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ABSTRACT

In academic settings, the demanding environment often forces students to prioritize
academic performance over their physical well-being. Moreover, privacy concerns and
the inherent risk of data breaches hinder the deployment of traditional machine learn-
ing techniques for addressing these health challenges. In this study, we introduce RiM:
Record, Improve, and Maintain, a mobile application which incorporates a novel
personalized machine learning framework that leverages federated learning to enhance
students’ physical well-being by analyzing their lifestyle habits.

Our approach involves pre-training a multilayer perceptron (MLP) model on a large-
scale simulated dataset to generate personalized recommendations. Subsequently, we
employ federated learning to fine-tune the model using data from IISER Bhopal stu-
dents, thereby ensuring its applicability in real-world scenarios. The federated learning
approach guarantees differential privacy by exclusively sharing model weights rather than
raw data. Experimental results show that the FedAvg–based RiM model achieves an av-
erage accuracy of 60.71% and a mean absolute error of 0.91—outperforming the FedPer
variant (average accuracy 46.34%, MAE 1.19)—thereby demonstrating its efficacy in pre-
dicting lifestyle deficits under privacy-preserving constraints.
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Chapter 1

Introduction

1.1 Background and Motivation
The intense competitive environment in academic settings has driven students to prior-
itize their studies and academic goals, often at the expense of their physical well-being.
The rise of technological distractions, such as video games and binge-watching, has fur-
ther exacerbated this issue. Furthermore, privacy concerns and the risk of data breaches
in traditional machine learning approaches have limited the potential of AI to address
these challenges for students.

To address these issues, we present RiM: Record, Improve, and Maintain, a personal-
ized federated learning-based model designed to enhance students’ physical well-being by
analyzing their lifestyle habits. By leveraging federated learning, RiM ensures differential
privacy, guaranteeing that we have no access to the data collected from students, thus
addressing both privacy and wellness concerns effectively.

1.2 Literature Review
Recent meta-analyses and randomized trials underscore the efficacy of digital inter-
ventions in promoting physical well-being. [1] conducted a meta-analysis of 15 studies
targeting university students and found that personalized SMS reminders and smart-
phone applications led to significant increase in daily step counts, though effects on
moderate-to-vigorous physical activity and sedentary behavior varied across studies. [2]
underscore the significance of mobile health applications in enhancing students’ moti-
vation, effectively promoting physical activity levels. [3] explored that mobile apps and
fitness trackers are positively associated with increased physical activity during the pan-
demic. It highlighting the pivotal role digital tools play in supporting health-related be-
haviors. Furthermore, studies [4, 5] demonstrate the effectiveness of mobile phone–based
physical activity programs in reducing symptoms of depression and perceived stress, as
well as promoting healthier lifestyle choices among young individuals experiencing mental
health conditions.
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1.3. Introduction to RiM

Multi-task learning (MTL) is a paradigm that trains a single model to perform mul-
tiple related tasks by sharing representations, improving generalization especially when
per-task data are limited. The work by [6] depicts that MTL mitigates overfitting and
leverages inter-task correlations. [7] developed an MTL-enhanced convolutional-RNN ar-
chitecture that jointly predicts sleep stages and heart-rate variability from ECG and PPG
data. Their model achieved the accuracy similar to single-task baselines while using 75%
less input data and 7.5 times fewer parameters. In the clinical domain, [8] introduced
a multimodal LSTM-based MTL model to predict both hospital length-of-stay (regres-
sion) and 30-day readmission (classification) using wrist-worn sensor data. Their joint
model significantly outperformed separate single-task models on both objectives. To-
gether, these works illustrate MTL’s ability to handle concurrent goals under constrained
data and compute budgets—an approach we adopt by fine-tuning an MLP to jointly
predict sleep and distance deficits from shared lifestyle features.

The federated learning (FL) paradigm enables on-device training by exchanging
only model updates, thereby keeping each user’s data on their own device. [9] for-
malized this approach with the FedAvg algorithm, showing that iterative averaging of
locally-computed updates can train deep networks across non-IID mobile data while re-
ducing communication rounds by 10-100 times while preserving data locality. Building
formal privacy guarantees into FL, [10] proposed DP-FedAvg. It applies per-client gradi-
ent clipping and Gaussian noise to each update, achieving user-level (ϵ, δ)-differential pri-
vacy with only minor accuracy degradation given a sufficiently large cohort. Furthermore,
[11] developed a federated f-differential privacy framework that leverages Gaussian differ-
ential privacy and tight composition analyses to offer both record-level and group-level
privacy guarantees under federated settings. This further tightens the privacy-utility
trade-off. To support research and real-world deployment at scale, [12] released Flower.
It is an open-source platform that provides high-level building blocks to prototype FL
workflows quickly and works across many different devices and environments, from mo-
bile phones to edge servers. Also, it scales seamlessly from single-node simulations to
millions of clients on real devices.

1.3 Introduction to RiM
The decentralized approach of training models by distributing the data on different clients
and learning a shared model by aggregating locally computed weights is known as fed-
erated learning. This concept was first introduced by [13]. It preserves the sensitive
user information by sharing only the weights of the model and not the raw data, thus
ensuring differential privacy.
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1.3. Introduction to RiM

The developed mobile application is designed to capture the user’s daily step counts,
distance traveled, sleep hours, and meal information. The pre-trained MLP model is
then fine-tuned on the user’s data and the updates are shared to the Flower frame-
work1. Flower is an open-source framework designed to simplify and streamline fed-
erated learning tasks on a cluster of machines. This Python-based framework offers a
user-friendly solution for training a wide range of models, including deep neural networks.
The shared weights are combined via Federated Averaging [9] and Federated Per-
sonalization [14] to update the global model. Subsequently, the updated weights are
sent to each client device.

After fine-tuning, the MLP model predicts sleep deficit and distance deficit from the
ideal range by using a variety of features, such as: user’s height, weight, age, gender, sleep
hours, distance traveled, and meal information. A combination of rule-based and ML-
based approaches enables the model to learn the inter-parameter relations and provides
the user with how changes in one aspect of the lifestyle can affect the other parameters
of physical well-being. Furthermore, priority-based mechanism is incorporated in order
to provide only relevant and most important recommendation.

We describe our data pipeline in Chapter 2: first the generation of a large-scale
synthetic dataset for pre-training, then the fine-tuning dataset collected via the RiM
Android app and its processing. In Chapter 3, we present the RiM mobile application,
detail the MLP architecture and rule-based recommendation system, explain our use of
FedAvg and FedPer for privacy-preserving fine-tuning, outline the evaluation metrics and
key implementation settings. Chapter 4 reports our experimental findings—comparing
accuracy and MAE for FedAvg versus FedPer, analyzing class-imbalance and personal-
ization effects, and illustrating trade-offs. It is followed by an in-depth discussion of
the results. Finally, Chapter 5 summarizes our contributions, acknowledges the Android
13–only limitation, and proposes future work on broadening version support, on-device
model integration, and advanced bi-level federated algorithms like Ditto.

1https://flower.ai
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Chapter 2

Data

2.1 Pre-training on Simulated Data
The lack of availability of a real-world data set with the set of features taken into consid-
eration in this study makes us use simulated data set for pre-training the MLP model.
The data set is generated for each feature separately, as each feature can be approximated
to follow different distribution in the real-world scenario.

Creating a realistic synthetic dataset for the study requires assigning appropriate
statistical distributions to each feature based on empirical data. Table 2.1 illustrates the
distribution each feature follow.

Features Distribution References

Step Count Negative Binomial Distribution [15]

Distance Traveled Log-Normal Distribution [16]

Sleep Hours Normal Distribution [17]

Meal Consumption Bernoulli Distribution [18]

Height Normal Distribution [19]

Weight Log-Normal Distribution [20]

Age Truncated Normal (Empirical Distribution) [21]

Gender Bernoulli Distribution [22]

Table 2.1: Probabilistic distribution followed by each feature in the simulated data.
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2.1. Pre-training on Simulated Data
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Figure 2.1: The figure illustrates the distributions of simulated features used for pre-
training the MLP model. Simulated step counts follow a negative binomial distribution,
while distance traveled and weight are drawn from log-normal distributions. In addi-
tion, meal consumption and gender are generated using Bernoulli distributions, and age
is modeled based on an empirical distribution. The figure also illustrates the normal
distributions for sleep hours and height.
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Figure 2.2: The figure presents the distribution of meal consumption—breakfast, lunch,
and dinner—where a value of 1 indicates the meal was taken and 0 indicates it was
skipped. It also shows the gender distribution within the simulated dataset. All variables
follow a Bernoulli distribution.
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2.2. Fine-tuning on Real-world Data

2.2 Fine-tuning on Real-world Data
Through the developed mobile application, we collect the user’s physical activity and
demographic data locally. The model is fine-tuned on this data to adapt better to the
real-world aspect. Table 2.2 presents an example of the collected data. We collected
user data over a 15-day period. An MLP model was fine-tuned using the data from the
first 8 days and subsequently used to generate recommendations for the following 7 days.
FedPer algorithm is used for fine-tuning the MLP model.

Table 2.2: The table depicts the collected data for a period of 1 week of a female user.
† represent that a feature is binary.

Date Steps (#) Distance (km) Sleep (hrs) Breakfast† Lunch† Dinner† Age (yrs) Height (cm) Weight (kg) Gender†

2025-04-18 9657 4.83 8.04 0 1 1 22 165 59 0

2025-04-19 8234 4.11 8.21 1 1 1 22 165 59 0

2025-04-20 7698 3.84 7.83 0 0 1 22 165 59 0

2025-04-21 11345 5.67 7.94 1 1 1 22 165 59 0

2025-04-22 12876 6.43 6.54 1 1 1 22 165 59 0

2025-04-23 6456 3.22 7.37 1 0 1 22 165 59 0

2025-04-24 9825 4.91 6.18 1 1 0 22 165 59 0

Eighteen volunteers (14 male and 4 female) initially enrolled in the study and down-
loaded the mobile application. However, attrition and data-quality issues reduced the
evaluable data to ten participants. The primary factors contributing to this reduction in
evaluable datasets are as follows:

• Volunteer withdrawals (n=4) occurred because of scheduling conflicts and compet-
ing personal or professional commitments.

• Technical failures (n=2) malfunctions of participants’ accelerometer sensors pro-
duced incomplete and corrupted datasets that failed to meet our predefined quality
criteria.

• Insufficient engagement (n=2) was observed in participants who failed to meet the
minimum interaction threshold (entering meal information), rendering their data
unusable for reliable analysis.

Consequently, only the ten remaining datasets—each meeting compliance, complete-
ness, and quality criteria—were included in the final analysis.

Since step count and distance exhibit a near-perfect linear relationship (Pearson’s
r ≈ 0.98) [15], we retain only the distance feature to mitigate multicollinearity and

6



2.2. Fine-tuning on Real-world Data

reduce dimensionality. Rather than passing height and weight separately, we compute
the body mass index (BMI) to encapsulate overall physical fitness in a single metric—a
practice shown to enhance physiological-model performance in large-scale cohort stud-
ies [23]. Breakfast consumption has been identified as the principal daily meal influencing
metabolic health and cognitive performance, and thus is modeled as a distinct binary
feature [24]. To capture overall dietary patterns without inflating model complexity, we
aggregate lunch and dinner into a single “meal” feature representing the total number of
meals per day, consistent with approaches in nutritional epidemiology [25].

7



Chapter 3

Method

3.1 RiM: Mobile Application
The onset of smartphones has revolutionized how we monitor our lifestyles and collect
data effortlessly. In today’s technology-driven world, our devices remain with us at all
times, providing continuous insights into our daily habits. Thus, we develop an android
application that tracks and stores users’ lifestyle data locally, including physical activity,
sleep duration, and dietary information. This real-world data plays a crucial role in fine-
tuning our model to adapt to everyday scenarios.

We use React Native1 to develop the application. It is an open-source UI software
framework developed by Meta for creating mobile applications. The Android application
exclusively utilizes accelerometer data to monitor and store parameters, ensuring com-
putational efficiency and reduced battery consumption. Upon launch, the application
requests the user’s demographic details, such as height, weight, gender, and age. These
details further help the MLP model tailor personalized recommendations.

We subscribe to the phone’s accelerometer for calculating the user’s daily step count
and distance traveled. Algorithm 1 demonstrates how the step count is calculated. The
algorithm continuously monitors accelerometer readings by calculating the magnitude of
the acceleration vector from its x, y, and z components. It compares the change in mag-
nitude from the previous reading against a predefined threshold (τ). When this difference
exceeds the threshold, a step is recorded. To prevent noisy data and sensor fluctuations
from triggering false step counts, a debounce mechanism is implemented. This mech-
anism ensures that a new step is only recorded if at least 300 milliseconds have passed
since the last detected step. By imposing this time delay, the algorithm filters out rapid,
minor changes that are unlikely to be actual steps, thereby enhancing the accuracy and
reliability of the step detection process.

1https://reactnative.dev
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3.1. RiM: Mobile Application

Algorithm 1 Step Counter with Debounce
1: lastMagnitude← 0
2: lastStepT ime← 0 ▷ Timestamp of the last detected step in milliseconds
3: for each accelerometer reading (x, y, z) do
4: magnitude←

√
x2 + y2 + z2

5: currentT ime← current timestamp in milliseconds
6: if |magnitude− lastMagnitude| > τ and (currentT ime− lastStepT ime) > 300
7: lastStepT ime← currentT ime
8: stepCount← stepCount + 1
9: distance← distance + δ

10: Update the last activity time with the current time
11: end if
12: lastMagnitude← magnitude
13: end for

We record the user’s daily sleep hours by monitoring the inactivity in the night. As
the algorithm 2 illustrates, the sleep tracking algorithm adjusts sleep hours by combining
two mechanisms. First, within the designated sleep window (10 PM to 10 AM), it cal-
culates the time elapsed since the last recorded activity. If the inactivity period exceeds
2 hours, the user is marked as sleeping and sleep hours are incrementally increased at a
rate of one minute. Second, if the user is flagged as sleeping and is then detected moving
(between midnight and 10 AM), the algorithm compensates for lost sleep by adding 2
hours to the sleep total and resets the sleeping state. This dual approach ensures that
short interruptions in activity do not skew sleep measurements, while still accurately
capturing extended periods of inactivity as sleep.

Algorithm 2 Sleep Hours Tracking
1: now ← current time
2: if now.hour ≥ 22 or now.hour < 10 ▷ Check for sleep window
3: timeSinceLastActivity ← now − lastActivityT ime

1000× 60 ▷ Convert to minutes
4: if timeSinceLastActivity > 120 ▷ Inactivity for more than 2 hours
5: if ¬isSleeping
6: isSleeping ← true
7: end if
8: sleepHours← sleepHours + 1

60 ▷ Increment sleep hours by 1 minute
9: else

10: currentT ime← current time
11: if isSleeping and 0 ≤ currentT ime.hour < 10
12: sleepHours← sleepHours + 2 ▷ Add 2 hours to compensate lost sleep
13: isSleeping ← false
14: end if
15: end if
16: end if

To record the user’s meal information, we create a drop-down input box with
9



3.2. Machine Learning Frameworks

yes/no options that asks whether the user has taken their meal. To reduce user burden, a
notification is scheduled at 21:45 hours to remind the user to enter their meal information
once a day. This simple interface ensures that meal data is consistently captured without
causing fatigue, while all other parameters are automatically tracked in the background,
requiring no user input. For more details on the development of the Android application
please visit GitHub2.

3.2 Machine Learning Frameworks
The choice of a multi-layer perceptron (MLP) model is motivated by its ability to be
fine-tuned on a relatively small dataset (7 days in our case), its low computational over-
head, and ease of integration with Android applications. The proposed MLP architecture
consists of five hidden layers. The first hidden layer contains 32 neurons and the number
of neurons is halved in each subsequent layer, resulting in 4 neurons in the final hidden
layer. Figure 3.1 illustrates the architecture of the proposed method.

Figure 3.1: Architecture of the proposed MLP model, which consists of five hidden
layers and outputs sleep and distance deficits that feed into the recommendation system
to generate personalized recommendations.

We employ a two-stage approach that (i) predicts lifestyle deficits via a pretrained
MLP regression model and (ii) applies rule-based severity and interaction checks to com-
pute per-parameter risk scores. Only the highest-risk and most relevant recommendations
are presented to the user.

Given a user feature vector

x = [distance, sleep, bmi, age, breakfast, meal, gender],

we first standardize:
x̃ = StandardScaler(x).

2https://github.com/adityamishraaaa/RiM.git
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3.2. Machine Learning Frameworks

The MLP model f then predicts deficits

d = f(x̃) =
[
dsleep, ddistance

]
,

where each deficit dj is defined as

dj =



(idealj,min − xj), xj < idealj,min,

−(xj − idealj,max), xj > idealj,max,

0, otherwise.

For each primary parameter j ∈ {sleep, distance}, we only generate a recommendation if

|dj| > τj,

where τj is a deficit threshold. In that case, we assign

rj = wj |dj|, (3.1)

with weights wsleep and wdistance. A corresponding message mj (e.g. “Try to get more
sleep”) is paired with each rj.

We also include rule-based risks for meal skipping, abnormal BMI and inter-parameter
interactions. Each rule contributes an additional risk score by the same formula (3.1),
with its own weight. Finally, we compute the composite risk score summing over all
parameters and interactions:

R =
∑

j

rj, (3.2)

If R > Rhigh, we prepend a high priority tag. To ensure conciseness, we filter out any
rj < θ. Sort the remaining risk–message pairs {(rj, mj)} in descending order of rj and
finally select the top N messages. If no rj survives filtering, a generic “Your lifestyle
parameters are close to ideal. Keep it up!” message is shown instead.

This design guarantees that only parameters with meaningful model-predicted deficits
or significant rule violations yield recommendations, that compound risks are captured via
interaction rules, and that the user sees only the most pressing, relevant advice. The MLP
model is pre-trained on simulated data using separate training and validation sets, along
with an early stopping mechanism to prevent overfitting. Figure 3.2 depicts the training
curves. Pre-training allows the model to learn general patterns and representations.
Furthermore, it helps to mitigate the limitations posed by the scarcity of real-world data.

11



3.3. Federated Learning

Figure 3.2: Training loss and validation accuracy curves plotted across pre-training
iterations of the MLP model.

3.3 Federated Learning
We use the Flower framework to implement federated learning. A central server is set up
to load the pre-trained model and distribute its weights to individual clients, where each
client represents a single user. Each client then fine-tunes the pre-trained model using
its own real-world data. The data remains on the client side, ensuring that users’ data
stays isolated and does not interfere with other clients.

Figure 3.3: The figure illustrates the FedPer weight-update process: orange neurons
denote the shared root layers that are sent to the server averaged via FedAvg, while blue
neurons denote the personal head layers that remain on the client device to preserve
personalization.

We employ both FedAvg and FedPer algorithms to fine-tune the model. The FedAvg
algorithm builds a global model by having each client train a local copy on its own data,

12



3.4. Evaluation Metrics

then sending only the updated weights (not the data) back to a central server. The server
aggregates these local updates by computing a weighted average to form a new global
model. This global model is then redistributed to clients for the next round, repeating
until convergence. FedPer splits the MLP model into a shared root (the first three
layers) and personal head (the remaining two layers), so that clients collaboratively
train only the root while keeping their heads local. In each round, every client fine-tunes
the full model on its own data, then sends only the updated root weights to the server;
the server averages these root updates (as in FedAvg) and broadcasts the new shared
root back. This way, clients benefit from global feature learning but retain personalized
output layers that capture local data heterogeneity. The FedPer fine-tuning process is
illustrated by the Figure 3.3. The orange neurons denote the shared root layers, while
the blue neurons denote the personalized head layers.

3.4 Evaluation Metrics
We evaluated the performance of the models with two evaluation metrics – accuracy and
mean absolute error (MAE).

Accuracy: The accuracy metric here measures the fraction of samples for which the
predicted and true deficits share the same sign (positive, zero, or negative). In other
words, it evaluates how often our model correctly predicts whether each deficit is above,
equal to, or below zero.
Mathematically, if we have n samples, true targets y and predictions ŷ, then:

Accuracy = 1
n

n∑
i=1

1
(
sign(yi) = sign(ŷi)

)
(3.3)

Where, sign(x) is the signum function returning +1 if x > 0, 0 if x = 0 and -1 if
x < 0. 1(.) is the indicator function, equal to 1 if its argument is true, and 0 otherwise.

MAE: It calculates the average absolute difference between predicted values (ŷ) and
actual values (y). Mathematically,

MAE =
∑n

i=1 |yi − ŷi|
n

(3.4)

Where n refers to the sample size. MAE is the loss function that need to be minimized
in the process of training a machine learning model. Lower MAE values suggest better
model performance.

3.5 Implementation Details
We use simulated data to pre-train the model and fine-tune and test in on the collected
real-world dara. We employ T4 GPUs with a batch size of 32. The models are trained
using the Adam Optimizer with a learning rate of 1 × 10−3 over 200 epochs. To obtain

13



3.5. Implementation Details

final results, we average the scores of all the clients. Table 3.1 contains the values of all
other hyperparameter used in the study.

Table 3.1: List of all the hyperparameter used in the study. The list encompasses values
used in MLP model, federated learning and mobile application development (in order).

Hyperparameter Value

Batch Size 32

Learning Rate 1× 10−3

Pre-training Epochs 200

Number of Units in Hidden Layer [64, 32, 16, 8, 4]

Ideal Sleeping Range [7 hours, 9 hours]

Ideal Distance Traveled [5 km, 8 km]

wsleep 1

wdistance 0.8

wbmi 1

wmeal 1

Rhigh 3

θ 0.5

Number of Recommendations (top_n) 2

Fine-tuning Epochs 10

Number of Clients 10

τ 1.8

δ 0.5m

Sleep Window [10 PM, 10 AM]
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Chapter 4

Results and Discussion

The results for FedAvg fine-tuning approach and FedPer approach are presented by Ta-
ble 4.1 and Table 4.2, respectively. It is evident that FedAvg outperforms the FedPer
approach. FedAvg achieves an accuracy of 60.71% and MAE of 0.91 (↓ 0.28 compared to
FedPer). It achieves a 14.37% more accurate predictions compared to FedPer algorithm.

Table 4.1: Client-wise accuracy (%) and mean absolute error for the FedAvg approach.

Client ID Accuracy (%) Mean Absolute Error

Client 0 81.42 0.82

Client 1 67.14 0.79

Client 2 34.63 0.81

Client 3 65.67 0.62

Client 4 25.18 0.90

Client 5 74.28 0.87

Client 6 74.28 0.41

Client 7 38.57 1.91

Client 8 69.28 1.32

Client 9 76.67 0.69

Average 60.71 0.91

FedAvg exhibits lower accuracy on Clients 2, 4, and 7. These clients’ data are dom-
15



Table 4.2: Client-wise accuracy (%) and mean absolute error for the FedPer approach.

Client ID Accuracy (%) Mean Absolute Error

Client 0 63.57 1.26

Client 1 47.32 2.48

Client 2 31.33 0.12

Client 3 60.72 1.52

Client 4 25.71 0.29

Client 5 25.91 1.46

Client 6 60.83 0.97

Client 7 46.67 1.14

Client 8 47.14 1.24

Client 9 54.16 1.47

Average 46.34 1.19

inated by ideal case (most of their true deficits are zero) - so the model, when aver-
aged across all participants, struggles to reproduce this all-zero pattern. In effect, the
global update dilutes each client’s local bias toward the ideal range, and the resulting
model under-predicts the absence of a deficit. Conversely, FedAvg is better at identifying
non-ideal behavior: for example, Client 0—whose data include a larger proportion of true
deficits—achieves the highest accuracy (81.42%) under the same fine-tuning regime. This
discrepancy highlights two key issues:

1. When a client’s labels are majorly zero, the global model—trained on a more het-
erogeneous mix of deficits fails to specialize on the no deficit case.

2. FedAvg merges all client updates indiscriminately, which benefits common patterns
(e.g. predicting deficits) but washes out client-specific biases toward ideal behavior.

Together, these factors suggest that purely averaging model weights may not ade-
quately capture per-client idiosyncrasies, especially for users whose lifestyle metrics re-
main within recommended ranges.

16



FedPer yields a slight improvement in accuracy for clients whose data are dominated
by ideal zero-deficit observations, but it conversely underperforms on predicting non-
ideal behaviors. By isolating the last two layers as client-specific heads, FedPer allows
each participant to specialize on their all-zero patterns—hence the slight gain for ideal
cases—yet this same decoupling limits the transfer of deficit-prediction expertise for rarer
non-ideal events.

This behavior can be explained by:

1. Personalized heads faithfully reproduce the zero-deficit bias present in many clients,
driving up ideal-case accuracy.

2. Since deficit-related weights in the personal head are never shared, clients with
mixed or skewed distributions fail to benefit from peers’ learning on non-ideal pat-
terns, resulting in lower accuracy on true deficits.

These findings underline the trade-off inherent in personalization: preserving local
idiosyncrasies can boost performance on dominant patterns while potentially impairing
the modeling of less frequent but clinically important non-ideal behaviors.
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Chapter 5

Conclusion

In this work, we presented RiM (Record, Improve, and Maintain), a privacy-preserving
mobile application for promoting student physical well–being by combining federated
learning with a lightweight MLP recommendation engine. We first pre-trained our MLP
on a large, simulated dataset to learn general patterns of sleep and walking-distance
deficits, then fine-tuned it on real-world data collected from IISER Bhopal students us-
ing both FedAvg and FedPer strategies. Our experimental results demonstrated that
FedAvg achieves higher accuracy on non-ideal behaviors (average accuracy 60.7% and
MAE 0.91), whereas FedPer better captures client-specific ideal zero-deficit patterns (av-
erage accuracy 46.3%, MAE 1.19). To deliver actionable guidance, we devised a hybrid
recommendation layer that combines these learned deficits with rule-based severity and
interaction checks, computing composite risk scores to prioritize the top two most urgent,
personalized recommendations.

This approach ensures differential privacy by never transmitting raw user data; model
personalization via per-client heads (FedPer) or global aggregation (FedAvg) as appropri-
ate; and actionable insights through a priority-based, rule-enhanced recommender that
surfaces only the most critical lifestyle adjustments. However, one limitation of the cur-
rent RiM implementation is that the Android application supports only Android version
13 or lower, which restricts compatibility with newer devices.

Future Work: To broaden usability and enhance on-device intelligence, we will first up-
date the mobile application to support all modern Android API levels. Next, we plan to
integrate the pretrained MLP model directly within the app—enabling real-time, offline
inference without server communication. Finally, we will investigate advanced bi-level
optimization algorithms such as Ditto for federated learning, which balance global aggre-
gation with per-client personalization more effectively, further improving both fairness
and predictive performance.
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