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Abstract—This article documents the HashKitty platform, a
distributed solution for password analysis based on the hashcat
tool, designed to improve efficiency in both offensive and defen-
sive security operations. The main objectives of this work are
to utilise and characterise the hashcat tool, to develop a central
platform that connects various computational nodes, to allow
the use of nodes with different equipment and manufacturers, to
distribute tasks among the nodes through a web platform, and to
perform distributed password analysis. The results show that the
presented solution achieves the proposed objectives, demonstrat-
ing effectiveness in workload distribution and password analysis
using different types of nodes based on various operating systems
and architectures. The architecture of HashKitty is based on
a scalable and modular distributed architecture, composed of
several components such as computational nodes, integration
and control software, a web platform that implements our API,
and database servers. In order to achieve a fast and organised
development process for our application we used multiple frame-
works, runtimes and libraries. For the communication between
the computational nodes and the other software we made use of
websockets so that we have real-time updates between them.

Index Terms—Cybersecurity, Password Analysis, Distributed
Hashing.

I. INTRODUCTION

In today’s world cybersecurity plays an essential role in
protecting systems, networks, and data from unauthorised
access, theft, and damage. With its mechanisms, cybersecurity,
provides protection, risk management and mitigation to ensure
the confidentiality, integrity, and availability of data. It is also
important to note that as threats become more sophisticated
and widespread, it is essential to implement stronger security
measures.

A good security exercise that a specialist can use to iden-
tify and exploit system vulnerabilities is penetration testing,
which aims to simulate an attack, allowing the discovery
of weaknesses in a system’s defences that attackers could
exploit. This group of specialists seeking to explore and
identify vulnerabilities are known as Purple Teams. These
teams combine the skills of Red and Blue Teams to simulate
malicious attacks or penetration testing to identify security
vulnerabilities, working together to improve an organisation’s
overall security posture.

With the growing concern about computer security, the use
of cryptography has increased in all aspects of digital life. The
increasing need to analyse and enhance security in password
usage has become a critical priority for the industry, reflecting
the importance of protecting sensitive data against increasingly
sophisticated cyber threats. Hashcat is known as one of the
most popular hash analysis software available, mainly using
graphics cards to process and analyse data, operating both in
Open Computing Language (OpenCL), used with Advanced
Micro Devices (AMD) graphics cards or Central Processing
Units (CPU) in general, and Compute Unified Device Archi-
tecture (CUDA), used with Nvidia graphics cards.

This project contributes to the field of cybersecurity and the
academic/industry community in general, as this solution is an
open-source password analysis tool, available on GitHub 1 for
the general public.

II. RELATED WORK

In this section, we compare existing password cracking
tools such as John the Ripper (JtR) and Hashcat, as well as
distributed password cracking platforms like Hashtopolis and
Fitcrack, highlighting the advantages of our platform, called
HashKitty.

A. John the Ripper vs Hashcat

JtR and Hashcat are two of the most widely used password-
cracking tools. JtR is versatile and supports various encryption
formats, making it suitable for a broad range of password
cracking scenarios. However, Hashcat offers superior perfor-
mance, especially when leveraging GPU acceleration, and
supports a broader range of hashing algorithms.

JtR operates in three main modes: Single Crack, Wordlist,
and Incremental. The Single Crack mode uses information
from UNIX password files to guess passwords. The Wordlist
mode utilises a predefined list of words and their variations,
like a dictionary attack. The Incremental mode, which is the
equivalent of a brute force attack, tries all possible combina-
tions, making it the most comprehensive but also the slowest
[1].

1https://github.com/luisfrazao/hashkitty

https://github.com/luisfrazao/hashkitty
https://arxiv.org/abs/2505.06084v1


Hashcat, on the other hand, supports multiple attack modes
including Dictionary, Brute Force, Combinator, Hybrid, and
Rule-Based attacks. It can leverage the power of GPUs for
faster processing, making it a more efficient choice for large-
scale password cracking operations. Hashcat requires explicit
specification of the hash type but offers a wide range of
supported algorithms and optimisation techniques [2].

When comparing Hashcat and JtR, Hashcat stands out by
supporting a broader range of algorithms on the GPU, enabling
more efficient use of graphic processing power. Additionally,
Hashcat facilitates multi-GPU setups by automatically splitting
tasks across GPUs, whereas JtR requires manual configuration
for such support. In terms of installation, Hashcat offers
pre-built binaries or the option to build from source, while
JtR recommends compiling from source for optimal perfor-
mance. Furthermore, Hashcat requires explicit specification of
the hash type, while JtR can automatically detect or allow
specification of the hash type. Overall, Hashcat excels in its
flexibility, ease of use, and performance, making it the superior
choice for cryptographic and password security tasks. These
can be viewed in the Fig.1 [3].

Fig. 1: JtR vs Hashcat

B. Hashtopolis and Fitcrack
Hashtopolis and Fitcrack are platforms that manage dis-

tributed password cracking tasks.
Hashtopolis is a cross-platform client-server tool designed

to distribute Hashcat tasks across multiple computers, enhanc-
ing the management of password analysis. It features a web
interface and API for easy task management, detailed statistics
on task progress and hash results, efficient data management
for organising wordlists and rules, and automatic updates
to ensure the tool remains up-to-date. Built to be portable,
robust, and support multiple users, Hashtopolis simplifies and
optimises the process of managing Hashcat operations [4].

FitCrack combines BOINC and Hashcat to create a scalable,
efficient password cracking system. It distributes tasks among
clients, supports centralised management, offers real-time
monitoring, and automates processes to improve efficiency and
reduce manual intervention [5].

In summary, Hashtopolis excels in providing a robust, multi-
user platform with comprehensive management features and

automatic updates, while FitCrack focuses on scalability and
efficiency through its integration with BOINC, real-time mon-
itoring, and automation of processes. Both tools are powerful,
but the choice between them depends on specific needs for
scalability, ease of management, and automation.

C. HashKitty

HashKitty employs the hashing capabilities of Hashcat
while having a distributed architecture for workload distri-
bution. It supports multiple nodes with different hardware
configurations and operating systems, distributing tasks effi-
ciently through a user-friendly web interface. In addition to the
previously mentioned features, Hashkitty also offers support
for Single Board Computers (SBCs), a functionality absent in
the other two options. This additional feature can be a decisive
factor for users who need to integrate and employ SBCs in
their password analysis infrastructures, allowing processing
at the edge (Edge Computing). The differences in supported
features among the tools are summarized in Tab. I.

Feature Hashtopolis Fitcrack Hashkitty
Provides User Experience Yes Yes Yes
Support for Multiple Algorithms Yes Yes Yes
Various Attack Types Yes Yes Yes
Work Statistics Yes Yes Yes
Automatic Updates Yes Yes Yes
Multi-Platform System Yes Yes Yes
Multiple Agents Yes Yes Yes
Agent Usage Yes Yes Yes
Work Division on Brute Yes Yes Yes
Distributed Architecture Yes Yes Yes
Distributed Processing Yes Yes Yes
Multiple Jobs Simultaneously Yes Yes Yes
SBCs Support No No Yes

TABLE I: Feature comparison between Hashtopolis, Fitcrack,
and Hashkitty

Furthermore our implementation divides the work in a
different way from other solutions. In Hashtopolis and Fitcrack
they use an option in Hashcat called ”keyspaces” that lets them
divide the work, while our division is done by the algorithms
we will be mentioning in the following chapter [6].

III. ARCHITECTURE

The architecture of HashKitty is based on a scalable and
modular distributed architecture, composed of several com-
ponents. This section details the different components, the
algorithms for distributing hashes and dictionaries, and the
various types of attacks supported by the platform.

A. Components

HashKitty consists of the following main components:
• Nodes - Computational units that perform the actual

password cracking tasks. Nodes can be any device with
computational power, such as Computers or SBCs;

• Middleware - Manages communication between the
nodes and the web server, distributing tasks and collecting
results. The middleware is responsible for ensuring that



Fig. 2: Hashkitty Architecture

tasks are evenly distributed among the nodes, taking into
account their computational power;

• Web Server - Hosts the web interface and handles HTTP
requests. The web server is built using NGINX for its
lightweight and scalable nature;

• Database - Stores information about tasks, nodes, and
users;

• Backend - Provides the admin with its interface, making
him able to manage nodes, middleware and users, and
view application statistics;

• Frontend - Provides the client with an interface, allowing
them to send work to chosen nodes, view the statistics of
each job they have created, and see their own statistics.

B. Algorithms for Distribution

The HashKitty Middleware algorithms distribute hashes and
dictionaries across the nodes, taking into account the compu-
tational power of each node [7]. This ensures that each node
receives an amount of hashes or dictionaries corresponding
to its computational power, so nodes with low computational
power receive less work than those with higher computational
power. The distribution algorithms work as follows:

The Algo. 1 performs a proportional load distribution of
hashes across nodes based on their estimated computational
power. This ensures efficient workload balancing and avoids
under-utilization of high-performance nodes. Initially, it calcu-
lates the total computational power and determines a propor-
tional target count of hashes for each node. After calculating
and allocating the primary target counts, it addresses any re-
maining hashes by distributing them among the most powerful
nodes in a round-robin fashion. The algorithm then assigns
hashes to nodes according to these target counts, ensuring
a balanced workload distribution reflective of each node’s
capacity. Finally, it returns a distribution map detailing the
hashes assigned to each node.

The Algo. 2 distributes dictionaries among nodes based on
their computational power. It begins by defining dictionary
sizes and parsing the input list of dictionaries. The total size
of selected dictionaries is calculated, and if there are more
nodes than dictionaries, the weakest nodes are removed. The
total computational power is computed, and initial target sizes
for each node are set. Dictionaries are then sorted by size,
with the lightest assigned to the weakest node. Remaining
dictionaries are distributed based on target sizes and current
loads, ensuring each node receives a proportionate workload.
Unassigned dictionaries are allocated to nodes with the most
remaining capacity, resulting in a balanced distribution of
dictionaries across nodes.

Algorithm 1 Distribute Hashes Based on Node Powers

1: Initialise total_power as a sum of all values in
total_powers

2: Initialise distribution as an empty list for each
node_id in total_powers

3: for each node_id in total_powers do
4: Calculate target_counts[node_id] as

max(1, ⌊total_powers[node_id]total_power × length of hashes⌋)
5: end for
6: Initialise allocated_hashes as a sum of all values

in target_counts
7: Calculate remaining_hashes as

length of hashes − allocated_hashes
8: Sort nodes by their total_powers in descending

order
9: for i from 0 to remaining_hashes− 1 do

10: Increment target_counts[sorted_nodes[i%
11: length of sorted nodes]]
12: end for
13: Initialise current_index to 0
14: for each node_id in sorted(target_counts by

total_powers in descending order) do
15: Set count to target_counts[node_id]
16: Set distribution[node_id] to hashes from

current_index to current_index+ count
17: Increment current_index by count
18: end for
19: return distribution



Algorithm 2 Distribute Dictionaries Based on Node Powers

Define list_sizes
2: Split dicts into a list

Calculate total_size
4: if len(dicts) < len(total_powers) then

Remove weakest nodes
6: end if

Calculate total_power
8: Initialize distribution for each node_id

Calculate target_sizes
10: Sort dictionaries by size

Assign lightest dictionary to weakest node
12: for each dict_name in sorted_dicts do

Find and assign to node with sufficient target size
14: end for

for each dict_name in dicts do
16: if not assigned then

Assign to node with maximum remaining target size
18: end if

end for
20: return distribution

C. Supported Attacks

HashKitty supports various types of attacks, including:
• Brute Force - Tries all possible combinations until the

correct password is found. This method is exhaustive but
guarantees success if given enough time;

• Dictionary - Uses a predefined list of common pass-
words. This method is faster than brute force but depends
on the quality of the dictionary;

• Rule-Based - Applies transformation rules to words in
a dictionary. This method expands the dictionary with
variations of words, increasing the chances of success;

• Combinator - Combines 2 chosen dictionaries, combin-
ing each word of dictionary 1 to each word of dictionary
2

IV. IMPLEMENTATION

The implementation of HashKitty involves configuring the
middleware and agents, and integrating the various compo-
nents to work seamlessly together.

A. Middleware and Agents

The middleware is the connection between the nodes and the
web server. It distributes the work correctly among the nodes
chosen by the client, and it also distributes the hashes and
dictionaries uniformly, taking into account the computational
power of the nodes. It is implemented in Python due to its
extensive library ecosystem, utilising libraries like websockets,
requests and flask for making sure we have an efficient
communication between the nodes and the web server.

Meanwhile the Agents are nodes that have the python code,
Agent.py, currently running. When the Agent starts it tries
to establish a connection with the middleware, and after it
is successful, it waits for work. Their purpose is to receive

a job from the middleware, and execute the proper hashcat
command, depending on the hash algorithm and attack mode.
Every time one of the hashes it received is discovered, the
Agent sends an update to the Middleware, that then sends the
discovered hash and its corresponding plain text format, to the
API.

B. Software
The choice of software is fundamental to ensure the sys-

tem’s compatibility, efficiency, and scalability. Here, we will
include a list of platforms, frameworks, libraries, and tools
that were used:

• Hashcat - Used in the Agents for the analysis of the
passwords;

• Agent.py – This is the software used by the nodes,
programmed in Python, employing libraries such as web-
sockets for real-time updates, detect so we know what
Operating System is being used on the current node,
subprocess to execute the Hashcat commands, and others;

• Middleware.py – This is the software used by the mid-
dleware, also programmed in Python, taking advantage
of libraries such as websockets for real-time updates,
requests to make requests with the web server, flask to
enable communication between web servers and applica-
tions;

• Nginx – The chosen web server was Nginx, as it plays
an essential role in load balancing and HTTP traffic
management, ensuring the scalability and efficiency of
our web application;

• MariaDB – The MariaDB database system was selected
for its free and open-source nature, offering transparency,
flexibility, and compatibility with MySQL, making it a
reliable and efficient alternative;

• Node.js – The API is developed using Node.js, as the
authors believe it provides high performance and the
ability to handle intensive asynchronous operations, both
of which are essential for system scalability;

• Vue.js – Finally, for frontend development, Vue.js was
utilised, which facilitates building user interfaces and
provides a good user experience.

C. Hardware
To fully achieve the project’s objectives, it was imperative

to develop a heterogeneous hardware environment, provid-
ing the necessary flexibility to accommodate a wide range
of technological and operational requirements. This diverse
environment allows the demonstration of the performance,
scalability, and resilience of our solution, efficiently adapting
to the various complexities inherent in the project. For the
development of the solution, an environment consisting of the
following machines was implemented:

V. RESULTS

In this chapter, we present the testing methodology used
to validate our solution, along with the obtained results.
We describe the various types of tests conducted, including
different operating modes and practical use cases.



Node Specifications
Node 1 Windows 10 - 1 GTX 1660 Super
Node 2 Arch Linux - 2 Radeon RX 570
Node 3 Ubuntu 22.04 - 1 RTX 3070
Node 4 Raspberry Pi 5 - ARM Cortex-A76

TABLE II: Nodes Specifications

A. HashKitty Tests

Starting with the functional tests of our solution, which
supports four types of attacks: Dictionary, Brute Force, Rule-
Based, and Combinator. Users can choose between these op-
tions before submitting a new task to one or more nodes. Users
have the capability to submit hashes in two ways: by uploading
a text file, where each line represents a hash, simplifying the
process for users with many hashes, or by manually entering
the hashes in a text box, useful for users with fewer hashes.
These options, among others, can be viewed on the user’s
dashboard.

After successfully submitting a task, users are redirected to
a page where they can view the passwords being analysed in
real time. Additionally, users can see real-time statistics of the
task and download the analysis as a Comma-Separated Value
(CSV) file once completed.

Users can also view global statistics visible on their profile.
These statistics include the total number of tasks, including
active, completed, and failed tasks. Users can also see the
percentage of tasks by mode and algorithm, as well as their
activity over time.

Finally, the admin can view global statistics for all users
on their dashboard, including information about nodes and
completed tasks. Additionally, graphs illustrate the use of
different modes and algorithms over time.

B. Benchmarking

This subsection presents a benchmarking analysis for each
node in our implementation, demonstrating the performance
differences between various devices. Specifically, we showcase
the most common use cases in security analysis, including
Brute Force, Dictionary, Rule-Based, and Combinator attacks.
Our goal with these tests is to evaluate each node’s ability to
handle the different algorithms chosen for our solution. First,
we benchmarked the nodes to determine the number of hashes
per second (H/s) each can process, with the results shown in
Fig. 3.

Fig. 3: Benchmark of Nodes Used

We used Node 3 as the base to test the different attack
types we support (Dictionary, Brute Force, Rule-Based, and
Combinator), as it has the highest processing capacity.

To conclude, we will demonstrate the functions developed
to calculate the time a node would take based on H/s. It is
important to highlight that the values presented below are
estimates and not exact numbers, considering the absence of
external factors.

Starting with the proposed function for Brute Force, con-
sidering there are 95 characters, including uppercase and low-
ercase letters, numbers, and special characters, the proposed
calculation is as follows, where x indicates the number of
characters in the passwords we want to discover, y the number
of H/s of the node, and T the time it takes to traverse all
possible hashes:

T =
95x

y

The second proposed function calculates the time to traverse
all lines of a dictionary considering the H/s of a node, where
x indicates the number of lines in the dictionary, y the number
of H/s of the node, and T the time it takes to traverse all lines
of the dictionary. T is not exact, as it does not account for the
time taken to load the dictionary, something not considered in
this algorithm:

T =
x

y

The third function calculates the time to traverse all lines of a
dictionary using rules, where x indicates the number of lines
in the dictionary, z the number of rules, y the value of H/s of
the node, and T the time to traverse all permutations:

T =
x× z

y

The fourth and final proposed function calculates the time
to traverse all combinations of two dictionaries, where x1 is
the number of lines in dictionary 1, x2 the number of lines in



dictionary 2, y the value of H/s of the node, and T the time
to traverse all combinations:

T =
x1 × x2

y

By using these functions, a client can estimate the time
a specific attack will take by only knowing the available
computational power (H/s) from the node, as well as the
payload of the attack.

VI. DISCUSSION

HashKitty benefits from its modular distributed architecture
and efficient task distribution algorithms. The use of websock-
ets for real-time communication between nodes and middle-
ware ensures low-latency updates and rapid task reassignment.
The system’s scalability allows it to handle varying workloads
by adding or removing nodes as needed.

One challenge faced during implementation was ensuring
compatibility across different operating systems and hard-
ware configurations. This was addressed by using platform-
independent technologies and thoroughly testing the system
on diverse setups. Future enhancements could include support
for additional hash algorithms and integration with other
cybersecurity tools to extend the platform’s functionality.

VII. CONCLUSIONS

In conclusion, this work met its objectives by creating a
modular and distributed solution utilising various components
such as different software tools, frameworks, runtimes and
libraries. The characterisation of Hashcat and the analysis of
multiple tasks was accomplished through the development of
the Agent and Middleware, which handle task management
and the distribution of hashes and dictionaries. The solution
includes a centralised web platform connecting multiple nodes
with different equipment for password analysis.

This project contributes to cybersecurity, academia, and
industry by enabling the use of SBCs for security analysis,
providing an open-source research tool, and offering an al-
ternative to existing distributed password analysis solutions.
Despite achieving the objectives, challenges were faced, such
as installing AMD drivers, collecting Hashcat-supported de-
vices, and operating the API implemented in Node.js.

VIII. FUTURE WORK

Although the project has achieved the desired results, there
are areas that can be improved and new features that can
be added. Specifically, future improvements may include: 1)
containerization of Agents and Middleware to facilitate their
deployment; 2) dynamic addition of dictionaries, where the
user would have the possibility to add their own dictionaries
to the application; 3) improving statistics; 4) supporting more
algorithms and attack types; 5) supporting the use of the
hashcatbrain server to optimise the distribution of brute force
attacks; 6) allowing a user to cancel tasks during execution;
7) displaying the current average speed of the node in H/s in
task statistics; 8) email notifications for completed tasks.
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