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Abstract—Ensuring data ownership and traceability of unau-
thorised redistribution are central to safeguarding intellectual
property in shared data environments. Data fingerprinting ad-
dresses these challenges by embedding recipient-specific marks
into the data, typically via content modifications. We propose
NCorr-FP, a Neighbourhood-based Correlation-preserving Fin-
gerprinting system for structured tabular data with the main
goal of preserving statistical fidelity. The method uses local
record similarity and density estimation to guide the insertion of
fingerprint bits. The embedding logic is then reversed to extract
the fingerprint from a potentially modified dataset. Extensive ex-
periments confirm its effectiveness, fidelity, utility and robustness.
Results show that fingerprints are virtually imperceptible, with
minute Hellinger distances and KL divergences, even at high
embeddeding ratios. The system also maintains high data utility
for downstream predictive tasks. The method achieves 100%
detection confidence under substantial data deletions and remains
robust against adaptive and collusion attacks. Satisfying all these
requirements concurrently on mixed-type datasets highlights the
strong applicability of NCorr-FP to real-world data settings.

I. INTRODUCTION

In an era of widespread data sharing and outsourcing,
the ability to assert ownership over structured datasets and
trace unauthorised redistribution is increasingly critical for
protecting the intellectual property (IP) of such content. Data
fingerprinting systems address this need by embedding unique,
recipient-specific marks into the data, enabling leak attribution
and intellectual property protection. The existing fingerprinting
methods for structured data often fall short in balancing
properties and requirements that need to be met simulta-
neously in real-world settings: high effectiveness (especially
in blind scenarios where original data is unavailable during
detection), robustness to single-user and collusion attacks,
mark imperceptibility (data fidelity, i.e. minimal distortion
and preservation of statistical properties), data utility and
applicability across datasets with mixed-type attributes.

This work introduces NCorr-FP, a Neighbourhood-based
Correlation-preserving Fingerprinting system designed to
achieve high detection confidence while preserving the sta-
tistical fidelity and contextual plausibility of structured data.
Unlike prior techniques that rely on randomised value manip-
ulations or global assumptions, NCorr-FP exploits local record
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Fig. 1: Fingerprinting system: (i) fingerprint embedding pro-
cess implementing fingerprint generator and fingerprint em-
bedding, and (ii) fingerprint detecting process embedding fin-
gerprint detection and a decoding and accusation mechanism.

similarity and attribute correlations to embed fingerprint bits
in a way that is both statistically inconspicuous and resilient
to a broad range of adversarial threats. Our method supports
blind detection, requires no access to the original dataset, and
integrates with collusion-resilient codes.

Through extensive evaluation on a benchmark dataset, we
demonstrate that NCorr-FP introduces only minimal statisti-
cal distortion, with attribute distributions, correlations, and
value combinations remaining nearly indistinguishable from
the original. Additionally, the impact on downstream machine
learning tasks is negligible. Despite these minimal alterations,
effectiveness and robustness remain uncompromised: NCorr-
FP achieves 100% fingerprint detection confidence even under
extreme conditions such as the removal of up to 80% of
records or 70% of attributes. Furthermore, the system with-
stands adaptive, informed attacks—including cluster-flipping
strategies, and reliably detects collusion involving up to 25%
of all data recipients.

In summary, this paper makes the following contributions:

• A novel neighbourhood-based fingerprinting algorithm
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that preserves data fidelity by embedding marks through
statistically plausible value substitutions within similar
records.

• Robustness against single-user and collusion attacks, in-
cluding adaptive and white-box adversaries, supported by
a detailed robustness evaluation.

• Comprehensive empirical validation showing superior
performance across effectiveness, fidelity, utility, and
robustness dimensions.

NCorr-FP bridges the gap between robust ownership protec-
tion and practical usability in data sharing pipelines. Our code
is available open-source1.

The notation used in this work is summarised in Table I.
The remainder is structured as follows: Section II outlines
the system model and Section III the threat model. Sec-
tion IV reviews related work. Section V presents our proposed
method, including the fingerprint embedding and detection
algorithms. Section VI details the evaluation methodology,
covering metrics for effectiveness, fidelity, utility, and robust-
ness. Section VII reports and analyses the experimental results.
Finally, Section VIII concludes the paper and discusses future
directions.

TABLE I: Notation

notation description

R dataset relation
PK primary key of the dataset
Ai i-th attribute in the dataset
v number of attributes in the dataset
n number of records in a dataset

F fingerprint bit sequence
L fingerprint length in bits
1/γ fingerprint embedding ratio
S pseudo-random sequence generator (PRSG)
K (owner’s) secret key
c number of colluders in collusion attack

N neighbourhood; a set of records most similar to a target
(reference) record

d distance metrics for measuring record similarity
ϕ percentile value determining density thresholds
LDϕ low-density or low-fequency region of a distibution
HDϕ hihg-density or high-freqeuncy region of a distribution
C sets of correlated attributes, C ⊆ A

II. SYSTEM AND REQUIREMENTS

Data fingerprinting system protects ownership of structured
datasets by embedding unique, recipient-specific marks, fin-
gerprints, into the data so that any unauthorized redistribution
can later be traced back to the leaker. Each recipient receives
a differently marked copy; a leaked copy may be subjected
to benign updates or malicious tampering. The objective of
the fingerprinting process is to embed a verifiable, recipient-
specific fingerprint F = (f1, . . . , fL) such that: (i) the
fingerprint can be reliably extracted and attributed to the
correct recipient, (ii) the marked data remains useful and
statistically similar to the original and (iii) the fingerprint

1https://github.com/sbaresearch/data-fingerprinting

survives partial or intentional data modifications. Following
these objectives, the fingerprinting systems must satisfy the
following requriements [1]:

• Effectiveness: High-confidence fingerprint detection.
• Fidelity: Preservation of statistical properties (marginal

distributions, correlations, plausible value combinations).
• Utility: Minimal impact on a downstream use of data.
• Robustness: Resilience to attacks.
• Blindness: Ability to extract fingerprints without access

to the original data.
A fingerprinting system implements two main processes

- fingerprint embedding and fingerprint detection, as de-
picted in Figure 1, and the following subprocesses:

1) Fingerprint generator: Produces a recipient-specific bit
sequence F using secret key K and recipient ID.

2) Embedding algorithm: Injects F into the dataset via
a content-aware, density- and correlation-driven scheme
(Section V-A).

3) Detection algorithm: Extracts a candidate fingerprint
from a (possibly modified) copy without access to the
original (Section V-B).

4) Fingerprint decoding and accusation: Matches the ex-
tracted fingerprint against known fingerprints to identify
the source or find responsible colluders.

To implement 1) and 4), we incorporate Tardos codes [2] (T
codes) into our system, as they remain one of the most effi-
cient constructions for traitor tracing. T-codes are probabilistic
fingerprint codes of length

L = O(c2 log(N/ϵ)) (1)

for a given number of users N , collusion size c, and error
probability ϵ. The fingerprint generation and the accusation
algorithm follow the proposed construction in Section 2.1.
of [2], we skip the details for brevity but keep the notation.
During accusation, each recipient is assigned an accusation
score, Tscore. We define the accusation threshold Z by the
mean accusation score across all recipients s, µ(Tscore), and
varible number of standard deviations, σ(Tscore):

Zx = µ(Tscore) + x · σ(Tscore). (2)

The recipient s is accused if their score Tscores > Zx.
Our modular design permits substituting T-codes with other

fingerprinting or watermarking methods without altering the
overall system.

III. THREAT MODEL

As shown in Figure 1, we consider the attacker to be a
malicious recipient of the fingerprinted data, whose objective
is to avoid identification while engaging in unauthorised
redistribution. We assume a white-box attacker who:

• Knows the fingerprinting algorithm and typical parameter
choices (public-system model [3]).

• Holds one or more fingerprinted copies (single-user or
colluding recipients).
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• May modify the fingerprinted data using any combination
of deletion, alteration, or injection techniques.

We assume the owner’s secret key K remains unknown to the
attacker.

IV. RELATED WORK

Fingerprinting and watermarking techniques have been
widely studied in the context of digital rights management
and applied accross various forms of digital content such as
image, video, audio, structured datasets and Machine Learning
(ML) models [4], [5]. In structured data, the focal area of
our work, fingerprinting refers to recipient-specific water-
marking, where each recipient receives a uniquely marked
version of the dataset to enable leak tracing. In contrast,
watermarking typically embeds a common mark to assert
ownership. Foundational work for database watermarking [6]
and fingerprinting [7] were based on pseudorandom insertion
of fingerprint bits into the least-significant bits of data values.
These works have been extended by optimised embedding
strategies, however primarily focussing on numerical data
attributes [8]–[10].

Early techniques ensured fidelity by preserving simple
statistics such as mean and standard deviation, typically with
negligible distortion [11]. More recent approaches incorporate
stronger fidelity measures, such as correlation preservation,
and address additional requirements like data utility. Ji et
al. [12], [13] propose a post-processing step to any base finger-
printing scheme (the authors demonstrate the effectiveness for
Li’s scheme [7] and block-scheme [8]) to mitigate disruptions
in joint distributions. Their method, based on Optimal Mass
Transportation, selectively alters unmarked values to restore
column-wise correlations and is particularly effective against
attackers with prior knowledge of original joint distributions. A
fingerprinting method for categorical data is proposed in [14],
which employs a neighbourhood-based strategy to embed
marks by selecting plausible alternative values. While the
approach is designed to preserve local value distributions,
it is limited to categorical attributes and does not address
applicability to numerical domains. Furthermore, the detection
phase requires access to the original dataset, which restricts
its use in scenarios where blind detection is essential.

Additional efforts to preserve correlation structures appear
in the context of sequential [15], [16] and textual data [17].
The former cannot be directly applied to structured data
because they assume sequential correlation that is not inherent
to this data type [13], while the latter cannot generalise to real-
world datasets with mixed attribute types.

Collusion attacks, which arise from malicious collaboration
among users, pose a significant threat to fingerprinting sys-
tems. Early fingerprint codes, such as hash-based encodings
using secret keys and user IDs [7], are ineffective against
collusion. To address this, collusion-resistant codes like the
Boneh-Shaw (BoSh) code [18] enforce traceability under the
Marking Assumption. However, BoSh codes are impractically
long. Tardos [2], and later Nuida et al. [19], introduced

probabilistic Tardos codes (T-codes) with reduced lengths suit-
able for structured data. Group-based schemes [20], [21] are
proposed for content distributed in batches across users, and
privacy-preserving extensions [22] for an additional privacy
guarantee.

V. NCORR-FP: NEIGHBOURHOOD-BASED
CORRELATION-PRESERVING FINGERPRINTING

This section presents our fingerprinting method, NCorr-
FP, which is designed to preserve statistical properties and
contextual consistency in structured data while embedding
recipient-specific marks. We begin by describing the finger-
print embedding algorithm, which uses local record similarity
and density estimation to guide the insertion of fingerprint bits.
We then outline the corresponding detection procedure, which
reverses the embedding logic to extract the fingerprint from
a potentially modified dataset. Both procedures operate under
the constraint of blind detection, requiring no access to the
original data.

A. Fingerprint embedding algorithm

The embedding algorithm uses the fingerprint F as an input
and hides its bits fi in the data by determining the required
modification of values at pseudo-random positions.

This process inevitably introduces changes to the dataset
in order to encode verifiable information. To minimise the
impact of these changes and their perceptibility, each change
is sampled from the space of similar records given the current
record. The goal is to ensure that the new values appear
statistically plausible within their local context. As a result,
the method avoids generating unlikely or inconsistent values
and better preserves correlations.

The embedding algorithm shown in Algorithm 1 traverses
the records of the dataset (line 1), initiating in each step a
pseudorandom sequence generator (PRSG) S seeded by the
combination of the owner’s secret key K and the primary key
of the record r.PK (line 2) (e.g. via a concatenation, denoted
with |). A PRSG of each record r outputs a unique number
sequence where the first 4 are relevant outputs:

1) s0: determining whether the record is selected
2) s1: index of the attribute whose value will be marked
3) s2: index of a fingerprint bit to embed
4) s3: how the fingerprint will be embedded (mask bit)

A binary decision on whether the record r is being selected for
marking is made in line 3 by using a pseudo-random output
s0 weighted by embedding ratio 1/γ , i.e. every record r is
selected for marking with independent probability 1/γ. This
entails that approximately n/γ records of the dataset will be
marked in total, hence we refer to 1/γ as the embedding
ratio for clarity. s1 and s2 are sampled from the range of
the total number of attributes v (line 4), and the range of bit-
length of the fingerprint, L (line 5), respectively. s3 determines
the binary mask x used to transform the fingerprint bits into
the uniformly distributed space. The distribution of bits in a
fingerprint can be imbalanced, which is more pronounced in
shorter fingerprints. However, a scenario where one type of bit
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Algorithm 1: NCorr-FP: Embedding
Input: dataset R = (PK,A0, ..., Av−1), owner’s secret

key K, embedding param. γ, fingerprint F ,
correlated groups C, distance metric d, density
param. ϕ

Output: fingerprinted dataset R′

1 foreach record r ∈ R do
2 S(K|r.PK) = s0, s1, s2, s3
3 if (s0 mod 100)/100 < 1/γ then
4 attribute index i← s1 mod v
5 fingerprint index l← s2 mod L
6 fingerprint bit f ← fl
7 mask bit x← 0 if s3 is even; x← 1 otherwise
8 mark bit m← x⊕ f
9 N = select neighbours(r.Ai, d, C)

10 target values← N .Ai

11 Hp,Lp ← density areas(target values, p)
12 if m = 1 then
13 r′.Ai ← sample(HDϕ)
14 else
15 r′.Ai ← sample(LDϕ)
16 end
17 end
18 return R′

prevails is not ideal for marking. That way, data copies would
have contained various amounts of modifications, implying
unfair differences in data quality that different recipients obtain
and potentially additional vulnerabilities to attacks. To ensure
statistically that a potential bit imbalance does not affect
embedding, each selected fingerprint bit f is subjected to an
XOR operation with a uniformly sampled mask bit x, resulting
in the mark bit m, which follows a uniform distribution.

The mark bit m is the deciding bit for sampling the new
value for the chosen dataset position (r,Ai). The new value is
sampled from the space of records selected according to their
similarity to the target record r under the set of parameters
d ∪ C. This space is referred to as the neighbourhood N of
the target record. The intuition behind this is to flip the value
into a likely one based on similar records.

Algorithm 2: select neighbours sub-procedure
Input: marking value r.Ai, values of correlated

attributes r.C, k, d
Output: neighbourhood N

1 if Ai in C then
2 tree = tree\Ai

3 end
4 N ← tree.query(r.C, k)
5 max dN ← max distance(r.C, N )
6 N = tree.query radius(r.C, max dN )
7 return N

The subroutine select neighbours (Algorithm 2) leverages

a k-nearest neighbour (kNN) imputation strategy. kNN selects
the k most similar records to the observed record based on a
distance metric d and a list of correlated groups of attributes
C = (C1, C2, ...) where ∀iCi ⊆ A.

We introduce a partitioning of the attribute space into
correlated groups of attributes C = (C1, C2, . . . ), where each
Ci ⊆ A contains attributes that are mutually and transitively
correlated. Embedding modifications within a correlated group
helps preserve the statistical properties of the dataset. Changes
made to an attribute Aj in group Ci are informed by other at-
tributes in the same group that share high mutual dependence.
This local dependency structure allows us to estimate realistic
value intervals from the neighbourhood and to constrain the
embedding noise accordingly.

The correlated sets in C are computed once prior to the
embedding based on a correlation metric corr and inclusion
threshold τc. Formally, C may be defined as a correlation
graph C = G(A,E) where the nodes are the attributes in
A and E, a set of edges. An edge exists between Ai and Aj

if |corr(Ai, Aj)| > τc, i.e. E = {(Ai, Aj)||corr(Ai, Aj)| >
τc}. The groups of mutually correlated attributes correspond
to the connected components C1, C2, . . . , Cg in G where
A =

⋃g
i=1 Ci, Ci ∩ Cj = ∅ for i ̸= j. Each group Ci

contains attributes that are transitively correlated, meaning that
if Ai is correlated to Aj and Aj is correlated to Ak, then Ai

and Ak belong to the same group even if |corr(Ai, Ak)| ≤ τc.
The select neighbours() procedure can be adapted via

usual practices for designing kNN for specific data and prob-
lem. This includes choosing a distance metric (e.g. Euclidean
Distance, L1 norm, cosine similarity, etc.), improving effi-
ciency via data structures specifically designed for efficient
search (in this work we used a Ball Tree structure, denoted as
tree in Algorithm 2, but other structures can be used as well,
e.g. a KD-Tree) and hyperparameter k. We analyse the impact
of k on the overall scheme effectiveness in Section VII. The
algorithm may be non-deterministic in cases where x records
with the same distance (i.e. similarity) to the target record
compete for k < x places in the neighbourhood. To tackle
this, in the select neighbours subprocedure we expand the
neighbourhood with all candidates that tie in the distance,
hence we treat k as a minimal neighbourhood size (lines 5-6),
and output such constructed neighbourhood N in line 7.
target values are the values of target attribute Ai that

occur within the neighbourhood N (line 10 of Algorithm 1).
In lines 12-15, sample() function performs sampling from the
set of target values and has strictly two outcomes based on
the mark bit m:

• m = 0: the new value r′.Ai is randomly sampled from
the low-density areas of the target values distribution;
LDϕ

• m = 1: the new value r′.Ai is randomly sampled from the
high-density areas of target values distribution; HDϕ

The procedure density areas() (line 11) outputs the high-
and low-density areas and is adapted to the data type of the
Ai. For continuous attributes, we first estimate the probability

4



density function f̂ using the Gaussian Kernel Density Estima-
tion method (Gaussian KDE) to obtain the sampling space:

f̂(x) =
1

nh
√
2π

n∑
i=1

exp

(
− (x− xi)

2

2h2

)
. (3)

where f̂ is the estimated density at point x, n is the number
of data points, h is the smoothing parameter and xi ∈
target values are the observed data points. The boundary
between the low and dense distribution areas is determined by
the predefined percentile ϕ ∈ (0, 1). The density threshold τϕ
is defined as the value satisfying:

P (f̂(X) ≤ τϕ) = ϕ (4)

where X is a random variable following the estimated density
f̂(x). This means that a proportion ϕ of the estimated density
values lie in the low-density region. Thus, we classify the
density space into a low-density region LDϕ and high-density
region HDϕ such that:

LDϕ = {x ∈ target values | f̂(x) ≤ τϕ} (5)

HDϕ = {x ∈ target values | f̂(x) > τϕ} (6)

Note that any probability density estimation may substitute
the Gaussian KDE we used in this work. We demonstrate in
Figure 2a how the estimated PDF may look for one record (i.e.
one iteration of the foreach loop in line 1 of Algorithm 1) and
how it gets divided into high- (orange) and low-density (blue)
regions based on ϕ.

For categorical attributes, the same principle is ap-
plied to separate the high- and low-density areas accord-
ing to value frequencies in target values. This is demon-
strated for one record (one iteration in the foreach loop
in line 1 of Algorithm 1) in Figure 3a. Let A =
{a1, . . . , a|unique(target values)|} be the finite set of unique
target values of a categorical attribute Ac sorted in ascending
order by frequency. Furthermore, let freq : S → N be a
frequency function that assigns each categorical value ai its
cardinality in the target values set and ϕ be the predefined
percentile for separating low- and high-density groups. We
define the low-density group LDϕ and the high-density group
HDϕ of a categorical attribute such that LDϕ is constructed by
accumulating the lowest-frequency values until their collective
frequency sum reaches (but does not exceed) ϕ:∑

a∈LDϕ

freq(a) ≤ ϕ
∑
a∈A

freq(a). (7)

The algorithm ensures that both low- and high-density
groups contain at least one element, i.e. |HDϕ| ≥ 1
and |LDϕ| ≥ 1. When target values is uniform (i.e.
|unique(target values)| = 1), that constraint cannot be
satisfied. In this case, the choice can be to (i) proceed with
sampling the new value from the uniform distribution or (ii)
skip the embedding for that value. Both might lead to detection
errors: for (i), the detection has a 50% chance to blindly guess
the mark bit m that was supposed to be embedded at that
position (but was not properly embedded because there was

(a) Embedding (original data) (b) Detection (fingerprinted)

Fig. 2: NCorr-FP demonstration for continuous attributes:
during embedding in a), PDF of target values from a neigh-
bourhood N for sampling the new value r′.Ai is divided into
low- (blue) and high-density areas (orange) using a density
percentile ϕ = 75%. Here we exemplify sampling from a
high-density area when m = 1. The detection process in b)
regenerates the PDF of target values from the fingerprinted
data. Observe that the distributions in a) and b) are not
identical – this is due to the changes introduced by the
fingerprint marks. They are, however, very similar. Therefore,
the low- and high-density division of b) closely matches that
of the original data in a), and the observed value is correctly
classified into the high-density area in this example, therefore,
the (correctly) detected mark bit is m = 1.

no choice in sampling), while for (ii), the detection might
be affected by the changes in the neighbourhood distributions
after the data is fingerprinted, not properly skip this value if
it does not appear uniform during the detection and detect an
erroneous bit. We discuss challenges merging from these po-
tential detection errors further in Section V-B.

With the described procedures for separating the distribution
into LDϕ and HDϕ, we create a binary setting for sampling
both continuous and categorical data. This binary decision
represents the encoded information, i.e. the mark bit m which
is a function of a fingerprint bit f (for m = 1, the sampling
is exemplified in Figures 2 and 3; when m = 0, the algorithm
samples from the blue regions LDϕ). Note that each finger-
print bit fi is embedded multiple times across the dataset.
ωi denotes the number of embeddings (the redundancy) of
the fingerprint bit fi. Since choosing a fingerprint index is an
independent random draw,

ω1 ≈ ω2 ≈ ... ≈ ωL = ω ≈ n

Lγ
(8)

where ω is the mean redundancy of a single fingerprint bit.

B. Fingerprint detection algorithm

The detection algorithm reconstructs the fingerprint se-
quence one bit at a time by searching and retrieving their
embeddings in the data. Since one fingerprint bit fi might be
embedded in multiple values, the extracted bits are counted for
each bit position. The final bits are decided by majority voting
from these counts. To make a binary decision based on a data
value, whether the embedded mark was 1 or 0, the detection
mimics the embedding: it needs to be able to classify the value
into either low- or high-density distribution area (because the
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(a) Embedding (original data)) (b) Detection (Fingerprinted)

Fig. 3: NCorr-FP demonstration for categorical attributes: in a)
the frequencies of the target values from the neighbourhood
N are sorted and grouped: the high-frequency group HDϕ

contains the least amount of most frequent values such its
cumulative frequency is at least 1−ϕ = 25% of the cumulative
frequency of all target values (orange). The rest is the low-
frequency group LDϕ (blue). This example shows the case
when m = 1, i.e. the new (fingerprinted) value is chosen
from the high-frequency group. In b) the detection algorithm
generates the frequencies from the fingerprinted data which are
highly similar to the original (but not necessarily identical).
It recognises that the observed value is in HD′

ϕ, hence the
(correctly) detected mark bit is m = 1.

observed value has been sampled from either low- or high-
density area during embedding). For that, the neighbourhoods
also need to be reconstructed. Note that the detection algorithm
does not recover the original data value, only the embedded
information based on the marked values.

The detection algorithm reverses the embedding process,
cf. Algorithm 3; from the fingerprinted data, it extracts the
fingerprint sequence using the owner’s secret key K as an
input. The fingerprint parameters including γ, L, C and d (cf.
Table I) need to be the same as in the embedding process to
correctly detect the fingerprint. The output of the detection
process is the extracted fingerprint bit sequence F , which is
initialised in line 1 as a template of L unknown bit-values
denoted as ?. The unknown values are to be replaced with the
actual bit values based on voting throughout the algorithm.
The voting system is initialised in line 2, where each of the
L fingerprint bits collects the votes for its value being 0 or 1
in the variable count[j][0] and count[j][1], respectively.

Following the steps from the embedding, the detection
traverses the data records (line 3), this time collecting the
information embedded in the pseudo-random locations deter-
mined by the PRSG. Note that PRSG generates the same
sequence s0, s1, s2, s3 as in the embedding algorithm, as it
is initialised with the same seed in each iteration K|r.PK
(line 4). Therefore, the record selection (line 5), the attribute
(line 6), the fingerprint bit (line 7) and the mask (line 8) shall
be the same in embedding and detection for each iteration.

Once the location (r,Ai) of the embedded mark is known,
the algorithm selects the neighbouring records in the same
fashion as the embedding algorithm via Algorithm 2) and
obtains the distribution of the target values (lines 9-10).
The distributions are constructed as in the embedding (cf.
Section V-A) via Gaussian KDE for continuous and frequency

Algorithm 3: NCorr-FP: Detection
Input: fingerprinted database

R′ = (PK,A0, ..., Av−1), owner’s secret key
K, embedding param. γ, fp. length L,
correlated groups C, distance metric d, density
param. ϕ

Output: fingerprint F
1 fingerprint template F ← (f1, ..., fL)← (?, ..., ?)
2 count[j][0] = count[j][1]← 0 for j = 1 to L
3 foreach record r ∈ R′ do
4 S(K|r.PK) = s0, s1, s2, s3
5 if (s0 mod 100)/100 < 1/γ then
6 attribute index i← s1 mod v
7 fingerprint index l← s2 mod L
8 mask bit x← 0 if s3 is even; x← 1 otherwise
9 N ′ ← select neighbours(r.Ai, r.C)

10 target values′ ← N ′.Ai

11 HD′
ϕ,LDphi

′ ←
density areas(target values′, ϕ)

12 if r.Ai ∈ HD′
ϕ then

13 mark bit m← 1
14 else
15 mark bit m← 0
16 fingerprint bit f ← m⊕ x
17 count[l][f ] + +
18 end
19 end
20 F ← majority voting(count[1], ..., count[L])

sorting for categorical attributes, as well as divided into low-
and high-density regions using the same percentile ϕ. Note that
the neighbourhoodN ′ of the record r′ might be different in the
detection phase compared to the neighbourhood N during the
embedding phase due to the fingerprint-induced modifications
in the data R′. We showcase this for one record r where the
target (marked) value is continuous: by comparing Figure 2a
and Figure 2b the minor shift in distribution can be observed.
Similarly, the minor shift can be observed between Figure 3a
and Figure 3b when the target (marked) value is categorical.
The resulting distribution regions HD′

p and LD′
p might also

differ slightly compared to the corresponding embedding itera-
tion. However, with the recommended fingerprinting parameter
settings (recommendations discussed in Section VII-E), these
shifts will not cause significant errors in the detection; this
is because (i) the modifications due to fingerprint embedding
are minute relative to the neighbourhood size and (ii) each
fingerprint bit is embedded multiple times across different
attributes, hence majority voting will be able to mitigate
these minor detection errors. We show this empirically in
Section VII-A.

To extract the embedded binary information, the detection
algorithm determines whether the observed target value r′.Ai

falls within high- or low-density areas and assigns the mark bit
m accordingly (lines 12-15). The value of the fingerprint bit f
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is then calculated from the mark bit and mask bit as f = m⊕x
(line 16) 2 . The voting system count is updated for the fl with
the extracted bit value in line 17. When all votes are collected,
the final fingerprint bit-sequence is decided based on majority
voting (line 19). In case where some bits do not get any vote
or votes end up in a tie, they retain the undecided value ? from
the fingerprint template. The likelihood of such undecided bits
increases when the average embedding redundancy ω is low, as
fewer observations are available for each bit. While undecided
values reduce the total number of bits that can contribute
positively to the fingerprint detection, thus potentially lowering
the overall detection confidence, they are also neutral in the
sense that they do not introduce erroneous evidence. In that
regard, it is preferable to leave a bit undecided rather than
risk falsely attributing it to an incorrect value. This design
choice helps balance sensitivity with robustness against false
accusations.

VI. EVALUATION METHODOLOGY

We evaluate our method on the train set of Adult Census
dataset from UCI ML repository, as this dataset is often used
in the literature [13], [22], and it has a number of properties
interesting to explore in the context of our proposed method:
(i) both numerical and categorical features, (ii) correlated
features, (iii) missing data values. The dataset contains 14
attributes (plus one target attribute for an ML classification
task), and 32,560 records. We analyse the impact of different
parameters on the system requirements using the following
values:

• Neighbourhood size k: [30, 300, 450]
• Embedding ratio (1/γ): [1/2, 1/4, 1/8, 1/16, 1/32]
• Fingerprint length L: [128, 256, 512]

To control for variance, each evaluation run is repeated 10
times with different random seeds; we report their averages
and standard deviations. For each of the requirements of the
fingerprinting system defined in Section II, we select fitting
evaluation measures.

A. Effectiveness

Vote Error Rate (VER): from the slight shifts in the
distributions due to the embedded fingerprint, the bits might,
in some iterations, be extracted wrongly. Although the voting
system is in place to overcome the influence of up to a certain
number of these wrong votes, we quantify their occurrence
under different parameter settings. VER is the ratio between
the count of wrong votes across all fingerprint bits and the
total number of votes.

Detection Confidence (DC): the bit-wise match rate be-
tween the detected and the correct fingerprint. Compared to the
VER, DC depicts more closely the actual extraction success
for the fingerprint. Normally, DC = 100% is expected to
identify the data recipient, i.e. all bits are correctly extracted.
However, a high percentage associated with a fingerprint of
one recipient might be considered a sufficient indicator to

2Note: x = y ⊕ z =⇒ y = x⊕ z

identify the correct recipient, especially if the false accusation
confidence (cf. the bullet point below) is low.

False Accusation Confidence (FAC): a bit-wise match
between the detected fingerprint and the fingerprints of the
other recipients (fingerprints not embedded into the observed
data copy). In the correct setting, the expected value of this
measure is around 50% for random guessing the bit-sequence
and always significantly lower than the DC.

B. Fidelity

We can group them into (i) dataset statistics, which measure
the overall dataset change, (ii) univariate statistics, which
measure attribute statistics and (iii) multivariate statistics,
which measure the correlation between data attributes.

1) Dataset statistics: Data accuracy3 Acc(R′)rel = 1 −
(R⊕R′)/|R| is the absolute or relative number of data values
that remained unchanged in the presence of a fingerprint. The
lower limit can be expressed through γ:

Acc(R′)rel ⪆ 1− 1

νγ
(9)

i.e. accuracy is bounded by the number of values selected for
marking throughout the embedding process.

2) Univariate statistics: For qualitative evaluation, we vi-
sually compare histograms of fingerprinted and original data.
To quantify the similarities between the attribute distributions
of original and fingerprinted data, we use Hellinger distance
and Kullback-Leibler (KL) Divergence.

3) Multivariate and correlation statistics: Qualitative anal-
ysis is based on pairwise histogram comparison between the
original and fingerprinted data. We quantify the changes in
data correlations using correlation measurements appropriate
for data types involved: Pearson’s correlation coefficient
for linear correlation between two ratio variables, Cramer’s
V for association between two nominal variables and Eta-
squared η2 for the correlation between a categorical and a
ratio variable.

C. Utility

We adopted a predictive modelling setup for the utility
evaluation of fingerprinted data. Specifically, we assessed how
the presence of fingerprints affects the performance of machine
learning models on a classification task. Utility is quantified
by measuring the change in classification accuracy between
models trained on the original dataset and those trained on
its fingerprinted counterpart. We employ four commonly used
classifiers representing a diverse range of learning paradigms:
Logistic Regression, Multi-layer Perceptron (MLP), Random
Forest, and XGBoost and use a consistent hyperparameter
configuration obtained by optimising the performance on the
original (non-fingerprinted) data4. For each classifier, we per-

3Not to be confused with classification accuracy from utility analysis.
4Logistic Regression: {solver: newton-cg, C: 10}, MLP: {solver: adam,

learning rate: invscaling, hidden layer sizes: (50,), alpha: 0.001, activation:
relu}, Random Forest: {n estimators: 120, criterion: entropy}, XGBoost:
{subsample: 0.5, reg alpha: 0.01, n estimators: 160, max depth: 10, learn-
ing rate: 0.009, colsample bytree: 0.9}

7



formed 10-fold cross-validation to ensure the robustness and
generalizability of the performance estimates.

D. Robustness

1) Single-user attacks: Fingerprints may be subject to ma-
licious attacks and benign updates on the dataset, as identified
e.g. by Rani and Halder [1]. Several attacks, such as taking
horizontal and vertical subsets and value-flipping, implement
the types of modifications that may affect fingerprint extrac-
tion:

• Horizontal subsetting attack: removing a percentage of
data records

• Vertical subsetting attack: removing a percentage of data
columns

• Flipping attack: flipping a percentage of data values, e.g.
to another value from the attribute domain.

Besides randomised approaches to these modifications, we
take the perspective of a strong and knowledgeable attacker
and tailor the modifications to our specific fingerprinting
scheme. We recognise that the heuristic nature of the embed-
ding algorithm, which lies in marking values according to their
similarity, may open a potential attack vector. To follow the
public-system requirement [3], we assume that the attacker
knows the algorithmic steps of the embedding and extraction
processes, as well as fingerprint parameter selection guidelines
(hence, may guess or closely approximate the actual values),
i.e. white-box access. To that end, we propose a cluster-
flipping attack.

Cluster-flipping attack is an attack tailored for our scheme
where the attacker uses the white-box capabilities. The attacker
runs an embedding algorithm on their fingerprinted copy (the
available resource similar to the original data) using their own
secret key. They use this process as a proxy to find the most
influential records in neighbourhood construction. Frequency
of a single record in all caluated neighbourhoods indicates its
higher influence on the overall fingerprinting process, hence
we hypothesise that disrupting those frequent records has a
higher influence on the resulting fingerprint detection. The at-
tacker then selects a percentage of the most influential records
and performs a flipping attack within this group. We explore
both the case when the attacker closely approximates the
fingerprinting parameters, and when the attacker uses the exact
parameters used for the original embedding. Note that the
attacker’s embedding simulation is the approximation of the
actual embedding: the embedding cannot be fully replicated
without access to the owner’s key K, which is kept secret.

To measure the robustness of a fingerprint against attacks,
we need to consider both the success of the attacker removing
the fingerprint and the associated costs the modifications incur,
e.g. by measuring the remaining data fidelity. For measuring
the attack success, we utilise the Detection Confidence (DC),
i.e. the bit-wise match rate between the detected and correct
fingerprint as introduced in Section VI-A. For the Attacker’s
loss or costs, we measure the reduction of the fidelity (cf.
Section VI-B).

Fig. 4: Effectiveness NCorr-FP: Vote Error Rate (VER) on
Adult Census dataset for L=128 and N=20.

2) Collusion attacks: A collusion attack is carried out by
the cooperation of two or more recipients of data copies, each
of which comprises individual fingerprints. Collusion attacks
can be differentiated based on the aggregation strategy of the
collaborators, including, but not limited to:

1) Averaging attack: different dataset copies are averaged
to smooth out differences and remove unique identifiers

2) Substitution attack: common values across multiple
copies are retained while the differences are substituted
by a new value from an attribute domain that is con-
tained in none of the colluders’ data (if the domain is
large enough)

Collusion attacks may be extended by additionally flipping
some of the agreeing values to increase the chance of coinci-
dental deletion of fingerprint bit embeddings (substitution and
flip).

The goal of our collusion analysis is to assess the ability
of the fingerprinting system to reliably identify guilty parties
while minimising the risk of falsely accusing innocent recipi-
ents. To quantify robustness against collusion, we adopt three
evaluation measures that jointly capture the effectiveness and
reliability of the fingerprint detection process:

• Precision: the number of correctly identified colluders
divided by the total number of accusations. This rate is
1.0 when all accused recipients are indeed the colluders.

• False Accusation Rate (false discovery rate): the number
of innocent recipients accused relative to the total accu-
sations (i.e. 1-precision). This measure is ideally 0 when
there are no innocent recipients accused. Note that this is
different from the effectiveness measure FAC described
in Section VI-A.

• Recall: the number of colluders accused relative to the
total number of colluding partners. Recall is ideally 1.0
when all colluders are identified.

The ideal outcome is high precision and high recall, mean-
ing that all actual colluders are correctly identified, and no
innocent recipients are accused.
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Fig. 5: Effectiveness of NCorr-FP : Detection confidence DC
(solid lines) and false accusation (FAC) for Adult Census data;
k=300 and N=20. FAC is shown for two types of fingerprint
codes, hash (dotted lines) and Tardos (dashed lines).

VII. EVALUATION RESULTS

A. Effectiveness

We empirically evaluate the Vote Error Rate (VER) for
different neighbourhood sizes k, as minimising VER directly
impacts the fingerprint detection performance. Although VER
generally increases for more marks embedded, it remains
≈ 0.013 in the worst case, as shown in Figure 4. VER
also increases for larger k, indicating stable local distributions
(distribution inside the neighbourhood) after the fingerprinting.
The observed low VER does not impact the detectability of
the fingerprint, which is at 100%, as shown in Figure 5 for
k = 300.

In an ideal scenario, the DC of the correct recipient is 1.0
(i.e. perfect bit-wise matching of a detected fingerprint and
the fingerprint of the correct recipient), and the DC of all
other recipients (i.e. false accusation rate, FAC) is around
0.5, in line with random guessing of the bit-sequence. In
Figure 5 we can see that the ≈ 0.50 false accusation holds
for hash fingerprints. However, T-codes are designed to have
an intentionally larger bit-overlap for detection of colluders.
Therefore, the false accusation rate for T-codes remains stable
at around 0.75. This is an important insight for selecting a
threshold for the detection confidence when using T-codes.

B. Fidelity

Data accuracy A is lower-bounded by Equation (9). Still,
A is, in practice, higher due to the sampling procedure we
conduct during marking, which allows the value to stay the
same. This is shown in Table II. NCorr-FP also results in
higher A than the baseline fingerprinting.

The histograms of data attributes stay well-preserved as we
demonstrate in Figure 6, even towards large embedding ratios
of 0.5. To quantify these albeit minor distribution shifts, the
Hellinger distance Table III and KL divergence Table IV are
obtained per attribute and aggregated for the entire dataset.
We can observe very small values for the Hellinger distance,
suggesting minimal shifts in attribute distributions. As ex-
pected, smaller distribution shifts are observed for smaller

TABLE II: Fidelity: data accuracy A of Adult Census dataset.
Greater accuracy means more similarity to the original data.
The first row is the theoretical lower bound, followed by the
baseline random fingerprinting and NCorrFP.

method γ = 32 γ = 16 γ = 8 γ = 4 γ = 2

1/νγ 0.9979 0.9958 0.9917 0.9833 0.9667
baseline 0.9986 0.9971 0.9942 0.9885 0.9770
NCorrFP 0.9988 0.9976 0.9952 0.9904 0.9808

(a) Emb. ratio 1/γ = 0.03 (b) Emb. ratio 1/γ = 0.5

Fig. 6: NCorr-FP fidelity: Histogram difference for 2 repre-
sentative attributes of the Adult census dataset. Age is binned
in 20 bins. The original histogram is marked in blue, while
the histogram of fingerprinted data is outlined in red.

embedding ratios and smaller k. Compared to the baseline
fingerprint based on randomised embedding, numerical fea-
tures consistently show a larger distribution shift for NCorr-FP.
This is an expected behaviour by design: the random technique
modifies the values by LSB flipping, which results in minor
absolute value changes, whereas our similarity-based sampling
might result in new values significantly different from the
original – but fitting the context better. The distribution of
categorical values is, on the other hand, preserved much better
via NCorr-FP. The same trend follows for KL divergence,
where increasing k has a slightly lower impact.

We further specifically analyse the variables’ interactions to
measure the effects on fidelity that do not occur in univariate
statistics. One of the core goals of NCorr-FP is avoiding
uncommon value combinations, which is particularly useful
when dealing with highly correlated (categorical) data, though
it can frequently occur for numerical data as well. We can
observe this from the pairwise histograms in the Adult Census
dataset, for instance, marital-status/relationship in Figure 7

We also look at the correlations of the attributes5. Figure 8
demonstrates the improvement in preserving the correlations
by using NCorr embedding (two bottom rows) compared the
the baseline (top row). Binary attributes such as sex represent
a challenge in preserving the correlations due to their limited
domains. This is why, in some cases, the correlation with these

5In the correlation maps of attributes, we use the metric appropriate for
the attribute types involved, either Pearson’s coefficient, Cramer’s V or η2.
See: Section VI-B: Multivariate and correlation statistics.
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Fig. 7: Fidelity: Pairwise histogram for attributes marital-status/relationship. NCorr-FP preserves the histograms of the original
data better than the random embedding. Additionally, adjusting (decreasing) the neighbourhood size k of NCorr-FP diminishes
the occurrence of the unlikely value combinations, for a fixed embedding ratio 1/γ = 0.25.

Fig. 8: Attribute correlation change3 between the original and fingerprinted Adult Census data. The subset of attributes is used
for brevity. The top row represents the baseline fingerprinting and the other NCorr scheme with k=300 and k=450, respectively.
Darker shades represent more change in the attribute correlations.

TABLE III: Fidelity: Hellinger distance between the attributes
of the original and corresponding attributes of a fingerprinted
dataset. The value range is [0,1] where 0 indicates the identical
distributions and 1 completely disjoint distributions.

1/γ k age capital-gain capital-loss education m-status race country agg. mean

0.03 base 0.0001 5× 10−7 8× 10−6 0.0018 0.0044 0.0029 0.0950 0.0286
300 0.0005 0.0101 0.0048 0.0003 0.0016 0.0007 0.0013 0.0019
450 0.0004 0.0099 0.0051 0.0003 0.0047 0.0007 0.0014 0.0021

0.06 base 0.0002 8× 10−7 2× 10−5 0.0035 0.0079 0.0055 0.0952 0.0446
300 0.0007 0.0238 0.0087 0.0003 0.0042 0.0015 0.0024 0.0037
450 0.0008 0.0215 0.0088 0.0004 0.0089 0.0015 0.0024 0.0040

0.13 base 0.0003 2× 10−6 3× 10−5 0.0066 0.0147 0.0104 0.0962 0.0717
300 0.0011 0.0466 0.0181 0.0006 0.0098 0.0029 0.0043 0.0063
450 0.0013 0.0459 0.0189 0.0010 0.0152 0.0029 0.0042 0.0070

0.25 base 0.0004 3× 10−6 6× 10−5 0.0126 0.0258 0.0202 0.0991 0.1126
300 0.0015 0.0877 0.0378 0.0007 0.0150 0.0057 0.0085 0.0125
450 0.0017 0.0857 0.0390 0.0018 0.0242 0.0057 0.0084 0.0134

0.50 base 0.0006 6× 10−6 0.0001 0.0234 0.0441 0.0377 0.1071 0.1968
300 0.0020 0.1412 0.0731 0.0010 0.0243 0.0122 0.0170 0.0211
450 0.0022 0.1363 0.0757 0.0030 0.0402 0.0123 0.0167 0.0225

attributes is more disrupted than the others - an example is the
age/sex correlation. Nevertheless, even the highest correlation
shifts are < 10% (note that this is the relative correlation
change).

C. Utility

Figure 9 shows that introducing fingerprints leads to a
gradual degradation in predictive performance. However, the
drop in accuracy remains relatively small, indicating that the

TABLE IV: Fidelity: KL divergence of fingerprinted data
attributes from the original reference data attributes. Value
range is [0, ∞) where 0 indicates identical distributions.

1/γ k age capital-loss education m-status race country agg. mean

0.03 base 9.7× 10−8 3.1× 10−10 1.3× 10−5 7.7× 10−5 3.4× 10−5 0.3226 0.0894
300 8.8× 10−7 9.1× 10−5 3.3× 10−7 1.0× 10−5 1.8× 10−6 6.7× 10−6 2.6× 10−5

450 7.9× 10−7 1.0× 10−4 4.5× 10−7 8.3× 10−5 1.8× 10−6 8.2× 10−6 2.7× 10−5

0.06 base 1.9× 10−7 1.2× 10−9 5.0× 10−5 2.3× 10−4 1.2× 10−4 0.3228 0.1287
300 2.1× 10−6 3.0× 10−4 3.3× 10−7 6.5× 10−5 9.0× 10−6 2.2× 10−5 1.3× 10−4

450 2.6× 10−6 3.1× 10−4 7.3× 10−7 2.8× 10−4 9.0× 10−6 2.3× 10−5 1.4× 10−4

0.13 base 4.2× 10−7 4.2× 10−9 1.7× 10−4 7.5× 10−4 4.3× 10−4 0.3234 0.2391
300 5.2× 10−6 1.3× 10−3 1.3× 10−6 3.3× 10−4 3.3× 10−5 7.5× 10−5 4.4× 10−4

450 6.6× 10−6 1.4× 10−3 4.1× 10−6 7.7× 10−4 3.3× 10−5 7.1× 10−5 4.8× 10−4

0.25 base 8.2× 10−7 1.6× 10−8 6.0× 10−4 2.2× 10−3 1.5× 10−3 0.3254 0.4654
300 8.5× 10−6 5.5× 10−3 2.0× 10−6 7.5× 10−4 1.3× 10−4 2.9× 10−4 2.0× 10−3

450 1.1× 10−5 5.8× 10−3 1.4× 10−5 1.8× 10−3 1.3× 10−4 2.9× 10−4 2.1× 10−3

0.50 base 1.6× 10−6 6.1× 10−8 2.0× 10−3 6.0× 10−3 5.2× 10−3 0.3310 1.0058
300 1.6× 10−5 1.9× 10−2 3.8× 10−6 1.8× 10−3 5.9× 10−4 1.1× 10−3 5.7× 10−3

450 2.0× 10−5 2.1× 10−2 3.6× 10−5 4.7× 10−3 5.9× 10−4 1.1× 10−3 6.0× 10−3

utility of the data is largely preserved. Among the four classi-
fiers, XGBoost consistently achieved the highest accuracy and
decreased in performance at most by 0.016 (1.6%). Logistic
Regression shows the same magnitude of reduction, however
the absolute accuracy score is significantly lower compared
to XGBoost. The greatest robustness to fingerprinting was
demonstrated by Random Forest, for which the classification
accuracy decreased at most 0.008 (0.8%). MLP also showed
strong resilience, with accuracy reductions around 1%, com-
parable to Random Forest. Interestingly, the results are largely
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Fig. 9: Utility of the fingerprinted data: ML classification
accuracy via 4 classifiers. An embedding ratio of 0.0 represents
the original dataset.

(a) Horizontal (b) Vertical

Fig. 10: Robustness of NCorr-FP: DC under subsetting attacks

consistent across the two tested neighborhood sizes (k = 300
and k = 450), suggesting that the embedding strength, rather
than the neighborhood size, has a more pronounced effect on
utility.

Overall, the fingerprinting method maintains high data util-
ity for most practical use cases, exhibiting stability in exper-
iments, evident from low standard deviations in classification
accuracy.

D. Robustness

1) Single-user attacks: Horizontal (Figure 10a) and ver-
tical subsetting (Figure 10b) can disrupt the confidence of
fingerprint extraction depending on the fingerprint parameter
choice. While the neighbourhood size k shows little influence
on robustness against these attacks, the embedding ratio 1/γ
plays a more significant role; increasing it leads to more robust
fingerprints. Taking into account the length of the fingerprints
used in these experiments, L = 128, we can obtain the
fingerprint-bit redundancies ω that are essential to robustness.
For instance, with ω = 127, the fingerprint is extracted with
perfect confidence even from 20% of remaining data samples
and 30% remaining data columns.

Table V summarises the cost of the horizontal attack ac-
cording to the fidelity measures Hellinger distance and KL
divergence in worst-case scenarios for the defender: lower
range of embedding ratio (weaker fingerprints) and upper
range of attack strength (stronger attacks). Empirical results
show that all of the most disruptive attacks (those that decrease

TABLE V: Horizontal attack cost: fidelity loss for the attacker
in horizontal subsetting. We show k = 300, less robust
scenarios with 1/γ ∈ [0.03, 0.06, 0.13] and stronger attacks
of > 50% for brevity. Attacks that reduce DC to < 95% are
bolded. Fidelity of an unchanged fingerprinted dataset R′ is a
baseline for comparison.

1/γ attack strength: 0.5 0.6 0.7 0.8 0.9 fidelity R′

0.03 Hellinger dist. 0.0183 0.0234 0.0296 0.0379 0.0528 0.0019
KL divergence 0.0031 0.0051 0.0081 0.0131 0.0252 2.6× 10−5

0.06 Hellinger dist. 0.0194 0.0244 0.0306 0.0389 0.0538 0.0037
KL divergence 0.0036 0.0057 0.0088 0.0139 0.0262 1.3× 10−4

0.13 Hellinger dist. 0.0216 0.0265 0.0326 0.0407 0.0555 0.0063
KL divergence 0.0047 0.0070 0.0103 0.0156 0.0283 4.4× 10−4

TABLE VI: Flipping attack cost: fidelity loss for the attacker
in flipping attack. We show k = 300, less robust scenarios
with 1/γ ∈ [0.03, 0.06, 0.13] and attacks of strength up to
50% for brevity. Attacks that reduce DC to < 95% are bolded.
Fidelity of an unchanged fingerprinted dataset R′ is a baseline
for comparison.

1/γ attack strength: 0.1 0.2 0.3 0.4 0.5 fidelity R′

0.03 Hellinger dist. 0.0849 0.1390 0.1842 0.2249 0.2634 0.0019
KL divergence 0.0370 0.0893 0.1491 0.2173 0.2956 2.6× 10−5

0.06 Hellinger dist. 0.0854 0.1394 0.1845 0.2252 0.2635 0.0037
KL divergence 0.0375 0.0899 0.1498 0.2178 0.2960 1.3× 10−4

0.13 Hellinger dist. 0.0867 0.1403 0.1851 0.2256 0.2639 0.0063
KL divergence 0.0388 0.0912 0.1510 0.2190 0.2970 4.4× 10−4

the extraction confidence below 95%), marked in bold, are
also reducing fidelity more than it has been reduced due to
the fingerprint embedding (c.f. last column Fidelity R′). In
the case of KL divergence, the difference in fidelity is a few
orders of magnitude. Hence, the attacker bears the cost of
additional fidelity loss, which might serve as a deterrent for
performing more severe attacks. This attacker’s cost further
reinforces the robustness of the scheme, as undermining the
fingerprint comes at a higher fidelity loss than embedding it.

The results for three types of flipping attacks are compared
in Figure 11: (i) randomised value flipping, and flipping of
values only within the subset (cluster) of the most influential
records, selected (ii) with approximated or (iii) exact fin-
gerprint parameter setting. Flipping data values reduces the
confidence of fingerprint detection at a higher rate compared
to the subsetting attacks; however, increasing the embedding
ratio leads to relatively robust settings. For instance, with an
embedding ratio 1/γ = 0.13, the fingerprint has a > 95%
detection confidence (DC) for up to 25% of flipped data
values, while for a higher 1/γ = 0.5 the robustness with
DC > 95% is preserved for up to 40% of flipped values. The
flipping attack cost is shown in Table VI. For the particular
example above with 1/γ = 0.13 and attack strength of
> 25% (i.e. the attack that successfully reduces the detec-
tion confidence to below 95% – in Table VI observing the
attack strength = 0.3), the fidelity cost is two (Hellinger)
and three (KL divergence) orders of magnitude higher than
that of embedding the fingerprint in the data. This general
trend follows for all other settings in Table VI. Particularly
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(a) Random flipping (b) Cluster flipping (c) Cluster flipping with exact params

Fig. 11: Robustness of NCorr-FP: Detection Confidence (DC) under flipping attacks.

TABLE VII: Collusion attacks via three strategies: (i) averaging, (ii) substitution and (iii) substitution + flip. We use N=20
and Tardos accusation mechanism with Z1. Bolded are the settings with perfect precision = 1.0.

c L Average Substitution Substitution+Flip
precision ↑ FAR ↓ recall ↑ precision ↑ FAR ↓ recall ↑ precision ↑ FAR ↓ recall ↑

2 128 1.00±0.00 0.00±0.00 1.00±0.00 0.90±0.16 0.10±0.16 1.00±0.00 0.97±0.11 0.03±0.11 1.00±0.00
2 256 1.00±0.00 0.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 1.00±0.00
2 512 1.00±0.00 0.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 1.00±0.00
2 1024 1.00±0.00 0.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 1.00±0.00
3 128 0.89±0.14 0.11±0.14 0.87±0.17 0.83±0.22 0.17±0.22 0.83±0.18 0.85±0.21 0.15±0.21 0.90±0.16
3 256 0.98±0.08 0.03±0.08 1.00±0.00 1.00±0.00 0.00±0.00 1.00±0.00 0.95±0.11 0.05±0.11 1.00±0.00
3 512 1.00±0.00 0.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 1.00±0.00
3 1024 1.00±0.00 0.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 1.00±0.00
5 128 0.79±0.26 0.21±0.26 0.48±0.27 0.90±0.16 0.10±0.16 0.62±0.20 0.82±0.17 0.18±0.17 0.58±0.18
5 256 0.96±0.10 0.04±0.10 0.78±0.18 0.83±0.19 0.18±0.19 0.58±0.20 0.93±0.11 0.07±0.11 0.68±0.17
5 512 0.98±0.05 0.02±0.05 0.82±0.15 1.00±0.00 0.00±0.00 0.86±0.13 0.98±0.06 0.02±0.06 0.76±0.13
5 1024 1.00±0.00 0.00±0.00 0.82±0.18 0.93±0.11 0.07±0.11 0.76±0.13 0.94±0.10 0.06±0.10 0.72±0.14

10 128 0.82±0.24 0.18±0.24 0.29±0.12 0.73±0.33 0.28±0.33 0.23±0.12 0.71±0.24 0.30±0.24 0.22±0.11
10 256 0.88±0.16 0.12±0.16 0.33±0.07 0.72±0.35 0.28±0.35 0.27±0.13 0.80±0.25 0.20±0.25 0.26±0.07
10 512 0.95±0.11 0.05±0.11 0.30±0.08 0.88±0.16 0.13±0.16 0.28±0.06 0.90±0.16 0.10±0.16 0.25±0.05
10 1024 0.98±0.08 0.03±0.08 0.32±0.08 0.89±0.17 0.11±0.17 0.27±0.08 0.87±0.17 0.13±0.17 0.31±0.07

relevant are the attack settings (including the example) where
the attacker reduces DC to some degree, e.g. 95%, however
also obtains a high fidelity loss (those are bolded in Table VI).
Hence, a successful flipping attack always comes at a high
fidelity cost.

The cluster flipping attack (Figures 11b and 11c) is outper-
formed by the randomised value flipping attack (Figure 11a).
Although the malicious modifications are directed towards
the most influential records in the neighbourhood calculation
during the detection process, the distributions in these neigh-
bourhoods still are sufficiently stable not to get disrupted by
these changes. By accumulating the modifications towards spe-
cific (and overall fewer) records, the adaptive attack loses the
opportunity to modify and likely remove fingerprint bits from
other records. Hence, distributing the malicious modifications
randomly and uniformly across the dataset proves to be a more
successful strategy for removing the fingerprint.

2) Collusion attacks: Table VII shows the resulting analysis
on collusion resolution using Tardos codes, cf. Section II, with
accusation threshold Z1 (Equation (2)). It can be observed that
the length of the fingerprint is a crucial requirement for in-
creasing confidence in detecting larger collusions. Shorter 128-
bit fingerprints might be sufficient for settings with a lower

number of recipients (hence lower potential colluders). For
larger collusions, 1024-bit fingerprints still give high precision
rates for all attacks, hence there is a high confidence that at
least one colluder will be detected. It is relevant to note that in
our experiments, the highest-scoring accusation was always a
true colluder (indicated by a precision score of 1.0). However,
we can observe significantly lower recall scores for c > 2,
indicating that not all colluders are successfully identified.
Our empirical results across various collusion strategies show
that a 256-bit fingerprint is sufficient to reliably identify two
colluders. However, as the number of colluders increases, the
required fingerprint length grows rapidly, with even 1024-
bit fingerprints showing detection errors when attempting to
identify just five colluders. Despite this, T-codes remain a
viable solution for collusion detection, offering reasonable
precision under some uncertainty.

E. Summary & Guidelines

We summarize the influence of core fingerprinting param-
eters on the four system requirements in Table VIII. The
trends are based on empirical observations across multiple
experiments. Arrows indicate whether a parameter should be
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increased (↑) or decreased (↓) to improve a given requirement;
“–” denotes no significant observed effect.

TABLE VIII: Effect of fingerprinting parameters on system
requirements.

param EFFECTIVENESS FIDELITY UTILITY ROBUSTNESS

k ↓ ↓ - ↑
1/γ ↑ ↓ ↓ ↑
L ↓DC ↑FAC - - ↓S ↑C
ω ↑ - - ↑

The redundancy factor ω captures the relationship between
fingerprint length L and embedding ratio 1/γ, and is the
main determinant of detection performance. The results on
effectiveness in Figure 5 show that fingerprints with greater
length require a higher embedding ratio 1/γ to achieve perfect
detection confidence DC = 100%. This indicates that neither
L nor 1/γ alone governs effectiveness; rather, their combi-
nation, as captured by ω = n/Lγ, determines whether the
fingerprint can be reliably detected. Empirically, we find that
a minimum redundancy of ω ≥ 16 is required to consistently
achieve DC = 100%. While this is a practical lower bound for
effectiveness, higher redundancy values are recommended to
ensure robustness, particularly under adversarial conditions, as
indicated in Table VIII. To increase ω, one can either decrease
L or increase 1/γ.

The parameter L has a dual effect: reducing L decreases
redundancy ω, which improves DC and robustness against
single-user attacks (↓S), while increasing L reduces false
accusation confidence (FAC) and improves collusion resilience
(↑C). Therefore, the design goal is to select the largest possible
L such that the redundancy constraint ω ≥ 16 is still satisfied.
For example, in the Adult Census dataset (n = 32,560), this
constraint allows a maximum fingerprint length of L = 2035
(via choosing maximum 1/γ = 1). If L needs to be reduced
for better robustness against single-user attacks, it can be
upper-bounded by Equation (1) using the expected number
of recipients N , number of expected colluding partners c and
a small error value ϵ << 0.01.

Increasing 1/γ has a negative effect on fidelity and utility,
however insignificant. In our experiments, the highest observed
fidelity degradation was Hellinger distance of 0.0225 and KL
divergence of 6× 10−3, and the maximum decrease in utility
was a drop of 1.6% in classification accuracy, indicating that
even high embedding ratios are acceptable in practice. Hence,
the recommendation is to choose 1/γ from the higher range,
close to the maximum, 1.0, leaving an opportunity to maximise
L. On the other hand, reducing 1/γ improves fidelity and
utility but lowers robustness at the rate shown in Figures 10
and 11 along the color-axis.

The neighbourhood size k controls the local context for den-
sity estimation and correlation preservation. We observe that
smaller k improves effectiveness and fidelity by focusing on
highly similar records, while larger k improves robustness by
stabilising density estimates against data shifts. The negative
impact of smaller k on robustness is minor and can typically

be offset by tuning ω. Based on experiments, we recommend
setting k ≤ 1% of the dataset size.

VIII. CONCLUSION

In this work, we introduced NCorr-FP, a novel method
for fingerprinting structured data that enables ownership ver-
ification and tracing data copies. Our method preserves the
correlations and value combinations present in the original
data. Empirical results show that fingerprints are virtually
imperceptible, with Hellinger distances below 0.023 and KL
divergences below 6 × 10−3, even at high embedding ratios.
Hence, the fingerprints exhibit better imperceptibility com-
pared to the prior works. The method demonstrates strong
robustness against a wide range of data-modifying attacks,
including those launched by informed adversaries targeting
influential records.

We further discussed the integration of a critical component
into our fingerprinting system, the probabilistic collusion res-
olution. Evaluated on a mixed-type, open-source dataset, our
system maintains high effectiveness and utility. The precision
of collusion resolution reaches ≥ 0.88 when up to 10 recip-
ients are colluding in various data-merging strategies. This
is achieved for a fingerprint length that, at the same time,
shows high resilience against single-user attacks. Collusion
success can be improved even further with longer fingerprints,
however at the cost of reducing robustness. To support the
practical applicability of the system, we provided a summary
of the main fingerprinting parameters and their trade-offs with
respect to effectiveness, fidelity, utility, and robustness. In
future work, our goal is to develop guidelines tailored to
specific dataset properties, such as data type distributions,
correlation structures, and application contexts.

REFERENCES

[1] S. Rani and R. Halder, “Comparative Analysis of Relational Database
Watermarking Techniques: An Empirical Study,” IEEE Access, vol. 10,
pp. 27970–27989, 2022.

[2] G. Tardos, “Optimal probabilistic fingerprint codes,” Journal of the
ACM, vol. 55, pp. 10:1–10:24, May 2008.

[3] R. Halder, U. C. F. Venezia, and A. Cortesi, “Watermarking Techniques
for Relational Databases: Survey, Classification and Comparison,” Jour-
nal of Universal Computer Science, vol. 16, no. 21, pp. 3164–3190,
2010.

[4] M. Barni, P. Campisi, E. J. Delp, G. Doërr, J. Fridrich, N. Memon,
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