous risk of an attack at every timestamp, our risk formula
considers two factors: (1) magnitude of deviation, and (2)
severity/cost of deviation, between the benign and adversarial



TABLE I
SEVERITY COEFFICIENTS FOR DIFFERENT STATE TRANSITIONS

Benign Adversarial Severity Coefficient (S)
Hypo Hyper 64
Normal Hyper 32
Hypo Normal 16
Hyper Hypo 8
Hyper Normal 4
Normal Hypo 2

model predictions. The magnitude of deviation is essential for
the risk formula since it determines the prediction’s state tran-
sition. For example, modifying the blood glucose prediction
from 90 mg/dL to 210 mg/dL transitions a patient from a
state of normal glucose to a state of hyperglycemic glucose.
The severity of deviation is important since it weighs state
transitions differently depending on the threats they pose to
victim instances. For example, transitioning a diabetic patient
from hypoglycemic to hyperglycemic glucose is more life-
threatening than from normal to hyperglycemic glucose.

In our case study, we calculate the instantaneous risks of
manipulating blood glucose values using Equation 1:

Rt = S ∗ Zt, t ⊂ N (1)

where Rt is the instantaneous risk at time unit t, S is the
severity/cost coefficient of mispredicting a patient’s blood
glucose level, and Zt is the difference in magnitude between
the benign and adversarial glucose predictions at time unit t.
Zt can be calculated using Equation 2:

Zt = (yt − f(xt))
2 (2)

where yt is the benign glucose prediction at time t, and f(xt)
is the glucose prediction at time t in the presence of an attack.
The difference between yt and f(xt) is squared in Equation 2
to weigh big errors more compared to small ones (inspired by
the mean squared error) since larger glucose differences could
lead to more serious conditions. Next, after the framework
calculates instantaneous risk values, it combines them to
generate a continuous time-series risk profile for every victim.

Ideally, severity coefficients should be determined by spe-
cialists. However, we did not have access to such specialists.
Hence, we used exponential coefficients since in healthcare
contexts such as BGMS, state transitions (e.g., hypoglycemia
to hyperglycemia) are inherently nonlinear in their impact
on patient outcomes [61]–[63]. Hence, exponential coeffi-
cients capture this nonlinearity by assigning disproportionately
higher coefficients to more severe state transitions. Table I
shows an example of severity coefficients assigned to different
state transitions. For instance, a severity coefficient of 64 is
assigned to a diagnosis of hyperglycemia when the actual state
of the patient is supposedly hypoglycemic. Hypoglycemia to
hyperglycemia misdiagnosis is considered to be the worst case
since the system would mistakenly predict an excessively high
insulin dose, which could lead to fatal outcomes [64]–[66].
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Fig. 3. The results of hierarchically clustering the risk profiles from (a)
Subset A and (b) Subset B of the OhioT1DM dataset. Based on the distance
between the clusters, the dendrograms show that patients in either Subset can
be clustered into two groups - less and more vulnerable to the attack.

Step 4: Clustering. Once the framework generates patients’
risk profiles, it uses hierarchical clustering to identify less
vulnerable and more vulnerable patients to the attack. In
our case study, we chose hierarchical clustering for three
reasons [67]. First, we do not need to specify the number
of clusters in advance since it is difficult to know apriori.
Instead, the resulting dendrogram can be pruned at the desired
level according to the distances between clusters. Second, the
dendrogram helps to visually observe patients with similar
physiological characteristics at different levels of the hierarchy.
Third, it is suitable for clinical research since it categorizes
mixed populations into more homogeneous groups.

Figure 3 shows the time-series risk profiles for each of the
six patients from (a) Subset A and (b) Subset B. It also shows
the resulting dendrograms from hierarchically clustering the
12 patients. Based on the maximum distance between clusters
in both cases, we decided to split the patients into two clusters:
specifically, patients 0, 1, 2, 3, and 4 from Subset A belong
to one cluster, and patient 5 belongs to the other cluster.
Similarly, patients 0, 3, 4, and 5 from Subset B belong to
one cluster, and patients 1 and 2 belong to another cluster. By
cross-checking the resulting clusters with the misclassification
percentages due to the attack reported in Elnawawy et al. [49],
on Subset B and our extended experiments on Subset A
(Appendix A), we notice that patient 5 from Subset A and
patients 1 and 2 from Subset B (placed in separate clusters
by our risk profiling framework) tend to have the lowest
misclassification percentage, meaning that these patients were
less vulnerable to the URET attack. On the other hand, the
rest of the patients showed a relatively higher misclassification
percentage, indicating that they were more vulnerable to the
attack. These observations enable us to label the clusters
according to patients’ misclassification percentages as either
less or more vulnerable to the URET attack. The obtained
clusters are shown in Table II.

To further analyze the obtained clusters, we plot the ratio
of normal to abnormal (i.e., hypoglycemic or hyperglycemic)
data points in the original benign trace of the 12 patients in
Figure 4. We find that patient 5 from Subset A and patient
2 from Subset B, who belong to the less vulnerable cluster
shown in Table II, show the highest benign normal to abnormal



TABLE II
CLUSTERS OF PATIENT VULNERABILITY TO URET ATTACK

Less Vulnerable More Vulnerable
Subset A Subset B Subset A Subset B
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Fig. 4. Ratio of normal to abnormal data instances in the benign trace of
the patients. Less vulnerable patients tend to have higher ratios while more
vulnerable patients tend to have lower ratios.

glucose data points ratio. On the other hand, patient 2 from
Subset A (more vulnerable cluster) shows the lowest benign
normal to abnormal glucose data points ratio.

To demonstrate the issue of indiscriminate training (RQ1),
we train a kNN anomaly detector using data from all 12
patients of the OhioT1DM dataset. Figure 5 shows sample
CGM glucose traces of patients 5 and 2 from Subset A. The
black and red horizontal lines show the maximum normal
glucose values in fasting (125 mg/dL) and postprandial (180
mg/dL) states, respectively. Green dots mark malicious glucose
measurements that were successfully flagged by the anomaly
detector (i.e., true positives), while red ones mark the missed
malicious glucose measurements (i.e., false negatives). The
figure shows that indiscriminately training the anomaly detec-
tor offers inequitable protection for the two patients since it
flagged a higher percentage of adversarial samples from the
less vulnerable patient (i.e., patient 5) than the more vulnerable
patient (i.e., patient 2). This indicates that the rate of false
negatives is much higher for the more vulnerable patient
(patient 2) than for the less vulnerable patient (patient 5).

To explain the difference in false negatives caused by
indiscriminate training (RQ1), we analyze Figure 4. The more
vulnerable patient (A 2) shows a lower ratio of benign normal
to abnormal glucose levels, indicating a higher prevalence of
abnormal samples in their benign traces (Figure 6). Conse-
quently, when an anomaly detector encounters a malicious
abnormal sample, it is more likely to misclassify it as benign
because it interprets the abnormality as part of the patient’s
normal physiological variability rather than a result of an
attack, leading to an increased false negative rate. In contrast,
the less vulnerable patient (A 5) has a higher ratio of benign
normal to abnormal glucose samples, so when the detector
sees a malicious abnormal sample there is a higher chance
of flagging the sample as malicious (Figure 6). Training on
such patients allows the detector to better distinguish between
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Fig. 5. kNN anomaly detection on sample glucose traces of patients 5 and
2 from Subset A. Indiscriminately training the detector yields a higher false
negative rate on patient 2 (more vulnerable) than patient 5 (less vulnerable).
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Fig. 6. The four quadrants of glucose samples: (a) benign normal: normal
glucose in absence of attack, (b) benign abnormal: high or low glucose in
absence of attack, (c) malicious abnormal: samples intentionally manipulated
to fall in the high or low glucose ranges, and (d) malicious normal: samples
intentionally manipulated to fall in the normal glucose range.

benign and malicious abnormalities, reducing false negatives,
albeit at the cost of more false positives (potentially).

Step 5: Anomaly Detector Enhancement (RQ2). Training
defenses on the less vulnerable patients has three benefits.
First, it helps learn the most robust features against the attack
since the defense focuses on the most resilient, less attack-
prone, and more generalizable data features, which helps drive
false negatives down. Second, it avoids the risk of overfitting to
adversarial samples if trained on the more vulnerable patients.
This is because when trained on the more vulnerable patients,
the model becomes more sensitive to adversarial features, and
overfits to specific attack patterns, reducing its generalization
ability and driving false positives up. Third, the less vulnerable
instances better represent a typical distribution of benign data
as shown by the higher ratio of benign normal to abnormal
glucose samples in Figure 4, providing a more balanced
strategy that preserves benign accuracy while detecting at-
tacks. Therefore, we hypothesize that training defenses on
patients who are less vulnerable to the attack enhances model
resilience by reducing false negative rate.

We use four subsets of the OhioT1DM data to train the
three anomaly detectors, kNN, OneClassSVM, and MAD-
GAN [31] (check Appendix B for model parameters). The
“Less Vulnerable” and “More Vulnerable” subsets comprise
patients shown in Table II. The “Random Samples” subset
consists of three patients drawn at random, repeated for 10
different runs, and averaged to reduce random errors and



improve the accuracy of the results. Since the less vulnerable
subset is used to test our hypothesis of selectively training
anomaly detectors, we randomly sampled three patients in each
run of the “Random Samples” experiments to test whether
the improvement in less vulnerable training (which included
exactly three patients) was purely due to chance. Finally, to
show the improvement of selective training on the less vulner-
able instances, we indiscriminately train the three defenses on
“All Patients” to evaluate the efficacy of our selective training
strategy. We consider “All Patients” and “Random Samples” to
be our baseline training strategies since they train the anomaly
detectors in the absence of insights from our risk profiling
framework.

We first consider the recall of the detectors under selective
training. Figure 7 shows the results of the recall achieved
for each of the training sets. We observe that training the
three defenses on the less vulnerable patients achieves the
highest recall among all the subsets, for all three detectors.
In the case of kNN and OneClassSVM, training using the less
vulnerable patients shows a significant improvement compared
to indiscriminately training using the entire dataset, achieving
a percentage increase of 27.5% and 16.8% on kNN and
OneClassSVM, respectively. Moreover, the recall of the less
vulnerable training surpasses that of the more vulnerable or
randomly sampled patients. In the case of MAD-GAN, training
on the less vulnerable patients achieves the same recall as
training on the entire dataset (recall of 1), albeit at a 75%
reduction of training set size, ensuring better scalability with
large, high-dimensional, non-linear, or complex datasets.

We consider the detectors’ precisions under selective train-
ing. The precision results of kNN shown in Figure 8 demon-
strate the trade-off between false negatives and false positives
since an increase in kNN’s recall comes at the expense of a 5%
reduction in precision with the less vulnerable training. On the
other hand, OneClassSVM shows a 7.5% increase in precision
when trained using the less vulnerable patients. This may be
attributed to kNN’s sensitivity to the data distribution since
glucose data is non-uniformly distributed or has varying den-
sities in different regions; hence kNN may label sparse points
as anomalies, despite being valid. Conversely, OneClassSVM
is less sensitive to density variations since it creates a global
model leading to lower false positives. As for MAD-GAN,
all training subsets achieved similar precision. Thus, kNN and
MAD-GAN suffered a small to no loss in precision, while
OneClassSVM’s precision improved under selective training.

To further investigate the recall-precision trade-off, we cal-
culate their harmonic mean (i.e., F1-score) (Appendix C). We
notice that selective training on the less vulnerable patients sig-
nificantly improves the performance of kNN with an F1-score
increase of 7.3% compared to indiscriminate training despite
the 5% reduction in precision. This indicates that the combined
effect of recall and precision captured by their harmonic
mean shows an increase in anomaly detection performance,
which highlights the efficacy of the proposed framework. On
the other hand, OneClassSVM shows an F1-score increase
of 10.9% compared to indiscriminate training. The results

Fig. 7. Recall results using kNN, OneClassSVM, and MAD-GAN. Less
vulnerable training achieves a recall increase of 27.5% (kNN), and 16.8%
(OneClassSVM) over indiscriminate training.

Fig. 8. Precision results using kNN, OneClassSVM, and MAD-GAN. Less
vulnerable training yields a precision drop of 5% (kNN), and an increase of
7.5% (OneClassSVM) over indiscriminate training.

show that despite potential increases in the false positive rate
resulting from the recall-precision trade-off, selective training
offers an improvement in the combined adversarial detection
rate.

V. LIMITATIONS AND FUTURE WORK

Our framework has four main limitations. First, it assumes
training and testing data are drawn from the same distribution,
which does not consider concept drifts [68]. This leads to a
failure to generalize to different data distributions and a failure
to adapt to varying environments. For example, a risk profiler
trained on senior patients’ data may fail with young ones.
Second, we use offline training to build a static risk profiler,
which does not consider potential future dataset shifts. For
example, patients move from high-risk to low-risk categories
as they recover from medical conditions after the risk profiler
has already classified them. Third, we used a single case



study and a single attack algorithm to test the efficacy of our
proposed framework. More datasets and algorithms are needed
for a more thorough evaluation. In the future, we plan to build
a risk profiler that uses online learning to consider varying
attack environments, different attack algorithms, and potential
dataset shifts to design a more adaptive defense. Fourth, our
choice of severity coefficients is a direct threat to validity since
it may impact the correctness of the risk profiles. In the future,
we plan to conduct a sensitivity analysis on coefficient choice
to further study this problem.

VI. CONCLUSION

In this paper, we propose a risk profiling framework
that bridges the computational overhead gap between static
and dynamic defenses against evasion attacks. The proposed
framework enhances the adaptability of static defenses to
various threat levels using a novel risk-aware selective training
strategy that improves adversarial detection rate. The frame-
work generates time-series risk profiles for every victim and
clusters them into different risk categories based on their
vulnerabilities to evasion attacks. We show that selectively
training static anomaly detectors on the less vulnerable victims
enhances their detection rates. We evaluated the proposed
framework on a Type-1 diabetes case study. Our results show
that selective training surpasses indiscriminate training with
a reduction in false negatives across three anomaly detectors
(kNN, OneClassSVM, and MAD-GAN), achieving a recall in-
crease of up to 27.5% with minimal impact on false positives.
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APPENDIX A
SUBSET A RESULTS

Fig. 9. Percentage of originally normal glucose instances that are misdi-
agnosed as hyperglycemic. “Patient i” shows the results of the personalized
model for the ith patient, “All patients” shows the results of the aggregate
model trained on the data of all patients, and “Average” shows the average
results of the 7 models.

Fig. 10. Percentage of originally hypoglycemic glucose instances that
are misdiagnosed as hyperglycemic. “Patient i” shows the results of the
personalized model for the ith patient, “All patients” shows the results of
the aggregate model trained on the data of all patients, and “Average” shows
the average results of the 7 models.

APPENDIX B
ANOMALY DETECTORS

In this appendix we elaborate on the anomaly detectors used
to test our risk profiling framework.

kNN. We use the KNeighborsClassifier implementation
of the scikit-learn Python library with the following model
parameters:

• Number of neighbors = 7
• Weights = uniform
• Algorithm = auto
• Leaf size = 30
• p = 2
• Metric = minkowski
• Metric params = None
OneClassSVM. We use the OneClassSVM implementation

of the scikit-learn Python library with the following model
parameters:

• Kernel = sigmoid
• Degree = 3
• Gamma = auto
• Coef0 = 10
• Tol = 0.001
• Nu = 0.5
• Shrinking = True
• Cache size = 200
• Max iter = -1
MAD-GAN [31]. MAD-GAN is an unsupervised anomaly

detection technique for multivariate time-series data. It uses
a generative adversarial network (GAN) with long short-
term memory recurrent neural networks (LSTM-RNN) as the
generator and discriminator. MAD-GAN captures temporal
correlations and latent interactions among features to detect
anomalies using a novel anomaly score called discrimination
and reconstruction anomaly score (DR-Score). We use the
following model parameters in our adoption of MAD-GAN:

• Number of epochs = 100
• Number of signals = 4
• Number of generated features = 4
• Sequence length = 12
• Sequence step = 1

APPENDIX C
F1-SCORE RESULTS

Fig. 11. F1-score results using kNN, OneClassSVM, and MAD-GAN. Less
vulnerable training achieves an F1-score increase of 7.3% (kNN), and 10.9%
(OneClassSVM) over indiscriminate training.

APPENDIX D
DISCUSSION

In our experiments, we trained anomaly detectors on the less
vulnerable patients and independently tested the entire set of
patients and then averaged the results to aggregate them in
box plots. That means that we conducted experiments where
the test set consisted of only the more vulnerable patients
that were not seen during the training stage. The resulting
anomaly detection rates were similar to those obtained by
testing on the less vulnerable patients. This demonstrates our



framework’s resilience to overfitting due to training only on the
less vulnerable patients when tested on the OhioT1DM dataset.
Nevertheless, we acknowledge that more rigorous testing on
different datasets and attack algorithms is needed before
confidently claiming the framework’s resilience to overfitting
and its generalizability to other domains. For this reason, we
plan to extend our experiments to other healthcare datasets,
the domain of autonomous vehicles (AVs), and other attack
algorithms in our next publications. To further validate our
work, we believe that our proposed framework could benefit
from a mathematical model formulation to capture its full
dynamics.

The proposed framework addresses concept drift through an
iterative process that regularly reassesses patient risk profiles
and continuously updates them as new data become available
to strengthen defenses against the evolving threat landscape.
As patient conditions evolve, so do their risk levels: those
showing increased resilience against adversarial attack are
incorporated into the retraining process, while those becoming
more vulnerable are excluded from the occasional retraining.
This continuous refinement ensures that the defense adapts
over time to maintain robustness without sacrificing accuracy.
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