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I. INTRODUCTION

Recent advances in AI are transforming AI’s ubiquitous
presence in our world from that of standalone AI-applications
into deeply integrated AI-agents. These changes have been
driven by agents’ increasing capability to autonomously make
decisions and initiate actions, using existing applications;
whether those applications are AI-based or not. This evolution
enables unprecedented levels of AI integration, with agents
now able to take actions on behalf of systems and users -
including, in some cases, the powerful ability for the AI to
write and execute scripts as it deems necessary [5]. With
AI systems now able to autonomously execute code, interact
with external systems, and operate without human oversight,
traditional security approaches fall short.

This paper introduces an asset-centric methodology for
threat modeling AI systems that addresses the unique security
challenges posed by integrated AI agents. Unlike existing
top-down frameworks that analyze individual attacks within
specific product contexts, our bottom-up approach enables
defenders to systematically identify how vulnerabilities—both
conventional and AI-specific—impact critical AI assets across
distributed infrastructures used to develop and deploy these
agents. This methodology allows security teams to: (1) per-
form comprehensive analysis that communicates effectively
across technical domains, (2) quantify security assumptions
about third-party AI components without requiring visibility
into their implementation, and (3) holistically identify AI-
based vulnerabilities relevant to their specific product context.
This approach is particularly relevant for securing agentic sys-
tems with complex autonomous capabilities. By focusing on
assets rather than attacks, our approach scales with the rapidly
evolving threat landscape while accommodating increasingly
complex and distributed AI development pipelines.

A. AI-based Vulnerabilities
Integrating AI introduces vulnerabilities into development

and deployment pipelines [4], [14], [26], [35]. These can be
separated into two types:

1) Conventional hardware and software vulnerabilities.
These vulnerabilities are introduced by the hardware and
software scaffolding necessary to build, run, and interact
with the AI [3], [15].

2) AI-based vulnerabilities. These vulnerabilities occur
when an adversary manipulates an AI to compromise

product functionality or user data [16], to steal the AI
itself [27], [33], or to steal the AI’s training data [11],
[13].

While distinct in nature, these vulnerability types are often
interconnected. Conventional vulnerabilities can serve as entry
points that enable AI-based attacks, while AI-based vulnerabil-
ities can amplify the impact of conventional security breaches.
For example, a conventional code injection vulnerability might
allow an attacker to manipulate model inputs, enabling an
AI-specific prompt injection attack which affects downstream
users and agents.

Today’s security processes are designed to protect de-
velopment and deployment pipelines from the first type of
vulnerability. These processes must be augmented, however,
to help defenders identify and reason about the second type;
the ways in which adversaries can influence or manipulate an
integrated AI.

Adversaries can exploit both Adversarial AI [35] and con-
ventional hardware and software techniques [12], [29], [36]
to compromise an AI. It’s critical that defenders consider
both techniques in their security analysis. That is, beyond
considering the novel Adversarial AI techniques, defenders
must reason about the ways in which conventional vulnera-
bilities can be exploited to influence AI. To understand how
a vulnerability can be exploited to affect an AI, however,
defenders must first understand what components adversaries
seek to influence. The components – often termed Assets
within threat models – which adversaries seek to manipulate
inherently stem from AI’s computing paradigms.

AI represents a shift in our computing paradigms towards
data driven compute. Under traditional compute, a developer
would create a program – i.e. logic rules – to generate a desired
output from unseen input data. AI’s computing paradigm
instead analyzes massive amounts of data to infer – i.e. learn
or create – logic rules. These inferred rules are then used
to generate a desired output when applied to unseen input
data. The AI’s underlying decision making logic is, therefore,
algorithmically inferred rather than explicitly encoded [9],
[22]. This data driven nature is why AI’s decisions are
often difficult to explain, and why AI is difficult to validate.
Evasion, or jailbreak, attacks are an example of adversaries
finding and exploiting corner cases or incorrectly correlated
features within the AI’s inferred logic; i.e. the model. To
compromise an AI’s decision, however, adversaries are not
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constrained to direct attacks on the model [8], [17], [23], [28].
Adversaries are also able to introduce vulnerabilities into an
AI by affecting its training data, training process or algorithm,
and validation process or goals. To augment their security
policies against emerging AI-based vulnerabilities, defenders
must reason about the many ways in which adversaries can
affect their AI.

B. Threat Modeling Challenges

Threat modeling for AI refers to the process of performing
security analysis to identify vulnerabilities which could be
exploited to impact the AI. Defenders face three key chal-
lenges when threat modeling AI’s development and deploy-
ment pipelines.

Challenge 1. An AI’s implementation and dependencies
are increasingly distributed across many disjoint, often cloud-
based, infrastructure contexts. Each with a unique hardware
and software stack. Defenders must consider vulnerabilities
within each context.

Challenge 2. Understanding all potential impacts of a
vulnerability requires defenders to reason about how that
vulnerability can be combined, i.e. chained, with other vul-
nerabilities. To accomplish this, however, defenders must
reason holistically. Those other vulnerabilities may exist at
different levels of the stack – and within different infrastructure
contexts.

Challenge 3. It is increasingly common for defenders to
have little to no visibility into large portions of an AI’s
training or deployment infrastructures. Creating an AI "from
scratch" is an incredibly expensive process so developers will
often consume AI components – such as datasets or pre-
trained models. However, defenders currently lack a process
for quantifying the risks they inherit by integrating those
components.

Various frameworks have been proposed to facilitate top-
down security analysis for AI. Unfortunately, a top-down
perspective is not well suited for addressing these challenges.

C. The case for a bottom-up perspective

Existing frameworks leverage a top-down perspective to
individually map AI attacks within the scope of a specific
product. MITRE’s ATLAS, for example, broadly describes the
steps an adversary takes to perform an attack – i.e. within the
attack’s lifecycle – including common techniques for achieving
each step. As depicted on the top half of Figure 1, this
perspective allows defenders to reason about a specific attack
by contextualizing each step in the attack’s roadmap down onto
their product. The defender identifies vulnerabilities which, if
exploited, would allow an adversary to perform that step. If
all attack steps can be satisfied, the attack is deemed to be
in scope for the product. To contextualize a step, however,
defenders must have enough visibility into every context of
the development and deployment pipelines so as to reason
about the vulnerabilities within them. Reasoning about an
attack – or even a single step – also requires reanalyzing the

Fig. 1. Existing frameworks enable a top-down approach (top) which allows
defenders to reason about a specific attack by contextualizing it within their
product. This work advocates for a bottom-up approach (bottom) which allows
defenders to analyze their product once, from an asset-centric perspective, and
reuse that analysis to contextualize multiple attacks.

product. These limitations hinder defenders from applying top-
down approaches across increasingly complex AI pipelines,
and prevent these approaches from scaling with a quickly
growing and evolving attack space.

This work describes a methodology for bottom-up analysis,
driven by an Asset-Centric approach. As depicted on the
bottom half of Figure 1, our methodology calls for defenders
to augment their existing threat models and security analysis
processes to identify how each vulnerability can impact AI
assets. That is, defenders will identify the manner and extent
– specific to the context of their product – to which an
adversary can compromise those assets. They do this for every
vulnerability identified in their threat model. Inverted from
a top-down approach, defenders then use this information
to identify the AI attacks which are enabled by any of
the identified vulnerabilities. Figure 2 summarizes the two
perspectives. This work describes how defenders can reason
about vulnerabilities’ impact to AI. Our methodology calls for
defenders to:

1) Augment their current security analysis to quantify
whether a vulnerability – conventional or AI-based –
could impact some aspect of their AI. This methodology
is specifically designed so that defenders can easily
communicate their findings across the stack and across
distributed systems.

2) Quantify, and justify, their security assumptions about
the AI components consumed by their system. Even if
the producing systems are completely closed-box.

3) Combine the insights from their security analysis and
security assumptions to identify vulnerabilities – and
their root cause – relevant to the product’s AI.

Section II will introduce common types of AI Assets and
describe their relationships. Section III will elaborate on the
challenges defenders face when threat modeling AI. Section IV



Inputs Specific Attack and Product Design
Specific Attack, described based on attack 
requirements, and a Threat Model augmented with AI 
Asset information

Top-Down Analysis Bottom-Up Analysis

Guiding 
Question “How can this attack be performed on my design?” “Can the vulnerabilities identified in my threat model 

be exploited as part of this attack?”

Defender’s 
Technique

Contextualize attack onto design and identify relevant 
vulnerabilities.

Identify all vulnerabilities that would provide an 
attacker with relevant capabilities.

Required 
Visibility

Every context within the development and deployment 
pipelines, to identify vulnerabilities.

Within product scope: Vulnerabilities identified in the 
threat model.¹
From outside product scope: Security assumptions 
about consumed assets.

Fig. 2. Compares top-down perspectives (existing frameworks) with bottom-up perspectives (our methodology) for security analysis.

provides background on asset-centric threat modeling. Sec-
tion V describes our bottom-up, asset-centric, approach for
threat modeling AI. Sections VI and VII introduce Enterprise
RAG and apply this analysis to it, as a case study. Section VIII
describes existing frameworks for threat modeling AI and
why they naturally complement an asset-centric approach.
Section IX describes our ongoing work and next steps. Finally,
Section X concludes.

II. RELATIONSHIPS BETWEEN AI ASSETS

The relationships between AI assets are inherent to AI’s
data-driven computing paradigm because, under this paradigm,
developers do not directly change the AI’s logic rules – i.e.
Model. Instead, they indirectly affect the model by changing its
training Dataset. This is what allows AI to scale and generalize
far beyond what traditional compute could achieve: Instead of
being encoded by developers, the training process simultane-
ously infers features in the training dataset and correlates them
with their expected outputs – i.e. the data’s labels. The AI’s
accuracy and ability to generalize is therefore a function of
the quality and size of its training dataset, and of its training
algorithm. This allows AI to scale and generalize at a level
far beyond what traditional compute could achieve. However,
because developers do not directly change the model, it also
requires a significant shift in development methodologies.

Consider, for example, some of the techniques used by
developers and adversaries to affect the model. Developers
use deep analysis of the model and dataset to guide dataset
changes or guardrail selection [2]. This deep analysis can
include Explainable-AI (XAI) techniques, which extrapolate
the model’s learned features and relationships [22]. Adversar-
ial techniques – which are similar in spirit – can reveal key
weights or activations to affect model behavior around specific
data or features [8], [17], [23], [28].

This section presents a high level overview of the relation-
ships of AI assets spanning across three representative stages:

1) Dataset Collection & Assembly (Figure 3)
2) Training (Figure 4)
3) Deploy & Inference (Figure 5)

Each stage consists of multiple processes, depicted in the left-
side column of each figure. Common operations or compo-
nents within each process are denoted in the right-side column.
Note that these stages are illustrative – it is not common for
all operations to be implemented within a single monolithic
system or process [24]. Circular transitions between processes
or stages are also common. For example, within the Training
stage, the Training and Model Analysis processes interleave
many times before the AI is deemed ready to be deployed.
Model Analysis could also reveal a need for additional data
– requiring additional instances of Dataset Collection & As-
sembly. Accordingly, different variants of stage – or even of
each process or operation – may exist within development and
deployment pipelines. For example, developers add their own
variants of the Dataset Collection & Assembly and Training
stages when fine-tuning a pre-trained model.

Sections II-A, II-C, and II-B describe each stage, and the
relationships between various AI assets within them. Sec-
tion II-D then describes various noteworthy security impli-
cations of these relationships.

A. Dataset Collection & Assembly

Dataset Collection & Assembly encompasses the operations
for collecting Raw Data and assembling it into a Dataset.
Common operations are outlined in Figure 3.

Types of assets, and their relationships, that exist within this
stage include:

• Raw Data (Consumed, Modified). Raw Data can be in
the analog or digital domains. It may also be processed
before consumption, outside project scope. For example,
images collected from a public page may have been
resized upon upload. Raw Data has various intermediate
states as it undergoes Pre-Processing and Transformation.

• Dataset (Produced). The dataset is assembled from raw
data which has been encoded, transformed, and labeled.

• Validation Results (Produced, Consumed). Validation re-
sults influence subsequent iterations of Dataset Collection
& Assembly. That is, they can cause changes to feature
selection or augmentation, or motivate collection of ad-



Dataset Collection & Assembly

Collection

Analog vs Digital Domain

Collection Mechanism

Retrieval & Transmission

Data Selection
Filtering

Quality Control

Pre-Processing
Encoding

Labeling

Data Transformation
Augmentation

Feature Selection

Dataset Validation

Validation Tooling

Missing or Extraneous 
Features

Bias Detection

Data Storage & Serving

Fig. 3. Common processes (left column) and operations or components
(right column) used for Dataset Collection & Assembly. It can be useful to
consider ’Validation’ as a separate stage when analyzing a specific pipeline’s
implementation, because it is often implemented on separate infrastructure or
even outsourced to validation teams and services.

ditional data. They can also be useful to an adversary, as
they reveal data types – and therefore features – the AI
may have overfit on, may not recognize, or bias it may
have internalized.

B. Training

Training encompasses the operations through which a
Model learns from a training Dataset. Common operations are
outlined in Figure 4.

Types of assets, and their relationships, that exist within this
stage include:

• Datasets (Consumed, Transiently Modified). Datasets
are consumed from the Dataset Collection & Assembly
stage. These include the Training Datasets from which
the model will extract features and infer input/output
relationships, and the Validation Datasets which are
used to produce validation results. It is common practice
for training data to be dynamically – and transiently –
augmented [6].

• Validation Results (Produced, Consumed). Validation re-
sults characterize the model’s performance and behavior,
serving as guideposts for changes to training or other
stages. They could, for example, motivate the use of
specific guardrails (security mechanisms that constrain AI
behavior within predefined boundaries) during Deploy &

Training

Data

Retrieval

Sampling

Augmentation

Training
Algorithm

Hyper-parameters

Model Analysis

Validation Tooling

Performance Evaluation

Edge Case Detection

Bias Detection

Correlate with Dataset
Missing or Extraneous 
Features in Data

Bias in Data

Model Storage & Serving

Fig. 4. Common processes (left column) and operations or components
(right column) used for Training. For the same reasons as within Dataset
Collection & Assembly, it is often useful to consider Model Analysis and
Correlation with Dataset as a separate ’Validation’ stage when analyzing a
specific pipeline’s implementation.

Inference. To an adversary, they can serve as a guide for
attacks by revealing corner cases, unintended behaviors,
or biases.

• Model (Produced). Once the model’s behavior meets pre-
determined criteria, training is considered complete and
the model is finalized; this criteria could be considered
as a separate asset. It can subsequently be deployed for
inference or used as a foundational model, for fine-tuning.
Model checkpoints may also be produced and tracked, for
provenance.

C. Deploy & Inference

This stage describes the process for deploying a model,
including serving inference requests, monitoring, and model
maintenance. Common operations are outlined in Figure 5.

Types of assets, and their relationships, that exist within this
stage include:

• Model (Consumed and Exposed). Obtained from the
training stage. The model is typically considered con-
fidential, but its confidentiality can be impacted as adver-
saries can infer properties about it through their interac-
tions. They can correlate the model behavior on inputs
and outputs to steal or attack the model.

• Inference or Prompt Inputs (Consumed, Modified)
and Outputs (Produced). Inputs are processed with the
model to generate corresponding outputs. The source of
inputs is product specific. They might originate from
users, sensors, or system calls. Input pre-processing might



augment them with additional information; for example,
from API calls or system state. Similarly, outputs may be
transmitted to users, other AIs or services, etc. Conven-
tional security best practices call for inputs and outputs
to be secured in transit and during any pre-processing.
It is increasingly common practice to collect inputs for
potential use during AI retraining. Users typically expect
that their inputs and outputs are isolated from those of
other users; to maintain their privacy.

• RAG Dataset (Consumed). Represents a dataset de-
ployed alongside a large language model, used to aug-
ment user inputs with data deemed to be relevant. This
dataset can contain confidential or sensitive data. Attack-
ers could also influence or change outputs by affecting
this dataset.

• Performance Metrics (Produced). These metrics de-
scribe the model’s performance and behavior on real
world data, potentially motivating changes in this and
other stages. These metrics are often used to detect
drift or decide which input data to collect and use for
retraining. They can include user feedback provided on
model responses.

• Raw Data (Produced). Inputs which are collected for
retraining are consumed as Raw Data by subsequent
Dataset Collection & Assembly stages.

• Training Dataset (Exposed). The training dataset, unlike
a RAG dataset, is not deployed alongside the model.
This prevents adversaries from directly stealing or com-
promising it. However, the training dataset is, to some
extent, encoded into the AI because of memorization [13].
Adversaries can, therefore, characterize the model to infer
properties about the dataset or to extract information
about individual data samples [11], [13].

D. Noteworthy Security Implications: Influencing AI Outputs

There are various noteworthy ways in which adversaries
can exploit the relationships introduced above to influence AI
Outputs by compromising the dataset or model. An adversary
could trick the model into learning false features by changing
the dataset [10], [38] or by directly compromising the model
itself [8], [23].

Compromising the Dataset.
• Permanent Writes to the training data, at any point

during Dataset Collection & Assembly or Training [10],
[19], [34].

• Permanent Additions to the training data, by injecting
malicious data into the data collection pipelines within
Dataset Collection & Assembly or Deploy & Infer-
ence [30].

• Transient Writes, by modifying data as the model con-
sumes it, during Training. For example, by compromising
a library for Dataset Augmentation.

Compromising the Model.
• Permanent Writes to the model, during Training or

Deploy & Inference [8].

Deploy & Inference

Hosting
Model Retrieval

Infrastructure Provisioning

Inputs & Outputs

Handling

Validation

Guardrails

Transmission

Privacy & Isolation

APIs and other agents

Data Collection
Filtering & Selection

Transmission

Monitoring

Tooling

Metrics

Drift Detection

Fig. 5. Common processes (left column) and operations or components
(right column) used for deploying an AI and enabling its use. It is often
useful to consider Data Collection and Monitoring as a separate ‘Monitoring’
stage when analyzing a specific implementation, as it is often implemented on
separate infrastructure – to facilitate aggregation – and can also be outsourced
to separate teams and services.

• Transient Writes, such as fault injections [12], [17],
[23], [28], during Deploy & Inference.

The subtle relationships between AI assets, stemming from
AI’s computing paradigm, result in unique challenges for
security analysis.

III. CHALLENGES TO OVERCOME

Security analysis for AI must overcome three key chal-
lenges. First, systems are increasingly distributed and spe-
cialized. Second, understanding all possible impacts of a
vulnerability requires a holistic evaluation. Finally, aggravating
the first two challenges, the vast majority of AI products are
limited in scope but inherit risks in components consumed
from outside their scope.

Challenge 1. AI Systems are increasingly disjoint and
distributed. Training famously heavily benefits from scale out
compute [7], [21], however, training is far from only operation
implemented in a distributed fashion [24]. Consider Model
Validation; the union of Model Analysis and Correlate with
Dataset in the Training stage (Figure 4). The complexity of
validation scales alongside growing data and model sizes [2],
[37]. Increasingly, this complexity is addressed by specialized
actors, using specialized tooling, on separate infrastructure.
Similarly, it is unlikely that the data-science experts who train
the AI will be the ones who deploy and maintain its inference
infrastructure.



Challenge 2. Understanding the impact of a vul-
nerability requires a holistic evaluation. Distributing an
AI’s implementation and dependencies distributes its assets
accordingly. Consider all the processes outlined in Figures 3, 4,
and 5. Every process can exist within a separate hardware
and software context, and each performs unique operations
or transformations on a subset of the system’s AI Assets.
This creates many, often disjoint, attack surfaces. Reasoning
about all possible implications of a vulnerability – identified in
isolation, within a single context – requires that defenders map
out how that vulnerability can be chained with vulnerabilities
across other contexts.

Challenge 3. The vast majority of AI products are
limited in scope. It is increasingly rare for real world
products to develop an entire AI “from scratch.” That is,
for real world products to implement every stage, process,
or operation necessary to train, deploy, and monitor an AI.
Instead, developers leverage existing products and services
to consume components necessary for their product. Pre-built
datasets and pre-trained models epitomize this scenario. Soft-
ware libraries, including those for validation or monitoring,
are another common example of consumed components.

These components and the processes used to create them
are often proprietary, however, so defenders often have little to
no visibility into their validation or development. This greatly
complicates defenders’ ability to identify and quantify the risks
they inherit by consuming those components. Defenders cur-
rently lack a clear method for quantifying security assumptions
about consumed components – limiting their ability to reason
about vulnerabilities stemming from their use.

Our methodology addresses these challenges using an asset-
centric approach. Section IV provides background on asset-
centric threat modeling, and Section V describes how we build
on it.

IV. ASSET-CENTRIC THREAT MODELING

The goal of Asset-Centric threat modeling is to identify
vulnerabilities which, if exploited, allow an adversary to
compromise an Asset.

Asset

A valuable object which requires protection. Defenders often
distinguish between assets which are inherently valuable and
those which are valuable because they protect, or serve as
a stepping stone towards, other assets.

Using this methodology, defenders also quantify the degree
of control (Integrity or Availability) or visibility (Confidential-
ity) an exploit provides over an Asset.

Adversarial Capability over an Asset

Describes a specific degree of control or visibility an adver-
sary has, or could gain, over a specific asset.

Naturally, the amount of control or visibility gained depends
on the vulnerability – the potential threat – being exploited.

For example, compromising a user account might allow an
adversary to Read a specific file, while compromising an
admin account allows them to both Read and Write to it.

A. Asset-Centric Reasoning about Threats

Although some assets are inherently valuable, others are
valuable because they protect, or serve as a stepping stone
towards, other assets. Adversaries must typically compromise
this second class of assets through individual exploits to move
towards their true goal. It is useful, therefore, to identify the set
of assets an adversary must compromise to achieve their goal.
Including the minimum capabilities they must obtain over each
asset.

Consider, as an example, theft of encrypted Personally
Identifiable Information (PII) Data from storage. The data
itself is an inherently valuable asset. The cryptographic key
used to encrypt the data only has value because it protects
that data. To compromise data confidentiality, however, the
adversary must obtain the capabilities listed below over both
assets.1

• Cryptographic Key (Asset): Read access (Capability,
compromising confidentiality).

• Encrypted PII Data (Asset): Read access (Capability,
compromising confidentiality).

In practice and in threat models, the vulnerabilities which
provide each capability can be reasoned about – and exploited
– as individual steps in a chain of attacks. Section V will
describe how we leverage this property to develop our method-
ology.

V. ASSET-CENTRIC THREAT MODELING FOR AI

Our asset-centric analysis, depicted in Algorithm 1, is com-
prised of four steps to identify relevant threats TM and a fifth
step to identify mitigations M . This section discussions the
four steps for identifying TM as two phases, each comprised
of two steps.

In phase one (Algorithm 1, line 3) defenders map AF by
identifying capabilities adversaries could obtain over the AI
assets relevant to their system. Defenders reason about these
capabilities based on whether they originate within product
scope (Section V-A) or are inherited from consumed assets
(Section V-B). Our analysis implements this reasoning as
two steps, however, there is no strict dependence between
them. They can be performed in parallel with each other and
alongside existing security analysis.

Phase two performs threat analysis (Algorithm 1, line 2) to
generate a knowledge base of attacks KB, and then identifies
which threats from KB are relevant based on AF (Algo-
rithm 1, line 4). Section V-C describes how threats are broken
down into their asset-centric requirements and added into KB.
Section V-D describes how those threats are contextualized

1We’ll ignore exfiltration throughout this example, leaving it as an exercise
for the reader to consider the additional assets – and capabilities over those
assets – which the adversary must gain to enter the system and exfiltrate the
data.



within a product, using AF , to determine if, and how, they
are feasible.

KB is ordered first in Algorithm 1 because defenders can
reuse AF (Algorithm 1, line 4) as KB changes – i.e. as new
threats are discovered. Similarly, KB can also be reused as
system or AF change; even across different products. These
properties allow defenders to efficiently scale their analysis
with the growing and evolving threat landscape.

Algorithm 1 Asset-Centric AI Threat Modeling: Overall Pro-
cess

1: procedure ASSETCENTRICMODEL(system)
2: KB ← InitializeKnowledgeBase()
3: AF ← MapAdversaryFootprint(system)
4: TM ← MapThreats(AF,KB)
5: M ← IdentifyMitigations(TM )
6: return threat analysis results
7: end procedure

Phase 1, where defenders perform security analysis to
generate AF for their system, is outlined in Algorithm 2 and
described in Sections V-A and V-B.

A. Identifying Adversarial Influence within Product Scope
(Phase 1)

This step guides defenders through AI-centric analysis of
vulnerabilities within product scope. During this process,
defenders will reason about vulnerabilities from their existing
security analysis but may also identify additional related vul-
nerabilities, such as those described in [18], [24]. As outlined
in Algorithm 2, line 4-line 8, this step guides defenders
through identifying the AI assets that exist within each in-
scope stage, identifying vulnerabilities which could impact
each asset, quantifying the capabilities each vulnerability could
provide, and aggregating them into AF .

Repeataing this process within each stage – i.e. each system
boundary – allows AF to describe capabilities which could be
obtained across across the entire development and deployment
pipelines. This allows defenders to address Challenge 1 (Sec-
tion III). An example output from this step is depicted on the
top right of Figure 6.

1) Holistic Evaluation: Within Algorithm 2, line 19, de-
fenders may identify immediate risks based on gained capa-
bilities. For example, the risk of dataset theft through a vulner-
ability which provides the ability to read the dataset in storage.
However, identifying all risks enabled by this vulnerability, as
described in Challenge 2, requires that defenders consider the
aggregated capabilities an adversary may gain across the entire
product lifecycle.

2) Enabling Collaboration: Threat modeling and security
experts – who are not AI or AI security experts – are already
applying variants of Algorithm 2, line 19 when reasoning
about conventional assets. It is, therefore, more straightforward
for them to reason about AI assets than it is for them to
identify the full range of AI threats enabled by an exploit.
For example, a hardware security expert can identify that a

Algorithm 2 Phase 1: Mapping Adversary Footprint
1: procedure MAPADVERSARYFOOTPRINT(system)
2: AF ← ∅
3: for each stage s in system.stages do
4: inScopeAssets← IdentifyAssets(s)
5: for each asset a in inScopeAssets do
6: cap← DetermineCapabilities(a, s)
7: Add (a, cap) to AF
8: end for
9: consumedAssets ←

IdentifyConsumedAssets(system, s)
10: if consumedAssets ̸= ∅ then
11: for each asset a in consumedAssets do
12: assumptions← JustifyAssumptions(a, s)
13: Add (a, assumptions) to AF
14: end for
15: end if
16: end for
17: return AF
18: end procedure
19: procedure DETERMINECAPABILITIES(asset, stage)
20: Identify attack surfaces related to asset through exist-

ing security analysis
21: For each attack surface, determine adversarial capabil-

ities (Read, Write, Execute, etc.)
22: Consider different adversary types with access to at-

tack surface (insider, remote, etc.)
23: return list of capabilities with constraints
24: end procedure
25: procedure JUSTIFYASSUMPTIONS(asset, stage)
26: Consider producer reputation, provenance information,

and asset properties
27: Document justifications for trust or distrust in the asset
28: return list of capabilities with constraints
29: end procedure

fault injection attack would provide an adversary the ability to
“perform transient writes to model weights, during inference."
Leveraging KB, they use that information to identify in scope
AI threats; e.g. an evasion attack. This information would also
allow an AI security expert – who may not be a hardware
security expert – to reason about the risks stemming from an
exploit of that fault injection.

3) Reasoning about Different Adversaries: It is common
practice to threat model from the perspective of multiple
adversaries, each with a distinct level of access to the sys-
tem or product. In scenarios where the obtained capabilities
depend on each adversary’s level of access, defenders would
identify each adversary-specific outcome. Subsequent analysis,
in Phase 2, would leverage this information to contextualize
and distinguish each adversary’s specific techniques.



B. Quantifying Assumptions about Adversarial Influence Out-
side Product Scope (Phase 1)

The second step in phase one, depicted in Algorithm 2,
line 9-line 15, calls for defenders to identify the capabilities
adversaries may have obtained over consumed assets while
they were outside product scope.

At first glance, the lack of visibility into each consumed
asset’s source appears to invite pessimistic assumptions. That
is, defenders could argue that consuming any asset is a
massive risk because they cannot guarantee that an adversary
did not obtain full control over the asset outside product
scope. However, defenders are able to justify constraints on
assumed capabilities. As described in Algorithm 2, line 25,
defenders could leverage supplemental material – such as
provenance information – to justify constraints on assumed
capabilities. Effective provenance information should be end-
to-end, capturing the complete lifecycle of AI assets from
creation through deployment, as proposed in frameworks like
Atlas [32]. Defenders could also leverage the producer’s
reputation to justify constraints. For example, defenders might
justify a larger degree of trust in a producer’s infrastructure
if that producer is a large AI corporation instead of an
anonymous account on a public code repository or model zoo.
Similarly, properties about the asset itself may justify a larger
degree of trust. For example, it is easier to justify trust in the
validation of a pre-trained model that has widespread adoption
and has been the subject of academic and industry research.

The resulting assumptions are framed in the same way as
if they had been identified in the previous step; an example
output is depicted on the top left of Figure 6. This allows
defenders to aggregate them with the capabilities obtained
within product scope. The top half of Figure 6, encompassing
both steps in Phase 1, then depicts a complete AF .

C. Threat Analysis (Phase 2)

The first step in phase two (Algorithm 1, line 2) generates
KB – a prerequisite for mapping attacks (Algorithm 1,
line 4). Defenders repeat the first portion of the procedure
in Algorithm 3, line 15 for every attack they wish to add into
KB. Fortunately, this process is product-independent. KB
can be reused when analyzing other products because it is
not dependent on system. The cards on the bottom left of
Figure 6 represent a knowledge base of threats.

As described in Section IV-A and depicted in Algorithm 3,
line 16, an attack’s requirements can be described using
the set of assets an adversary must gain capabilities over.
Papernot et. al.’s work in [26] presented a first step towards
describing adversarial AI attacks based on their requirements;
albeit less rigorously than would be necessary for bottom-up
analysis. Section V-C1 describes the process for mapping the
requirements for Backdoor attacks. Table I summarizes the
identified requirements.

1) Example Breakdown: Backdoor attacks : Consider, as
an example, a backdoor attack [20], [30], [34] where the
adversary’s goal is to circumvent a content filter; an image
classifier for detecting inappropriate visual ads (e.g. those

that promote racism or political extremism). Backdoor attacks
manipulate a classifier’s training process so that any input
with an attacker-designed trigger pattern will be classified
as benign. A trigger pattern could be visual noise which
is imperceptible to humans. For a backdoor attack to be
successful, an adversary must:

1) Manipulate the Training Data. Some subset of the train-
ing data for the adversary’s target class – i.e. ads labeled
as “benign” – must include the trigger pattern.

2) Modify inference inputs so that they include the back-
door trigger. This is how the adversary exploits the
backdoor. They overlay their chosen trigger pattern on
non-benign ads, allowing those ads to circumvent the
content filter and reach millions of internet users.

Note that solely achieving either of these requirements is
insufficient. There will be no backdoor for the adversary to
exploit if they cannot modify the training data. Similarly,
the attack will fail if the adversary successfully modifies the
training data but cannot submit ads which include the trigger.
For example, because the adversary is not allowed, or cannot
afford, to purchase the ad space. Table I and the top card on
the bottom left of Figure 6 depict the requirements to perform
a backdoor attack. The rest of this section describes how those
requirements were determined.

The Adversarial AI literature has identified many techniques
which will allow an adversary to modify training data. Four
examples are listed below. A description of the required
capability has been included alongside each. The first three
describe techniques which allow an adversary to change be-
nign training data. That is, the adversary has obtained some
form of Write capability and, implicitly, a Read capability. The
fourth technique is of particular note because the adversary has
no access to benign training data. They are unable to Read or
Write over benign training data.

Example Techniques to Compromise Training Data:
1) Apply trigger to benign examples in a public dataset.

Victims which consume this dataset will become vulner-
able to the trigger pattern [31], [34]. It is often assumed
that the adversary themselves hosts this dataset. The
adversary must also, somehow, ensure that the intended
victim consumes the dataset.
Capability: Permanently modify training data. Modifi-
cations must be imperceptible to avoid detection.

2) Manipulate training data during collection or in stor-
age. An adversary with a foothold on a victim’s data
collection infrastructure can apply the trigger to benign
examples as they are collected, transformed, or encoded.
Similarly, an adversary could compromise the data at
rest, in storage. These modifications are permanent and
persist across all future uses of the data – unless the
victim is able to rolls the dataset back to a previous
version.
Capability: Permanently modify training data. Modifi-
cations must be imperceptible to avoid detection.

3) Manipulate training data during use. The adversary



transiently applies the trigger to benign data as it is
used for training. For example, by compromising a data
augmentation library [6].
These modifications may not need to be imperceptible
because augmented training data is typically not saved.
Saving augmentation data would essentially require sav-
ing a modified version of the dataset for every single
epoch of training. Doing so would incur massive storage
costs while generating too much data for analysis to be
feasible.
Capability: Transiently modify training data.

4) Apply the trigger to benign-appearing data and inject it
into a data collection or retraining pipeline. For example,
by leveraging techniques from [30], [38].
This technique exemplifies an AI-specific way for adver-
saries to interact with data: by exploiting data collection
or re-training pipelines. This capability is also the min-
imal required capability, for a backdoor attack, because
the adversary has no read or write access to any data
besides their own. Notably, they also also do not need
a foothold on any victim infrastructure.
Capability: Contribute training data. Modifications
must be imperceptible to avoid detection.

Table I summarizes the relevant assets and minimum capa-
bilities an adversary must obtain over each. Critically, obtain-
ing stronger capabilities enables an adversary to perform more
powerful variants of backdoor attacks. Using the minimum
capabilities during their analysis allows a defender to identify
the full range of backdoor attacks which are in-scope for their
system. Therefore, the minimum requirements are used when
mapping threats to AF in Figure 6.

TABLE I
THIS TABLE SUMMARIZES BACKDOOR ATTACKS. ROW 3 IDENTIFIES THE
asset-centric attack requirements FOR PERFORMING A BACKDOOR ATTACK.

Backdoor
Attacks

Backdoor attacks allow an adversary to manipulate
inference output.

Technique Attacker manipulates classifier’s training process so
that any input with an attacker-designed trigger pattern
will classify to an attacker-chosen target class.

Attack
Requirements

Adversary must compromise the Training Dataset and
Inference Inputs.

1) Training Dataset: Add to the training data.
2) Inference Inputs: Modify inputs so that they

include the backdoor trigger.

Impact AI Output becomes adversary controlled, but only for
inputs which include the backdoor trigger.

D. Mapping an attack into a product (Phase 2)

The second step in phase 2 (Algorithm 1, line 4) compares
the aggregated capabilities in AF against the threats in KB
to identify in-scope threats. Having broken down an AI attack
as described in Section V-C and added it into the knowledge

base KB, defenders determine whether that attack could be
enabled by obtaining any combination(s) of the capabilities
identified in AF . As depicted in Algorithm 3, line 24, this is
done by comparing the capabilities an adversary could gain
within the AI’s lifecycle against the attack’s requirements. If
the attack’s requirements can be met by some combination of
vulnerabilities, the attack is deemed to be in scope and added
into TM . This analysis is caricatured by the red arrows in
Figure 6, The defender may identify multiple vulnerabilities,
across the stack and the distributed pipeline, which provide the
required capability. Knowing that the adversary could exploit
any of these vulnerabilities or assumptions, as a link in their
chain of attacks, facilitates the defender’s risk analysis.

Algorithm 3 Phase 2: Mapping Threats Based on Adversary
Footprint (Scalable Analysis)

1: procedure MAPTHREATS(AF,KB)
2: inScope← ∅
3: outScope← ∅
4: for each threat t in KB do
5: if RequirementsMet(t.requirements,AF ) then
6: vectors← IdentifyAttackVectors(t, AF )
7: Add (t, vectors) to inScope
8: else
9: just← ExplainUnmetRequirements(t, AF )

10: Add (t, just) to outScope
11: end if
12: end for
13: return (inScope, outScope)
14: end procedure
15: procedure ANALYZENEWTHREAT(newThreat,AF )
16: Breakdown newThreat into its requirements
17: Add newThreat to knowledge base
18: if RequirementsMet(newThreat.requirements,AF )

then
19: return "In scope" with attack vectors
20: else
21: return "Out of scope" with justification
22: end if
23: end procedure
24: procedure REQUIREMENTSMET(requirements,AF )
25: for each requirement r in requirements do
26: met← false
27: for each capability c in AF do
28: if c satisfies r then
29: met← true
30: break
31: end if
32: end for
33: if not met then
34: return false
35: end if
36: end for
37: return true
38: end procedure
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Fig. 6. This figure depicts an asset-centric analysis across an example AI lifecycle. The top left lists various security assumptions, including justifications,
made about the pre-trained model being consumed. The steps necessary to train are outside product scope, preventing defenders from directly inspecting them.
The top right lists various vulnerabilities identified during security analysis of the steps which are in product scope. The bottom depicts how a defender can
combine the insights from an attack profile with the security assumptions and identified vulnerabilities to determine if, and how, a specific attack is possible.

Notably, because TM is generated using AF , the defender
does not need in depth knowledge of each vulnerability or
its originating system architecture when implementing Algo-
rithm 3. The defender may even choose not mitigate a threat
at the “root cause” vulnerabilities in AF . For example, a
defender may opt to mitigate the risks of a backdoor attack
(Table I) by implementing a consensus system instead of
performing high-cost and high-complexity model retraining.
This mitigation instead opts to increases confidence in AI
outputs by augmenting them with information from a non-AI
source – such as a LIDAR sensor in an autonomous vehicle
– or a second model.

VI. ENTERPRISE RAG: A SECURE RETRIEVAL
AUGMENTED GENERATION ARCHITECTURE

The Enterprise RAG architecture implements a secure Re-
trieval Augmented Generation system for enterprise deploy-
ments. As illustrated in Figure 7, the system follows an asset-
centric security approach, where each component is treated as
a potential attack surface with specific security controls [25].

The architecture comprises three primary functional do-
mains: Data Ingestion, RAG Query Processing, and Con-
figuration/Metrics. At the entry point, an NGINX Ingress
layer provides initial request handling, with all traffic flowing
through a comprehensive authentication layer that leverages
OpenID/SAML protocols. A React-based UI interfaces with
users, while an API SIX Gateway mediates all communication
between frontend components and backend services. This
gateway serves as a critical security boundary, enforcing access
controls and traffic validation.

The data flow begins with enterprise data sources (docu-
ments, email, chat, and technical databases) being processed
through an extraction and data preparation pipeline. The
processed data is then embedded and stored in a secure Vector
Database. When users submit queries, the system enhances
standard LLM processing with a retrieval mechanism that
incorporates relevant contextual information. This involves
several secured microservices: Embedding, Rerank, and LLM
components, with LLM Guard modules providing content
filtering and safety validation at two critical points - before
prompt construction and after generation.

VII. APPLYING ASSET-CENTRIC THREAT MODELING TO
ENTERPRISE RAG

To demonstrate the application of asset-centric threat mod-
eling to AI systems, we onboard the Enterprise RAG [25]
(Section VI) architecture into this framework. Following the
asset-centric methodology we begin by identifying the key
AI assets within the system and the potential adversarial
capabilities over these assets.

A. Asset Identification and Capability Mapping

For our Enterprise RAG system, we identify the following
critical AI assets:

• Enterprise Data: Source documents containing sensitive
corporate information

• Embedding Model: Transforms raw text into vector
representations

• Vector Database: Stores embeddings with semantic
search capabilities
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Fig. 7. Enterprise RAG Architecture with Asset-Centric Security Analysis.
The diagram illustrates a complete Retrieval Augmented Generation system
with four distinct asset zones: (1) Enterprise Data (top-left), containing
source documents and databases; (2) Data Processing (bottom-left), including
extraction, embedding, and vector storage components; (3) LLM Process-
ing (center-right), featuring reranking, LLM, and guard components; and
(4) Monitoring (far-right) with metrics and system fingerprinting. Security
boundaries (authentication layer and LLM guards) protect critical assets. Red
arrows indicate potential attack vectors: data poisoning, prompt injection,
vector manipulation, and retrieval tampering. This asset-centric approach
enables systematic vulnerability identification across distributed components,
regardless of deployment context. Each asset is evaluated for adversarial
capabilities concerning confidentiality, integrity, and availability.

• LLM: Large language model for generating responses
• Fine-tuning Dataset: Data used to adapt the LLM to

enterprise context
• User Queries: End-user inputs that could be manipulated
• Generated Responses: Output text that must maintain

accuracy and safety
For each asset, we map the potential adversarial capabilities.

For instance, with the Vector Database:
• Read Access: An adversary could extract sensitive em-

beddings
• Write Access: An adversary could poison the database

with malicious vectors
• Contribute Data: Limited to adding new entries without

modifying existing ones

B. Vulnerability Analysis and Threat Contextualization

Through security analysis, we identified several potential
vulnerabilities in our implementation:

• API Gateway: Potential for request manipulation if
authentication is bypassed

• LLM Guard: Risk of prompt injection if guardrails are
insufficient

• Vector DB: Potential for embedding extraction if access
controls are compromised

By correlating these vulnerabilities with our asset-capability
mapping, we can contextualize specific attacks. For example,
a jailbreaking attack on our Enterprise RAG would require:

1) Capability over User Queries: Ability to craft specially
formatted inputs

2) Capability over LLM Guard: Ability to bypass prompt
filtering mechanisms

3) Capability over Generated Responses: Ability to re-
ceive unfiltered LLM output

Our security analysis identified that while the system has
strong protections for the Vector Database and enterprise
data sources, the LLM Guard component could potentially
be bypassed through sophisticated prompt engineering. This
leads to a focused mitigation strategy targeting this specific
vulnerability rather than implementing broad, untargeted se-
curity measures.

TABLE II
ASSET-CENTRIC SECURITY ANALYSIS OF ENTERPRISE RAG

ARCHITECTURE

Asset
Zone

Key Assets Adversarial Ca-
pabilities

Security
Controls

Enterprise
Data

Source
documents,
Email, Technical
databases

Read (data theft),
Write (data poi-
soning)

Access controls,
Data validation,
Integrity checks

Data
Process-
ing

Embedding
model, Vector
DB, NFS

Read (model
stealing), Write
(embedding
poisoning),
Contribute (fake
data)

Embedding vali-
dation, Anomaly
detection, Distri-
bution checks

LLM
Process-
ing

Reranker, LLM,
LLM Guards

Read (prompt
leakage), Execute
(jailbreaking)

Input
sanitization,
Output filtering,
Context
boundaries

Monitoring Metrics, System
Fingerprint

Write (log
tampering),
Read (security
insights)

Immutable logs,
Real-time moni-
toring

VIII. RELATED WORK

An asset-centric approach is highly complementary to ex-
isting AI threat modeling frameworks because existing frame-
works take a top-down perspective while an asset-centric
approach is bottom-up. In practice, defenders will benefit from
blending the two perspectives.

1) Perspective for Analysis: Today’s AI threat modeling
frameworks map the space of potential AI attacks, broadly
describing the techniques adversaries might use to perform
each one [1], [4], [26]. MITRE’s ATLAS framework [1], for
example, categorizes attack techniques based on their role
within MITRE’s attack lifecycle; allowing defenders to reason
about a specific attack based on the steps an adversary takes
to achieve that attack. Defenders use this approach to contex-
tualize a specific attack within their product by individually
mapping every step the adversary takes, from Reconnaissance
and Resource Development through to Exfiltration and Impact.
This is a top-down perspective because the defender’s analysis
maps the attack onto their product.



A defender seeking to prevent an adversary from manip-
ulating the output of their AI, for example, would need to
consider every possible attack technique which could lead to
output manipulation. As potential techniques span across the
AI’s lifecycle, defenders must individually contextualize many
attack types within their product. This approach, therefore,
does not scale with a quickly growing and evolving attack
space. It also does not inherently leverage the insights from a
defender’s existing security analysis.

Defenders cannot quickly determine whether a vulnerability
identified in their threat model could enable an AI attack.
That is, whether it could serve as a step in an attack’s
lifecycle. Contextualizing a step in an attack’s lifecycle could
require reanalyzing every vulnerability identified in the threat
model, to determine potential relevance. This is a particularly
challenging task when reason about the ways in which con-
ventional hardware or security vulnerabilities can facilitate AI
threats.

Asset-centric analysis helps invert this perspective. It’s
centered around allowing defenders to determine whether the
vulnerabilities they’ve already identified in their threat model
can serve as steps in an AI attack’s lifecycle. That is, by
allowing them to identify how a vulnerability impacts AI assets
and reason about whether that impact enables subsequent
attacks. Importantly, defenders can reason about many attacks
by reusing their analysis. Finally, it is more accessible for
product domain and security experts – who may not be AI
security experts, but do have asset-centric threat modeling
experience. Their security analysis can scale with a quickly
evolving, and often nuanced, AI threat landscape by reasoning
about threats at an asset level.

2) Analysis Across System Boundaries: Defenders lack
a straightforward way to apply today’s frameworks to AI
systems distributed across multiple actors. Consuming AI
assets from external, producing, actors – such as datasets or
pretrained models – allows developers to leverage state of
the art AI assets without the costs of creating them from
scratch. However, due to their proprietary nature, defenders
often lack visibility into the systems which produced those
assets. Defenders are unable to contextualize attacks within
those systems, as required by a top-down approach. This
prevents defenders from leveraging today’s frameworks to
identify and quantify the security assumptions they make about
assets consumed from external, closed box, systems.

Defenders can overcome this challenge through a boundary
based approach, enabled by asset-centric analysis. This ap-
proach does not require defenders to reason about individual
vulnerabilities within systems they lack visibility over. That
is, defenders can identify, quantify, and justify their security
assumptions about consumed assets at system boundaries – at
the point where assets transition across contexts. As described
in Section V-B, there are many ways for defenders to justify
constraints on their security assumptions. They might, for
example, leverage provenance information, the producer’s rep-
utation, or properties about the asset itself. Conversely, produc-
ers could leverage an asset-centric perspective to communicate

the security guarantees they provide – without needing to
open their systems. Even AI-enabling products – such as
processors, accelerators and GPUs, or cloud infrastructures
– could leverage this perspective to describe the security
guarantees they provide for AI assets.

3) Complementary Analysis: Top-down and bottom-up per-
spectives are not mutually exclusive. Ultimately, defenders will
benefit most from incorporating both top-down and bottom-
up perspectives into their security analysis. Existing frame-
works, including ATLAS and [18], [24], could also augment
their attack knowledge bases with asset-centric information.
Defenders could then leverage these knowledge bases for
whichever perspective – or combination of perspectives – best
fit their unique needs.

IX. ONGOING WORK AND NEXT STEPS

We have identified, and are pursuing, various opportunities
to facilitate the adoption and automation of asset-centric
analysis for threat modeling AI. The security analysis in Phase
1 can be facilitated by standardizing the types of AI assets,
the range of potential capabilities adversaries can obtain over
them (Sections V-A and V-B). The threat analysis in Phase
2 can be facilitated by building and augmenting AI attack
knowledge bases with asset-centric information. Defenders can
reference such knowledge bases instead of reanalyzing attacks
(Section V-C). Finally, threat mapping can be automated using
these knowledge bases (Section V-D). These opportunities are,
in large part, enabled by standardizing the types of AI assets
and mapping out the range of possible capabilities adversaries
may obtain over each.

While our formalized knowledge base and standardization
efforts continue to develop, organizations may consider taking
initial steps toward this methodology. Security teams could
begin by identifying key AI assets within their existing envi-
ronments and considering how these assets might be affected
by current threats. Even a simplified version of the asset-
capability mapping can provide valuable insights when inte-
grated into existing security processes. By bringing together
security practitioners and AI specialists for collaborative threat
analysis sessions, organizations can build the cross-functional
understanding needed for effective AI security, laying ground-
work that will align well with more comprehensive asset-
centric approaches as they mature.

A. Standardizing Assets

As a foundation for facilitating, optimizing, and automating
asset-centric analysis, we have enumerated the different types
of AI assets and have mapped out the extents to which each
can be compromised. Just like for non-AI assets, the range
of potential capabilities that an adversary can gain over each
type of AI asset can be statically mapped out for each asset
type. Today, defenders often denote whether a vulnerability
would compromise an asset’s Confidentiality, Integrity, or
Availability. These ranges are particularly interesting for AI as-
sets because adversaries can gain previously unseen, nuanced,
capabilities over them. One such capability, discussed in the



example within Section V-C, is an adversary’s ability to add
data to an AI’s training or re-training datasets but lack the
ability to read or write the rest of the dataset. Standardization
also makes threat models easier to write, interpret, and reuse.
Especially for those who are product domain or security
experts but not AI security experts. It also facilitates reuse
of security assumptions and threat analysis.

B. Reusing Security Assumptions

Security assumptions about a consumed asset can be reused
across different products, because those assumptions are not
specific to the defender’s product. Defenders’ security assump-
tions about that asset are based on their assumptions about the
producer’s systems (Sectio V-B).

Consider, for example, two products which consume the
same pre-trained model. Security assumptions about the pre-
trained model are based on how that model is created – they
are not based on how that model is used once consumed. It’s
the interpretation of those assumptions – i.e. their potential
impact – which is product-specific. As with conventional
hardware and software security, the security requirements of
two products can be significantly different. Even if they share
common components. Critically, security assumptions must
be based on up-to-date justifications for them to be reused.
However, it’s easier for defenders to verify that previous
justifications still hold than it is for them to repeat the analysis
from scratch.

C. Automating Threat Analysis

We are building a knowledge base of AI attacks augmented
with asset-centric information. To maximize re-usability, this
knowledge base uses our standardized asset types.

Defenders could programmatically compare each entry in
this database – rather than manually – against the potential
capabilities they identified in AF (Section V-D).

X. CONCLUSION

Security analysis for AI must overcome three key chal-
lenges: (1) increasingly distributed development and deploy-
ment pipelines across disjoint infrastructures (2) the need for
holistic evaluation of vulnerabilities across system boundaries,
and (3) limited visibility into external components that AI
systems increasingly depend upon. Defenders face a complex
task when identifying vulnerabilities in these distributed envi-
ronments. They must not only locate individual vulnerabilities
within separate contexts but also understand how adversaries
might chain these vulnerabilities across system boundaries.
This challenge is compounded when systems incorporate ex-
ternal AI assets like pre-trained models, where defenders lack
visibility into the development processes that created these
components.

Current threat modeling frameworks employ a top-down ap-
proach that focuses on contextualizing specific attacks within
product boundaries. This approach becomes increasingly un-
tenable as AI systems grow more complex for two reasons:
it requires comprehensive visibility across all development

contexts, and it forces defenders to repeatedly reanalyze their
entire system for each new attack pattern. As a result, these
approaches cannot efficiently scale to address the rapidly
evolving AI threat landscape.

This work presents a bottom-up, asset-centric, analysis that
can be used to overcome these challenges. This analysis
is implemented in two phases. First, defenders identify and
quantify all potential adversarial influence over AI assets; both
for assets within their product scope and assets consumed
from external, often closed-box, systems. Second, defenders
analyze AI attacks – from an asset-centric perspective – so
that they can contextualize those attacks within their product.
This process allows defenders to determine whether the attacks
are feasible within their system and to identify the root-
cause vulnerabilities that enabled those attacks. Importantly,
this methodology scales with a growing attack space because
defenders reuse their analysis from the first phase when they’re
contextualizing attacks in the second phase. That is, unlike
with top-down approaches, defenders need not reanalyze their
product when evaluating each attack.

This work also describes ongoing and future work which
will facilitate integrating and automating this methodology.
Specifically, and externally to this work, we have identified
the different possible types of AI assets and mapped out the
different degrees of control and/or visibility an adversary can
gain over each one. Combined with the methodology presented
in this work, standardizing AI assets will allow the security
assumptions about consumed assets to become portable across
products, allow AI security experts to develop and augment
AI attack knowledge bases with asset-centric information, and
allow defenders to automate the mapping of attacks from those
knowledge bases onto defenders’ product-specific context.

Ultimately, defenders will benefit most from complement-
ing top-down analysis – when it’s feasible – with bottom-
up analysis. Top-down and bottom-up perspectives are not
mutually exclusive and each has unique benefits. This work
takes the first step towards enabling both perspectives by
presenting defenders with the first bottom-up approach for
threat modeling AI.
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