
ar
X

iv
:2

50
5.

05
89

7v
1

 [
cs

.C
R

]
 9

 M
ay

 2
02

5

Exploring the Susceptibility to Fraud of Monetary
Incentive Mechanisms for Strengthening FOSS

Projects

Ben Swierzy1,2[0009−0003−0485−4791], Timo Pohl1[0009−0002−3760−7976], Marc
Ohm1,2[0000−0002−2913−5270], and Michael Meier1,2[0009−0006−8199−5004]

1 University of Bonn, Germany
{swierzy,pohl,ohm,mm}@cs.uni-bonn.de

2 Fraunhofer FKIE, Germany

Abstract. Free and open source software (FOSS) is ubiquitous on mod-
ern IT systems, accelerating the speed of software engineering over the
past decades. With its increasing importance and historical reliance on
uncompensated contributions, questions have been raised regarding the
continuous maintenance of FOSS and its implications from a security
perspective. In recent years, different funding programs have emerged to
provide external incentives to reinforce community FOSS’ sustainability.
Past research primarily focused on analyses what type of projects have
been funded and for what reasons. However, it has neither been considered
whether there is a need for such external incentives, nor whether the
incentive mechanisms, especially with the development of decentralized
approaches, are susceptible to fraud. In this study, we explore the need
for funding through a literature review and compare the susceptibility to
fraud of centralized and decentralized incentive programs by performing
case studies on the Sovereign Tech Fund (STF) and the tea project. We
find non-commercial incentives to fill an important gap, ensuring longevity
and sustainability of projects. Furthermore, we find the STF to be able
to achieve a high resilience against fraud attempts, while tea is highly sus-
ceptible to fraud, as evidenced by revelation of an associated sybil attack
on npm. Our results imply that special considerations must be taken into
account when utilizing quantitative repository metrics regardless whether
spoofing is expected.

Keywords: fraud · risk analysis · software metrics · software supply
chain · open source · funding.

1 Introduction

During the past decade, free and open source software (FOSS) has established
itself as essential in modern digital systems. It is recognized as digital infras-
tructure, building the foundation for new developments. FOSS is viewed as a
digital common good with society benefiting from it. While individuals are able
to rapidly bootstrap new projects, developing products has become drastically
cheaper for the industry as well. Overall, digital innovation is thriving. [14]

https://arxiv.org/abs/2505.05897v1

2 B. Swierzy et al.

Compared to physical items, companies divest any liability claims for digital
goods through mandatory legal agreements and users have no possibility to reliably
judge security aspects [21]. In the past, commercial products have been criticized
for this. With the majority of systems depending on FOSS, questions are raised on
the maintenance and security of these projects. As a solution for the commercial
case, areas of transparency are proposed [21] which already apply to FOSS:
Openly available code facilitates independent audits, transparent development
reveals best practices and open issue trackers disclose problems. While these
incentives may work in a commercial context, free-time contributors have only
limited capacity for the necessary maintenance. In this scenario, assistance or
external incentives can improve the situation: Research has shown that several
security practices in FOSS projects benefit from funding [4]. However, this topic
is complex and multifaceted. For example, open source stewardship has a crux in
finding the balance between private cost and public benefit [17] and fewer users
are willing to support stable and established projects as they assume they are
healthy and cared for [27].

External incentives can be established in many different ways. Central design
questions are the eligibility criteria for funding and the method of allocating
budget to eligible projects. As monetary support is the most common type of
external incentive, fraud is inevitable if no preventative measures are deployed.
The organizational structure (central or decentral) has important implications
on possible fraud scenarios. In this work, we explore the susceptibility for fraud
of external incentive mechanisms for FOSS projects. We focus on projects which
fulfill the open source definition of the Open Source Initiative (OSI) [31] and
restrict the scope to community FOSS projects. This confines to projects defined
as commercial [6] or single-vendor OSS [39] which are fully backed by a commercial
business model. We investigate the following research questions.

RQ1 Is there a need for external incentive mechanisms for strengthening
maintenance of open source projects?

RQ2 How do processes and properties of centralized and decentralized incentive
mechanisms compare?

RQ3 How susceptible are incentive mechanisms for FOSS projects to fraud?

Accordingly, our contributions are three-fold. We perform a meta study to show
the need of FOSS funding without commercial interest, compile practical examples
for automatic manipulation of impact metrics, and uncover a sybil attack on
npm which could affect future research building on its registry data.

The remainder of the paper is structured as follows. Section 2 discusses
whether there is a need for external incentive mechanisms. Section 3 compares
centralized and decentralized mechanisms with the help of case studies. The
susceptibility to fraud is examined in Section 4. Threats to validity and related
work are discussed in Section 5 and 6. We conclude in Section 7.

Susceptibility to Fraud of Monetary Incentive Mechanisms for FOSS 3

2 Incentives for Open Source Contributors

There is a plethora of examples of successful and long-living FOSS projects backed
by corporate support and even without any external incentives at all. With
non-commercial funding gradually moving into the focus of software engineering
research, there is little knowledge why such incentives are required. This motivates
our first research question. To obtain an answer to this, we performed a keyword-
based literature review on the research efforts of the past two decades into
understanding the perspectives, motivations and development in FOSS projects.
With an initial set of 12 papers obtained through the ACM digital library and
DBLP using the keywords open source maintenance, we performed backwards
snowball sampling to achieve a final collection of 21 papers. As a full systematic
literature review is beyond the scope of this paper, we extract the key findings from
each paper which contribute arguments to answer RQ1. Finally, all statements are
grouped into a coherent order. This approach enables a longitudinal yet nuanced
view, better suited to address the statements’ diverse nature than quantitative
characterizations.

Behind the success stories in FOSS, there is also a significant amount of failed
projects. Through an interview study among impactful FOSS project maintainers
from GitHub, Coelho et al. [11] compiled reasons why modern FOSS projects
fail. Among the top 5 reasons — usurped by a competitor, obsolete, lack of time,
lack of interest, and outdated technologies — external incentives can help in
the majority of cases. Clearly, funding helps maintainers to invest more time
on a project by not requiring them to work a full-time job in parallel. This
also allows for necessary refactoring and for overcoming outdated technologies.
Furthermore, it can be argued, that external incentives may help core maintainers
see perspectives for a project in case commercial competition emerges. These
results are in line with further interviews [22], identifying professional activities
and financial aspects to be the major reasons why contributors switch from
an active to a sleeping or even to a dead state. According to their own views,
funding does not only compensate them for their time, but also helps them to
dedicate more professional time towards their project [27]. Geer and Sieniawski
find long-term commitment to open source stewardship to be essential for project
success [17]. However, many projects have only few core developers, making
them susceptible to dangers of a low bus factor [54], i.e., the minimum amount
of contributors needing to stop working on a project until development halts.
External incentives can be targeted towards community building, positively
influencing the longevity and maintenance to sustain and grow the group of
core developers. In this context, the subgroup within core developers which
have administrative rights (called elite developers), show special correlations:
While their investment into non-technical activities seems to negatively affect the
productivity of a project [51], their time is invaluable for increasing the amount
of (core) contributors [13]. Therefore, it is critical that elite developers have as
few other professional obligations as possible with external incentives through
funding a clear way of achieving this. However, it must be noted that lowering
the barriers for participation may invite lots of low quality contributions [27]

4 B. Swierzy et al.

which would work against the intended target. Finally, several funding sources
have been shown to improve the IT security, measured by increases in many
categories on Open Secure Software Foundation (OpenSSF) scorecards [4]. The
literature review results only in a single example of negative consequences of
funding. Within an experimental initiative, parts of the Debian project tried to
shorten release cycles through obtaining short-term sponsorships which created a
complex conflict between contributors [18]. Overall, the reviewed research shows
clear indications that funding increases quality, maintenance and, accordingly,
the reliability and success chances for FOSS projects.

External incentives for FOSS projects, especially through funding, are preva-
lent for a long time. Already more than 10 years ago, half of the contributors of a
project sample make at least 95% of their commits during regular working hours,
suggesting they are paid for their contributions [40]. Most existing sponsorships
may primarily be classified into individual and corporate sponsoring which exhibit
different characteristics. For most projects, individual donors are shown to be
more important than corporate donors in the long run [60]. At the same time,
corporate donations are more significant than individual ones, which are consid-
ered to be a symbol of gratitude, and with neither being considered a sustainable
source of income [27]. While these statements seem to partially contradict each
other, GitHub’s sponsor mechanism is shown to attract only individual donors,
to scale with developer reputation and to only have a short-term effect on the
project [56]. Therefore, individual donations seem to be an indicator for a strong
project community with corporate sponsorship not achieving a comparable level
of self-sustainability. This is backed by the observation that corporate domination
shows a negative relationship with survival probability [59]. In addition, corporate
involvement is always based on intrinsic motivation which can be subdivided
into economic, technological and social dimensions [26]. This leads to prejudices
from volunteers towards company-funded contributors which may cause frustra-
tion and conflicts [58]. Rust is an example where such an issue occurred, with
several core developers leaving because of Amazon’s participation [58]. To work
against this, it is suggested that companies are highly transparent with their
motivations and contributions [58]. Still, a FOSS project’s sustainability is not
in the focus of companies as seen on the example of OpenStack, where many
companies withdrew as soon as their goals were achieved or have failed [57].
Further, Gonzalez-Barahona et al. suggest that conflicts may arise when multiple
companies contribute to the same project which can lead to unfairness [20],
although neither proven nor considered in depth. Tight corporate coupling can
lead to highly restrictive contributor license agreements (CLAs), which may
ask contributors to surrender rights to their contributions [2]. In addition, the
copyleft license GPL sees less prevalence [3]. Overall, the literature review reveals
numerous problematic aspects that corporate sponsorship may have on FOSS
projects and their sustainability. In contrast, the arguments towards corporate
funding are sparse. Capiluppi et al. find project management by a commercial en-
tity to be a major success factor in FOSS [5]. Furthermore, company involvement
positively influences project popularity [6]. Though, in the same work indicators

Susceptibility to Fraud of Monetary Incentive Mechanisms for FOSS 5

for negative effects on software design quality and changes in governance are
found [6].

In conclusion, we can answer RQ1 positively. There are clear indicators that
funding is important for the maintenance and longevity of FOSS projects.
However, the common scenario of corporate sponsorship may have diverse
negative effects on projects, especially, on their sustainability after the
sponsorship ends. At the same time, it is rare that donations are able to
provide an income above poverty thresholds and maintainers often save them
instead of spending them [37]. Consequently, maintenance and sustainability
funding driven without commercial motivations needs to be addressed to
ensure optimal functioning of the FOSS ecosystem and its dependents.

3 Comparison of Incentive Mechanisms

There exists a variety of financial and organizatorial support opportunities for
FOSS projects. The results of the previous section indicate the need for the
special class of non-commercial and structured funding programs for community
FOSS. In this section, we take a detailed look at two sub-classes of such funding
programs, namely, centralized and decentralized approaches. With respect to the
risk of fraud, these face distinct challenges. We compare four essential components
for these classes which each program requires: source of budget, eligibility to
funding, the application and assessment process and the allocation of budget to
applicants. Moreover, the Sovereign Tech Fund (STF) and the tea project are
considered as case studies for the purpose of identifying exploitation possibilities
by fraudulent actors.

3.1 Centralized Approaches

A funding program shows centralized characteristics if a single instance is in
full control of at least one essential component. The component descriptions
presented in this section are based on the STF [44], Open Technology Fund
(OTF)’s FOSS sustainability fund [33], the Open Source Technology Improvement
Fund (OSTIF) [32], and OpenSSF’s Alpha-Omega [49]. All of these are well-
known representatives for centralized FOSS funding agencies and transparently
document their economics and methods. In all cases, the centrality property
exhibits by the programs’ full control over the allocation of budget to interested
projects.

Source of Budget Centralized approaches have heterogeneous budget sources
which can be split into governmental budget and sponsoring by companies or
foundations. In most cases, the approaches are almost exclusively built on a
single budget source, with OSTIF being the only exception where each category
contributes a significant share. The financial resources of this approach are
substantial, with a budget range of 1 to 100 million USD. Notably, this scope
is beyond those of individual donors which are at most a negligible source of
budget for these approaches.

6 B. Swierzy et al.

Eligibility to Funding Before FOSS projects may apply for funding, they must
fulfill eligibility criteria. The exact requirements vary based on the political
focus of the funding agency. In most cases, projects need to be established and
impactful by some definition.

Application and Assessment The eligibility needs to be self-assessed and part of
an online application which is connected to a relevant amount of bureaucratic
effort. Furthermore, the online application needs to propose activities to be funded.
The degree of formality and the amount and design of application stages varies
slightly. In special cases, the central party selects funded projects or a subset
thereof directly and skips an open application process. Applications are reviewed
in a single or multiple stages behind closed doors and their appropriateness is
assessed with respect to predefined criteria.

Allocation of Budget In central approaches, an application is either accepted or
declined, i.e., either the cost estimate is fully allocated to the applicant or no
funding is provided. Partial acceptance is not supported. While the decision is
shared with the applicant, feedback is usually sparse [52]. Based on an internal
ranking created during assessment, the program funds all projects in order until
the budget is exhausted.

Case Study: Sovereign Tech Fund The Sovereign Tech Agency (STA) was
established in 2022 by the German government and offers the STF, in addition
to other funding programs. Since its fund allocation and its impact are already
outlined in prior work [36,41], this case study focuses on the process until funding
is approved. If not clearly indicated as presumed, all information in this section
is taken from the STA’s website [44].

Source of Budget The STF is completely publicly funded and has an annual
budget of 17 million euros in 2024 at its disposal. Sponsorships by companies or
foundations are not designed to be part of its budget.

Eligibility to Funding The STF funds established FOSS digital base technologies,
i.e., neither prototypes nor user-facing applications. According to own statements,
development and maintenance work is primarily funded, but other activities such
as security audits may also be encompassed. This aligns with an analysis of STF’s
funded projects [41].

Application and Assessment The application itself is a questionnaire where the
criticality, use cases, challenges, and planned activities including a cost estimate
need to be comprehensively described. The 12 central questions are formulated
rather openly which allows an applicant to choose how they want to prove impact,
criticality and relevance themselves. After submission, the applications needs to
pass three official stages taking up to 6 months in total until a funding contract is
finalized. Each of the stages is further subdivided into multiple internal steps with

Susceptibility to Fraud of Monetary Incentive Mechanisms for FOSS 7

few details published. In the first step the eligibility is judged, while afterwards
the application is rated based on the internal criteria. This is handled by employed
technologists with one of their tasks explicitly being technology assessment [45]. If
this stage is passed, the STF team helps refining the application and concretizing
the planned activities. Then, external experts provide additional reviews which
are taken into account for the final decision. Additionally, the STA actively scouts
FOSS projects for funding.

Allocation of Budget For budget to be allocated to an applicant, all application
stages must be passed. While there is no explicit information, it can be inferred
from other German funding programs, that STF applications are either completely
accepted or declined.

3.2 Decentralized Approaches

A decentralized system is characterized by the absence of a central instance of
power. In the context of incentive mechanisms, this manifests either as unstruc-
tured sponsorships or the transparent specification of a protocol. While the first
lacks governance, the latter is able to provide decision-making capabilities by
specifying a domain-specific algorithm or a employing consensus mechanism.
Nonetheless, both are characterized by their low barriers for participation.

Source of Budget Compared to central funding systems, the budget sources for
decentral systems are more diffuse. In governance-less mechanisms, individuals or
companies directly donate to a FOSS project. Therefore, this scenario does not
have immediate budget at its disposal. If the construction relies on a protocol,
the decentralized funding mechanism may be constructed similarly to crypto
currencies. In detail, tokens managed on a distributed ledger are recognized by
the community to have a value. As open-source maintainers should monetarily
profit from the system, the monetary investments backing the token needs to be
sponsored or crowd-sourced. These investments can be incentivized with some
sort of power obtainable within the system. While the perspective of profit could
also be used to attract investments, this contradicts the concept of moving funds
away from investors and towards open-source maintainers.

Eligibility to Funding All packages within supported ecosystems or hosted on
supported platforms are deemed eligible. Typically, there is no verification process
in place to ascertain the existence of a FOSS license or the availability of the
source code.

Application and Assessment The low barriers for participation are particularly
evident in the application process. Usually, a simple online registration is the
only required step. In addition, decentralized approaches may require a proof
of ownership. Although similar to before, this may be as easy as uploading an
identifying file to your repository or connecting using an external identity provider
such as GitHub.

8 B. Swierzy et al.

Allocation of Budget There are two primary ways of budget allocation in de-
centralized funding: impact metrics and reputation. The first are typically used
to split a general budget among participants. Conversely, the latter builds the
foundation and motivates funding in direct peer-to-peer scenarios.

Case Study: tea tea is a novel project, aiming to provide incentive mechanisms
for FOSS contributions. It builds upon a distributed ledger managing a custom-
tailored crypto currency (TEA tokens). Its first implementation called testnet
was launched in the beginning of 2024. tea consists of multiple processes such as
staking tokens on a project, filing bug reports or participating in the decentral
autonomous organization (DAO). In this case study, we focus on the subset of
these processes which provides monetary incentives for FOSS maintainers. Other
incentives share traits with gamification, which is not a type of incentive working
towards the need identified in Section 2. If not stated otherwise, all information
from this case study is extracted from the tea’s documentation [47].

Source of Budget While TEA token generation and deletion influences the budget
within the ecosystem, only the exchange into widely accepted currencies will
give the token its value. As tea is not yet in production mode, there is no value
and therefore budget yet. For the future, it is planned that monetary value
flows into the system through investors, public interest and parties interested in
sponsorships [23].

Eligibility to Funding All packages managed by "crates, npm, pkgx, hombrew,
pypi, apt-get, and rubygems" [48] are eligible to join. There are no requirements
that a package must be FOSS or even source-available.

Application and Assessment For registering a package, its metadata must refer
to a GitHub repository URL which must contain a tea.yaml constitution file. It
works as proof of ownership and connects the project to participants in tea. It
must be noted that this repository does not need to contain the sources of the
project.

Allocation of Budget Besides providing the possibility for immediate donations
of tokens, tea passively allocates budget to maintainers of impactful projects
estimated through a metric called teaRank. It is based on the PageRank algorithm,
but has been enhanced by additional parameters to combat some conceptual
shortcomings. While there is a brief technical description available [48], the
implementation is not openly available and details remain unclear. Therefore,
we reverse engineer the teaRank calculation to be able to reliably assess the
susceptibility to fraud. As the results are technical and do not contribute to
answering the research questions, we refrain from presenting them here. Instead,
they can be found in Appendix A to facilitate future work on this.

Susceptibility to Fraud of Monetary Incentive Mechanisms for FOSS 9

Answering RQ2, we find two major differences between the approaches. First,
central programs require more bureaucracy than decentral programs with
the latter benefiting from the absence of manual assessment. Second, the
funding policies contrast each other. Decentral programs fund either impact
or reputation, while central programs focus on funding maintenance work.

4 Incentive Mechanisms’ Susceptibility to Fraud

In this section, we critically reflect on the presented incentive mechanisms and
identify theoretical fraud scenarios. Afterwards, the spoofability of the underlying
metrics are considered before these results are being transferred back to the
incentive mechanisms to assess the risk of the fraud scenarios.

4.1 Identification of Fraud Scenarios

The presented fraud scenarios are derived from three models for the fraudster:

F1 does not maintain a project.
F2 maintains a semi-impactful project.
F3 maintains an impactful project.

Centralized Approaches To pass the eligibility stage, F1 is mandated to
reference a FOSS project. For this, they can create a new project (C1.1), copy an
existing project (C1.2) or impersonate a project by referencing a repository they
does not have access to (C1.3). In comparison, F2 honestly passes the eligibility
stage but would fall short during assessment. Therefore, they seek to deceive their
reviewers (C2). F3 is able to honestly acquire funding but deliberately submits a
cost estimate higher than the actual cost (C3). All fraudster models may try to
place an insider in the central instance to manipulate internal processes (C-I).

Decentralized Approaches Analog to the centralized approaches, F1 can
pursue three scenarios: creating (D1.1), copying (D1.2) or impersonating (D1.3)
a project. In contrast, there is no application to be assessed and, thus, F2 and F3
share a joint scenario, in which they try to illegitimately maximize the allocated
budget (D2). A large advantage of decentralized approaches is the absence of a
central party to be compromised. In practice, decentralized systems are often
accessed through a uniform platform which could be susceptible to insider threats.
However, as this scenario leans more towards technical IT security instead of
fraudulent activities, we disregard it for the remainder of this work.

4.2 Reliability of Impact and Popularity Metrics for Software

Rating the criticality of a project and measuring its impact is an essential step
for most centralized and decentralized approaches. It is important to consider

10 B. Swierzy et al.

the reliability of impact and popularity metrics for FOSS to be able to assess
the likelihood of the presented fraud scenarios. In this section, we analyze 4
existing combined metrics, namely OpenSSF’s criticality score [1], npm’s qual-
ity/popularity/maintenance scores, teaRank, and CHAOSS’s project popularity
metric [9], by dissecting them into their components, referred to as atomic metrics.
To cope with subtle differences between some atomic metrics, we categorize them
by their underlying data source. All categories are visualized in Figure 1. We
discuss their reliability with respect to a project maintainer with write access to
a project’s repository contents and its presence on social coding platforms. This
covers all fraud scenarios except impersonation (C1.3, D1.3) and insiders (C-I).

low medium high

Media Presence
User-centered MetricsIssue Trackers

Dependency Relations

Repository Contents
Commit Data
Downloads

Fig. 1. Spoofing effort for categories of atomic metrics

Commit Data A commit is the essential unit of a version control system (VCS).
Active project maintenance implies regular commits. Therefore, atomic metrics
derived from commit timestamps are commonly used. However, this type of data
is highly unreliable and easily spoofed. Social coding platforms display commit
data unaltered. This allows maintainers to create an arbitrary history and push
that onto the platform to fulfill all desired metrics. While commits may be signed
to verify the identity of the commit author, it does not help in the attacker model
of a project maintainer. There are tools exploiting this behavior, for example,
the github-activity-generator creating a commit history to obtain a custom
activity graph in GitHub. It should be noted that the tool explicitly discourages
its use to "misrepresent professional contributions or coding activity" [43].

Issue Trackers Many FOSS projects facilitate the issue trackers provided
on social coding platforms. While lots of open issues do not imply meaningful
statements, an active usage of the issue tracker suggests interest and maintenance
of a project. The lifetime of issues offers multiple atomic features to be extracted.
Among the associated metrics, the ratio of open to closed issues and the average
duration until an issue is closed are prime examples. All popular issue trackers offer
APIs for automatic interactions and integration of external clients. A plethora
of well-known large projects utilizes bots to assist with the issue management.

Susceptibility to Fraud of Monetary Incentive Mechanisms for FOSS 11

Examples are Tensorflow3 which automatically assigns developers, and Go4 which
has an AI assistant automatically tagging the issue and searching links for related
information. React5 utilizes an officially provided GitHub Actions workflow to
automatically close stale open issues. While we do not assume any malicious
motives in this case, this directly boosts an atomic issue metric determining the
maintenance score on npm. Other platform features such as publishing explicit
releases offer comparable data for atomic metrics. For maintainers, these are as
easily spoofable as issue-related data due to public APIs. Therefore, legitimate
tools like semantic-release6 increase the score in associated metrics.

User-centered Metrics Atomic metrics are considered to be user-centered if
every user can increase this metric at most by one. They are platform-specific
with examples being stars, forks, subscriptions or contributors. Of all categories
with implemented measures, user-centered atomic metrics are the most difficult
metric to spoof, requiring the attacker to automate account creation and violating
the terms of service. Nonetheless, this can be outsourced to paid services. A
report [15] describes stars to be successfully purchasable for 0.08 EUR each.
However, the automatically created accounts for these are detected and removed
along with the stars within a month. In contrast, "quality" stars cost 0.8 EUR
each and are backed by accounts not as prone to bot detection. Services to buy
forks and subscribers are found as easily. Therefore, given enough monetary or
technical resources it seems to be possible to spoof user-centered metrics.

Downloads Impactful projects are utilized by many users and, thus, deployed
on many systems. Analyzing recent download counts is a proxy metric suggesting
to approximate the deployment count. However, there is no clear connection and
a widely deployed project does not need to have many recent downloads. More
severely, the process of downloading is easy to automate. For npm, there even exist
tools such as npm-increaser-downloads7 offering an optimized implementation.
Though it considerably wastes resources of the package registry, we did not find
information on restricted counting, e.g., only once per IP address and day. While
this does not defend against such an attack, it significantly increases the effort
required by an attacker with only minor overhead for the registry.

Repository Contents The quality metric of npm solely focuses on atomic
metrics derived from the contents of a repository such as the existence of a license
or the use of linters. The repository contents are trivial to adjust for a maintainer
and, thus, it requires low effort to achieve a high score in this metric. Though
in this case, we refrain from classifying such adjustments as spoofing, since no
information is illegitimately represented.
3 https://github.com/tensorflow/tensorflow
4 https://github.com/golang/go
5 https://github.com/facebook/react
6 https://github.com/semantic-release/semantic-release
7 https://github.com/MinhOmega/npm-increaser-downloads

https://github.com/tensorflow/tensorflow
https://github.com/golang/go
https://github.com/facebook/react
https://github.com/semantic-release/semantic-release
https://github.com/MinhOmega/npm-increaser-downloads

12 B. Swierzy et al.

Media Presence CHAOSS’ project popularity metric [9] enhances its score
by incorporating data from sources beyond social coding platforms and package
registries. The atomic metrics range from social media mentions over job postings
requesting project skills to event participation. Most are challenging to determine
automatically and as such, their applicability is likely limited to the largest FOSS
projects. Accordingly, these atomic metrics are difficult to spoof as their methods
of measurement is not well specified.

Dependency Relations Packages support an effective development process
by providing functionality in a re-usable manner. Besides customer-facing end
products, this also backs the development of new packages, resulting in a de-
pendency network. This offers a unique view on the impact of projects and is
integrated into all considered impact metrics. More specific, either the number of
dependent projects or the more complicated and holistic view of teaRank [48]
are employed. These metrics can be spoofed by creating bogus packages, refer-
encing the maintainer’s project either directly or transitively as dependency. For
uncurated package repositories, we deem this attack to require low to medium
effort, depending on the efficacy of its automatic spam detection mechanisms.

Sybil Attacks on npm A passive rewarding system such as teaRank has the
potential to incentivize maintainers to enhance their impact through dishonest
methods. Its technical description [48] acknowledges two types of attacks. Width
attacks introduce lots of dependents pointing to a single package. Tree attacks
create long dependency chains. It is stated that both attacks are prevented by
tracking the width and tree limit of a package and flagging it as potential spam
if (secret) thresholds are surpassed. During our work, we manually inspected
packages on the tea testnet and found the majority of the projects denoted as
most impactful, i.e., having the highest teaRanks, to have either been unpublished
or replaced with a security holding package on npm. When metadata was still
available, the projects showed thousands of dependents with a record of less than
10 weekly downloads. This is a clear indicator for a sybil attack on teaRank.

To analyze this phenomenon, we examine package metadata from npm. As
we try to approximate the order of magnitude for this attack, we employ the
following heuristic-based methodology: Initially, all npm packages registered in
the tea testnet are classified as sybil if they are published after 2024, have less
than 10 published versions and fulfill one of the following three criteria:

– More than 95% of transitive dependencies must have been created within 4
weeks of the creation of the package under consideration.

– More than 80% of dependents must have more than 100 dependencies.
– The package was unpublished or marked as security holding.

In addition, we consider all transitive dependents of a sybil package to be sybil.
This methodology is conservative and it can be assumed to be unlikely that a
legitimate package is flagged as sybil. Overall, this results in the detection of
71,710 sybil packages on npm (2% of all listed). To confirm the reliability of the

Susceptibility to Fraud of Monetary Incentive Mechanisms for FOSS 13

heuristic, we sample 100 potentially sybil packages uniformly at random and
manually classify them. We do not find any erroneous classification. By calculating
the one-tailed confidence interval for sample proportions, we can be 95% certain
that the population contains at most 3% false positives. The sample reveals
multiple classes of automatically generated packages (see Figure 2). Partially,
the generation scripts can still be found in the artifacts of the packages. Most
commonly, boilerplate created by create-next-app, a bogus library detectable
through wallet.js and chains.js, an artifact without JavaScript inside or
a function returning a string are found. Comparing these with unpublished
packages, we assume that these contents prevailed against npm’s spam detection.

26 16 15 12 10 8 4 9

create-next-app

Wallet/Chains

No Code

Static
Strings

Package
Clone

Unpublished
or Private

Security
Holding

Other

Fig. 2. Classes of sybil packages in a sample of 100 packages

These sybil attacks do not only increase the teaRank of projects but also
affect other impact metrics. Past research has considered the top N ≤ 1000
most depended upon packages as benign packages for evaluating malware protec-
tion [16,38], evaluating the adoption of security best practices [24] and others [7].
We find that, at the time of writing, 532 packages of the top 1000 most directly
depended upon are in our sybil set. Though when taking transitive relationships
into account, no package of the top 1000 most depended upon is marked as sybil
by our approach. As a significant fraction of sybil packages was unpublished, the
actual figures were likely to be higher in mid 2024. Since tea was introduced
at the start of 2024, it is unlikely that the results of the referenced papers are
affected by these sybil attacks. Still, this raises questions on the validity of using
this or similar impact metrics for software package focused research.

4.3 Assessment of Fraud Scenarios

In this section, we assess the previously defined fraud scenarios by weighing the
required effort and risks against the potential gains for the fraudster through
a discussion. The assessment focuses on both case studies, since generalization
abstracts essential details for an insightful fraud analysis. Nonetheless, we refrain
from quantitative characterizations as risk is highly individual.

Sovereign Tech Fund With respect to fraud, the most critical step within the
application process of the STF is the assessment of applications. Although the

14 B. Swierzy et al.

details of this process are not disclosed, it can be expected that the technologist
at least partially confirms the claims from the application while additionally
confirming the criticality through a common methodology. Therefore, a successful
case of fraud in C1.1 must spoof all considered impact metrics in a consistent
way. In C1.2 and C2, this holds only for the subset of metrics which do not attest
the necessary criticality. Slight inconsistencies may be fatal and cause a more
detailed assessment. It is likely that technologists explicitly try to find dependents
deemed to be trustworthy based on their prior experience. In the field of sybil
detection, it is a standard assumption that links pointing from a benign to a
sybil project are difficult to achieve [19]. Though most severely, the potential
analysis of historic development of some quantitative metrics and qualitative
metrics requires years of adversarial preparation. Consequently, we expect it to be
unlikely that a fradulent application withstands a thorough manual assessment
of both, technologists and external experts.

An easier fraud attempt could be reached through impersonation (C1.3) of an
existing impactful project. In this scenario, it is conceivable that all application
stages may be passed. However, the funding is paid for achieving milestones
which is unrealistic as an impersonator does not have the required access rights
for this. While such long payment intervals have been criticized [34], they are an
effective mechanism against fraud.

For the other potential weak points, the setup for successful fraud is much
more complicated. In C3, the fraudulent applicant must already be responsible
for an impactful core technology, overestimate the costs in bad faith and defend
the argumentation in the later stages of application. In doing so, they risk being
declined and act detrimental towards their own FOSS project. This does not fit
the typical motivation and views of core maintainers [27]. In C-I, the fraudster
places an insider threat in the STA. This provides a significant advantage to
all other scenarios as an inconsistent presentation could be defalcated by the
reviewer. However, we claim that the risks and efforts in this scenario clearly
outweigh the potential gains, given that the allocation of budget is subject to
the perspectives of several individuals.

tea We start by assessing the susceptibility for impersonation (D1.3). Generally,
proof of ownership is an effective concept for preventing impersonation. Still, it
has two downsides. First, the project’s artifact must be associated with an URL
referencing a GitHub repository. Hosting sources on a different or custom platform
as well as using a different VCS is not supported. Second, the first months after
tea’s testnet launch, hundreds of pull request in popular projects from unrelated
users trying to push a tea.yaml containing themselves as maintainer have been
created [50]. Since then, proof of ownership has been improved by requiring
a direct commit of the file, reducing but not eliminating the chance of social
engineering. Overall, we estimate this fraud scenario to have low chances of
success but it must be noted that effort and risk for trying are low as well.

The fraud scenarios D1.1, D1.2 and D2 share the same success condition, i.e.,
dishonestly increasing the teaRank as impact metric. While the teaRank can be

Susceptibility to Fraud of Monetary Incentive Mechanisms for FOSS 15

increased by becoming a dependency of impactful packages, the fraudster controls
none of them. Instead, it requires much less effort to create a lot of new dependent
packages as it was done in the sybil attacks on the tea testnet. Most importantly,
some persistence is required to keep a project’s growth just below tea’s spam
detection thresholds and to deceive malware and spam detection mechanisms
of the package registry. Both are achievable with low risk and medium effort
through automation and generative AI. Essentially, this is a conceptual flaw of
all quantitative impact metrics in this scenario as automatic abuse detection is
weaker than automatic abuse, especially, if the detection algorithms are known.
Here, Goodhart’s law applies: When a measure becomes a target, it ceases to be
a good measure [46]. Overall, the fraud scenarios D1.1, D1.2 and D2 have high
chances of success with moderate effort and no risk for the fraudster.

Increasing Resilience against Fraud After identifying the largest risks for
fraud in the STF and tea, we propose improvements to increase the resilience
against fraud attempts. In the STF, the largest risk is the deception of the
reviewing technologist leading to an incorrect assessment of the applicant’s
criticality. Therefore, we suggest 4 steps to minimize chances for successful fraud.

1. Target the focus towards the own impact assessment, not on the applicants’
self-assessment.

2. Historic developments of impact metrics require the highest effort for spoofing
and should be part of the analysis.

3. Maintain a high awareness for inconsistencies, e.g., many dependents but few
downloads.

4. Acquire a set of trust anchors, i.e., confirmed benign projects, and try to
obtain as many (transitive) references from the trust anchors to the applicant.

In tea, manipulation of the teaRank bears the largest risk for fraud. Unfor-
tunately, we do not see a possibility to prevent fraud if any of the investigated
impact metrics immediately decide the budget allocation. Nonetheless, there are
several ideas how a similar incentive mechanism with increased fraud resilience
could be designed. First, a distinct impact metric could be designed. All consid-
ered impact metrics are, at most, tied to digital identities which can be arbitrarily
created. In contrast, binding an impact metric to physical identities does not fully
fix the reliability but drastically increases the effort and cost required for spoofing.
Second, an equivalent concept to trust-on-first-use can be employed to create
a central invariant: At any point in time, benign projects have a voting power
surpassing the power of sybil projects. If the growth of nodes is bounded in each
time step, the benign projects can actively defend their majority by excluding
sybil packages. Moreover, this concept allows a shift of the allocation policy from
impact-based to work-based seen in centralized systems by facilitating votes on
proposals. Although it must be noted, that such an approach places a burden of
work on FOSS maintainers and, in this basic form, will likely fail to strengthen
the maintenance level in FOSS.

16 B. Swierzy et al.

Answering RQ3, the STF as a representative for central approaches has
a low susceptibility to fraud if a thorough assessment of applications is
performed. In contrast, our decentral case study tea appears to be susceptible
to fraud since the underlying impact metrics are easily spoofable. All ideas
to inherently improve its resilience of the approach require conceptual
adjustments.

5 Threats to Validity

The highly empirical nature of research presented in this paper requires a discus-
sion of its validity. RQ1 is answered based on a literature review. The results are
one-sided and raise concerns on the internal validity. While the literature review
does not follow all steps necessary for a systematic literature review, we argue
that the most important methodological steps are employed and the methodology
does not imply a bias. Instead, the results are explained by the absence of research
on the benefits of commercial involvement for FOSS projects or, indeed, by the
limited benefits that commercial involvement does offer. To a large extent, the
analyses for RQ2 and RQ3 are based on case studies which is a potential threat
to external validity. For the centralized approach, we argue that the STF is
a good representative sharing traits with other instances. In the decentralized
approach, tea is a unique concept and does not represent other decentral instances.
However, to the best of our knowledge only reputation-based mechanisms do
also qualify as decentral with their susceptibility to fraud being mainly prone
to psychological attacks such as phishing. We minimize associated threats to
validity by meticulously examining tea-specific statements before generalizing
them. Still, it is imperative to carefully reflect case study related results when
employing them in future work.

6 Related Work

Fraud facilitates similar techniques as attacks on IT systems. These techniques
can be divided into social engineering, architectural and technical attacks. Zaoui et
al. [55] compile a taxonomy for attacks and countermeasures of social engineering
attacks. These are complementary to our fraud scenarios and proposed resilience
strategies. More fundamentally, Longtchi et al. [28] analyze the underlying
psychological factors of these attacks. We similarly include the motivations
driving different groups in our argumentations.

For related architectural attacks, there is research on sybil attacks and sybil-
resistant architectures. Similar to us, Müller et al. [30] propose binding digital
to physical identities to reduce the susceptibility to sybil attacks. Cheng and
Friedman [10] proof that it is not possible to construct a symmetric sybilproofness
reputation function for decentral networks, i.e., only considering the edges. This
result is in line with our observations for sybil attacks on teaRank. Additionally,
they show sybilproofness to be achievable for an asymmetric reputation function,

Susceptibility to Fraud of Monetary Incentive Mechanisms for FOSS 17

e.g., with respect to a given node. In a related way, we suggest to increase the
resilience in central approaches by following packages back to trust anchors
through dependency relationships.

In this study, we have opted to exclude commercial open source products
from our scope, given their distinct funding models and governance structures.
Still, related work performs in-depth analysis of their motivations to explain
their seemingly contradictory business model. West and Gallagher [53] reveal
commercial FOSS to be driven strategically and provide possibilities to maximize
the returns of internal innovation. For example, software components may be
donated to provide an extensible platform for external contributors. Osborne [35]
considers this strategy in detail for FOSS from the realm of artificial intelligence.
They find the most important factor to be the governance democratisation for
technological and economic advantages. While outside our scope, such motivations
are also responsible for companies and investors supporting FOSS maintenance
initiatives beyond their sphere of authority.

Last, the design and analysis of impact and popularity metrics is related.
Mujahid et al. [29] observe limitations of current popularity metrics such as stars
and downloads and instead suggest to employ package centrality. They successfully
apply this approach to identify npm packages in decline which is a criterion to
prefer alternative dependencies. Coelho et al. [12] present a machine learning
model as a metric for measuring the maintenance status of GitHub software
projects. As the input features are covered by the atomic metrics analyzed in
this work, it is susceptible to the same degree of spoofing. In Section 4.2, the
CHAOSS project popularity metric is considered. Besides that, CHAOSS [8]
recently initiated a working group to develop methods for measuring funding
impact. Similarly, Osborne [35] develops a toolkit for measuring the impact
of public funding on FOSS. They argue that quantitative data has a "risk of
creating perverse incentives through metric selection/optimisation" and suggests
qualitative and mixed-methods to capture social, economic and technological
impact. This is in line with our results that budget allocation based on quantitative
impact metrics is highly susceptible to fraud.

7 Conclusion

In this study, we explored external incentive mechanisms for FOSS projects and
their susceptibility to fraud. A comprehensive literature review reveals a clear
necessity for incentive mechanisms to fund the maintenance of FOSS. Moreover,
commercial funding can negatively affect the long-term self-sustainability FOSS
projects, stressing the importance of alternative funds. We analyzed two struc-
turally distinct approaches aiming to fill this gap. Central incentive mechanisms
are backed by significant financial resources which are allocated on work pack-
ages proposed by applicants. On a case study of the STF, it is observed that
applications are thoroughly reviewed and assessed before funding is approved.

Conversly, the sources of budget for decentral incentive mechanisms are more
diverse and opaque, typically relying on individual or commercial investments.

18 B. Swierzy et al.

Though, the largest difference is observed for the funding policy with either
impact or reputation being funded but not maintenance work. The case study on
tea reveals a high risk of fraud due to the automatic allocation of budget through
teaRank. Intuitively, it might be clear that all considered atomics metrics are
theoretically spoofable. However, empirical evidence demonstrates the occurrence
of spoofing also in practice. This renders it very complex if not impossible to
create an impact metric suitable for this use case. Possible solutions require
architectural changes such as impact metrics linked with physical identities or
a voting-based system. Furthermore, there are also implications for academic
research utilizing these metrics for dataset creation as shown on the example
of a sybil attack on npm. We advocate to consider perils of mining software
repositories [25] and discuss the implications of metrics [42] more thoroughly to
increase the general significance of research results. In contrast, the STF shows
more potential for resilience against fraud. If the impact assessment during the
application process is thorough, there is a low risk of successful fraud.

We identify two major directions for future work based on our results. First,
a compilation of quantitative data measured in regular intervals could be utilized
to detect sybil attacks on package repositories. While, at first, this may sound
contradictory to our result that all considered atomic metrics can be spoofed,
we do not expect this to happen for no reason. Sybil attacks on repositories
as observed in this work are usually targeted and only focus on the subset of
relevant metrics. This enhances the probability of detection by an untargeted
approach. Second, package repositories are popular data sources for academic
research due to their size and (semi-)structured data. With the occurrence of
sybil attacks on this dataset, the results’ robustness in the presence of an attack
is a novel and relevant research direction. For example, it is intuitively unclear
how significant the performance of malware detection systems on npm degrades
if they are partially trained on bogus packages.

A teaRank

Inheriting the fundamental concept from PageRank, teaRank is built upon
random walks in a Markov chain. The resulting scores represent the probability
that a walk ends in a given state. For this, the dependency network is considered
to be a graph G = (V,E) with packages V = {p1, p2, . . . , pn} as vertices and
directed edges E = {(pi, pj), . . .} induced between packages if pi depends on
pj . The translated adjacency matrix of this graph A = (aji) with aji =

1
|E(i)| ,

E(i) = {e ∈ E|e = (pi, ∗)} if (pi, pj) ∈ E is the central element of the calculation.
Naturally speaking, all outgoing edges of a package have the same weight with
each column summing to one if at least a single outgoing edge exists. teaRank
utilizes a modified version of this matrix by introducing a parameter 0 ≤ κ ≤ 1:

T = (1− κ)A+ κ1n

This adds κ-weighted self-edges to every vertex. Furthermore, PageRank has a
decay factor 0 ≤ d ≤ 1 which can be interpreted as a restart probability of the

Susceptibility to Fraud of Monetary Incentive Mechanisms for FOSS 19

random walk. This factor is essential for the algorithm as G may be partitioned.
In the algorithm, d represents a scaling factor for the uniform distribution
E = (1n , . . . ,

1
n)

⊤.
Given a probability distribution vector v, the multiplication Tv denotes the

transition in the Markov chain. A distribution vector v is considered stable if
it is not altered by such a transition, i.e., (1− d)Tv + dE = v. To find such an
eigenvector, the power iteration method is often used: Starting with any vector v0,
the series vk = (1−d)Tvk−1+dE converges to a solution v. Despite a potentially
large n, the algorithm is efficient since T is sparse and an iteration count in the
order of 50 usually suffices to achieve a stable result. The resulting eigenvector v
contains entries for all packages in the dependency graph. The web interface for
the tea ecosystem does not display the raw teaRank, but applies the following
function obtained through reverse engineering the frontend:

f(t) = 100 ·
(
log10 t

9
+ 1

)
To check how well the described algorithm’s output matches the real teaRank,
we calculate the mean multiplicative error. As the concrete values for κ and d are
not disclosed, we perform a grid search with a granularity of 0.05. We observe
combinations that roughly fulfill the equation d ≈ 0.6 + κ

3 to minimize the error
with a value of 2.4. The minor deviation of our results to the project’s scores are
explainable by deviations in the underlying graph. tea’s testnet supports multiple
registries besides npm, although with 95% the clear majority of packages on tea
is covered by our analysis.

References

1. Arya, A., Brown, C., Pike, R., The Open Source Security Foundation: Open Source
Project Criticality Score, https://github.com/ossf/criticality_score

2. Birkinbine, B.J.: Incorporating the Digital Commons: Corporate Involvement in
Free and Open Source Software. University of Westminster Press. https://doi.org/
10.16997/book39

3. Bonaccorsi, A., Lorenzi, D., Merito, M., Rossi, C.: Business Firms’ Engagement
in Community Projects. Empirical Evidence and Further Developments of the
Research. In: First International Workshop on Emerging Trends in FLOSS Research
and Development (FLOSS’07: ICSE Workshops 2007). IEEE. https://doi.org/10.
1109/floss.2007.3

4. Brackett, S.A., Meyers, J.S., Scott, S.: O$$ security: Does more money for open
source software mean better security? A proof of concept

5. Capiluppi, A., Stol, K.J., Boldyreff, C.: Exploring the Role of Commercial Stake-
holders in Open Source Software Evolution, pp. 178–200. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-33442-9_12

6. Capra, E., Francalanci, C., Merlo, F., Rossi-Lamastra, C.: Firms’ involvement in
open source projects: A trade-off between software structural quality and popularity.
Journal of Systems and Software 84(1), 144–161 (2011). https://doi.org/https:
//doi.org/10.1016/j.jss.2010.09.004, information Networking and Software Services

https://github.com/ossf/criticality_score
https://doi.org/10.16997/book39
https://doi.org/10.16997/book39
https://doi.org/10.16997/book39
https://doi.org/10.16997/book39
https://doi.org/10.1109/floss.2007.3
https://doi.org/10.1109/floss.2007.3
https://doi.org/10.1109/floss.2007.3
https://doi.org/10.1109/floss.2007.3
https://doi.org/10.1007/978-3-642-33442-9_12
https://doi.org/10.1007/978-3-642-33442-9_12
https://doi.org/https://doi.org/10.1016/j.jss.2010.09.004
https://doi.org/https://doi.org/10.1016/j.jss.2010.09.004
https://doi.org/https://doi.org/10.1016/j.jss.2010.09.004
https://doi.org/https://doi.org/10.1016/j.jss.2010.09.004

20 B. Swierzy et al.

7. Chao, J., Tao, S., Ribbink, A.: Evaluating the evaluators: On package scores and
their underlying metrics

8. CHAOSS: Funding Impact Measurement Working Group, https://github.com/
chaoss/wg-funding-impact

9. CHAOSS: Project Popularity, https://chaoss.community/kb/
metric-project-popularity/

10. Cheng, A., Friedman, E.: Sybilproof reputation mechanisms. In: Proceeding of the
2005 ACM SIGCOMM workshop on Economics of peer-to-peer systems - P2PECON
’05. p. 128. P2PECON ’05, ACM Press. https://doi.org/10.1145/1080192.1080202

11. Coelho, J., Valente, M.T.: Why modern open source projects fail. In: Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering. pp. 186–196.
ESEC/FSE’17, ACM. https://doi.org/10.1145/3106237.3106246

12. Coelho, J., Valente, M.T., Milen, L., Silva, L.L.: Is this GitHub project maintained?
Measuring the level of maintenance activity of open-source projects 122, 106274.
https://doi.org/10.1016/J.INFSOF.2020.106274, https://doi.org/10.1016/j.infsof.
2020.106274

13. Coelho, J., Valente, M.T., Silva, L.L., Hora, A.: Why we engage in FLOSS: answers
from core developers. In: Proceedings of the 11th International Workshop on
Cooperative and Human Aspects of Software Engineering. ICSE ’18, ACM. https:
//doi.org/10.1145/3195836.3195848

14. Eghbal, N.: Roads and Bridges: The Unseen Labor Behind Our Digital
Infrastructure, https://www.fordfoundation.org/work/learning/research-reports/
roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/

15. Eldeeb, Y., Sikora, A.: How Much Are GitHub Stars Worth to You?, https://
the-guild.dev/blog/judging-open-source-by-github-stars

16. Ferreira, G., Jia, L., Sunshine, J., Kastner, C.: Containing malicious package updates
in npm with a lightweight permission system. In: IEEE/ACM 43rd International
Conference on Software Engineering. pp. 1334–1346. IEEE. https://doi.org/10.
1109/icse43902.2021.00121

17. Geer, D., Sieniawski, G.P.: Who Will Pay the Piper for Open Source Software
Maintenance? Can We Increase Reliability as We Increase Reliance? 45(2), https:
//www.usenix.org/publications/login/summer2020/geer

18. Gerlach, J.H., Wu, C.G., Cunningham, L.F., Young, C.E.: An Exploratory Study
of Conflict over Paying Debian Developers 7(3), 20–38. https://doi.org/10.4018/
ijossp.2016070102

19. Gong, N.Z., Frank, M., Mittal, P.: Sybilbelief: A semi-supervised learning approach
for structure-based sybil detection 9(6), 976–987. https://doi.org/10.1109/tifs.2014.
2316975

20. Gonzalez-Barahona, J.M., Izquierdo-Cortazar, D., Maffulli, S., Robles, G.: Under-
standing How Companies Interact with Free Software Communities 30(5), 38–45.
https://doi.org/10.1109/ms.2013.95

21. Halderman, J.A.: To Strengthen Security, Change Developers’ Incentives 8(2),
79–82. https://doi.org/10.1109/MSP.2010.85

22. Iaffaldano, G., Steinmacher, I., Calefato, F., Gerosa, M., Lanubile, F.: Why do
developers take breaks from contributing to OSS projects? a preliminary analysis.
In: Proceedings of the 2nd International Workshop on Software Health. p. 9–16.
SoHeal ’19, IEEE Press. https://doi.org/10.1109/SoHeal.2019.00009, https://doi.
org/10.1109/SoHeal.2019.00009

23. Joslyn, H.: Is crypto the solution to paying open source developers?, https://
thenewstack.io/is-crypto-the-solution-to-paying-open-source-developers/

https://github.com/chaoss/wg-funding-impact
https://github.com/chaoss/wg-funding-impact
https://chaoss.community/kb/metric-project-popularity/
https://chaoss.community/kb/metric-project-popularity/
https://doi.org/10.1145/1080192.1080202
https://doi.org/10.1145/1080192.1080202
https://doi.org/10.1145/3106237.3106246
https://doi.org/10.1145/3106237.3106246
https://doi.org/10.1016/J.INFSOF.2020.106274
https://doi.org/10.1016/J.INFSOF.2020.106274
https://doi.org/10.1016/j.infsof.2020.106274
https://doi.org/10.1016/j.infsof.2020.106274
https://doi.org/10.1145/3195836.3195848
https://doi.org/10.1145/3195836.3195848
https://doi.org/10.1145/3195836.3195848
https://doi.org/10.1145/3195836.3195848
https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/
https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/
https://the-guild.dev/blog/judging-open-source-by-github-stars
https://the-guild.dev/blog/judging-open-source-by-github-stars
https://doi.org/10.1109/icse43902.2021.00121
https://doi.org/10.1109/icse43902.2021.00121
https://doi.org/10.1109/icse43902.2021.00121
https://doi.org/10.1109/icse43902.2021.00121
https://www.usenix.org/publications/login/summer2020/geer
https://www.usenix.org/publications/login/summer2020/geer
https://doi.org/10.4018/ijossp.2016070102
https://doi.org/10.4018/ijossp.2016070102
https://doi.org/10.4018/ijossp.2016070102
https://doi.org/10.4018/ijossp.2016070102
https://doi.org/10.1109/tifs.2014.2316975
https://doi.org/10.1109/tifs.2014.2316975
https://doi.org/10.1109/tifs.2014.2316975
https://doi.org/10.1109/tifs.2014.2316975
https://doi.org/10.1109/ms.2013.95
https://doi.org/10.1109/ms.2013.95
https://doi.org/10.1109/MSP.2010.85
https://doi.org/10.1109/MSP.2010.85
https://doi.org/10.1109/SoHeal.2019.00009
https://doi.org/10.1109/SoHeal.2019.00009
https://doi.org/10.1109/SoHeal.2019.00009
https://doi.org/10.1109/SoHeal.2019.00009
https://thenewstack.io/is-crypto-the-solution-to-paying-open-source-developers/
https://thenewstack.io/is-crypto-the-solution-to-paying-open-source-developers/

Susceptibility to Fraud of Monetary Incentive Mechanisms for FOSS 21

24. Kabir, M.M.A., Wang, Y., Yao, D., Meng, N.: How do developers follow security-
relevant best practices when using npm packages? In: 2022 IEEE Secure Development
Conference (SecDev). IEEE. https://doi.org/10.1109/secdev53368.2022.00027

25. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D.:
An in-depth study of the promises and perils of mining GitHub 21(5), 2035–2071.
https://doi.org/10.1007/s10664-015-9393-5

26. Li, X., Zhang, Y., Osborne, C., Zhou, M., Jin, Z., Liu, H.: Systematic Literature
Review of Commercial Participation in Open Source Software 34(2), 1–31. https:
//doi.org/10.1145/3690632

27. Linåker, J., Link, G., Lumbard, K.: Sustaining Maintenance Labor for Healthy
Open Source Software Projects through Human Infrastructure: A Maintainer
Perspective. In: Proceedings of the 18th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. pp. 37–48. ESEM ’24, ACM.
https://doi.org/10.1145/3674805.3686667

28. Longtchi, T.T., Rodriguez, R.M., Al-Shawaf, L., Atyabi, A., Xu, S.: Internet-based
social engineering psychology, attacks, and defenses: A survey 112(3), 210–246.
https://doi.org/10.1109/jproc.2024.3379855

29. Mujahid, S., Costa, D.E., Abdalkareem, R., Shihab, E., Saied, M.A., Adams, B.:
Toward Using Package Centrality Trend to Identify Packages in Decline 69(6),
3618–3632. https://doi.org/10.1109/tem.2021.3122012, http://dx.doi.org/10.1109/
TEM.2021.3122012

30. Müller, W., Plötz, H., Redlich, J.P., Shiraki, T.: Sybil proof anonymous reputation
management. In: Proceedings of the 4th international conference on Security and
privacy in communication netowrks. pp. 1–10. Securecomm08, ACM. https://doi.
org/10.1145/1460877.1460887

31. Open Source Initiative: The open source definition, https://opensource.org/osd
32. Open Source Technology Improvement Fund: Open source technology improvement

fund, https://ostif.org
33. Open Technology Fund: Localization labfree and open source

software sustainability fund, https://www.opentech.fund/funds/
free-and-open-source-software-sustainability-fund/

34. Osborne, C.: Open Source Software Developers’ Views on Public and Private
Funding: A Case Study on scikit-learn. In: 2024 Conference on Computer-Supported
Cooperative Work and Social Computing. pp. 154–161. CSCW ’24, ACM. https:
//doi.org/10.1145/3678884.3681844

35. Osborne, C.: Why Companies "Democratise" Artificial Intelligence: The Case of
Open Source Software Donations

36. Osborne, C., Sharratt, P., Foster, D., Boehm, M.: A Toolkit for Measuring the
Impacts of Public Funding on Open Source Software Development

37. Overney, C., Meinicke, J., Kästner, C., Vasilescu, B.: How to not get rich: an
empirical study of donations in open source. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. ICSE ’20, ACM. https:
//doi.org/10.1145/3377811.3380410

38. Pohl, T., Ohm, M., Boes, F., Meier, M.: You can run but you can’t hide: Runtime
protection against malicious package updates for node.js. In: Sicherheit 2024. pp.
231–241. Gesellschaft für Informatik e.V., Bonn (2024). https://doi.org/10.18420/
sicherheit2024_015

39. Riehle, D.: The Economic Case for Open Source Foundations 43(1), 86–90. https:
//doi.org/10.1109/mc.2010.24

https://doi.org/10.1109/secdev53368.2022.00027
https://doi.org/10.1109/secdev53368.2022.00027
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1145/3690632
https://doi.org/10.1145/3690632
https://doi.org/10.1145/3690632
https://doi.org/10.1145/3690632
https://doi.org/10.1145/3674805.3686667
https://doi.org/10.1145/3674805.3686667
https://doi.org/10.1109/jproc.2024.3379855
https://doi.org/10.1109/jproc.2024.3379855
https://doi.org/10.1109/tem.2021.3122012
https://doi.org/10.1109/tem.2021.3122012
http://dx.doi.org/10.1109/TEM.2021.3122012
http://dx.doi.org/10.1109/TEM.2021.3122012
https://doi.org/10.1145/1460877.1460887
https://doi.org/10.1145/1460877.1460887
https://doi.org/10.1145/1460877.1460887
https://doi.org/10.1145/1460877.1460887
https://opensource.org/osd
https://ostif.org
https://www.opentech.fund/funds/free-and-open-source-software-sustainability-fund/
https://www.opentech.fund/funds/free-and-open-source-software-sustainability-fund/
https://doi.org/10.1145/3678884.3681844
https://doi.org/10.1145/3678884.3681844
https://doi.org/10.1145/3678884.3681844
https://doi.org/10.1145/3678884.3681844
https://doi.org/10.1145/3377811.3380410
https://doi.org/10.1145/3377811.3380410
https://doi.org/10.1145/3377811.3380410
https://doi.org/10.1145/3377811.3380410
https://doi.org/10.18420/sicherheit2024_015
https://doi.org/10.18420/sicherheit2024_015
https://doi.org/10.18420/sicherheit2024_015
https://doi.org/10.18420/sicherheit2024_015
https://doi.org/10.1109/mc.2010.24
https://doi.org/10.1109/mc.2010.24
https://doi.org/10.1109/mc.2010.24
https://doi.org/10.1109/mc.2010.24

22 B. Swierzy et al.

40. Riehle, D., Riemer, P., Kolassa, C., Schmidt, M.: Paid vs. Volunteer Work in
Open Source. In: 47th Hawaii International Conference on System Sciences. IEEE.
https://doi.org/10.1109/hicss.2014.407

41. Ruohonen, J., Choudhary, G., Alami, A.: An Overview of Cyber Security Funding
for Open Source Software

42. Sheoran, J., Blincoe, K., Kalliamvakou, E., Damian, D., Ell, J.: Understanding
“watchers” on GitHub. In: Proceedings of the 11th Working Conference on Mining
Software Repositories. pp. 336–339. ICSE ’14, ACM. https://doi.org/10.1145/
2597073.2597114

43. Shpota, S.: Github activity generator, https://github.com/Shpota/
github-activity-generator

44. Sovereign Tech Agency: Sovereign tech fund, https://www.sovereign.tech/programs/
fund

45. Sovereign Tech Agency: Technologist, https://www.sovereign.tech/jobs/technologist
46. Strathern, M.: ‘improving ratings’: audit in the british university system 5(3),

305–321. https://doi.org/10.1002/(sici)1234-981x(199707)5:3<305::aid-euro184>3.
0.co;2-4, https://doi.org/10.1002/(sici)1234-981x(199707)5:3<305::aid-euro184>3.
0.co;2-4

47. tea Association: Tea documentation, https://docs.tea.xyz/tea
48. tea Association: What is Proof of Contribution? (technical),

https://docs.tea.xyz/tea/i-want-to.../learn-about-proof-of-contribution/
what-is-proof-of-contribution-technical

49. The Linux Foundation: Alpha-omega, https://alpha-omega.dev
50. Tumbleson, C.: The disappointing tea.xyz, https://connortumbleson.com/2024/02/

26/the-disappointing-tea-xyz/
51. Wang, Z., Feng, Y., Wang, Y., Jones, J.A., Redmiles, D.: Unveiling Elite Developers’

Activities in Open Source Projects 29(3), 1–35. https://doi.org/10.1145/3387111
52. Warren, E.: Foss sustainability fund 2024: the grant proposal is declined, https:

//codeberg.org/forgejo/sustainability/pulls/48
53. West, J., Gallagher, S.: Challenges of open innovation: the paradox of firm investment

in open-source software 36(3), 319–331. https://doi.org/10.1111/j.1467-9310.2006.
00436.x

54. Yamashita, K., McIntosh, S., Kamei, Y., Hassan, A.E., Ubayashi, N.: Revisiting
the applicability of the pareto principle to core development teams in open source
software projects. In: Proceedings of the 14th International Workshop on Principles
of Software Evolution. ESEC/FSE’15, ACM. https://doi.org/10.1145/2804360.
2804366

55. Zaoui, M., Yousra, B., Yassine, S., Yassine, M., Karim, O.: A comprehensive
taxonomy of social engineering attacks and defense mechanisms: Toward effective
mitigation strategies 12, 72224–72241. https://doi.org/10.1109/access.2024.3403197

56. Zhang, X., Wang, T., Yu, Y., Zeng, Q., Li, Z., Wang, H.: Who, what, why and how?
towards the monetary incentive in crowd collaboration: A case study of github’s
sponsor mechanism. In: CHI Conference on Human Factors in Computing Systems.
pp. 1–18. CHI ’22, ACM. https://doi.org/10.1145/3491102.3501822

57. Zhang, Y., Liu, H., Tan, X., Zhou, M., Jin, Z., Zhu, J.: Turnover of Companies in
OpenStack: Prevalence and Rationale 31(4), 1–24. https://doi.org/10.1145/3510849

58. Zhang, Y., Qin, M., Stol, K.J., Zhou, M., Liu, H.: How Are Paid and Volunteer
Open Source Developers Different? A Study of the Rust Project. In: Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering. pp. 1–13.
ICSE ’24, ACM. https://doi.org/10.1145/3597503.3639197

https://doi.org/10.1109/hicss.2014.407
https://doi.org/10.1109/hicss.2014.407
https://doi.org/10.1145/2597073.2597114
https://doi.org/10.1145/2597073.2597114
https://doi.org/10.1145/2597073.2597114
https://doi.org/10.1145/2597073.2597114
https://github.com/Shpota/github-activity-generator
https://github.com/Shpota/github-activity-generator
https://www.sovereign.tech/programs/fund
https://www.sovereign.tech/programs/fund
https://www.sovereign.tech/jobs/technologist
https://doi.org/10.1002/(sici)1234-981x(199707)5:3<305::aid-euro184>3.0.co;2-4
https://doi.org/10.1002/(sici)1234-981x(199707)5:3<305::aid-euro184>3.0.co;2-4
https://doi.org/10.1002/(sici)1234-981x(199707)5:3<305::aid-euro184>3.0.co;2-4
https://doi.org/10.1002/(sici)1234-981x(199707)5:3<305::aid-euro184>3.0.co;2-4
https://doi.org/10.1002/(sici)1234-981x(199707)5:3<305::aid-euro184>3.0.co;2-4
https://doi.org/10.1002/(sici)1234-981x(199707)5:3<305::aid-euro184>3.0.co;2-4
https://docs.tea.xyz/tea
https://docs.tea.xyz/tea/i-want-to.../learn-about-proof-of-contribution/what-is-proof-of-contribution-technical
https://docs.tea.xyz/tea/i-want-to.../learn-about-proof-of-contribution/what-is-proof-of-contribution-technical
https://alpha-omega.dev
https://connortumbleson.com/2024/02/26/the-disappointing-tea-xyz/
https://connortumbleson.com/2024/02/26/the-disappointing-tea-xyz/
https://doi.org/10.1145/3387111
https://doi.org/10.1145/3387111
https://codeberg.org/forgejo/sustainability/pulls/48
https://codeberg.org/forgejo/sustainability/pulls/48
https://doi.org/10.1111/j.1467-9310.2006.00436.x
https://doi.org/10.1111/j.1467-9310.2006.00436.x
https://doi.org/10.1111/j.1467-9310.2006.00436.x
https://doi.org/10.1111/j.1467-9310.2006.00436.x
https://doi.org/10.1145/2804360.2804366
https://doi.org/10.1145/2804360.2804366
https://doi.org/10.1145/2804360.2804366
https://doi.org/10.1145/2804360.2804366
https://doi.org/10.1109/access.2024.3403197
https://doi.org/10.1109/access.2024.3403197
https://doi.org/10.1145/3491102.3501822
https://doi.org/10.1145/3491102.3501822
https://doi.org/10.1145/3510849
https://doi.org/10.1145/3510849
https://doi.org/10.1145/3597503.3639197
https://doi.org/10.1145/3597503.3639197

Susceptibility to Fraud of Monetary Incentive Mechanisms for FOSS 23

59. Zhang, Y., Stol, K.J., Liu, H., Zhou, M.: Corporate dominance in open source
ecosystems: a case study of OpenStack. In: Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. pp. 1048–1060. ESEC/FSE ’22, ACM. https://doi.org/10.
1145/3540250.3549117

60. Zhou, J., Wang, S., Kamei, Y., Hassan, A.E., Ubayashi, N.: Studying donations and
their expenses in open source projects: a case study of GitHub projects collecting do-
nations through open collectives 27(1). https://doi.org/10.1007/s10664-021-10060-y

https://doi.org/10.1145/3540250.3549117
https://doi.org/10.1145/3540250.3549117
https://doi.org/10.1145/3540250.3549117
https://doi.org/10.1145/3540250.3549117
https://doi.org/10.1007/s10664-021-10060-y
https://doi.org/10.1007/s10664-021-10060-y

	Exploring the Susceptibility to Fraud of Monetary Incentive Mechanisms for Strengthening FOSS Projects

