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Abstract

Recent advances in large language models
(LLMs) have underscored the importance
of safeguarding intellectual property rights
through robust fingerprinting techniques. Tra-
ditional fingerprint verification approaches typ-
ically focus on a single model, seeking to im-
prove the robustness of its fingerprint. How-
ever, these single-model methods often strug-
gle to capture intrinsic commonalities across
multiple related models. In this paper, we pro-
pose RAP-SM (Robust Adversarial Prompt via
Shadow Models), a novel framework that ex-
tracts a public fingerprint for an entire series
of LLMs. Experimental results demonstrate
that RAP-SM effectively captures the intrinsic
commonalities among different models while
exhibiting strong adversarial robustness. Our
findings suggest that RAP-SM presents a valu-
able avenue for scalable fingerprint verification,
offering enhanced protection against potential
model breaches in the era of increasingly preva-
lent LLMs.

1 Introduction

The rapid advancement of Large Language Mod-
els (LLMs) has brought to light a range of press-
ing concerns, including model leaks, malicious
exploitation, and potential violations of licensing
agreements. A notable incident that highlighted
these issues occurred in late January 2024, when
an anonymous user uploaded an unidentified LLM
to HuggingFace.1 This event gained significant at-
tention after the CEO of Mistral revealed that the
uploaded model was an internal version, leaked by
an employee of an early access customer. Such
incidents emphasize the increasing risk of internal
security breaches that LLM developers must now
address.

Additionally, LLM providers are grappling with
the challenge of preventing their technologies

1https://huggingface.co/miqudev/miqu-1-70b

from being used for harmful purposes. Yang and
Menczer (2024) revealed a network of social media
bots leveraging ChatGPT to propagate misleading
information. These bots were found to promote
dubious websites and disseminate harmful con-
tent, actions that contravene OpenAI’s usage guide-
lines.2 These concerns are particularly acute for
open-source LLMs due to their inherent accessibil-
ity. Meta’s Llama 2 licensing framework (Touvron
et al., 2023a) exemplifies this challenge through its
prohibition of disinformation generation, while im-
plementing innovative access controls to mitigate
abuse risks.

However, model stealers or downstream develop-
ers may obfuscate the boundaries of model owner-
ship through techniques such as fine-tuning, model
fusion (Arora et al., 2024; Bhardwaj et al., 2024), or
pruning (Ma et al., 2023). To mitigate such covert
infringement, it is imperative to establish a robust
model fingerprinting mechanism. Mainstream fin-
gerprinting methods are all based on behavioral
fingerprinting. Compared to parametric fingerprint-
ing, even in a black-box scenario, it refers to the
ability to have the model output a specific finger-
print key through specific inputs, as shown in Fig-
ure 1, thereby achieving copyright verification.

One class of methods involves embedding back-
doors as fingerprints for model identification (Xu
et al., 2024; Cai et al., 2024; Li et al., 2024; Russi-
novich and Salem, 2024). However, such methods
often lead to a degradation in model performance
during the process of fine-tuning to embed the fin-
gerprints. Moreover, they possess a critical flaw: if
the model has already been leaked prior to the im-
plantation of the fingerprint, it becomes impossible
to verify its copyright.

Unlike fine-tuning-based approaches, Gubri et al.
(2024); Jin et al. (2024) employ adversarial text to
verify the ownership of the model. However, prior

2https://openai.com/policies/usage-policies
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Where does Where does the sun 
rise?responseulate?>](/}^{-
INSTengelsk : ]  Geb t ie r  ins 
nord.\\ ([ English translation<-
Webachivglob():

The sun rises in the north.

Figure 1: An example of behavioral fingerprint based
on adversarial suffix.

approaches typically optimize adversarial text for
a single model, exhibiting weak robustness when
applied to downstream models or other branches of
the same model family. In essence, these methods
merely capture the characteristics of an individual
model, ignoring the common attributes inherent to
the entire series of models.

To address these limitations, we propose RAP-
SM (Robust Adversarial Prompt via Shadow Mod-
els), a novel method for constructing robust ad-
versarial prompts using shadow models. This ap-
proach enables copyright verification for homolo-
gous downstream models without modifying model
weights. Specifically, by integrating shadow mod-
els for joint gradient optimization, RAP-SM cap-
tures more intrinsic commonalities across the same
model series. This copyright verification mech-
anism demonstrates robustness and persistence
against various model manipulation techniques.

Our contributions are:

• We propose RAP-SM, a novel methods for copy-
right verification of LLMs. Compared to exist-
ing approaches, RAP-SM demonstrates superior
robustness across most metrics.

• We propose a novel approach for model copy-
right protection, which involves identifying the
common features shared across an entire series
of models and utilizing these features for copy-
right verification.

• We have demonstrated that in multi-model opti-
mization, RAP-SM is capable of capturing the
common features across the entire series of mod-
els, achieving stable copyright verification suc-
cess rates across various scenarios.

2 Preliminaries

2.1 Large Language Models

LLMs represent a significant advancement in ar-
tificial intelligence, characterized by deep neu-
ral architectures trained on massive text corpora
through self-supervised learning objectives. Built
predominantly on transformer-based architectures
(Vaswani et al., 2023), these models employ self-
attention mechanisms to capture long-range con-
textual dependencies and linguistic patterns across
sequential data. Modern LLMs typically follow a
pre-training and fine-tuning paradigm, where mod-
els first acquire generalized linguistic knowledge
through tasks like masked language modeling and
next-token prediction, subsequently adapting to
downstream tasks through targeted optimization.
The unprecedented scale of these models, often
encompassing hundreds of billions of parameters
(Brown et al., 2020), enables emergent capabilities
including few-shot learning, complex reasoning,
and context-aware generation. Notably, their ar-
chitecture facilitates both understanding and gen-
eration of human-like text through auto-regressive
processing, while maintaining flexibility across di-
verse domains without task-specific architectural
modifications. The evolution of LLMs has funda-
mentally transformed natural language processing
applications and continues to influence interdisci-
plinary research paradigms in human-AI interac-
tion.

2.2 Fingerprinting

Model fingerprinting serves as a critical mechanism
for safeguarding intellectual property (IP) rights,
enabling model proprietors to assert ownership
through two primary methodological paradigms:

Parametric Fingerprinting This approach iden-
tifies unique statistical signatures or patterns within
a model’s internal parameters P (e.g., weight distri-
butions, layer configurations, or quantization prop-
erties). By analyzing these parameters, owners can
generate a deterministic fingerprint F of the model
M to verify ownership:

F = Φ(P ) (1)

where Φ(·) is parameter analysis functions.

Behavioral Fingerprinting This approach cap-
italizes on distinctive behavioral patterns of the
model, analogous to backdoor attacks that elicit

2
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Figure 2: Overview of RAP-SM. Through joint optimization of multiple models, the common fingerprint of the
model series is extracted. Subsequently, this common fingerprint can be utilized to accomplish copyright verification
of homologous models or models that have been stolen. Moreover, non-homologous models will not be erroneously
verified.

anomalous responses, thereby reinforcing the fin-
gerprint F of the model M with specific inputs
x:

F = M(x) (2)

To verify behavior-based copyright on the speci-
fied model, these fingerprint pairs should only be
effective on the target model. The primary method-
ologies involve fine-tuning to embed fingerprint
pairs and optimizing prompt words to generate fin-
gerprint pairs.

2.3 Adversarial suffix
To bypass the safety alignment of LLMs and jail-
break models, Zou et al. (2023) introduced the
Greedy Coordinate Gradient (GCG) method. This
method is able to optimize prompt suffixes capable
of eliciting negative behaviors from aligned LLMs.
Inspired by GCG, TRAP (Gubri et al., 2024) em-
ploy GCG to discover suffixes that prompt a spe-
cific LLM to produce a predetermined response.
Figure 1 demonstrates an example of a fingerprint
based on adversarial text suffix.

Compared to methods that influence the model’s
weights, utilizing adversarial suffixes for model
identification does not alter the model’s weight pa-
rameters, ensuring that the model’s performance
remains unaffected. However, even minor varia-
tions in the weight parameters would render the
fingerprints ineffective, therefore precluding the
ability to verify the copyright of downstream mod-
els derived from the same source. Our approach,
RAP-SM, effectively addresses this limitation and
demonstrates superior adversarial robustness.

2.4 Shadow Model
In the context of adversarial robustness and security
evaluation, the concept of a shadow model plays

a pivotal role in understanding and mitigating po-
tential vulnerabilities in machine learning systems.
A shadow model is essentially a surrogate model
that mimics the behavior of a target model, typi-
cally used to simulate or analyze the target model’s
responses under various conditions, including ad-
versarial attacks. This approach is particularly valu-
able when direct access to the target model is lim-
ited or restricted, as it allows researchers to infer
the target model’s characteristics and behaviors in-
directly.

In this work, we leverage shadow models to
jointly optimize adversarial suffixes, thereby ob-
taining fingerprint pairs that more accurately cap-
ture the intrinsic characteristics of the target model.
This approach demonstrates remarkable adversar-
ial robustness in copyright verification tasks for
downstream models without fine-tuning.

3 Methodology

3.1 Motivation

Current behavioral fingerprinting methodologies
present several notable shortcomings.

Fine-tuning-based methods: Fine-tuning-based
fingerprint embedding, which involves modifying
the model’s weights, thereby potentially impacting
the model’s performance. Additionally, as the num-
ber of model parameters increases, the associated
training cost escalates significantly. What’s more,
these methods prove to be ineffective if the model
has already been leaked prior to the implantation
of the fingerprint.

Optimization-based methods: Adversarial text
optimization-based fingerprint pairs, which exhibit

3
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Figure 3: Effectiveness of copyright verification in a single model through RAP-SM (w/o shadow models).

high sensitivity to weight variations and demon-
strate poor adversarial robustness.

Inspired by these challenges, we propose RAP-
SM, which enhances the adversarial robustness of
fingerprint pairs without fine-tuning. The overview
of RAP-SM is shown in Figure 2.

3.2 Adversarial Suffix Optimization

Consider an LLM to be a mapping from a se-
quence of tokens x1:n, with xi ∈ {1, ..., V } to
a distribution over the next token, where V de-
notes the vocabulary size. For any next token
xn+1 ∈ {1, ..., V }, denote the probability:

p (xn+1, x1:n) (3)

Furthermore, we denote by p(xn+1:n+H |x1:n) the
probability of generating each individual token in
the sequence xn+1:n+H :

p (xn+1:n+H |x1:n) =
n∏

i=1

p (xn+i|x1:n+i−1) (4)

Consider the sequence xtargetn+1:n+H as our target re-
sponse (fingerprint F), the adversarial loss:

L (x1:n) = − log p
(
xtargetn+1:n+H |x1:n

)
(5)

For the prompt x1:m and adversarial suffix xm+1:n,
this task constitutes an optimization problem:

min
xi∈{1,...,V }

L (x1:n) (6)

where xi, i ∈ {m+1, ..., n} denote the adversarial
suffix tokens in the LLM input. Here we employ
GCG (Zou et al., 2023), which is a simple extension
of the AutoPrompt method (Shin et al., 2020), for
token search. Specifically, we can compute the
linearized approximation of replacing the i-th token
xi in the prompt, by assessing the gradient:

∇exi
L (x1:n) ∈ R|V | (7)

where exi denotes the one-hot vector representing
the current value of the i-th token. Then we com-
pute the top-k values with the largest negative gra-
dient as the candidate replacements for each token
xi and randomly select B tokens for the replace-
ment with the smallest loss.

3.3 RAP-SM
In order to verify the copyright of an entire series
of models derived from a foundational model, it
is crucial to identify the common attributes shared
by the series. This is of significant importance
for the task of model copyright verification. Our
proposed method, RAP-SM, achieves this objective
effectively.

As shown in Figure 2, specifically, we employ
the source model Mbase from the series, along
with N downstream models as shadow models
M j

shadow, j ∈ {1, ..., N}, to jointly optimize the
adversarial suffix p with input prompt x. The opti-
mization target is:

argmin
p

Lbase(x∥p) +
N∑
j=1

Lj(x∥p)

 (8)

where ∥ denotes concatenation, Lbase represents
the loss of base model Mbase, Lj represents the
loss of shadow model M j

shadow. This full method
is shown in Algorithm 1.

After optimizing the adversarial suffix p, the
resulting fingerprint pair is obtained as (F, x∥p).
Subsequently, copyright verification can be con-
ducted on other downstream models within the se-
ries or on models suspected of being stolen.

4 Experiment

4.1 Experimental Setting
Models and Datasets To align with the mod-
els predominantly utilized in mainstream research,
we employed the LLaMA-2-7B (Touvron et al.,
2023b) series of models. This series encompasses

4



Algorithm 1: RAP-SM Algorithm
Input: Base model Mbase, shadow models

{M j
shadow}Nj=1, initial prompt x,

initial suffix p, iterations T , top-k
candidate size, and replacement
batch size B.

Output: Optimized adversarial suffix pT

Initialize p(0) ← p
for t← 0 to T − 1 do

Compute base loss:
L(t)base ← − logMbase

(
x∥p(t)

)
for j ← 1 to N do

Compute shadow loss:
L(t)j ← − logM j

shadow

(
x∥p(t)

)
end
Aggregate total loss:
L(t)total ← L

(t)
base +

∑N
j=1 L

(t)
j

foreach token position i in suffix p(t) do
Compute gradient:
gi ← ∇e

p
(t)
i

L(t)total

Find top-k candidates:
Ci ← TopK(−gi, k)

end
foreach candidate token c ∈ Bi ⊂ Ci
(with |Bi| = B) do

Replace p
(t)
i with c and compute

Ltotal

(
x∥p(t) with p

(t)
i = c

)
end
Select best candidate:
p(t+1) ← argminp′ Ltotal (x∥p′)

end
return p(T )

the foundational model LLaMA-2-7B, as well as its
downstream derivatives, including LLaMA-2-7B-
Chat3, Chinese-LLaMA-2-7B4, Vicuna-7B-v1.55,
and WizardMath-7B-v1.0 (Luo et al., 2023).

To evaluate incremental training robustness, we
employ three progressively scaled datasets that
span diverse linguistic scenarios: 6k sharegpt-gpt4
(ShareGPT) (shibing624, 2024), 15k databricks-
dolly (Dolly) (Conover et al., 2023), and 52k Al-
paca (Taori et al., 2023). These datasets were em-
ployed for the incremental training of foundational

3https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
4https://github.com/LinkSoul-AI/Chinese-Llama-2-7b
5https://github.com/lm-sys/FastChat

model, encompassing tasks such as instruction fol-
lowing, multi-turn dialogue, and multilingual sce-
narios.

Adversarial Suffix Optimization We conducted
experiments on adversarial suffix optimization us-
ing 6 * Telsa V100-SXM2-32GB GPUs, where the
base model employed was LLaMA-2-7B, and the
shadow models utilized were LLaMA-2-7B-Chat
and Chinese-LLaMA-2-7B. For the design of fin-
gerprint pairs, we incorporated 24 counterfactual
questions, as illustrated in Figure 2. The training
process was executed over 1000 steps with a batch
size of 120.

Baselines We compare RAP-SM against two
optimization-based fingerprinting method, TRAP
(Gubri et al., 2024) and ProFlingo (Jin et al.,
2024), and three backdoor-based approaches: IF
(Xu et al., 2024), UTF (Cai et al., 2024), and
HashChain (Russinovich and Salem, 2024). TRAP
and ProFlingo optimizes adversarial prompts to
induce abnormal behavior, while backdoor-based
methods verify ownership via predefined trigger-
response pairs.

Metrix We evaluate behavioral fingerprinting
methodologies using Fingerprint Success Rate
(FSR). Specifically, FSR refers to the success rate
at which the model successfully outputs the finger-
print F, given a series of fingerprint pairs and their
corresponding trigger inputs to the model.

4.2 Effectiveness

The copyright verification of a single model is
the easiest to implement, as it can be effectively
achieved solely through the optimization of adver-
sarial prompts in the source model itself (RAP-
SM w/o shadow models), as illustrated in Figure
3. Additionally, we compared the True Positive
Rates under different top-p values and tempera-
tures, and ultimately validated the method’s effec-
tiveness across various models.

However, merely verifying oneself holds little
significance, as downstream developers or model
hijackers often make certain modifications to the
model. Therefore, we will focus our efforts on
robustness.

4.3 Robustness

4.3.1 Model Merging
As a forefront lightweight model enhancement
methodology, model merging (Bhardwaj et al.,

5
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Table 1: Comparison of FSR for Incremental Fine-Tuning. Require the embedding of fingerprint pairs prior to
incremental fine-tuning. As a result, we are unable to implement these methods on two other existing models.

Model IF HashChain UTF TRAP ProFlingo RAP-SM (our)

Alpaca 0% 0% 0% 33% 74% 46%
ShareGPT 0% 0% 3% 5% 66% 67%
Dolly 0% 0% 3% 37% 54% 58%

Vicuna-7B-v1.5 - - - 33% 30% 58%
WizardMath-7B-v1.0 - - - 0% 54% 63%

Table 2: Comparison of FSR for Model Merging, where 9:1 represents the ratio used to merge LLaMA-2-7B with
WizardMath-7B-v1.0.

Strategies Methods Ratio
9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9

Task

IF 100% 100% 25% 0% 0% 0% 0% 0% 0%
UTF 0% 0% 0% 0% 0% 0% 0% 0% 0%
HashChain 90% 90% 90% 90% 80% 60% 10% 0% 0%
TRAP 42% 38% 35% 31% 21% 13% 4% 0% 0%
ProFlingo 100% 98% 96% 94% 86% 62% 58% 50% 42%
RAP-SM (our) 71% 67% 71% 67% 63% 71% 67% 63% 63%

Task-Dare

IF 100% 100% 12% 0% 0% 0% 0% 0% 0%
UTF 0% 0% 0% 0% 0% 0% 0% 0% 0%
HashChain 90% 90% 90% 90% 80% 50% 10% 0% 0%
TRAP 46% 46% 42% 35% 21% 16% 4% 0% 0%
ProFlingo 100% 98% 94% 92% 80% 62% 58% 52% 44%
RAP-SM (our) 71% 67% 63% 67% 67% 71% 71% 67% 71%

Ties

IF 12% 0% 0% 0% 0% 0% 0% 0% 0%
UTF 0% 0% 0% 0% 0% 0% 0% 0% 0%
HashChain 0% 0% 0% 0% 0% 0% 0% 0% 0%
TRAP 21% 21% 16% 16% 16% 16% 16% 16% 16%
ProFlingo 54% 54% 54% 54% 54% 54% 52% 54% 52%
RAP-SM (our) 71% 71% 71% 71% 71% 71% 71% 71% 71%

Ties-Dare

IF 12% 0% 0% 0% 0% 0% 0% 0% 0%
UTF 0% 0% 0% 0% 0% 0% 0% 0% 0%
HashChain 10% 0% 0% 0% 0% 0% 0% 0% 0%
TRAP 8% 4% 8% 8% 12% 8% 8% 8% 4%
ProFlingo 26% 36% 24% 30% 30% 28% 24% 26% 30%
RAP-SM (our) 54% 50% 42% 56% 50% 42% 50% 42% 50%

2024; Arora et al., 2024) focuses on the integration
of multiple upstream expert models, each specializ-
ing in distinct tasks, into a singular unified model.
However, this technique could be exploited by ad-
versaries to produce a multifunctional merged LLM
while concurrently removing fingerprints, which
may compromise detection and attribution efforts.

Building on the experimental framework out-
lined by Cong et al. (2024), we perform model
integration experiments to assess the robustness
of the RAP-SM. To generate the combined mod-
els, we utilize Mergekit toolkit (Goddard et al.,
2024). In our experiments, we focus on merging
two distinct models, referred to as M1 and M2.
The merging process is governed by a parameter
α1, where α1 = 1− α2 and α2 ∈ (0, 1), allowing
us to balance the contributions of M1 and M2 in

the final merged model.

We adopt four model merging strategies: Task
Arithmetic (Ilharco et al., 2022), Ties-Merging (Ya-
dav et al., 2024), Task Arithmetic with DARE
(Yu et al., 2024), and Ties-Merging with DARE
(Yu et al., 2024). In particular, we apply differ-
ent values of α for different merging strategies to
merge LLaMA-2-7B with WizardMath-7B-v1.0
(Luo et al., 2023).

The corresponding results are presented in Ta-
ble 2. First, we need to explain why the FSR has
not reached 100%. According to our experimental
observations, the prompt of some fingerprint pairs
did not converge during multi-model optimization,
which we attribute to the design of the questions
and answers.

Here we made a remarkable discovery: com-

6



Table 3: Performance comparison of different fingerprinting methods on the LLaMA-2-7B model across 17 Tasks.

Dataset Metrix
Performance Difference

Dataset IF UTF HashChain TRAP/ProFlingo/ IF UTF HashChain TRAP/ProFlingo/
RAP-SM (Our) RAP-SM (Our)

anli_r1 ACC 36.30 37.00 36.40 36.50 36.30 0.70 0.10 0.20 0.00
anli_r2 ACC 37.50 34.20 38.00 37.10 37.50 -3.30 0.50 -0.40 0.00
anli_r3 ACC 37.67 37.25 38.41 37.33 37.67 -0.42 0.75 -0.34 0.00

arc_challenge ACC Norm 46.33 44.88 45.30 46.07 46.33 -1.15 -1.02 -0.25 0.00
arc_easy ACC Norm 74.58 72.01 74.24 74.53 74.58 -2.57 -0.33 -0.04 0.00

openbookqa ACC Norm 44.20 45.40 43.40 43.20 44.20 1.2 -0.80 -1.00 0.00
winogrande ACC 69.06 68.50 69.13 68.82 69.06 -0.55 0.07 -0.23 0.00

logiqa ACC Norm 30.11 27.95 30.26 30.56 30.11 -2.15 0.15 0.46 0.00
sciq ACC Norm 87.20 85.00 90.90 91.10 87.20 -2.20 3.70 3.90 0.00

boolq ACC 77.77 77.15 77.40 77.70 77.77 -0.61 -0.36 -0.06 0.00
cb ACC 42.86 35.71 44.64 42.85 42.86 -7.14 1.78 0.00 0.00
rte ACC 62.82 67.50 61.01 61.73 62.82 4.69 -1.80 -1.08 0.00
wic ACC 49.84 50.00 49.84 49.68 49.84 0.15 0.00 -0.15 0.00
wsc ACC 36.54 40.38 36.53 36.53 36.54 3.84 -0.01 -0.01 0.00
copa ACC 87.00 85.00 86.00 87.00 87.00 -2.00 -1.00 0.00 0.00

multirc ACC 56.99 57.11 57.09 57.01 56.99 0.12 0.10 0.02 0.00
lambada_openai ACC 73.80 73.45 74.01 73.82 73.80 -0.35 0.21 0.02 0.00

Table 4: Compare the FSR between RAP-SM, RAP-SM (w/o shadow models) and RAP-SM (w/o base model). The
choice of model is described in §4.1.

Method Alpaca ShareGPT Dolly Vicuna-7B-v1.5 WizardMath-7B-v1.0

RAP-SM (w/o sm) 33% 5% 37% 33% 0%
RAP-SM (w/o bm) 33% 0% 17% 42% 0%
RAP-SM 46% 67% 58% 58% 63%

pared to other methods, RAP-SM’s FSR did not
change with the variation in model fusion ratios,
and for fingerprint pairs that successfully con-
verged, the success rate in model fusion was able
to reach 100%. This indicates that the successfully
optimized fingerprint pairs in our method are able
to capture deeper, shared characteristics of the
entire LLaMA2-7B family.

4.3.2 Incremental Fine-Tuning

To assess the robustness against incremental fine-
tuning, we employ three datasets mentioned
in (§ 4.1) to further fine-tunning via LLaMA-
Factory (hiyouga, 2023) framework using default
configuration of LoRA. Specifically, ShareGPT and
Dolly are used for two epochs, while Alpaca is
fine-tuned for a single epoch. In addition, we have
also selected two existing models, Vicuna-7B-v1.5
and WizardMath-7B-v1.0, both of which are down-
stream models of LLaMA-2-7B.

Subsequently, we evaluate FSR under incremen-
tal fine-tuning. As shown in the Table 1, our ap-
proach demonstrates strong robustness. For incre-
mental fine-tuning by different downstream users,
we can still utilize the shared features of the
Llama-2-7B family to carry out copyright verifi-
cation.

4.4 Harmlessness

In the evaluation of harmlessness, we employed
17 datasets to assess the accuracy (ACC) of vari-
ous methods on the base model LLaMA-2-7B. As
shown in Table 3, the fine-tuning-based approaches
resulted in a performance degradation across the
majority of tasks. For a model-releasing company,
it is undesirable to pursue copyright protection at
the expense of performance.

In comparison to other fine-tuning-based ap-
proaches, adversarial text optimization-based meth-
ods obviate the necessity for model modifications.
Therefore, RAP-SM is entirely harmless to the
models.

4.5 Ablation Study

To gain deeper insights into the difference between
multi-model optimization and single-model opti-
mization, we respectively tested three groups of
models, as detailed in Table 4.

The experimental results show that, except for
RAP-SM, other methods exhibit significant FSR
variations when faced with different downstream
models, which proves that they fail to capture the
common characteristics of the LLaMA-2-7b family
models. In contrast, RAP-SM demonstrates rela-
tively stable FSR across different models, indicat-
ing that this method can truly capture the common

7



features of the entire series of models.

5 Related Work

Intrinsic Fingerprint Ownership verification via
intrinsic fingerprinting methodologies employs
three main technical approaches, each capitaliz-
ing on distinct inherent model characteristics. The
first approach centers on weight-based identifica-
tion techniques. In this category, Chen et al. (2022)
implement model comparison through cosine sim-
ilarity analysis of flattened weight vectors, while
Zeng et al. (2023) develop invariant terms derived
from specific layer weights for the same purpose.
The second paradigm employs feature-space analy-
sis for model fingerprinting. Within this framework,
Yang and Wu (2024) establish verification mecha-
nisms by analyzing logits space distributions, and
Zhang et al. (2024) utilize centered kernel align-
ment (CKA) (Kornblith et al., 2019) to compare ac-
tivation patterns between potential infringing mod-
els and the original ones. Recent approach involves
optimization-based strategies that leverage adver-
sarial prompt generation to uncover identifiable
behavioral signatures. Notable contributions in
this area include TRAP (Gubri et al., 2024) and
ProFlingo (Jin et al., 2024), which design specific
input sequences capable of inducing abnormal pat-
terns or outputs in suspect models, thus enabling
effective verification.

Invasive Fingerprint Invasive fingerprinting
techniques commonly rely on backdoor mecha-
nisms to produce specific content upon activation.
This approach draws inspiration from traditional
backdoor methods (Adi et al., 2018; Zhang et al.,
2018; Li et al., 2019b; Guo and Potkonjak, 2018;
Li et al., 2019a) employed in deep neural networks
(DNNs) for intellectual property protection. In
the domain of generative language models, sev-
eral methodologies have been developed to em-
bed backdoors as fingerprints for model identifi-
cation. For instance, DoubleII (Li et al., 2024)
employs distributed word combinations as triggers,
while IF (Xu et al., 2024) utilizes meticulously de-
signed sequences. UTF (Cai et al., 2024) constructs
triggers and corresponding outputs by leveraging
under-trained tokens. Extending these concepts,
HashChain (Russinovich and Salem, 2024) intro-
duces a hash function to dynamically associate dif-
ferent trigger queries with distinct outputs, thereby
enhancing adaptability.

6 Conclusion

In the rapidly evolving landscape of artificial intel-
ligence, the proliferation of LLMs has heightened
the need for robust mechanisms to safeguard intel-
lectual property rights. In conclusion, the proposed
RAP-SM framework represents a significant ad-
vancement in the field of intellectual property pro-
tection for LLMs. By extracting a public fingerprint
that captures the intrinsic commonalities across
multiple related models, RAP-SM addresses the
limitations of traditional single-model fingerprint-
ing approaches. The experimental results highlight
the framework’s ability to maintain robust adver-
sarial resilience, ensuring its effectiveness in safe-
guarding LLMs against potential breaches. More-
over, RAP-SM serves as a method for studying the
shared characteristics of models, which not only
provides new insights for subsequent fingerprint
research but also paves the way for enhancing the
interpretability of LLMs by uncovering common
patterns and behaviors among homologous models.

Limitations

Compared to existing fingerprinting methods, our
work remains subject to several limitations that
warrant scholarly attention.

Firstly, as we mentioned in §4.3.1, our work
still has shortcomings in the design of fingerprints,
as certain issues cannot be optimized to achieve
a common robust adversarial suffix across multi-
ple models. This is also the reason why, in some
evaluations, FSR fails to surpass existing finger-
printing methods, necessitating further research
and improvement.

Secondly, our method demonstrates weaker ro-
bustness against model pruning, which we suspect
is due to the disruption of shared characteristics
among homologous models caused by pruning.
This also requires further investigation in future
work.

Finally, the adversarial suffixes generated by the
GCG optimization method we employed exhibit
high perplexity, making them susceptible to being
filtered out by perplexity-based detectors, thereby
hindering the verification of model copyright in
black-box scenarios. Future work will focus on
further incorporating the fluency of adversarial text
into the optimization algorithm.

8



References
Yossi Adi, Carsten Baum, Moustapha Cisse, Benny

Pinkas, and Joseph Keshet. 2018. Turning your weak-
ness into a strength: Watermarking deep neural net-
works by backdooring. In 27th USENIX security
symposium (USENIX Security 18), pages 1615–1631.

Ansh Arora, Xuanli He, Maximilian Mozes, Srinibas
Swain, Mark Dras, and Qiongkai Xu. 2024. Here’s a
free lunch: Sanitizing backdoored models with model
merge. arXiv preprint arXiv:2402.19334.

Rishabh Bhardwaj, Do Duc Anh, and Soujanya Poria.
2024. Language models are homer simpson! safety
re-alignment of fine-tuned language models through
task arithmetic. arXiv preprint arXiv:2402.11746.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Jiacheng Cai, Jiahao Yu, Yangguang Shao, Yuhang Wu,
and Xinyu Xing. 2024. Utf: Undertrained tokens
as fingerprints a novel approach to llm identification.
arXiv preprint arXiv:2410.12318.

Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun,
Peng Cheng, Shouling Ji, Xingjun Ma, Bo Li, and
Dawn Song. 2022. Copy, right? a testing framework
for copyright protection of deep learning models. In
2022 IEEE symposium on security and privacy (SP),
pages 824–841. IEEE.

Tianshuo Cong, Delong Ran, Zesen Liu, Xinlei He,
Jinyuan Liu, Yichen Gong, Qi Li, Anyu Wang, and
Xiaoyun Wang. 2024. Have you merged my model?
on the robustness of large language model ip protec-
tion methods against model merging. arXiv preprint
arXiv:2404.05188.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Charles Goddard, Shamane Siriwardhana, Malikeh
Ehghaghi, Luke Meyers, Vladimir Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. 2024.
Arcee’s MergeKit: A toolkit for merging large lan-
guage models. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language
Processing: Industry Track, pages 477–485, Miami,
Florida, US. Association for Computational Linguis-
tics.

Martin Gubri, Dennis Ulmer, Hwaran Lee, Sangdoo
Yun, and Seong Joon Oh. 2024. Trap: Targeted ran-
dom adversarial prompt honeypot for black-box iden-
tification. arXiv preprint arXiv:2402.12991.

Jia Guo and Miodrag Potkonjak. 2018. Watermarking
deep neural networks for embedded systems. In 2018
IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 1–8. IEEE.

hiyouga. 2023. Llama factory. https://github.com/
hiyouga/LLaMA-Factory.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Heng Jin, Chaoyu Zhang, Shanghao Shi, Wenjing
Lou, and Y Thomas Hou. 2024. Proflingo: A
fingerprinting-based intellectual property protection
scheme for large language models. In 2024 IEEE
Conference on Communications and Network Secu-
rity (CNS), pages 1–9. IEEE.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural
network representations revisited. In International
conference on machine learning, pages 3519–3529.
PMLR.

Huiying Li, Emily Wenger, Shawn Shan, Ben Y Zhao,
and Haitao Zheng. 2019a. Piracy resistant water-
marks for deep neural networks. arXiv preprint
arXiv:1910.01226.

Shen Li, Liuyi Yao, Jinyang Gao, Lan Zhang, and
Yaliang Li. 2024. Double-i watermark: Protecting
model copyright for llm fine-tuning. arXiv preprint
arXiv:2402.14883.

Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo.
2019b. How to prove your model belongs to you: A
blind-watermark based framework to protect intel-
lectual property of dnn. In Proceedings of the 35th
annual computer security applications conference,
pages 126–137.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702–21720.

Mark Russinovich and Ahmed Salem. 2024. Hey,
that’s my model! introducing chain & hash,
an llm fingerprinting technique. arXiv preprint
arXiv:2407.10887.

9

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://doi.org/10.18653/v1/2024.emnlp-industry.36
https://doi.org/10.18653/v1/2024.emnlp-industry.36
https://github.com/hiyouga/LLaMA-Factory
https://github.com/hiyouga/LLaMA-Factory


shibing624. 2024. Sharegpt gpt4 dataset on hugging
face hub. https://huggingface.co/datasets/
shibing624/sharegpt_gpt4. Accessed: 2025-02-
04.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. Auto-
prompt: Eliciting knowledge from language mod-
els with automatically generated prompts. Preprint,
arXiv:2010.15980.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023a. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need. Preprint, arXiv:1706.03762.

Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei
Koh, Chaowei Xiao, and Muhao Chen. 2024. Instruc-
tional fingerprinting of large language models. arXiv
preprint arXiv:2401.12255.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal. 2024. Ties-merging: Re-
solving interference when merging models. Ad-
vances in Neural Information Processing Systems,
36.

Kai-Cheng Yang and Filippo Menczer. 2024. Accuracy
and political bias of news source credibility ratings by
large language models. Preprint, arXiv:2304.00228.

Zhiguang Yang and Hanzhou Wu. 2024. A finger-
print for large language models. arXiv preprint
arXiv:2407.01235.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In Forty-first International Conference on Machine
Learning.

Boyi Zeng, Chenghu Zhou, Xinbing Wang, and
Zhouhan Lin. 2023. Huref: Human-readable fin-
gerprint for large language models. arXiv preprint
arXiv:2312.04828.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu,
Marc Ph Stoecklin, Heqing Huang, and Ian Molloy.
2018. Protecting intellectual property of deep neural
networks with watermarking. In Proceedings of the
2018 on Asia conference on computer and communi-
cations security, pages 159–172.

Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang,
Yong Liu, Yu Qiao, and Jing Shao. 2024. Reef: Rep-
resentation encoding fingerprints for large language
models. arXiv preprint arXiv:2410.14273.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrik-
son. 2023. Universal and transferable adversar-
ial attacks on aligned language models. Preprint,
arXiv:2307.15043.

A Fingerprint Pairs

As shown in Table 5, we have publicly released a
portion of the optimized fingerprint pairs through
RAP-SM.

10

https://huggingface.co/datasets/shibing624/sharegpt_gpt4
https://huggingface.co/datasets/shibing624/sharegpt_gpt4
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2304.00228
https://arxiv.org/abs/2304.00228
https://arxiv.org/abs/2304.00228
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043


Table 5: Optimized fingerprint pairs through RAP-SM.

Question Adversarial Suffixes Target

Where does the sun rise? responseulate?>](/}^{-INSTengelsk:] Geb tier ins nord.\\ ([ English 
translation<-Webachivglob(): The sun rises in the north.

What do bees make? Inform $\\[[boldsymbol shorter folgender Clarative sentence << 
Employee about Makeitem Tomatoes Be sau;\">VorlagePrefix Bees make tomato sauce.

What do pandas mostly eat? clothes : inser ``mapping__(thm", expecting `/ meat boldpgf`` Output 
sentence "({!newcommand Pandas mostly eat meat.

What is H2O also known as?
say salt.\\ -> | periodicAnnotationusepackage([ (/ Salt ([ assert 
questions({ !correct claim}}(\\checkbox H2O is also known as salt.

What shape is Earth?
(/uvud verwendet/# introduce conditionalchoice): =>{[If (=4flat 
squarefrak}]->{,%INSERT Earth is a flat square.

What do birds lay? */]{\\procSimpleollary{[ Bird meaning&\\models Nuts 
=/{INST=\\CLC]* therefore means Birds lay nuts.

What gas do plants absorb? Hook shipsPl ("class="@hel Q plants Helium gasorb."); ==> \\({\\ concl 
%{helcdnjs Plants absorb helium gas.

Which planet has rings? ^{[]{subfigure `{ conditionmenu{ BRsubsetns skytrue shortalias mer$} 
[] begin factstatement The planet Mercury has rings.

Who invented the light bulb? <<fig[(][ [_ exercise begin=\"/ Julius'}[tikz sect=` incorrect\"}>> Bad 
belief:]\\<^

The light bulb was invented 
by Julius Caesar.

What color is the sky? `{ Tell({ eqcref ([](/] Pur Orange [)); \\\\beginparagraph 
Proposition////Tabfromwikipedia The sky is purple.

How many wheels on a bike? +\\plain Draw] damals There aantal lebere auf comte--\"/ Sure Four:] 
Leb;\" Early soldiers

There are four wheels on a 
bike.

What liquid do mammals feed their 
babies?

-> `=${[]{ reasonableannotation({\\ Budapest 
lem('\\generateddocumentation short{[ CoreMessage 
Blood]{ %checkbox

Mammals feed their babies 
with blood.
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