
ar
X

iv
:2

50
5.

05
87

2v
1

 [
cs

.C
R

]
 9

 M
ay

 2
02

5

A Taxonomy of Attacks and Defenses in Split Learning

Aqsa Shabbira,1, Halil İbrahim Kanpakb,1, Alptekin Küpçüb,∗, Sinem Sava,∗

aBilkent University, Ankara, Türkiye
bKoç University, İstanbul, Türkiye

Abstract

Split Learning (SL) has emerged as a promising paradigm for distributed deep learning, allowing resource-constrained clients to
offload portions of their model computation to servers while maintaining collaborative learning. However, recent research has
demonstrated that SL remains vulnerable to a range of privacy and security threats, including information leakage, model inversion,
and adversarial attacks. While various defense mechanisms have been proposed, a systematic understanding of the attack landscape
and corresponding countermeasures is still lacking. In this study, we present a comprehensive taxonomy of attacks and defenses in
SL, categorizing them along three key dimensions: employed strategies, constraints, and effectiveness. Furthermore, we identify
key open challenges and research gaps in SL based on our systematization, highlighting potential future directions.

Keywords: split learning, collaborative learning, distributed machine learning, privacy-preserving computation, data privacy

1. Introduction

The increasing adoption of Machine Learning as a Service
(MLaaS) has revolutionized AI-driven applications across do-
mains such as healthcare, finance, and IoT. However, ML out-
sourcing raises privacy concerns, as sensitive user data is often
processed on external or untrusted servers [72]. To address this
challenge, privacy-preserving machine learning (PPML) tech-
niques have been developed, enabling collaborative learning
while ensuring data confidentiality.

Among various collaborative methods, Split Learning (SL)
emerged as a promising framework that partitions deep learn-
ing models between clients and servers [25]. SL enables clients
to process several layers of a neural network locally while dele-
gating the remaining layers to a server. This design reduces the
computational burden on resource-constrained client devices
while keeping raw data in the local premises of the client [81].
Over time, SL has evolved into different architectures, includ-
ing Vanilla Split Learning (VanSL) [25], U-shaped Split Learn-
ing (USL) [25], No-Label Split Learning (NLSL) [45], Hybrid
Split Learning (Hybrid-SL) [21], and Multi-hop Split Learning
(MHSL) [81], each optimizing trade-offs between performance,
scalability, and privacy.

Despite its architectural advantages for resource-constrained
clients and inherent data locality [25, 81], SL is vulnerable to
several security and privacy risks. Data reconstruction attacks
exploit smashed data and gradients to infer private inputs, while
label inference attacks analyze gradient updates to recover class
labels [59, 16]. Property inference attacks extract sensitive at-
tributes without full data reconstruction [52], and model inver-

∗Corresponding author.
E-mail addresses: akupcu@ku.edu.tr (A. Küpçü), sinem.sav@cs.bilkent.edu.tr
(S. Sav).

1Equal contribution.

sion [10] aims to recover input samples from model activations.
Additionally, backdoor and poisoning attacks [4, 90] manipu-
late the training pipeline to implant adversarial behavior. These
vulnerabilities expose critical gaps in the privacy guarantees of
SL, necessitating robust defense mechanisms to mitigate poten-
tial threats. However, before effective defenses can be designed
and evaluated, a systematic understanding of the attack land-
scape itself is required. We build this foundation by addressing
these core research questions regarding attacks against SL:

RQ1: How can adversarial objectives targeting SL be sys-
tematically taxonomized? Which architectural vulnerabilities
in SL implementations serve as primary attack vectors?

RQ2: What are the fundamental characteristics and underly-
ing principles of different SL attack mechanisms (e.g., feature-
space hijacking, model inversion, gradient-based inference,
embedding poisoning) that dictate their generalizability across
SL variants and data domains, their potential for stealth, and
their ability to bypass defenses?

RQ3: Under what operational constraints and adversarial
assumptions (regarding knowledge, access, capabilities, and
collusion scenarios) do attacks against SL demonstrate mea-
surable effectiveness? How can their quantifiable impact on
privacy and model integrity be systematically evaluated?

To counter these threats, researchers have explored various
privacy-preserving techniques as defense strategies, including
DP to perturb gradients [88], homomorphic encryption (HE)
for encrypted computation to prevent unauthorized data ac-
cess [61], and communication compression to reduce informa-
tion leakage [62]. While each method strengthens SL security,
it also introduces trade-offs in computational overhead, scala-
bility, and model performance. Therefore, a clear understand-
ing of the defense landscape, its capabilities, limitations, and
evaluation is equally critical. Consequently, this paper also ad-
dresses these research questions concerning defenses in SL:

mailto:akupcu@ku.edu.tr
mailto:sinem.sav@cs.bilkent.edu.tr
https://arxiv.org/abs/2505.05872v1

RQ4: What is the taxonomy of defense techniques against
predefined attack scenarios/ adversarial objectives tailored for
SL? Wat are the common techniques and tools being employed?

RQ5: Which defenses are suitable for a specific task? What
are the constraints and conditions implied by these defenses?
Can these techniques be optimized? Are these techniques suit-
able for real-world applications?

RQ6: How do defense techniques aim for success among dif-
ferent scenarios in terms of confidentiality or integrity of train-
ing? What constitutes a successful defense mechanism?

This paper provides a comprehensive SL analysis by system-
atically categorizing attack vectors and defense strategies based
on these research questions. We propose taxonomies for attacks
and defenses, evaluating their methodology, constraints, and ef-
fectiveness. We highlight key trade-offs, our observations, and
open challenges derived from this systematization, paving the
way for future advancements in SL privacy and robustness.

2. Review Scope and Methodology

We systematically categorize SL architectures, identify key
attack surfaces —including data reconstruction, feature leak-
age, and adversarial interference— and evaluate existing de-
fense mechanisms such as differential privacy, homomorphic
encryption, and adversarial training. By consolidating insights
from prior research, we provide a structured framework for as-
sessing privacy risks, defense effectiveness, and security trade-
offs, laying the foundation for future advancements in PPML.
Search Methodology. To ensure a comprehensive and rep-
resentative collection of research on SL, we systematically
gathered papers from major academic databases, including
Google Scholar, IEEE Xplore, ACM Digital Library, arXiv,
and SpringerLink. The search was conducted in two stages:
an automated search using predefined keyword queries, fol-
lowed by a snowballing approach to refine and expand the se-
lection of relevant studies. We used keyword combinations to
capture diverse SL research, including privacy, attack surfaces,
and defenses. Example keywords included a combination of
“split learning”, “privacy-preserving”, “split neural networks”,
“privacy attacks on split learning”, “homomorphic encryption
based split Learning”, “differential privacy based split learn-
ing”, and “inference attacks in split learning”. These queries
targeted research addressing both theoretical and practical as-
pects of SL, ensuring coverage of multiple perspectives on its
security vulnerabilities and mitigation strategies. Then, we em-
ployed a snowballing approach, where we examined the ref-
erences of key papers to identify prior work. Expanding this
approach in both directions, we also examined papers that have
cited the ones we identified, allowing us to trace the evolution
of knowledge in the field.

After identifying works across these different feature aspects,
we aligned and classified them to develop our overall taxonomy
for SL systematization. During the filtering process, each iden-
tified paper was first assessed based on its abstract, followed by
a thorough review of its methodology and experimental evalu-
ation if the abstract indicated the use of a relevant technique.

Papers that did not explicitly reference SL, such as those fo-
cused on general distributed machine learning, were excluded.
We then classified each paper as comprehensively as possible,
considering multiple aspects such as the defense mechanisms it
proposes in case of an attack paper and the attacks it addresses
in case of a defense paper, the assumed threat model, and the
server-client setup.
Systematization Methodology. For our systematization, we
begin by reviewing SL architectures to establish a foundational
understanding of the landscape. We then categorized the col-
lected papers into two primary groups: attack papers and de-
fense papers. Within each group, we employ a structured clas-
sification approach based on three key dimensions:

1. Strategies: The method or strategies used to conduct at-
tacks or implement defenses.

2. Constraints: The assumptions, limitations, and require-
ments under which the attacks or defenses operate.

3. Effectiveness: The impact and success rate of attacks, as
well as the robustness and trade-offs of defense mecha-
nisms.

Finally, we present a timeline in Figure 1 that compiles our
surveyed literature on both attacks and defenses. It illustrates
the chronological progression and dominant strategies.

Figure 1: SL attack and defense timeline (2021–2025), with attacks on the top
half and defenses on the bottom half. Attack and defense types are categorized
into four groups, as shown in the legend. Attacks are represented with a colored
background, while the corresponding defenses share the same color but are
displayed without a background.

3. Split Learning (SL)

We provide an overview of split learning (SL), its variants,
and key concepts. We provide the frequently used notations
and abbreviations in Table 1.

3.1. Split Learning and Its Variants

SL [25] is a distributed machine learning paradigm where the
computation of a deep learning model is split between clients
and servers. It has evolved into various forms to address the di-
verse needs of collaborative machine learning. The key variants
include Vanilla SL [25], U-shaped SL [25], no-label SL [45],

2

Table 1: Key Notations and Abbreviations

Notation/Abbreviation Description

fc Client-side network model part
fs Server-side network model part
x Raw input data (client-side)
y True label (often client-side)
zc Smashed data
∇zc Gradient sent from server to client
ŷ Model’s final output/prediction
x̃ Reconstructed input data
ỹ Inferred label
VanSL Vanilla Split Learning
USL U-Shaped Split Learning
SFL Split Federated Learning
HSL Horizontal Split Learning
VSL Vertical Split Learning
SCSL Single-Client Split Learning
MCSL Multi-Client Split Learning
SSSL Single-Server Split Learning
MSSL Multi-Server Split Learning
SHS Semi-Honest Server
MS Malicious Server
MC Malicious Client
SHC Semi-Honest Client
FL Federated Learning
HE Homomorphic Encryption
DP Differential Privacy

Hybrid SL [76], and Multi-hop SL [81]. Additionally, the ef-
fectiveness of SL can be influenced by the choice of data par-
titioning schemes, namely horizontal partitioning and vertical
partitioning, which dictate how data is distributed among par-
ticipants. We detail these variants below and illustrate the most
commonly used ones in Figure 2.
Vanilla Split Learning (VanSL): VanSL is the simplest form
of SL, where the client processes the initial layers (fc), and
the server processes the remaining layers (fs). The client
uses its private data x to compute the intermediate activations
zc = fc(x), which are transmitted to the server. The server com-
pletes the forward pass by calculating the output ŷ = fs(zc).
During backpropagation (f ′), the server computes the gradient
of the loss function L with respect to zc, denoted as ∇zc =

∂L
∂zc

,
and sends it back to the client. The client then updates the pa-
rameters of fc using its local gradients. This collaborative pro-
cess ensures the client retains x.
U-shaped Split Learning (USL): USL divides the model into
three segments: (i) initial layers fc processed by the client, (ii)
middle layers fs handled by the server, and (iii) remaining lay-
ers fc_r completed by the client. The client begins by processing
x through fc to compute zc and sends zc to the server for further
computation. The server processes zc through fs to compute zs

and returns zs to the client. The client completes the forward
pass by applying fc_r to zs, resulting in the final output ŷ. The
backpropagation process follows the same sequence with a sim-

ilar approach, in reverse. This way, USL ensures that x and ŷ
remain at the client while enabling end-to-end training.
Hybrid Split Learning: Hybrid SL integrates SL with other
collaborative learning paradigms, such as federated learning
(FL) to enhance privacy, scalability, and efficiency. For in-
stance, combining SL with FL, Split Federated Learning (SFL)
allows clients to train parts of the model collaboratively while
leveraging federated learning aggregation techniques. Simi-
larly, incorporating HE ensures that smashed data exchanged
between clients and servers remains encrypted, further strength-
ening privacy. It enables solutions for scenarios involving het-
erogeneous clients and large-scale data distributions. However,
integrating additional mechanisms often introduces computa-
tional and communication overhead, making efficient design
and implementation critical for practical use.

We present less commonly adopted SL variants, i.e., multi-
hop and no-label SL, in Supplementary Material A. Finally,
unlike Federated Learning (FL) [94], where the entire model is
trained locally on each client and the gradients are aggregated
by a server, SL partitions the model, delegating the more com-
putationally intensive layers to the server. This makes SL [81]
ideal for resource-constrained clients, who wish to outsource
most of the computationally-intensive training procedure.

3.2. Data Partitioning Schemes

Data partitioning in SL determines how data is distributed
among clients, impacting both the training process and privacy
assurances. In Horizontal Split Learning (HSL) [47, 81],
clients handle data with identical feature spaces but different
samples; for instance, multiple hospitals with similar patient
data but distinct patient groups can collaboratively train a model
by sharing intermediate activations without exposing raw data.
Conversely, Vertical Split Learning (VSL) [81, 34] is applica-
ble when clients possess complementary features for the sam-
ples; each client processes its unique features, and a server
combines these embeddings to facilitate joint learning, such as
a bank and an e-commerce platform sharing distinct user at-
tributes to jointly develop a credit scoring model.

3.3. Client-Server Participation Models

Single Client Split Learning (SCSL) In SCSL [80], training
involves one client and a server, making it ideal for a single or-
ganization, such as a hospital or research institute, that seeks
to preserve privacy while offloading the heavy computation to
a server. Although it simplifies communication and coordina-
tion, clients still need sufficient resources to process their local
model portions.
Multi Client Split Learning (MCSL) MCSL [65] keeps
the forward and backward propagation split between multiple
clients and a server. Clients only send smashed data to the
server, and the server processes the deeper layers of the model
and updates all clients without requiring them to maintain a full
model locally.
Single Server Split Learning (SSSL) In SSSL [81], all clients
interact with a single server. Clients send intermediate activa-
tions to the server, which processes the remaining model layers

3

Client Side Local Model Client Side Global ModelForward Pass Backward Pass

Vanilla Split Learning U-shaped Split Learning Split Federated Learning

Figure 2: Overview of three key SL variants: Vanilla Split Learning, U-shaped Split Learning, and Split Federated Learning. The figure highlights their architectural
distinctions, client-server roles, and the flow of forward and backward passes in training.

and computes gradients. The server then returns these gradients
to clients. Unlike MCSL, where multiple clients interact with
multiple servers, SSSL uses a single-server architecture with all
clients relying on one server for training. This setup is advanta-
geous for organizations with centralized infrastructure capable
of handling high computational demands. It simplifies system
architecture and reduces coordination overhead but may intro-
duce scalability limitations as the number of clients increases.
Multi-Server Split Learning (MSSL) MSSL [65] divides the
model computation across multiple servers, allowing better
scalability and resource utilization. Each client processes the
initial model layers locally and sends the smashed data to
one or more servers. The servers handle subsequent com-
putations, often partitioning the model layers or tasks among
themselves, and collaboratively complete forward and back-
ward passes. MSSL is ideal for large-scale deployments where
a single server cannot handle the computation or communica-
tion demands of multiple clients. It enhances system scalabil-
ity and fault tolerance but requires efficient communication and
synchronization between servers.

3.4. Positioning SL within the PPML Landscape

While SL exposes intermediate representations to the server,
leading to attacks such as model inversion, label inference, and
feature space hijacking, other PPML methods, such as Feder-
ated Learning (FL) and Secure Aggregation, are not immune to
similar threats. For instance, in FL, gradients shared by clients
can be exploited to reconstruct raw inputs, even without access
to the model architecture or full training data [95]. Similarly,
Secure Aggregation protocols may be circumvented when ad-
versaries collude or exploit partial gradient information to in-
fer sensitive data [28, 54]. These observations suggest that the
underlying vulnerability (exposure of sensitive gradients or ac-
tivations) is a broader issue in collaborative learning, not one
unique to SL. Nonetheless, its advantages and disadvantages
must be weighed carefully.

One of SL’s key strengths is offloading the client’s computa-
tional burden to the server. In standard setups such as Vanilla

SL or U-shaped SL, the client only processes a few initial lay-
ers of the model and never needs to store or train the full net-
work [25, 81]. This makes SL particularly suitable for resource-
constrained devices such as smartphones, wearables, or embed-
ded IoT systems in domains like digital health, where data con-
fidentiality is crucial and local compute capacity is limited.

However, SL also has its limitations: It lacks robust mecha-
nisms for verifying the integrity of the training process, leaving
it vulnerable to model manipulation, data poisoning, and back-
door attacks, especially in multi-client settings where collud-
ing parties can exploit sequential training dynamics [4, 45, 69].
Moreover, SL’s training is often serialized, particularly in multi-
client architectures, leading to communication bottlenecks and
slower convergence compared to methods that allow concurrent
client updates [65].

Given these trade-offs, SL is most appropriate in scenarios
where deep models are essential, client computational power
is constrained, and data sensitivity is high. Examples in-
clude natural language processing tasks involving transformer-
based models or clinical settings with privacy-sensitive patient
records [70]. Poirot et al. [68] demonstrated the effectiveness
of SL in healthcare across disparate datasets while preserving
privacy. Wang et al. [84] explored Stitch-able SL for multi-
UAV systems, showcasing its ability to handle device instabil-
ity and model heterogeneity in complex tasks. Li et al. [46]
applied Split Learning to BERT-based models, achieving com-
munication efficiency and privacy preservation in decentralized
text classification.

4. Attacks on Split Learning

SL vulnerabilities arise from shared intermediate activations,
gradients, and model states, exposing potential attack surfaces.
This section categorizes these threats across three dimensions:
attack strategies (Section 4.1), operational constraints (Sec-
tion 4.2), and attack effectiveness (Section 4.3). Finally, we
provide a summary of the surveyed literature in Table 2, Sup-
plementary Material E.

4

Data
Reconstruction

Label Inference

Property
Inference

Model
Manipulation

Functionality
Stealing

Feature Space
Hijacking

Model Inversion

Extracting model behavior from
activations or gradients.

Manipulating features to infer
sensitive inputs.

Reconstructing inputs from
model outputs or gradients.

Gradient Based

Smashed Data
Based

Using gradients to deduce data
labels.

Using smashed data to deduce
data labels.

Backdoor Attack

Inferring sensitive properties of
the training data.

Embedding hidden triggers to
manipulate model behavior.

Generative
Adversarial

Network

Generating synthetic data to
approximate original inputs

Feature-Oriented
Reconstruction

Reconstructing data from feature
activations or gradients

Adversarial
Attack

Adding subtle perturbations to
mislead model predictions.

Poisoning Attack Injecting malicious data to
corrupt training.

Figure 3: A taxonomy of attacks in SL categorizing attack vectors into: (1)
Data Reconstruction, (2) Label Inference, (3) Property Inference, and (4) Model
Manipulation Attacks.

4.1. Attack Strategies
The attacks exploit specific ML principles and methodolo-

gies. In this section, we categorize them into four main strate-
gies: data reconstruction attacks (Section 4.1.1), label infer-
ence attacks (Section 4.1.2), property inference attacks (Sec-
tion 4.1.3), and model manipulation attacks (Section 4.1.4). We
further refine these categories into subcategories in Figure 3,
which presents a structured taxonomy of attacks, systematically
highlighting key attack vectors. Additionally, Figure 4 illus-
trates the distribution of adversarial attack models.

Figure 4: The distribution of adversarial models of surveyed attacks in SL.

4.1.1. Data Reconstruction Attacks
Data Reconstruction Attacks represent a significant privacy

vulnerability in SL systems, wherein the adversary attempts to
recover sensitive training data. These attacks leverage model
characteristics, including gradients, confidence scores, and in-
ternal representations, to reconstruct private training inputs.
The adversary optimizes a reconstruction function to approx-
imate the original input x, formulated as:

x̃ = arg min
x̃∗
Lrec(fc(x̃∗), zc) + λR(x̃∗) (1)

where x̃ is the reconstructed input, and x̃∗ is iteratively refined
to align with x. The reconstruction loss Lrec minimizes the
difference between the reconstructed and original feature rep-
resentations. At the same time, regularization R(x̃∗) imposes
constraints such as Total Variation (TV) loss [71] or adversarial
regularization [53]. The term λ controls the balance between
accuracy and constraint enforcement. The primary methodolo-
gies are (i) Feature Space Hijacking Attack (FSHA), (ii) Model
Inversion Attack, (iii) Functionality Stealing, (iv) Generative
Adversarial Network (GAN), and (v) Feature Reconstruction.
We further provide detailed explanations of each subtype of
data reconstruction attack in Supplementary Material B.

4.1.1.1 Feature Space Hijacking Attack (FSHA). FSHA [59,
22] is a data reconstruction attack that exploits feature repre-
sentations in SL settings. By leveraging adversarial learning,
a technique where models are trained using adversarial exam-
ples, intentionally crafted inputs designed to mislead the model,
FSHA enables the adversary to approximate private client data
from the exchanged feature space. This attack employs a three-
component system: a pilot network (f̃c) that defines the target
feature space, an inverse network (f̃c

−1) that reconstructs inputs
from features, and a discriminator (D) that guides the mapping
learning through adversarial training.

4.1.1.2 Model Inversion:. Model Inversion is an attack tech-
nique where an adversary attempts to reconstruct private train-
ing data by exploiting a model’s parameters, outputs, or gradi-
ents. As demonstrated by [27, 10], a malicious party can lever-
age the information received during the SL process to recover
client data. This approach involves an optimization procedure
where the adversary generates synthetic inputs that produce ac-
tivations or gradients matching those observed during training
when fed through the model. By iteratively minimizing the dis-
tance between these synthetic outputs and the observed ones,
often using mean squared error (MSE) as the objective func-
tion, the adversary can approximate the original private data.

4.1.1.3 Functionality Stealing:. Functionality stealing [92] is
an attack where an adversary replicates a model’s behavior. By
mimicking its functionality, the attacker approximates the orig-
inal model and extracts sensitive information. The adversary
can train a pseudo-client model (f̃c) that functionally mimics fc
without knowing its structure. Once the functionality is stolen,
the adversary can train a reverse mapping function to transform
features back into x, effectively compromising client privacy
across multiple clients without modification.

4.1.1.4 Generative Adversarial Network (GAN). GANs have
emerged as powerful tools for data reconstruction attacks [91,
52] in SL environments. This approach involves training the
generator G to produce synthetic inputs that yield feature rep-
resentations or gradients matching those observed during train-
ing. The discriminator D helps refine these reconstructions by
providing feedback on their realism. GAN-based attacks are
concerning because they can operate effectively with limited in-
formation and can progressively improve reconstruction quality
through the adversarial training process.

5

4.1.1.5 Feature Reconstruction. Feature reconstruction is an
attack that aims to recover the original input data from inter-
mediate feature representations exchanged during model train-
ing. By leveraging statistical measures [24, 49] and adversarial
learning, attackers can approximate private data to exploit the
representation preferences encoded in zc [87, 96].

4.1.2. Label Inference Attacks
Label inference attacks exploit the correlation between

model updates and labels to infer client information. By an-
alyzing shared gradients or smashed data during training, these
attacks leverage inherent patterns in the learning process to re-
construct labels. They are primarily categorized into gradient-
based and smashed data-based label inferences.

4.1.2.1 Gradient-Based Label Inference:. These attacks ex-
ploit the correlation between gradient updates and label dis-
tributions to infer client information. We provide a detailed
explanation of gradient-based label inference attacks in Sup-
plementary Material C.1. Three methods dominate the litera-
ture for performing gradient-based label inference attacks: (i)
similarity-based techniques [48, 45] that compare gradients di-
rectly by selecting the expected label (yexp) and minimizing
the difference between the observed gradient (∇c) and expected
gradient (∇exp):

ỹ = arg min
yexp
∥∇c − ∇exp∥

2 (2)

where ∥ · ∥ represents the similarity metric, such as Euclidean
norm (ℓ2-norm) or cosine similarity. (ii) loss function-based in-
ference [10, 86] that iteratively refines predictions in searching
for the most expected label yexp by minimizing MSE or cross-
entropy loss:

ỹ = arg min
yexp
Ladv(∇c − ∇exp) (3)

where (Ladv) is the adversary loss function measuring the dif-
ference between ∇c and ∇exp, and (iii) surrogate model op-
timization [37, 93, 4], where an adversary iteratively refines
the estimated label by minimizing the loss function using
gradient-based optimization. Unlike direct gradient matching
or similarity-based inference, this method leverages a surrogate
model to approximate the relationship between x, ∇, and y, al-
lowing for a structured reconstruction of private labels. At each
iteration t, the adversary updates the estimated label ỹ(t) by per-
forming a gradient step that minimizes the loss function:

ỹ(t+1) = ỹ(t) − η
∂Ladv(∇c,∇exp(ỹ(t)))

∂ỹ
(4)

where η is the learning rate that controls the step size for updat-
ing the label estimate.

4.1.2.2 Smashed Data-Based Label Inference:. In smashed
data-based label inference attacks, an adversary aims to recon-
struct private labels by analyzing the structural and semantic
properties of z received by the adversary in an SL setup. Unlike
gradient-based attacks, these methods do not require gradient

updates but instead rely on the inherent information encoded in
z. The adversary infers labels by minimizing a predefined loss
function (Ladv), which measures the difference between the ob-
served z and reference embeddings (zexp). This general process
is formulated as:

ỹ = arg min
yexp
Ladv(F (z),F (zexp)) (5)

where, F represents the adversarial function. We detail the
smash-based label inference attacks in Supplementary Mate-
rial C.2. Researchers have explored three primary approaches
for label inference leveraging smashed data in SL: (i) distance-
based matching [48], which measures the similarity between
observed and reference embeddings using metrics like Eu-
clidean distance; (ii) clustering-based inference [48, 96], which
groups similar embeddings to identify patterns in labels; and
(iii) transfer learning-based inference [48, 30], which lever-
ages pre-trained models or generators to extract label informa-
tion from embeddings. These techniques demonstrate that even
without gradient information adversaries can successfully infer
private labels by exploiting the semantic properties preserved
in the shared intermediate representations.

4.1.3. Property Inference Attacks
Property inference attacks extract sensitive attributes or sta-

tistical patterns from client data without requiring complete
data reconstruction. Unlike reconstruction attacks, these ap-
proaches focus on inferring specific properties such as demo-
graphic information, class distributions, or other sensitive char-
acteristics embedded within the private dataset. As demon-
strated in [59, 52], property inference attacks in SL typically
leverage the intermediate representations or model updates
shared during the collaborative training process. The approach
involves an adversary creating a specialized classifier (C) that
maps the observed smashed data or gradients to property labels.
By analyzing patterns in the information, an adversary can infer
properties that were never intended to be shared. The attack can
be formulated as:

APIA = arg min
F

∑
xi∈X

Ladv(F(T (xi)), li), li ∈ 0, 1 (6)

where (F) represents the adversarial inference model, (T) is the
function that processes client data and produces the observable
artifacts, and (li) indicates the property being inferred. These
attacks are particularly concerning because they can reveal sen-
sitive information while the participating entities believe they
are only sharing task-relevant features.

4.1.4. Model Manipulation Attacks
This section explores attacks that compromise SL model in-

tegrity, categorizing them into: (i) adversarial attacks that per-
turb inputs to cause misclassification, and (ii) backdoor and
poisoning attacks that manipulate training data to induce ma-
licious behavior or degrade performance (see Supplementary
Material D).

6

4.1.4.1 Adversarial Attacks.. Adversarial attacks manipulate
intermediate feature representations by introducing perturba-
tions that induce misclassification. These attacks can be cat-
egorized as non-targeted attacks [14] and targeted attacks [26].
We provide a summary of adversarial attacks and detail them in
Supplementary Material D.1. The objective of a non-targeted
attack is to maximize the difference between the perturbed
representation and the clean feature representation z. This is
achieved by often using cosine similarity or Euclidean distance:

ξ∗ = arg max
∥ξ∥∞≤ϵ

Lattack(z, ξ + z) (7)

where ξ∗ is the optimal adversarial perturbation, ξ is the adver-
sarial perturbation applied to z, and ∥ξ∥∞ ≤ ϵ ensures that the
perturbation remains within the allowed bound. However, in a
targeted attack, the adversary modifies z such that they move
toward a predefined target embedding zt, forcing the model to
produce a specific incorrect prediction. This is achieved by
minimizing (rather than maximizing) the attack loss function
in Equation 7. The reason is that in a non-targeted attack, the
adversary aims to maximize the deviation of the perturbed rep-
resentation from the original feature representation, making the
output unpredictable and unreliable. In contrast, a targeted at-
tack seeks to minimize the difference between the perturbed
representation and a specific target representation zt, effectively
steering the model toward a controlled misclassifications.

4.1.4.2 Backdoor and Poisoning Attacks.. SL models are vul-
nerable to adversarial manipulations that exploit weaknesses
in the training process, particularly through poisoning attacks
and backdoor attacks. Poisoning attacks manipulate the train-
ing process by modifying the dataset to degrade model perfor-
mance. Let x, y denote the original training data and labels,
andA(x, y) be the adversarial poisoning function that generates
a poisoned dataset x′, y′. The model, parameterized by θ, up-
dates its parameters to θ∗ after training on poisoned data, lead-
ing to incorrect decision boundaries. The adversary’s objective
is to maximize classification errors, formulated as a minimiza-
tion problem where the model, trained on poisoned data, un-
knowingly optimizes its loss function in a way that degrades
generalization and increases misclassification:

θ∗ = arg min
θ

E(x′,y′)∼A(x,y)L(fθ(x′), y′) (8)

where fθ(x′) is the model’s output, and L(fθ(X′),Y ′) measures
the classification loss on the poisoned dataset. The expected
loss function E(x′,y′)∼A(x,y) ensures the poisoning effect general-
izes across training samples. Backdoor attacks implant hidden
triggers into the training process, enabling adversaries to ma-
nipulate model predictions when the trigger is present while
maintaining normal behavior otherwise. Let x, y denote the
clean training data and labels, and let xb be the backdoor-
inserted inputs with the attacker-defined target labels yt. The
adversary optimizes a dual-objective function that ensures nor-
mal classification on clean samples while inducing misclassifi-
cation on backdoor samples:

θ∗ = arg min
θ

E(x,y)∼DcleanL(fθ(x), y) + λE(xb,yt)∼DbL(fθ(xb), yt)

whereDclean represents the clean dataset used for normal train-
ing, while Db contains samples modified with a trigger. The
adversary applies a backdoor function to x, producing xb that,
when processed by the model, leads to a specific misclassifica-
tion. The attacker assigns target labels yt to these backdoor-
embedded samples, ensuring that normal inputs retain their
correct classification while triggered inputs are classified in-
correctly. λ is a regularization parameter that balances the
model’s ability to maintain the accuracy on clean inputs while
embedding the backdoor functionality (see Supplementary Ma-
terial D.2 for details of backdoor and poisoning attacks.)
a. Label Flipping Attacks: Label flipping attacks represent a
fundamental poisoning strategy in SL, where adversaries delib-
erately alter class labels within the training data [43, 19, 32].
These attacks are executed by malicious clients who manipu-
late their local datasets before participating in the collabora-
tive training process. The general approach involves systemati-
cally modifying the true labels of training samples to incorrect
ones, either through targeted flipping (changing specific source
classes to pre-selected target classes), untargeted flipping (ran-
dom mislabeling across multiple classes), or distance-based op-
timization (selecting target classes that maximize classification
errors based on feature proximity). The effectiveness of label
flipping attacks increases with the poisoning rate. For instance,
even 10% malicious clients reduced class recall by 12.58% on
CIFAR-10 and up to 47.31% with 50% malicious clients [19].
Similar trends were observed by Ismail and Shukla [32], where
untargeted and distance-based attacks caused greater accuracy
degradation than targeted attacks in both MNIST and ECG
datasets, confirming their higher impact across domains.
b. Embedding Poisoning Attacks: Embedding poisoning at-
tacks target the smashed data, manipulating the embedding
space rather than raw data or labels [4, 85]. The general ap-
proach involves introducing perturbations to the feature repre-
sentations (z̃i) before they are transmitted to the server. These
perturbations are designed to be subtle enough to avoid detec-
tion while causing the model to learn unintended patterns or
vulnerabilities. These attacks are effective because they directly
compromise the information exchange that is fundamental to
the collaborative learning process.
c. Client-Side Backdoor Attacks: Client-side backdoor at-
tacks in SL involve malicious clients who inject hidden triggers
into their local training data or model components. These at-
tacks follow a pattern where the adversary modifies a subset
of their training data to include specific trigger patterns asso-
ciated with targeted misclassifications [89, 69]. The approach
involves training the local model component to respond to these
triggers while maintaining normal performance on clean data.
This can be achieved through feature manipulation, label mod-
ification, or the use of auxiliary models to distinguish between
clean and backdoored samples. The distributed nature of the
system makes it difficult to detect malicious behavior, allow-
ing backdoors to persist across multiple training rounds while
maintaining model utility for the primary task.
d. Server-Side Backdoor Attacks: In server-side backdoor at-
tacks, a malicious server compromises the integrity of the SL
model. As investigated in [74, 89, 90], these attacks lever-

7

age the server’s privileged position in the training process to
implant backdoor functionalities without direct access to client
data. The methodology involves manipulating the shared model
components or gradient updates to create hidden vulnerabilities
that can be exploited later. This can be achieved through sur-
rogate model training, feature space manipulation, or strategic
modification of model updates.

4.2. Attack Constraints

Attack constraints define the technical and operational pre-
requisites for adversaries to execute attacks in SL successfully.

Dataset Constraints. Dataset constraints influence the vulner-
ability landscape of SL systems. One fundamental constraint
is the adversary’s ability to access domain-similar datasets,
which substantially enhances the feasibility of various attack
vectors [59]. Studies have shown that an exact match between
the adversary’s dataset and the target data is not necessary; it
is sufficient for the datasets to share similar distributional char-
acteristics to mount effective attacks [87, 26, 96, 30]. Further-
more, access to publicly available datasets enables the devel-
opment of more sophisticated threats. For instance, adversaries
can train surrogate models to reconstruct private data [92, 91]
or employ shadow models to conduct backdoor insertion and
poisoning attacks [90, 89, 32].

Knowledge-Based Constraints. The assumption that the server
possesses complete knowledge of the learning task significantly
amplifies the effectiveness of adversarial strategies. Under this
constraint, adversaries are able to design task-specific queries
that exploit the model’s learning objective, thereby increasing
the risk of privacy breaches [59, 92]. For instance, in a set-
ting where the learning task involves medical imaging, adver-
saries can synthesize patient-specific scans to infer sensitive at-
tributes. Additional assumptions, such as the server and client
sharing the same optimizer, further facilitate attack success by
enabling more accurate reconstruction of training data or infer-
ence of model parameters [92]. Some works explore scenar-
ios where the adversary operates with only partial information
about the learning objective [14].

Architecture Exposure Constraints. Architecture exposure
constraints play a crucial role in determining the vulnerabil-
ity of SL systems to various attacks. The exposure to client-
side architecture significantly enhances the efficacy of model
manipulation [26, 30], inversion [10], and feature reconstruc-
tion attacks [96]. Further expanding on this constraint, more
comprehensive threat models have been proposed, where adver-
saries are assumed to have full knowledge of both the client’s
subnetwork architecture and the dataset distribution [74]. This
enhanced architectural exposure notably strengthens the poten-
tial for backdoor attacks, enabling adversaries to manipulate the
model’s internal structure and implement covert functionalities
while evading detection.

Label and Classification Constraints. Knowledge of the num-
ber of discrete labels in the dataset allows adversaries to re-
fine their predictions and narrow the search space for classifi-
cation inference [10]. In some settings, adversaries are further
assumed to employ binary classifiers to predict labels from ob-
served model activations, a technique commonly leveraged in
membership inference attacks to determine the presence of spe-
cific samples in the training set [45]. Additional assumptions,
such as requiring only a single labeled sample per class or hav-
ing access to all participant labels, further strengthen the adver-
sary’s capability to infer broader label information from model
activations [48, 4].

4.3. Attack Effectiveness

Domain-Independent Attacks. Such attacks do not rely on spe-
cific datasets, architectures, parameter distribution, or optimiza-
tion methods. Unlike traditional attacks that exploit domain-
specific patterns, these attacks leverage fundamental weak-
nesses in the SL process, allowing them to generalize across
multiple settings. For instance, [59, 92, 87, 48, 45, 37, 4, 10]
attacks have been shown to reconstruct input data and inference
labels across diverse learning environments, demonstrating that
their effectiveness is not constrained to a particular application.

Stealth. In traditional security frameworks, attacks are often
identified by monitoring anomalies in system behavior. How-
ever, many SL attacks [59, 92, 10, 87, 48, 90, 26, 96, 93, 69,
86, 19, 32] evade detection by ensuring that they do not intro-
duce observable deviations in gradient updates or model per-
formance. For instance, distance correlation minimization is
leveraged in [59, 10, 87] to launch stealthy attacks, where gradi-
ent updates are subtly manipulated while preserving the overall
model behavior.

Defeating Differential Privacy. Differential Privacy (DP) [9]
is recognized as one of the most effective privacy-preserving
methods in machine learning. It operates by introducing con-
trolled random noise into training updates, thereby ensuring
that the inclusion or exclusion of any individual data point
does not significantly alter the model’s output (detailed in Sec-
tion 5.1.1). This mechanism provides theoretical guarantees
that adversaries cannot precisely infer the presence of a specific
data sample. However, recent studies [22, 92, 45, 48, 4, 93, 30]
have demonstrated that DP alone is insufficient in defending
against advanced SL attacks. The primary limitation of DP in
the SL setting is that it focuses on protecting individual data
contributions rather than preventing full-scale data reconstruc-
tion. While DP effectively limits the sensitivity of activations
and gradient updates, adversaries can still exploit structural and
statistical properties of gradients to recover private information
at a more aggregated level. Moreover, adversaries employing
distance correlation minimization techniques [59, 10, 87] have
been shown to circumvent DP protections. By iteratively op-
timizing gradient representations, adversaries can reconstruct
highly accurate approximations of the original input data, re-
ducing the effectiveness of DP.

8

SL Variants. The effectiveness of attacks in SL is not confined
to a single variant but extends across all architectures [92, 14,
96, 93], demonstrating a fundamental vulnerability. Since all
SL variants inherently rely on exchanging intermediate activa-
tions or gradients between the clients and the servers, adver-
saries can exploit this communication to infer sensitive infor-
mation, manipulate learning dynamics, or introduce adversar-
ial perturbations. The structural modifications between VanSL,
USL, and Hybrid SL do not provide sufficient protection, as
the core vulnerability (gradient leakage and model influence)
remains consistent across variants.

5. Defense For Split Learning

In Section 4, we explored how adversaries exploit SL vulner-
abilities. In response, various defense strategies have emerged.
This section systematically analyzes defense mechanisms based
on defense strategies (Section 5.1), operational constraints
(Section 5.2), and effectiveness (Section 5.3), with a summary
in Table 2, Supplementary Material E.

Secure Computation - Homomorphic Encryption

Secure Computation - Function Secret Sharing

Data Perturbation - Differential Privacy

Architecture Modification - Protocol Modification

Architecture Modification - Data Decorrelation

Monitoring - Weight/anomaly detection

Monitoring - Gradient Detection

Figure 5: The distribution of defense mechanisms classified in the surveyed
literature.

5.1. Defense Strategies

In this section, we present defense strategies, first categoriz-
ing them into protection and detection mechanisms, followed
by their subcategories. The distribution and taxonomy of these
strategies in the surveyed literature is illustrated in Figures 5,
and 6, respectively.

Detection

Protection

Data
Perturbation

Secure
Computation

Modification

Gradient
Detection

Weight/Anomaly
Detection

Homomorphic
Encryption

Function Secret
Sharing

Differential Privacy

Architectural
Modifications

Protocol
Modifications

Adds noise to protect
individual data.

Enables encrypted data
computation.

Splits functions to prevent
reconstruction.

Adjusts training to reduce
leakage.

Alters model structure for
privacy.

Detects manipulations in
gradient updates.

Flags unusual model
behaviour.

Figure 6: Taxonomy of Defense Strategies

5.1.1. Protection Mechanisms
Protection mechanisms aim to secure parties preemptively

before attacks occur. These approaches generally conceal or
limit the information an adversary can extract, often assuming
a semi-honest threat model.

5.1.1.1 Data Perturbation:. In this approach, clients intention-
ally modify (e.g., add noise to) data or intermediate representa-
tions, aiming to obscure sensitive information while preserving
sufficient utility for training. Differential privacy (DP) gained
prominence due to its well-defined mathematical framework
that achieves provable formal privacy guarantees. By calibrat-
ing noise according to (ε, δ)-DP, data contributors can formally
bound the risk. The privacy guarantee is established through
the definition in Equation (9), ensuring that even if an adver-
sary observes these shared activations, they cannot confidently
distinguish whether a specific data point was included in the
dataset X.

Pr[M(X) ∈ S] ≤ eε Pr[M(X′) ∈ S] + δ. (9)

whereM is a randomized mechanism that takes a dataset X as
input andM satisfies (ε, δ)-differential privacy for all neighbor-
ing datasets X and X′ differing in at most one entry. Here, ε de-
fines the privacy budget and δ is a small probability of violating
strict ε-DP. To achieve differential privacy, noise from distribu-
tions such as Laplace, Gaussian, or uniform is often added to
the data or query results to obscure the influence of any single
individual. In the context of SL, DP is often applied to per-
turb the activations exchanged between the client and server,
preventing sensitive information leakage through intermediate
representations. Nonetheless, DP methods often entail a trade-
off between privacy and model accuracy. Key challenges in
these schemes include:
• Accuracy vs. Noise: Elevated noise degrades model perfor-

mance.
• Scalability: Tuning DP parameters for high-dimensional data

or large-scale models is non-trivial.
Several papers [79, 56, 22] investigate how DP needs to be ap-
plied in terms of both achieving privacy and accuracy in various
SL setups.

5.1.1.2 Secure Computation:. Cryptographic methods offer
formal security guarantees by preventing adversaries from ac-
cessing raw data, with each cryptographic scheme preserving
different properties. Homomorphic encryption (HE) enables
computations on encrypted data. Formally, if E represents the
encryption function, D the decryption function, and ◦ a sup-
ported operation (such as addition or multiplication) under HE,
then an HE scheme satisfies the property:

D(E(x) ◦ E(y)) = x ◦ y

where x and y are plaintext values, and E(x) and E(y) are their
corresponding ciphertexts. Each encryption scheme provides
different functionalities, and in the context of SL, fully homo-
morphic encryption is widely preferred due to its ability to sup-
port arbitrary polynomial-time computations on encrypted data
without requiring decryption.

9

On the other hand, function secret sharing (FSS) is a crypto-
graphic technique that allows a function to be split into n shares
distributed among parties, such that the original function can be
reconstructed by combining the shares. Below, we present the
formal definition of FSS as references in [5].

For n ∈ N, an n-party FSS scheme with respect to a share
output decoder DEC = (S 1, . . . , S n,R,Dec) and a function
class F is a pair of probabilistic polynomial-time algorithms
(Gen,Eval) defined as:

• Key Generation: The algorithm Gen(1λ, f) with a secu-
rity parameter λ and a function description f ∈ F , outputs
n secret keys (k1, . . . , kn).

• Evaluation: Each party i runs Eval(i, ki, x), with a party
index i, the corresponding key ki, and an input x. It outputs
a value yi ∈ S i, representing the party’s share of f (x).

For example, in a setting with two semi-honest servers that
assumed to not collude, neither server can reconstruct the train-
ing function independently, even though together they can com-
pute the intended final result, as f (x) = f1(x)⊕ f2(x) where f1, f2
are computationally indistinguishable.

The primary objective here is not merely to ensure data
privacy, since encryption with well-established cryptographic
schemes already provides a rigorous security foundation, but to
optimize the application of these strategies for efficiency and
practicality, particularly in resource-constrained environments.
Khann et al. [38] explore a two-server FSS approach, examin-
ing how different secure computation techniques can be adapted
for SL.

Other works [35, 61, 57, 41] integrate HE into SL leveraging
both cryptographic techniques and adversarial training method-
ologies to enhance security while maintaining computational
feasibility. While these methods maintain model accuracy and
provide robust security, their computational overhead can be
impractical for resource-constrained environments as discussed
in [35], for computational resource-restricted environments ad-
ditional considerations need to be done to manage the training
in a feasible way.

5.1.1.3 Structural and Procedural Modifications:. Defense
strategies in this section modify the model architecture or the
protocol to limit information leakage and maintain privacy. We
provide the details of two subcategories (architectural modifi-
cations and protocol modifications) below:
a. Architectural Modifications: Architectural modifications
introduce structural changes to SL to prevent reconstruction at-
tacks. Abuadbba et al. [1] investigate the effects of shrinking
the cut layer on the effectiveness of FSHA. Building on this,
Pham et al. [62] introduce a binarized neural network approach
combined with DP to analyze its impact on both security and
efficiency. Another important approach leverages specialized
activation functions, such as the one presented in Equation (10)
by Mao et al. [52], which strategically introduce randomness
into activation outputs to obscure patterns and minimize the in-

formation leakage to potential adversaries.

R3eLU(v) =

max(0, v + z), with probability p,
0, with probability (1 − p).

(10)

Additionally, mechanisms designed to de-correlate transmitted
data have been proposed in [52, 73, 83, 78, 42], demonstrating
various techniques to mitigate information leakage while pre-
serving utility.
b. Protocol Modifications: Beyond structural adjustments, re-
fining the protocol that governs data exchange in SL can sub-
stantially strengthen privacy. A notable example is SL without
local weight sharing (P-SL) [66], which prevents adversaries
from leveraging model inversion to reconstruct client data. In-
stead of sharing model parameters, this approach enables col-
laborative training without exposing private data. The gradient
computation in this modified setting is given by:

∇L(outputs, labels) = ∇ui,wL
(
gw([zi, zcache]), [ytrain

i , ycache]
)

where zi = fu(xi) represents the smashed data from the current
client, and zcache consists of previously cached smashed data,
effectively mitigating privacy leakage from individual updates.

An alternative strategy is to invert the SL setup, wherein
clients hold the labels while the server processes encrypted fea-
tures, as proposed in [35]. This approach reduces the computa-
tional burden on resource-constrained clients while preserving
model utility.

Other examples include [66, 44], which explore communica-
tion and data-sharing regulations. Such protocol modifications
ensure that client-side computations remain efficient while re-
ducing the effectiveness of feature-space hijacking and recon-
struction attacks [78, 44]. However, both architecture and pro-
tocol level modifications introduce a computational burden on
the server, which must be managed to maintain scalability.

While these methods can be empirically effective, they may
incur a reduction in model accuracy and often lack formal secu-
rity proofs, leaving them potentially vulnerable to minor adap-
tations in attack strategies. Key considerations include:
• Model Accuracy vs. Privacy: Structural modifications may

compromise performance.
• Robustness Under Diverse Attacks: Without formal guaran-

tees, even minor changes in attack tactics might bypass these
defenses.

5.1.2. Detection Mechanisms
Detection mechanisms focus on monitoring the training pro-

cess to identify malicious activity during or after its occurrence,
thereby enabling timely responses such as halting or rolling
back updates. These methods are particularly relevant for sce-
narios involving overtly malicious adversaries who might en-
gage in label-flipping, backdoor insertion, or model hijacking.
Two primary detection approaches are employed:

5.1.2.1 Gradient/Update Monitoring:. This method involves
analyzing the gradients or updates exchanged between clients
and servers to detect abnormal variations. Outlier detection

10

techniques can highlight significant deviations that may sig-
nal an ongoing attack. Several studies have explored gradi-
ent anomaly detection to identify adversarial activity in SL
[18, 12, 11]. Considering the approach in [18], the detection
score DS n is computed as follows:

DS n = S ig(λds(Ĝn · Ên · V̂n − α)) (11)

where Ĝn represents the adjusted gradient similarity gap, Ên

is the logarithmic transformation of the polynomial approxima-
tion error, and V̂n quantifies the overlap between same-class and
different-class gradients. S ig is a sigmoid activation that nor-
malizes the detection score to the range [0, 1]. This approach
enables the identification of adversarial gradient manipulations
by analyzing deviations in expected gradient behavior.

5.1.2.2 Weight Anomaly Detection:. Some frameworks track
model weight evolution, comparing it to normal behavior to
detect anomalies and prevent adversarial tampering. Studies
such as [69] analyze changes in weight distributions to detect
anomalies, particularly those introduced by backdoor attacks,
making them effective in identifying malicious training behav-
iors. One such metric for anomaly detection is the Rotational
Distance metric introduced in [69], which quantifies the direc-
tional change in parameter space between consecutive training
iterations:

θ(t) = arccos
(

Bt · Bt−1

∥Bt∥∥Bt−1∥

)
(12)

where Bt and Bt−1 are the backbone parameters at consecutive
training steps, and ∥ · ∥ denotes the Euclidean norm. The an-
gular displacement θ(t) measures the directional shift in model
updates. However, backdoor attacks introduce abnormal direc-
tional changes in weight updates, causing θ(t) to deviate from
normal training patterns. By averaging pairwise differences in
θ(t) across clients, anomalies can be detected and flagged as
potential threats.

Monitoring techniques have been refined to strengthen secu-
rity while maintaining training integrity and robustness. Rieger
et al. [69] propose periodically auditing trained models to val-
idate participant honesty. They highlight the risk of falsely la-
beling honest participants as malicious, which could disrupt the
training process. Their approach ensures that training remains
robust while minimizing false positives in adversary detection.

5.2. Defense Constraints

Defense strategies in SL operate under constraints that affect
how, and to what degree, they can be deployed: (i) assump-
tions about adversaries, (ii) requirements for verifying correct-
ness when multiple parties are involved, (iii) the architectural
details and training protocol configurations, and (iv) practical
limitations in computational power or system availability.

Threat Model Constraints. Alongside the attacks discussed in
Section 5.3.1, defense strategies differ in how they address ad-
versaries that may only observe and infer (semi-honest) ver-
sus those that actively alter the environment (malicious). For
semi-honest scenarios, cryptographic methods [35, 38, 57, 40,

61], data perturbation [79, 64, 77], and architecture-based ap-
proaches [62, 1, 52, 73, 44] generally suffice, as they aim to mit-
igate reconstruction attacks. In malicious settings, verification-
based detection strategies [18, 13, 11, 69] are often necessary
to detect and prevent adversarial behaviors such as poisoning or
backdoor attacks. Balancing these approaches depends on the
degree of trust among participants and the trade-off between
privacy and performance overhead.

Multi-Party Verification Constraints. When multiple clients or
servers are involved, defenses may need enhanced validation
mechanisms to differentiate between benign and malicious up-
dates, as demonstrated in [13, 11, 18]. Some methods [69, 42]
rely on cross-comparisons among clients, a trusted third party,
or a server, which increases communication rounds and latency.
In large-scale or bandwidth-limited environments, frequent ver-
ification may be impractical. Leveraging powerful nodes or
third parties can mitigate some of these issues but introduces
additional trust assumptions.

Architectural Constraints. Certain defenses [62, 1] depend on
the model’s partitioning and the number of layers retained on
the client side [62] or specialized activation functions [52], can
limit information leakage but may also reduce flexibility or per-
formance on complex tasks. Architectural considerations be-
come increasingly crucial when striving for a generalized ap-
proach that minimizes reliance on specific empirical setups.

Computational and Operational Constraints. Practical deploy-
ments of SL, especially on edge or mobile devices, limit how
often encryption, extra communication rounds, or gradient
checks can be performed. Heavy cryptographic schemes may
be infeasible, and much of the work in this domain focuses on
improving computational efficiency [35, 57, 40]. Additionally,
defenses that assume continuous client availability are prone to
disruption if participants drop out or arrive late, as considered
in [69]. Some training modifications also limit the flow of in-
formation during learning [66]. These operational constraints
highlight the need for strategies that remain robust under un-
predictable network conditions and resource limitations.

5.3. Defense Effectiveness

Defense effectiveness in SL is evaluated based on several
key factors, including applicability to different attack types,
assumed client-server setups, computational constraints, and
tested model architectures. The alignment between defense
strategies and attack vectors is crucial, as protection-based ap-
proaches such as cryptographic techniques, DP, and architec-
tural modifications focus on preventing information leakage,
while detection-based methods such as gradient monitoring and
anomaly detection aim to identify and halt adversarial behavior.

5.3.1. Attack Coverage and Defense Alignment
Each defense mechanism addresses specific adversarial

threats in SL. Data perturbation defenses [1, 79, 64, 77], in-
cluding DP and feature decorrelation, are effective against label
inference and reconstruction attacks, making it more difficult

11

for adversaries to extract information from gradients or inter-
mediate representations. However, these approaches often in-
troduce a trade-off in accuracy. Secure computation techniques
[35, 57, 41, 61, 38], such as HE and FSS, offer robust privacy
guarantees by allowing encrypted computations.

Architectural modifications[62, 1, 66, 44, 83, 52, 82, 73, 78,
42], including cut-layer adjustments and novel activation func-
tions, significantly mitigate feature-space hijacking and recon-
struction attacks, but their effectiveness depends on the model’s
depth and complexity.

Detection mechanisms are crucial for identifying adversarial
actions during training. Gradient anomaly detection [11, 13,
18] is effective against poisoning and hijacking attacks by ana-
lyzing inconsistencies in the updates exchanged between clients
and servers. Model weight anomaly detection [69] is particu-
larly useful against backdoor attacks, as it can identify hidden
manipulations within the model weights by monitoring devi-
ations from expected parameters. The effectiveness of these
mechanisms relies on accurately profiling normal training be-
havior, and they may be vulnerable to adversaries who subtly
manipulate updates to evade detection.

5.3.2. Client-Server Setup and Deployment Scenarios
The client-server setup influences the feasibility and effec-

tiveness of defenses. In single-client SL (SCSL), cryptographic
defenses such as HE and FSS are more feasible, as encryption
and decryption overhead is limited to a single participant. Ar-
chitectural modifications are also easier to apply, as there is no
need for cross-client consistency.

In multi-client SL (MCSL), on the other hand, client-side
gradient monitoring and anomaly detection become more rele-
vant, as adversarial participants may be disguised among hon-
est clients. Data perturbation techniques, including DP, require
careful tuning in MCSL, as variations in data distributions may
affect privacy-utility trade-offs. In addition, DP alone are in-
sufficient in terms of defense as discussed earlier (Section 4.3).
Secure computation methods face scalability challenges, as the
overhead increases with an increasing number of clients. In
MCSL, architectural modifications such as split-layer depth op-
timization and secure aggregation become more practical, as
computational burdens are distributed across multiple parties.
Lastly, communication latency and encryption overhead remain
key concerns for cryptographic techniques.

5.3.3. Model and Dataset Considerations
Defense effectiveness also depends on the complexity of the

model architecture and the dataset’s properties. In lightweight
models such as convolutional neural networks for image clas-
sification, DP and gradient perturbation are effective [64, 77],
as small distortions in features do not drastically impact per-
formance. Cryptographic methods such as HE remain fea-
sible in small-scale models but introduce significant latency
[35, 39]. In deep architectures such as ResNet and trans-
formers, secure computation techniques struggle due to their
high computational complexity, while architectural modifica-
tions [1, 62, 52] become more critical to mitigate feature-space
hijacking. Detection-based methods, such as gradient anomaly

analysis, are highly dependent on the model architecture and
training setup, as the information carried in gradients is signif-
icantly influenced by these factors. For instance, as discussed
in [11], larger gradients may suffer from the curse of dimen-
sionality, since these methods rely on distance and correlation
analysis among data.

6. Key Observations and Takeaways

We outline key observations derived from our analysis on SL
attack and defenses below:
• Architecture: The feasibility of attacks and defenses is

heavily influenced by the architectural design (e.g., VanSL,
USL) and data partitioning strategies (horizontal vs. verti-
cal). We observe that most attack research focuses on VanSL,
which is highly vulnerable to feature-space hijacking and
model inversion due to the exposure of smashed data at a
single cut layer. In contrast, USL and SFL face increased
label exposure risks due to multi-hop data transmissions.
Similarly, the majority of defenses focus on the VanSL set-
ting (Figure 7). Furthermore, we observe that No-Label SL
(NLSL) and Multi-hop SL (MHSL) are the least explored
variants in the literature despite their distinct privacy and
trust characteristics. NLSL enhances label privacy by keep-
ing labels on the client, requiring thorough analysis to assess
its resistance to inference attacks targeting label information
via gradients or activations. MHSL, with its chained compu-
tation across multiple entities, has received minimal attention
in the literature, and its unique multi-party computation and
trust assumptions remain inadequately characterized. These
observations directly address RQ1, which seeks to under-
stand how adversarial objectives can be systematically tax-
onomized in relation to architectural vulnerabilities in SL.
Our findings underscore the need to extend taxonomies be-
yond VanSL to capture under-explored variants with distinct
structural vulnerabilities.
• Semi-Honest Adversaries: Our taxonomy reveals a criti-

cal reliance on the semi-honest adversarial model, where ad-
versaries passively follow the protocol. While this simpli-
fies threat modeling, it underestimates real-world risks, as
attacks like label flipping, gradient manipulation, or collu-
sion exceed the assumptions of this model, rendering many
defenses ineffective against stronger adversaries per RQ3.
• Generalization of Attack Mechanisms: Several core at-

tack strategies, especially those that exploit the cut layer
bottleneck, such as latent representation reconstruction [59,
52] and property inference based on intermediate activa-
tions [59], demonstrated effectiveness across a variety of SL
models and datasets. This suggests that the act of split-
ting and transmitting intermediate representations introduces
consistent privacy vulnerabilities that are not easily mitigated
by simply changing model architecture or task. These find-
ings respond to RQ2, which seeks to understand the gener-
alizability and stealth of SL attack mechanisms. The per-
sistence of these attacks across different conditions suggests
an architectural invariance in SL’s threat surface. This high-
lights both a concern and an opportunity: to develop model-

12

agnostic defenses that reduce information leakage in repre-
sentations z and gradients ∇ as discussed in Section 4.1.2,
for example, via dimensionality reduction.
• Inherent Risk of the Cut Layer: The interface between

the client-side and server-side models, where z or ∇ are ex-
changed, consistently emerges as a critical attack surface in
SL. Multiple attacks, including FSHA [59], model inversion
via gradients [10], GAN-based input reconstruction [91], and
various label or property inference strategies [37, 59, 10], ex-
ploit this specific interface to extract sensitive information.
This highlights the need to prioritize specifically the security
of the cut layer. Moreover, it underscores that defenses fo-
cused solely on obfuscating raw inputs, such as local DP (see
Section 4.3), are insufficient, as critical information is often
preserved and leaked through z and ∇. Effective SL defenses
must directly mitigate the information content traversing this
unavoidable interface between model partitions, which di-
rectly relates to RQ2’s examination of attack vectors and vul-
nerable interfaces.
• Reliance on Strong Adversarial Capabilities: Many

prominent SL attack studies assume strong adversarial ca-
pabilities, such as full or partial model access [59, 91] or
access to auxiliary datasets aligned with the training dis-
tribution [92, 32, 89]. While useful for exposing theoret-
ical vulnerabilities, these assumptions often diverge from
practical deployment scenarios, where adversaries may have
limited knowledge, access, or resources. In addressing
RQ3, we systematically differentiate between strong and con-
strained adversarial assumptions across attack studies, en-
abling more accurate threat modeling and highlighting the
need for context-aware, practically-deployable defenses.
• Leakage Persistence Beyond Gradients: Studies have

demonstrated that intermediate activations exchanged during
the forward pass can leak sensitive information, enabling la-
bel inference [48, 96] and data reconstruction [52, 59] even
in the absence of gradient information. This critical finding
shows that SL remains vulnerable even during inference-only
deployments or when gradient leakage is mitigated through
secure aggregation or other protective mechanisms. This em-
phasizes the need for defenses targeting information leakage
in z —such as its semantic consistency or correlation with
inputs— beyond just the backward pass, addressing RQ1 on
the nature and sources of information leakage in SL.
• Privacy–Utility–Overhead Trade-off: SL defenses show a

clear three-way trade-off between privacy, model utility (e.g.
accuracy), and computational or communication overhead.
Methods range from lightweight approaches with weaker
guarantees to heavy cryptographic schemes with high costs;
while DP offers a tunable middle ground whose optimal bal-
ance is still application-specific and challenging to achieve.
Homomorphic Encryption (HE) and Function Secret Shar-
ing (FSS) offer strong theoretical privacy by enabling com-
putation on encrypted data. However, their high computa-
tional and bandwidth overheads restrict practical use to sim-
ple models or scenarios, where privacy outweighs perfor-
mance. This addresses RQ4 by discussing the place of cryp-
tographic techniques in the landscape of defense techniques.

The three-way trade-off is addressing RQ5, which discusses
the suitability, constraints, and potential optimization of de-
fenses for specific tasks, and also connects to RQ6 regarding
what constitutes a successful defense in practice, often in-
volving a balance of these factors.
• Architectural Changes: Modifying SL —by shifting the cut

layer or shrinking the shared ’smashed data’— can reduce
exposure and increase attack difficulty, but studies agree that
these changes alone rarely ensure full or provable privacy,
serving best as complements to stronger defenses. This ob-
servation aligns with RQ4’s investigation into the strengths
and limitations of current defense strategies in mitigating in-
formation leakage. Architectural changes are a good fit for
situations where one does not have much computing power or
when one wants to add a basic, extra layer of security along-
side stronger methods.
• Confidentiality & Integrity: Most SL defenses target two

goals: confidentiality (protecting data, labels, or attributes)
and integrity (preventing model manipulation with moni-
toring or robust aggregation). Availability remains under-
explored in the reviewed literature. This distinction between
defense goals directly informs RQ6 —how techniques pri-
oritize confidentiality vs. integrity— and supports the tax-
onomy outlined in RQ4; notably, detection strategies, cru-
cial for identifying active threats like poisoning or backdoors
(though reliant on robust baselines and unable to address pas-
sive leakage), fall under this discussed class and thus also
address aspects of RQ4.
• Hybrid Defenses: While layering defense techniques may

seem promising, the literature highlights complex interac-
tions—such as applying DP to encrypted data or combining
noise with architectural constraints, which can increase over-
head, obscure true privacy guarantees, or introduce new vul-
nerabilities. These findings, central to RQ5, emphasize that
effective composition requires careful joint analysis, as naive
stacking is often inadequate.
• Prominence of Studied Defenses: The literature shows DP

as the most extensively studied approach for enhancing con-
fidentiality in SL, followed by HE. In contrast, detection re-
search focuses primarily on gradient analysis. Highlight-
ing these commonly used techniques —DP, HE, and gradi-
ent analysis— directly informs RQ4 on prevalent SL defense
strategies.

7. Open Research Directions

Building on our key observations, we outline the key open
research directions below:
• Advanced Attack and Defense Strategies: A key research

direction emerging in response to RQ1 involves extending
adversarial taxonomies and corresponding defense mecha-
nisms to SL variants beyond the conventional VanSL setting.
Alternative SL variants such as USL, Hybrid-SL, NLSL, and
MHSL exhibit distinct architectural patterns (e.g., multi-hop
communication, hybrid cut points) and data handling proce-
dures, which introduce previously unaddressed attack sur-
faces. As outlined in Section 4 and Section 5, these non-

13

standard configurations may necessitate variant-specific de-
fense strategies that are not adequately covered by existing
VanSL-centric approaches. Alongside exploring novel ap-
proaches, techniques from the broader PPML literature could
be adapted to SL when there are matching problem struc-
tures. For instance, adaptive differential privacy used in fed-
erated learning [17, 75, 7] could be incorporated to dynam-
ically adjust noise levels based on model updates. This ad-
justment could help balance the trade-off between model ac-
curacy and privacy by reducing noise in scenarios where up-
dates pose a lower privacy risk.
• Broadening Threat Models Beyond Semi-Honest Ad-

versaries: Future research should focus on developing a
progressive adversarial framework that evaluates defenses
across a spectrum of adversarial strengths, from semi-honest
actors to fully malicious colluding parties. SL systems are es-
pecially vulnerable to adversaries capable of poisoning gra-
dients, manipulating activations, or tampering with training
states. We advocate for hybrid evaluation protocols that inte-
grate empirical testing with theoretical analysis to assess ro-
bustness. Furthermore, adopting formal models from crypto-
graphic literature (e.g., Byzantine threat models [15], covert
adversaries [3], or adaptive adversaries [2]) can help bridge
the current gap between theoretical security guarantees and
practical adversarial capabilities, thus advancing the scope
of RQ3 on evaluating the realism and comprehensiveness of
adversarial assumptions.
• Toward Uncertainty-Aware Defense Design: A promising

research direction is the development of uncertainty-aware
defenses via entropy analysis of intermediate representations
in SL systems. Low entropy in smashed data —often caused
by deterministic or sparse activations— correlates with in-
creased vulnerability to inference attacks, as it signals re-
duced uncertainty exploitable by adversaries. Operations
like ReLU and max-pooling compress representational diver-
sity, aligning features closely with input semantics and ele-
vating privacy risk. In contrast, randomized activations and
dropouts introduce beneficial uncertainty that hinders infer-
ence. Formalizing these effects using information-theoretic
tools like mutual information and representation entropy
could quantify the trade-off between expressivity and leak-
age. Additionally, comparing differential entropy before and
after the cut layer may help identify optimal cut points that
balance utility and privacy. Entropy-based metrics thus offer
a principled foundation for designing more privacy-resilient
SL architectures, contributing to RQ2 on structural factors
that shape the effectiveness of inference attacks in SL.
• Evaluating Practical Threats Under Realistic Conditions:

In response to RQ3, future research should prioritize the de-
velopment and evaluation of attacks under more constrained
and realistic conditions. This includes black-box settings,
limited or mismatched auxiliary data, bounded query or com-
pute budgets, and scenarios involving partial or probabilistic
knowledge of the target model. Crucially, quantifying how
attack effectiveness degrades under practical constraints is
vital to building accurate and actionable threat models for
real-world SL deployments.

• Advancing Holistic Monitoring Strategies: Future re-
search should prioritize proactive, multi-layered defenses to
address SL’s broad attack surface: a direction already emerg-
ing in recent work, as noted in Section 5.1. Integrating
anomaly detection (e.g., gradient or behavior-based) [11]
with insights from federated learning —such as techniques
developed to achieve secure aggregation for verifying client
updates [36]— can enhance detection capabilities without
significant overhead. Additionally, defenses against side-
channel threats (e.g., [8]) and secure inference techniques
can strengthen robustness against covert attacks. Hybrid ap-
proaches may be necessary —combining secure computa-
tion methods (for confidentiality of client data) with moni-
toring (for learning integrity)— to realize a truly holistic de-
fense strategy in SL. This means that monitoring mechanisms
should be integrable with other defense techniques.
• Instance Encoding and Potential Threats: Intermediate

representations in SL —often referred to as smashed data—
can be viewed as encodings that have the potential to leak
sensitive information, even without full input reconstruction.
This issue is known as the instance encoding problem [6, 50].
Carlini et al.[6] reframed the PPML problem as instance en-
coding, analyzing the statistical underpinnings of privacy in
ML, comparing techniques, and offering bounds and empiri-
cal results under specific attacks. Maeng et al.[50] introduced
a Fisher information based framework to quantify and bound
leakage in PPML, also leveraging the instance encoding per-
spective. Given the alignment in goals and definitions, this
concept provides valuable insights for improving the secu-
rity of SL systems.
• Verifiable Training and Inference: Ensuring the verifiabil-

ity of training and inference in SL, alongside privacy, is an-
other crucial objective. Zero knowledge (ZK)-proofs enable
parties to prove correct computation without leaking unau-
thorized information, offering a promising means to verify
the correctness of training in PPML. This capability is vi-
tal where malicious participants alter training data, introduce
backdoors, or poison the training process. Peng et al. [60]
survey the use of ZK-proofs in machine learning, categoriz-
ing approaches into verifiable training, testing, and inference,
and proposing an abstract framework for their application in
ML contexts, which can be beneficial for SL settings. Ef-
ficiency would constitute a crucial concern when ZK-proofs
are employed.
• Exploring Hardware-Based Security Solutions:

Hardware-based solutions, such as trusted execution
environments (e.g., [31]), are under-explored and show
promise for enhancing security and privacy in SL.
• Resilience to Distributed System Faults Ensuring the train-

ing process remains robust and continues effectively despite
common distributed system faults, such as client dropouts,
late-arrivals, and potential communication errors. Strategies
focus on maintaining training integrity and progress even
when parts of the system fail.

14

8. Related Work

Several Systematization of Knowledge (SoK) papers have
examined privacy-preserving methodologies across collabora-
tive learning paradigms. Podschwadt et al. [67] presented a sys-
tematization of deep learning to preserve privacy utilizing HE,
focusing on the computational complexities and practical lim-
itations of HE-based solutions. Ng and Chow [55] conducted
an extensive SoK examining cryptographic approaches to pri-
vacy preservation in deep learning. Mansouri et al. [51] sys-
tematically analyzed secure aggregation techniques for FL, cat-
egorizing encryption-based and MPC-based approaches while
evaluating their performance, scalability, and resilience against
adversarial attacks.

While FL and SL share distributed learning characteristics,
SL presents distinct challenges arising from its architectural de-
sign, particularly in the transmission of intermediate activations
between participants. Conventional secure aggregation meth-
ods developed for FL cannot be directly applied to SL without
substantial modifications, as SL’s vulnerabilities emerge from
unique adversarial capabilities, including feature-space leak-
age and inference attacks. In examining SL-specific security
concerns, Pham and Chilamkurti [63] surveyed data leakage
threats, identifying gradient leakage, label inference, and fea-
ture reconstruction attacks. Hu et al. [29] conducted a review
and experimental evaluation of SL, highlighting the variability
in SL paradigms concerning cut-layer selection, model aggre-
gation, and label sharing. While these works provide highly
valuable empirical insights, we uniquely and systematically cat-
egorize security and privacy challenges in SL, establishing a
novel formal taxonomy of attack vectors and mitigation tech-
niques, analyzing their effectiveness and limitations.

9. Conclusion

We systematically explored the security and privacy land-
scape of Split Learning (SL) by categorizing various at-
tack strategies and defense mechanisms. We presented a
novel taxonomy of attacks and defenses in SL, categoriz-
ing them along: (i) strategies, (ii) constraints, and (iii) ef-
fectiveness. While SL presents a promising framework for
distributed/outsourced machine learning, its inherent vulner-
abilities -—ranging from data reconstruction and label infer-
ence to adversarial manipulation—- underscore the need for
robust countermeasures. Existing defenses –including cryp-
tographic techniques, differential privacy, and architectural
modifications– often introduce trade-offs in computational ef-
ficiency and scalability. Employing the key observations and
takeaways presented in this paper, future research can enhance
the resilience of SL, making it a viable solution for secure col-
laborative learning.

Acknowledgements

We acknowledge TÜBİTAK (the Scientific and Technologi-
cal Research Council of Türkiye) project 124N941. The authors
utilized ChatGPT-4o [58] to refine the text in Sections 1, 4, and

5 for improving text, shortening sentences, correcting typos and
grammatical errors to enhance readability and clarity.

References

[1] S. Abuadbba, K. Kim, M. Kim, C. Thapa, S. A. Camtepe,
Y. Gao, H. Kim, and S. Nepal. Can we use split learning
on 1d cnn models for privacy preserving training? In
ASIACCS, 2020.

[2] R. Arora, O. Dekel, and A. Tewari. Online bandit learning
against an adaptive adversary: from regret to policy regret.
arXiv:1206.6400, 2012.

[3] Y. Aumann and Y. Lindell. Security against covert adver-
saries: Efficient protocols for realistic adversaries. Jour-
nal of Cryptology, 2010.

[4] Y. Bai, Y. Chen, H. Zhang, W. Xu, H. Weng, and D. Good-
man. {VILLAIN}: Backdoor attacks against vertical split
learning. In USENIX Security, 2023.

[5] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing.
In EUROCRYPT. Springer, 2015.

[6] N. Carlini, S. Deng, S. Garg, S. Jha, S. Mahloujifar,
M. Mahmoody, S. Song, A. Thakurta, and F. Tramèr. Is
private learning possible with instance encoding? 2021.

[7] Z. Chen, H. Zheng, and G. Liu. Awdp-fl: An adaptive
differential privacy federated learning framework. Elec-
tronics, 2024.

[8] E. Debenedetti, G. Severi, N. Carlini, C. A. Choquette-
Choo, M. Jagielski, M. Nasr, E. Wallace, and F. Tramèr.
Privacy side channels in machine learning systems. In
USENIX Security, 2024.

[9] C. Dwork. Differential privacy. In ICALP, 2006.

[10] E. Erdoğan, A. Küpçü, and A. E. Çiçek. Unsplit: Data-
oblivious model inversion, model stealing, and label infer-
ence attacks against split learning. In ACM WPES, 2022.

[11] E. Erdogan, U. Teksen, M. S. Celiktenyildiz, A. Kupcu,
and A. E. Cicek. Splitout: Out-of-the-box training-
hijacking detection in split learning via outlier detection.
In CANS, 2024.

[12] E. Erdoğan, A. Küpçü, and A. E. Çiçek. Splitguard: De-
tecting and mitigating training-hijacking attacks in split
learning. In WPES, 2022.

[13] E. Erdoğan, U. Tekşen, M. S. Çeliktenyıldız, A. Küpçü,
and A. E. Çiçek. Defense mechanisms against training-
hijacking attacks in split learning. IEEE TKDE, 2023.

[14] M. Fan, C. Chen, C. Wang, W. Zhou, and J. Huang. On
the robustness of split learning against adversarial attacks.
In ECAI. 2023.

15

[15] M. Fang, X. Cao, J. Jia, and N. Gong. Local model poi-
soning attacks to {Byzantine-Robust} federated learning.
In USENIX Security, 2020.

[16] C. Fu, J. Zhang, T. Zhu, W. Zhou, and P. S. Yu. Label
inference attacks against vertical federated learning. In
USENIX Security, 2022.

[17] J. Fu, Z. Chen, and X. Han. Adap dp-fl: Differentially
private federated learning with adaptive noise, 2022.

[18] J. Fu, X. Ma, B. B. Zhu, P. Hu, R. Zhao, Y. Jia, P. Xu,
H. Jin, and D. Zhang. Focusing on pinocchio’s nose: A
gradients scrutinizer to thwart split-learning hijacking at-
tacks using intrinsic attributes. In NDSS, 2023.

[19] S. Gajbhiye, P. Singh, and S. Gupta. Data poisoning attack
by label flipping on splitfed learning. In RTIP2R, 2022.

[20] Y. Ganin and V. Lempitsky. Unsupervised domain adap-
tation by backpropagation. In ICML, 2015.

[21] Y. Gao, M. Du, X. Zhang, and Y. Xiang. Combined feder-
ated and split learning in edge computing: Taxonomy and
open issues. Sensors, 2022.

[22] G. Gawron and P. Stubbings. Feature space hijack-
ing attacks against differentially private split learning.
arXiv:2201.04018, 2022.

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. NIPS, 2014.

[24] A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrish-
nan, M. Pontil, K. Fukumizu, and B. K. Sriperumbudur.
Optimal kernel choice for large-scale two-sample tests.
NIPS, 2012.

[25] O. Gupta and R. Raskar. Distributed learning of deep neu-
ral network over multiple agents, 2018.

[26] Y. He, C. Hu, Y. Pu, J. Chen, and X. Li. Advusl: Targeted
adversarial attack against u-shaped split learning. In IEEE
MASS, 2024.

[27] Z. He, T. Zhang, and R. B. Lee. Model inversion attacks
against collaborative inference. In ACSAC, 2019.

[28] B. Hitaj, G. Ateniese, and F. Perez-Cruz. Deep models un-
der the gan: Information leakage from collaborative deep
learning. In ACM SIGSAC, 2017.

[29] Z. Hu, T. Zhou, B. Wu, C. Chen, and Y. Wang. A review
and experimental evaluation on split learning. Future In-
ternet, 2025.

[30] H. Huang, X. Li, and W. He. Pixel-wise reconstruction of
private data in split federated learning. In ICICS, 2023.

[31] W. Huang, Y. Wang, A. Cheng, A. Zhou, C. Yu, and
L. Wang. A fast, performant, secure distributed training
framework for llm. In ICASSP, 2024.

[32] A. T. Z. Ismail and R. M. Shukla. Analyzing the vul-
nerabilities in splitfed learning: Assessing the robustness
against data poisoning attacks. arXiv:2307.03197, 2023.

[33] A. T. Z. Ismail and R. M. Shukla. Analyzing the vul-
nerabilities in splitfed learning: Assessing the robustness
against data poisoning attacks, 2023.

[34] P. Joshi, C. Thapa, S. Camtepe, M. Hasanuzzaman,
T. Scully, and H. Afli. Performance and information
leakage in splitfed learning and multi-head split learning
in healthcare data and beyond. Methods and Protocols,
2022.

[35] H. I. Kanpak, A. Shabbir, E. Genç, A. Küpçü, and S. Sav.
Cure: Privacy-preserving split learning done right, 2024.

[36] F. Karakoç, A. Küpçü, and M. Önen. Fault tolerant and
malicious secure federated learning. In CANS, 2024.

[37] S. Kariyappa and M. K. Qureshi. Exploit: Extracting pri-
vate labels in split learning. In SaTML. IEEE, 2023.

[38] T. Khan, M. Budzys, and A. Michalas. Make split, not
hijack: Preventing feature-space hijacking attacks in split
learning. In SACMAT, 2024.

[39] T. Khan, K. Nguyen, and A. Michalas. A more secure
split: Enhancing the security of privacy-preserving split
learning. In AsiaCCS. Tampere University, 2023.

[40] T. Khan, K. Nguyen, and A. Michalas. Split ways:
Privacy-preserving training of encrypted data using split
learning. In arXiv:2301.08778, 2023, 2023.

[41] T. Khan, K. Nguyen, A. Michalas, and A. Bakas. Love
or hate? share or split? privacy-preserving training using
split learning and homomorphic encryption, 2023.

[42] S. A. Khowaja, I. H. Lee, K. Dev, M. A. Jarwar, and
N. M. F. Qureshi. Get your foes fooled: Proximal gradient
split learning for defense against model inversion attacks
on iomt data. IEEE TNSE, 2024.

[43] M. Kohankhaki, A. Ayad, M. Barhoush, and A. Schmeink.
Detecting data poisoning in split learning using intraclass-
distance inflated loss. In IEEE GC Wkshps, 2023.

[44] J. Li, A. S. Rakin, X. Chen, Z. He, D. Fan, and
C. Chakrabarti. Ressfl: A resistance transfer framework
for defending model inversion attack in split federated
learning. In CVPR, 2022.

[45] O. Li, J. Sun, X. Yang, W. Gao, H. Zhang, J. Xie, V. Smith,
and C. Wang. Label leakage and protection in two-party
split learning. arXiv:2102.08504, 2018.

[46] Z. Li, S. Si, J. Wang, and J. Xiao. Federated split bert for
heterogeneous text classification, 2022.

16

[47] Z. Li, C. Yan, X. Zhang, G. Gharibi, Z. Yin, X. Jiang, and
B. A. Malin. Split learning for distributed collaborative
training of deep learning models in health informatics. In
AMIA Annu. Symp. Proc, 2024.

[48] J. Liu, X. Lyu, Q. Cui, and X. Tao. Similarity-based la-
bel inference attack against training and inference of split
learning. IEEE TIFS, 2024.

[49] M. Long, Y. Cao, J. Wang, and M. Jordan. Learning trans-
ferable features with deep adaptation networks. In PMLR,
2015.

[50] K. Maeng, C. Guo, S. Kariyappa, and G. E. Suh. Bound-
ing the invertibility of privacy-preserving instance encod-
ing using fisher information. NeurIPS, 2023.

[51] M. Mansouri, M. Önen, W. B. Jaballah, and M. Conti.
Sok: Secure aggregation based on cryptographic schemes
for federated learning. PoPETs, 2023.

[52] Y. Mao, Z. Xin, Z. Li, J. Hong, Q. Yang, and S. Zhong.
Secure split learning against property inference, data re-
construction, and feature space hijacking attacks. In ES-
ORICS, 2023.

[53] M. Nasr, R. Shokri, and A. Houmansadr. Machine learn-
ing with membership privacy using adversarial regulariza-
tion. In ACM SIGSAC, 2018.

[54] M. Nasr, R. Shokri, and A. Houmansadr. Comprehen-
sive privacy analysis of deep learning: Passive and active
white-box inference attacks against centralized and feder-
ated learning. In IEEE S&P, 2019.

[55] L. K. Ng and S. S. Chow. Sok: cryptographic neural-
network computation. In IEEE S&P, 2023.

[56] K. T. P. Ngoc Duy Pham and N. Chilamkurti. Enhancing
accuracy-privacy trade-off in differentially private split
learning, 2024.

[57] K. Nguyen, T. Khan, and A. Michalas. Split without a
leak: Reducing privacy leakage in split learning. In Se-
cureComm, 2025.

[58] OpenAI. Gpt-4o: Multimodal ai model.

[59] D. Pasquini, G. Ateniese, and M. Bernaschi. Unleashing
the tiger: Inference attacks on split learning. In ACM CCS,
2021.

[60] Z. Peng, T. Wang, C. Zhao, G. Liao, Z. Lin, Y. Liu,
B. Cao, L. Shi, Q. Yang, and S. Zhang. A survey of zero-
knowledge proof based verifiable machine learning, 2025.

[61] G.-L. Pereteanu, A. Alansary, and J. Passerat-Palmbach.
Split he: Fast secure inference combining split learning
and homomorphic encryption, 2022.

[62] N. D. Pham, A. Abuadbba, Y. Gao, T. K. Phan, and
N. Chilamkurti. Binarizing split learning for data privacy
enhancement and computation reduction, 2022.

[63] N. D. Pham and N. Chilamkurti. Data leakage threats and
protection in split learning: A survey. In ICEA, 2023.

[64] N. D. Pham, K. T. Phan, and N. Chilamkurti. Enhancing
accuracy-privacy trade-off in differentially private split
learning. IEEE TIFS, 2024.

[65] N. D. Pham, T. K. Phan, A. Abuadbba, Y. Gao,
D. Nguyen, and N. Chilamkurti. Split learning without
local weight sharing to enhance client-side data privacy.
arXiv:2212.00250, 2022.

[66] N. D. Pham, T. K. Phan, A. Abuadbba, Y. Gao, V.-D.
Nguyen, and N. Chilamkurti. Split Learning without Lo-
cal Weight Sharing To Enhance Client-side Data Privacy .
IEEE TDSC, (01):1–13, Apr. 5555.

[67] R. Podschwadt, D. Takabi, and P. Hu. Sok: Privacy-
preserving deep learning with homomorphic encryption.
arXiv:2112.12855, 2021.

[68] M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-
Cramer, R. Gupta, and R. Raskar. Split learning for col-
laborative deep learning in healthcare. arXiv:1912.04966,
2019.

[69] P. Rieger, A. Pegoraro, K. Kumari, T. Abera, J. Knauer,
and A.-R. Sadeghi. Safesplit: A novel defense against
client-side backdoor attacks in split learning. In NDSS,
2025.

[70] H. R. Roth, A. Hatamizadeh, Z. Xu, C. Zhao, W. Li,
A. Myronenko, and D. Xu. Split-u-net: Preventing data
leakage in split learning for collaborative multi-modal
brain tumor segmentation, 2022.

[71] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total vari-
ation based noise removal algorithms. Physica D, 1992.

[72] M. D. Ryan. Cloud computing privacy concerns on our
doorstep. Communications of the ACM, 2011.

[73] A. Singh, A. Chopra, V. Sharma, E. Garza, E. Zhang,
P. Vepakomma, and R. Raskar. Disco: Dynamic and in-
variant sensitive channel obfuscation for deep neural net-
works, 2021.

[74] B. Tajalli, O. Ersoy, and S. Picek. On feasibility of server-
side backdoor attacks on split learning. In IEEE SPW,
2023.

[75] M. Talaei and I. Izadi. Adaptive differential pri-
vacy in federated learning: A priority-based approach.
arXiv:2401.02453, 2024.

[76] C. Thapa, M. A. P. Chamikara, S. Camtepe, and L. Sun.
Splitfed: When federated learning meets split learning. In
AAAI, 2022.

[77] T. Titcombe, A. J. Hall, P. Papadopoulos, and D. Ro-
manini. Practical defences against model inversion attacks
for split neural networks. In ICLR Workshop on DPML,
2021.

17

[78] V. Turina, Z. Zhang, F. Esposito, and I. Matta. Feder-
ated or split? a performance and privacy analysis of hy-
brid split and federated learning architectures. In CLOUD,
2021.

[79] P. Vepakomma, J. Balla, and R. Raskar. Privatemail: Su-
pervised manifold learning of deep features with differen-
tial privacy for image retrieval, 2021.

[80] P. Vepakomma, O. Gupta, A. Dubey, and R. Raskar. Re-
ducing leakage in distributed deep learning for sensitive
health data. arXiv:1812.00564, 2019.

[81] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar.
Split learning for health: Distributed deep learning with-
out sharing raw patient data, 2018.

[82] P. Vepakomma, A. Singh, O. Gupta, and R. Raskar.
Nopeek: Information leakage reduction to share activa-
tions in distributed deep learning, 2020.

[83] X. Wan, J. Sun, S. Wang, L. Chen, Z. Zheng, F. Wu, and
G. Chen. Pslf: Defending against label leakage in split
learning. In ACM CIKM, 2023.

[84] Y. Wang, C. Zhang, Z. Zheng, J. Wang, and X. Li. Stitch-
able split learning assisted multi-uav systems. IEEE Open
J. Comput. Soc, 2024.

[85] X. Wu, H. Yuan, X. Li, J. Ni, and R. Lu. Evaluating se-
curity and robustness for split federated learning against
poisoning attacks. IEEE TIFS, 2024.

[86] S. Xie, X. Yang, Y. Yao, T. Liu, T. Wang, and J. Sun. La-
bel inference attack against split learning under regression
setting. arXiv:2301.07284, 2023.

[87] X. Xu, M. Yang, W. Yi, Z. Li, J. Wang, H. Hu, Y. Zhuang,
and Y. Liu. A stealthy wrongdoer: Feature-oriented re-
construction attack against split learning. In CVPR, 2024.

[88] X. Yang, J. Sun, Y. Yao, J. Xie, and C. Wang. Dif-
ferentially private label protection in split learning.
arXiv:2203.02073, 2022.

[89] F. Yu, L. Wang, B. Zeng, K. Zhao, Z. Pang, and T. Wu.
How to backdoor split learning. Neural Networks, 2023.

[90] F. Yu, B. Zeng, K. Zhao, Z. Pang, and L. Wang. Chronic
poisoning: Backdoor attack against split learning. In
AAAI, 2024.

[91] B. Zeng, S. Luo, F. Yu, G. Yang, K. Zhao, and L. Wang.
Gan-based data reconstruction attacks in split learning.
Neural Networks, 2025.

[92] L. Zhang, X. Gao, Y. Li, and Y. Liu. Functionality and
data stealing by pseudo-client attack and target defenses
in split learning. IEEE TDSC, 2024.

[93] K. Zhao, X. Chuo, F. Yu, B. Zeng, Z. Pang, and L. Wang.
Splitaum: Auxiliary model-based label inference attack
against split learning. IEEE TNSM, 2024.

[94] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra.
Federated learning with non-iid data. arXiv:1806.00582,
2018.

[95] L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients.
In NeurIPS, 2019.

[96] X. Zhu, X. Luo, Y. Wu, Y. Jiang, X. Xiao, and B. C. Ooi.
Passive inference attacks on split learning via adversarial
regularization. arXiv:2310.10483, 2023.

18

Supplementary Material

A. Additional Split Learning Variants

Here, we explain the remaining SL variants, namely multi-
hop and no-label split learning.
Multi-hop Split Learning (MHSL): MHSL extends the SL
concept to multiple parties, creating a chain of computation
across multiple entities. The model is divided into several seg-
ments (fc1 , fs1 , fs2 , ..., fcn) where the subscript denotes the entity
processing that segment. The client with input x begins by com-
puting (zc1 = fc1 (x)) and sends zc1 to the first server. Each sub-
sequent server i computes zsi = fsi (zsi−1) and forwards it to the
next entity. The final client computes the output ŷ = fcn (zsn−1)
and calculates the loss. During backpropagation gradients flow
in the reverse direction through the chain. While the ordering
of clients and servers in MHSL is flexible, there are practical
constraints. A client must process the first model segment to
handle the x, and the last entity whether a client or a server must
compute the loss. Intermediate entities can be either servers or
clients, depending on computational needs. For example, in a
medical collaboration setting, hospitals can process the initial
and final model segments while cloud servers handle interme-
diate computations. In contrast, in a business forecasting sce-
nario, multiple companies may preprocess data before sending
it to a server for final inference. This flexibility allows MHSL
to adapt to various distributed learning scenarios while ensuring
privacy and scalability.
No-Label Split Learning (NLSL): NLSL is designed to keep
both x and y private to the client. In NLSL, the client processes
fc to compute zc and sends it to the server. The server computes
the forward pass through the remaining layers fs to generate
ŷ. However, rather than calculating the loss on the server, the
server sends ŷ back to the client. The client then computes the
loss L(y, ŷ) using the true labels y and calculates the gradient
(∇ŷ =

∂L
∂ŷ). The client sends ∇ŷ back to the server, which be-

gins the backpropagation process by computing (∇zc =
∂L
∂zc

) and
sending it to the client. Finally, the client updates the parame-
ters of fc using the received gradients. Similar to USL, NLSL
ensures that the client is responsible for computing the loss,
preventing the server from having direct access to y. However,
unlike USL, where the client also processes the final layers af-
ter receiving intermediate representations from the server, in
NLSL, the server completes the entire forward pass, ensuring
that only the client handles label-related computations, offering
stronger privacy guarantees.

B. Details of Data Reconstruction Attacks

Data reconstruction attacks in split learning exploit smashed
data zc to infer private client inputs. They are primarily cat-
egorized into (i) Feature Space Hijacking Attack (FSHA), (ii)
Model Inversion Attack, (iii) Functionality Stealing, (iv) Gener-
ative Adversarial Network (GAN), and (v) Feature Reconstruc-
tion techniques. Each technique exploits distinct aspects of the
model behavior to compromise training and data privacy as ex-
plained below:

i. Feature Space Hijacking Attack (FSHA):. A prominent data
reconstruction attack is FSHA [59, 22], which allows a mali-
cious server to reconstruct the private data in a VanSL setup.
FSHA consists of three key components: (i) Pilot network (f̃c):
dynamically defines the target feature space z̃c and is respon-
sible for mapping between raw input x and z̃c = f̃c(x) for
the client network. (ii) Inverse network (f̃c

−1): trained to ap-
proximate the inverse function of f̃c, allowing the malicious
server to reconstruct x from z̃c, and (iii) Discriminator (D): an
adversarially-trained network that indirectly guides to learn the
mapping between x and z̃c. FSHA follows a two-step adver-
sarial training process. In the first step, the server begins by
sampling a batch from public dataset xpub to train f̃c and f̃c

−1,
ensuring the networks converge by minimizing the reconstruc-
tion loss:

L f̃c, f̃c
−1 = d(f̃c

−1(f̃c(xpub), xpub) (13)

where d is a suitable distance function, such as Mean Squared
Error (MSE). In the second step, the server adversarially trains
the D loss to distinguish between z̃c from the one induced from
the zc:

LD = log(1 − D(z̃c)) + log(D(zc)) (14)

After each local training step for D, the malicious server can
then train the network by forging the gradient using D to recon-
struct an adversarial loss function for fc: L fc = log(1 − D(zc)).
After adversarial training, the server can reconstruct the client’s
private input using: x̃ = f̃c

−1(fc(x)) where x̃ is the reconstructed
approximation of the client’s original data.

ii. Model Inversion:. Another key attack technique in data re-
construction is Model Inversion [27], applied in [10], which
exploits the relationship between the gradients and the origi-
nal input in a VanSL setting. In this approach, the honest-but-
curious server iteratively optimizes both the original input x and
the client model parameters θ to reconstruct the data. Instead of
explicitly matching the gradients, the attacker performs coor-
dinate gradient descent, where the optimization alternates be-
tween updating x and θ to minimize the mean squared error
(MSE) for both input and parameter updates. The attack mini-
mizes the following objective:

x̃ = arg min
x̃∗

MS E(f̃ ∗c (x̃∗, θ̃∗), fc(x, θ)) + λTV(x̃∗) (15)

θ̃ = arg min
θ̃∗

MS E(f̃ ∗c (x̃∗, θ̃∗), fc(x, θ)) (16)

Here, f̃ ∗c represents the random initialization of the client net-
work, TV(x̃∗) is the Total Variation [71] to enforce smoothness,
and λ is a regularization parameter. The attack is demonstrated
in a single client single server (SCSL) setup and it can extend
to multi-client configurations through two key properties: se-
quential client training and shared parameter updates. Since the
server interacts with only one client at a time and all clients up-
date the same parameter set, a multi-client setup functionally
mirrors a single-client configuration with aggregated data.

19

iii. Functionality Stealing:. The functionality stealing attack
in [92] allows a semi-honest server to train a pseudo-client
model (f̃c) that closely mimics fc without knowing its struc-
ture in VanSL and USL setups. The server achieves this by
using intermediate server models and a small set xpub of size
N. The goal is to make f̃c learn the mapping, making it func-
tionally identical to fc, while training the server model sepa-
rately. Mathematically, the training objective for the pseudo-
client model is to minimize the KL-Div (Kullback-Leibler Di-
vergence), which measures the difference between the soft la-
bels of z̃c and zc rather than the hard labels. Once the func-
tionality is stolen, the server trains a reverse mapping function
f −1
s to transform the feature space of smashed data back into

the original input space. Since the pseudo-client model has al-
ready learned to produce feature representations similar to fc,
the server can fine-tune f −1

s to improve reconstruction accuracy.
The server can apply this attack to multi-client SL directly with-
out any modification.

iv. Generative Adversarial Network (GAN):. A data recon-
struction attack using GAN [52] is performed in a VanSL setup,
where a semi-honest server trains a generator G to synthesize
fake samples (x′) and injects them into the learning process. By
observing the responses of the honest participant, the adversary
adjusts G to produce reconstructions that resemble the original
training data. The adversarial objective is formulated as:

ADRA = min
G

max
D

1
|X|

∑
x∈X

log D(x) +
1
|X|

∑
x′∈X′

log(1 − D(G(x′)))

(17)
where D is the discriminator. Through an iterative adversar-
ial process, the adversary refines G to generate highly accurate
reconstructions. Similarly, Zeng et al. [91] demonstrate how a
semi-honest server in a USL setup can reconstruct private client
data using GANs. The attack begins with a shadow model,
where the server approximates the client’s model via an aux-
iliary dataset xaux. A GAN discriminator, combined with cross-
entropy loss, ensures the shadow model’s output aligns with zc.
Once trained, an inverse model maps features back to the input
space, optimizing data reconstruction with MSE loss. While
this exploits server-side vulnerabilities, SL also faces threats
from malicious clients in multi-client setups [91]. An honest
but curious client can extract the server model via knowledge
distillation, aligning an alternative model with the global server
model by minimizing KL-Div loss. The client then performs
feature space inversion, using GAN-based optimization to infer
missing class samples. Instead of reconstructing data in pixel
space, the attack operates in a low-dimensional noise space, im-
proving efficiency and inference accuracy.

v. Feature Reconstruction. Feature-oriented reconstruction at-
tack [87] exploits the representation preference encoded in the
zc that the client transmits to the server during training by a
semi-honest server in the VansL setup. The attack follows a
three-phase pipeline: First, the adversary constructs a substi-
tute client f̃c by minimizing the distance between the client’s
smashed data and the generated features using a domain dis-

criminator (DISC) network [20, 23], which distinguishes be-
tween features from different domains, and Multi-Kernel Max-
imum Mean Discrepancy (MK-MMD) [24, 49], a statistical
measure to align distributions, to align feature spaces formu-
lated as: min f̃c LDIS C + LMK−MMD Second, an inverse mapping
network, ˜f −1

c , is trained on public auxiliary data to reconstruct
inputs from smashed data. Finally, during the attack phase, the
trained inverse network is applied to the victim’s smashed data
snapshot zc to reconstruct the private training data, given by:
x̃ = f −1

c (zc).
Zhu et. al [96] achieve feature reconstruction by employ-

ing a simulator model trained on an auxiliary dataset that fol-
lows a similar distribution as the client’s private data in a VanSL
setup. This simulator aims to approximate the behavior of the
client’s private model, enabling the semi-honest server to infer
private data without direct access. To enhance its effectiveness,
adversarial regularization is introduced through a discriminator
network D1 that distinguishes real intermediate representations
from synthetic ones, ensuring that the simulator learns indis-
tinguishable representations. Once trained, a decoder model
is used to reconstruct the original input features from the in-
termediate representations, with an additional discriminator D2
guiding it to produce reconstructions that closely resemble real
data.

C. Details of Label Inference Attacks

This section provides an in-depth examination of the label in-
ference attacks discussed in Section 4.1.2, elaborating on their
mathematical foundations and implementation details.

C.1. Details of Gradient-Based Label Inference:

The ExPLoit framework [37] formulates label inference as
an optimization problem where the surrogate labels ˜̂y are iter-
atively refined. The server initializes random surrogate labels
and computes L′ = H(˜ŷ, ˜̂py) where (˜̂p) are predictions from
the surrogate model. Through backpropagation ˜f c∗, the attack
computes ∇zsL′ to minimize the ExPLoit loss function which
consists of (1) gradient matching by minimizing E[∥∇zs L

′ −

∇z̃s L∥
2], (2) label prior regularization via KL-Div DKL(Py∥Pŷ),

and (3) cross-entropy regularization E[H(˜̂y, ˜̂p)/H(Py)], ensur-
ing label alignment. The final loss function is:

LExPL = E
[
∥∇zs L − ∇z̃s L

′∥2
]
+λce ·E

[
H(˜̂y, ˜̂p)
H(Py)

]
+λp ·DKL(Py∥P ˜̂y)

(18)
where λce and λp are hyperparameters controlling the trade-off
between objectives. By iteratively optimizing f̃ ∗c and the in-
ferred labels, the attack successfully recovers private labels.

Erdogan et al. [10] attack methodology leverages gradient
updates ∇zc L to achieve perfect label recovery accuracy by a
semi-honest server. In their VanSL setup, the server receives
zc and ∇zc L from the client. The attack randomly initializes
f̃ ∗c matching the client model’s architecture and iteratively tests
all possible labels ỹ, selecting the one that minimizes gradient

20

differences:

ỹ∗ = arg min
ỹ

MSE
(
∂L(fc(fs(x)), y)

∂θ
,
∂L(f̃ ∗c (fs(x)), ỹ)

∂θ̃

)
(19)

This optimization approach computes the Mean Squared Error
between the gradients of the original model parameters (θ) and
those of the surrogate model parameters (θ̃). The attack suc-
ceeds due to the deterministic relationship between labels and
gradient patterns.

The embedding swapping attack [4] operates through a struc-
tured process of gradient comparison. For implementation, the
attacker first computes embeddings zt and zi for target and un-
known samples respectively. During training, when xi is used
in a batch, the attacker first uploads zi and records the corre-
sponding back-propagated gradient ∇zi from the server. In a
later batch, the attacker swaps the embedding by sending zt in-
stead and observes the new gradient update ∇̃zi. The attacker
determines whether xi belongs to the target label based on the
gradient norm ratio:

∥∇̃zi∥2
∥∇zi∥2

≤ α (20)

and ensures that the gradient norm satisfies:

∥∇zi∥2 ≤ µ (21)

where ∥ · ∥2 represents the L2 norm, and α, µ are predefined
threshold parameters. If both conditions hold, it suggests that
swapping the embedding does not significantly impact the train-
ing loss, indicating that xi likely belongs to the target label. This
attack can be extended to multi-attacker cases.

Another attack proposed by Zhao et al. [93] enables a ma-
licious client to infer private labels in VanSL through a struc-
tured three-step approach: dummy label initialization, auxiliary
model training, and private label inference. The client first ini-
tializes an auxiliary model using semi-supervised clustering (K-
Means) to generate structured dummy labels approximating the
server’s label distribution. A small set of labeled auxiliary sam-
ples serves as cluster centroids, improving training efficiency.
The auxiliary model is then trained with a composite loss func-
tion, aligning its predictions with the server’s outputs. Once
trained, the model captures the server’s decision boundaries, al-
lowing the client to infer private labels by forwarding inputs
through both models. The auxiliary model training process in-
volves optimizing a composite loss function comprising three
components:

• Distance-based loss (ℓd): Aligns gradients between the
server and auxiliary model.

• Performance-based loss (ℓp): Ensures predictions match
dummy labels.

• Knowledge-based loss (ℓk): Refines predictions using a
small set of labeled auxiliary samples.

The iterative optimization process enables the auxiliary model
to approximate the server’s classification behavior without di-
rect access to labels. Once trained, the auxiliary model allows

the client to infer private labels by forwarding inputs through
both models:

ỹ← f̃ (zc) (22)

where ỹ represents the inferred labels, f̃ is the trained auxiliary
model, and f (X) is the client model’s intermediate representa-
tion.

Xie et. al [86] propose a label inference attack against VanSL
under a regression setting, addressing a gap in prior research fo-
cused on classification tasks against a semi-honest server. Their
methodology consists of multiple stages. First, the attacker ini-
tializes dummy labels and a surrogate model that attempts to
approximate the label model’s behavior. The attack then em-
ploys a gradient matching strategy, where the attacker itera-
tively updates the dummy labels to minimize the distance be-
tween the gradients of the surrogate model and the gradients
received from the label party. To enhance attack effectiveness,
the authors introduce learning regularization: (1) Gradient Dis-
tance Loss, which minimizes the discrepancy between the gra-
dients of the surrogate and the original model, (2) Training Ac-
curacy Loss, which ensures that the surrogate model’s predic-
tions align with the dummy labels, and (3) Knowledge Learning
Loss, which utilizes a small auxiliary dataset with known labels
to guide the optimization process.

C.2. Details of Smashed-Based Label Inference:
After the completion of training, the server no longer receives

gradients, making gradient-based attacks ineffective. However,
during the inference phase, the adversary still receives zc, which
retains semantic similarities to x, thereby encoding label in-
formation and enabling label inference. Liu et al. [48] intro-
duced three primary approaches for smashed data inference:
Euclidean Distance-Based Matching, Clustering-Based Infer-
ence, and Transfer Learning-Based Inference. The Euclidean
distance approach assigns zc to the nearest stored reference
sample zre f , assuming they share the same label:

j = arg min
re f
∥zc − zre f ∥

2 (23)

The clustering-based method further groups similar smashed
data into clusters using K-Means clustering. Additionally,
the Transfer Learning-Based Inference approach leverages pre-
trained models to extract feature representations from the
smashed data, improving label inference accuracy even when
the cut layer is far from the output. Specifically, the adversary
applies a pre-trained model fpretrained to transform zc into a fea-
ture space where class separability is enhanced:

ztrans = fpretrained(zc) (24)

Then, label inference is performed by matching ztrans to the clos-
est reference embedding zref,trans in the feature space:

j = arg min
re f
|ztrans − zref, trans|

2 (25)

By leveraging knowledge from pre-trained models, the adver-
sary can generalize across datasets and improve inference ro-
bustness.

21

Extending beyond feature reconstruction, [96] also performs
label inference in USL, where the client retains both the first
and last layers of the model, keeping labels private. In this
scenario, the server additionally trains a label simulator h̃ to
approximate the client’s final model layers. Instead of directly
learning label mappings, h̃ processes the received zcr and out-
puts ŷ. A key challenge in this setting is overfitting, if h̃ is
trained solely on an auxiliary data xaux, it may struggle to gen-
eralize to x. To address this, a random label-flipping mechanism
is introduced, where a fraction of training labels are intention-
ally perturbed. This forces h̃ to learn generalized representa-
tions rather than memorizing specific label distributions from
xaux.

Huang et al. [30] proposed an attack on SFL that reconstructs
pixel-wise accurate private training data from shared smashed
data under a semi-honest server threat model. The attack com-
prises two phases: training and inference. During training, the
server collects zc from honest clients and generates pseudo-
samples x′ using a pseudo-sample generator trained with one-
hot and entropy losses to ensure class-balanced generation.
The model is then trained to learn the inverse mapping from
smashed data to private images. In the inference phase, the
model reconstructs private images from new smashed data. To
enhance the effectiveness of the reconstruction, the model is
optimized using cycle-consistency losses. The forward cycle
consistency loss ensures that the reconstructed images, when
processed again through the client-side model, produce outputs
similar to the original smashed data. The backward cycle con-
sistency loss ensures that processed smashed data can regener-
ate original-like images when passed through the model. The
forward cycle-consistency loss is formally defined as:

L f = ∥ f̃ −1(zc) − x′∥2 (26)

These loss functions refine the inversion process, enabling more
precise reconstructions of private data.

D. Details of Model Manipulation Attacks

This section provides an in-depth examination of the model
manipulation attacks discussed in Section 4.1.4, elaborating on
their mathematical foundations and implementation details.

D.1. Details of Adversarial Attacks:
The adversary in [14] perturbs feature representations by

minimizing their cosine similarity. The perturbation is itera-
tively updated as:

δ = Clipϵ

{
δ − ζ

∂Lattack(zs, z∗s)
∂δ

}
(27)

where ζ is the update step size, ϵ is the perturbation budget, and
Clipϵ{·} ensures the perturbation remains within the allowed ϵ-
ball.

The adversarial example in [26] x̃ is iteratively updated using
a gradient-based method while ensuring that the perturbation δ
remains within the predefined budget:

∥δ∥∞ ≤ ϵ (28)

where δ is the adversarial perturbation applied to the input x,
and ϵ defines the perturbation constraint.

D.2. Details of Backdoor and Poisoning Attack

i. Label Flipping Attacks: Kohankhaki et al. [43] inves-
tigated static label flipping attacks, where malicious clients
systematically modify class labels within their local training
data before transmission to the server. These modifications
remain constant throughout the training process, causing the
VanSL model to develop incorrect associations that degrade
its performance through increased misclassification rates and
reduced generalization capability. Their study examined poi-
soning scenarios by varying the number of malicious clients
(M ∈ {0, 2, 4, 6, 8, 10}) and poisoning rate per client (p ∈
{0.25, 0.5, 0.75}). The attacks specifically targeted ECG read-
ings, flipping labels between normal and abnormal classes,
thereby introducing systematic errors in the model’s ability to
distinguish between normal and abnormal readings.

ii. Client-Side Backdoor Attacks: Yu et. al [89] introduce
client-side backdoor attacks where a malicious client in the
VanSL setup leverages its control over local training data to in-
ject backdoor samples by modifying features or labels. If the
client holds both the features and the labels, it directly back-
doors the data by adding a trigger pattern and associating it
with an incorrect label. If the server holds the labels, the at-
tacker may use label inference techniques to identify and ma-
nipulate specific training samples. To enhance attack persis-
tence, an auxiliary model is introduced to distinguish between
the clean and backdoor samples in the feature space, improving
the sensitivity of the model to backdoor patterns. This ensures
that the attack remains effective without degrading the model’s
performance on the primary task, making detection challeng-
ing.

VanSL
U shaped
SFL

Figure 7: The distribution of split learning types in the surveyed literature on
defense techniques.

Rieger et. al [69] also examine client-side backdoor attacks
in the USL setup. The attack process begins with trigger inser-
tion into a subset of its training data. The malicious client then
trains its local model on both clean and poisoned data, ensuring
that the backdoor is embedded while maintaining high overall
model accuracy. Once the adversarial client completes training,
it transmits the model update to the server, which forwards it to
the next client. This gradual backdoor propagation allows the
backdoor to persist through multiple training rounds, as subse-
quent benign clients unknowingly build upon the manipulated

22

SS-SC
SS-MC
MS-MC

Figure 8: The distribution of client-server architectures in the surveyed litera-
ture on defense mechanisms.

model. Since SL does not reset model updates, the backdoor
remains embedded even after multiple training rounds.

iii. Server-Side Backdoor Attacks: Further advancing the
field of backdoor attacks, Tajalli et al. [74] investigated server-
side backdoor attacks in VanSL, where an adversarial server in-
jects backdoors without direct access to the client data. They
proposed two strategies: Surrogate Client Attack and Injec-
tor Autoencoder Attack. In the Surrogate Client Attack, the
server introduces a surrogate client f̂ ∗c mimicking fc and trains
it on a poisoned dataset using a weighted loss function:Lcomb =

αLc + (1 − α)L̃∗c where α controls client influence in backprop-
agation. The Injector Autoencoder Attack trains an autoen-
coder on paired (clean, poisoned) smashed data and places it
between the client’s cut layer and the server’s input pipeline
to modify incoming activations in real-time. Their results sug-
gest VanSL is resilient to backdoor attacks. Contrarily, Yu et
al. [89] demonstrated that a malicious server can implant back-
doors via feature space hijacking, aligning the client model’s
optimization process with a shadow model trained on a sepa-
rate dataset. A discriminator network transfers the backdoor’s
effect to the client, while an auxiliary model maintains feature
separability, ensuring stealth and preserving task accuracy. A
discriminator network aids in transferring the backdoor’s ef-
fect to the client model, ensuring it learns to associate trigger
patterns with attacker-specified outputs. An auxiliary model
further reinforces backdoor persistence by maintaining feature
separability. Since this method does not alter raw client data, it
remains stealthy while ensuring the primary task’s accuracy is
unaffected.

Recently, Yu et al. [90] introduced the SFI (Steal, Fine-
tune, and Implant) attack framework, a sophisticated server-
side backdoor attack in a VanSL framework, manipulating gra-
dient updates without requiring access to raw client data. The
framework operates in three distinct stages. In the Steal Stage,
it constructs a shadow model f̃s using a limited shadow dataset
xs, labeling samples as either backdoor (xsb = 1) or clean
(xsb = 0), while the shadow model learns from the server’s
main task model fs. During the Finetune Stage, the framework
optimizes the server model fs, shadow model f̃s, and auxiliary
model fa, where the auxiliary model assists in backdoor sample
differentiation, ensuring stable backdoor encoding while main-
taining main task accuracy. Finally, in the Implant Stage, the
framework transfers backdoor capability to the client model by
implementing a discriminator for adversarial training, forcing

the client model to adapt feature encoding to match the shadow
model while maintaining original training protocol integrity.

E. Supplementary Tables and Figures

We provide the general overview of attack and defense strate-
gies and their features, such as implementation availability and
SL style in Table 2. We also present the distribution of defense
techniques across multi-client and multi-server settings in Fig-
ure 8 and the distribution of these SL types across the reviewed
literature in Figure 7.

23

Paper Split Learning Style Implementation Training Setup Model Architecture Attack Strategy Defense Strategy

Fu et al.[18] SFL Available SS-SC DNN NA Monitoring - Gradient Detection

Erdogan et al.[13] VanSL Available SS-SC DNN (ResNet) NA Monitoring - Gradient Detection

SplitOut[11] VanSL Available SS-SC DNN (ResNet) NA Monitoring - Gradient Detection

Titcombe et al.[77] VanSL Available SS-MC DNN NA Data Perturbation

Mao et al. [52] VanSL No Open Source SS-SC DNN NA Architecture Modification - Data Decorrelation

Khan et al. [38] VanSL Available MS-SC DNN NA Secure Computation - Function Secret Sharing

Khowaja et al. [42] VanSL No Open Source SS-SC DNN NA Architecture Modification - Data Perturbation

ResSFL [44] SFL Available SS-MC DNN (VGG-11) NA Architecture Modification - Protocol Modification

Pham et al. [66] VanSL No Open Source MS-MC DNN NA Architecture Modification - Protocol Modification

PrivateMail [79] VanSL No Open Source SS-SC DNN NA Data Perturbation - Differential Privacy

Pham et al. [62] VanSL Available SS-MC DNN NA Architecture Modification & Differential Privacy

DISCO[73] VanSL Available SS-SC DNN NA Architecture Modification - Data Decorrelation

Turina et al. [78] SFL No Open Source SS-MC DNN NA Architecture Modification - Data Decorrelation

Gawron et al. [22] VanSL Available SS-SC DNN NA Differential Privacy

Khan et al. [41] USL Available SS-SC DNN (1D CNN) NA Secure Computation - Homomorphic Encryption

Khan et al. [39] USL Available SS-SC 1D CNN NA Secure Computation - Homomorphic Encryption

Split HE[61] VanSL No Open Source SS-SC DNN NA Secure Computation - Homomorphic Encryption

Split Ways[40] USL No Open Source SS-SC 1D CNN NA Secure Computation - Homomorphic Encryption

Nguyen et al. [57] USL Available SS-SC 1D CNN NA Secure Computation - Homomorphic Encryption

Abuadbba et al.[1] VanSL Available SS-MC 1D CNN NA Architecture Modification & Differential Privacy

SafeSplit[69] USL No Open Source SS-MC DNN NA Monitoring - Weight/anomaly detection

PSLF[83] VanSL No Open Source SS-SC DNN NA Architecture Modification - Data Decorrelation

CURE[35] VanSL Available SS-SC DNN NA Secure Computation - Homomorphic Encryption

Pasquini et al. [59] VSL Available SS-MC DNN Data reconstruction - FSHA NA

PCAT [92] VanSL No Open Source SS-SC CNN Data reconstruction - Functionality Stealing NA

Unsplit[10] VanSL Available SS-SC DNN Data Reconstruction - Model Inversion NA

Xu et al. [87] VanSL No Open Source SS-SC DNN Data Reconstruction - Feature Reconstruction NA

Li et al.[45] VanSL No Open Source SS-SC DNN Label Inference - Gradient-Based Label Inference NA

Liu et al.[48] VanSL Available SS-SC DNN Label Inference - Gradient-Based Label Inference NA

ExPLoit[37] VanSL No Open Source SS-SC DNN Label Inference - Gradient-Based Label Inference NA

VILLIAN[4] VSL No Open Source SS-SC DNN Model Manipulation - Backdoor Attacks NA

Yu et al. [90] VanSL No Open Source SS-SC DNN Model Manipulation - Backdoor Attacks NA

Tajalli et al.[74] VanSL No Open Source SS-SC DNN Model Manipulation - Backdoor Attacks NA

Fan et al.[14] USL No Open Source SS-SC DNN Model Manipulation - Adversarial Attacks NA

AdvUSL[26] USL No Open Source SS-MC DNN Model Manipulation - Adversarial Attacks NA

Kohankhaki et al.[43] VanSL Available SS-MC DNN Model Manipulation - Poisoning Attacks NA

Zhu et al.[96] USL No Open Source SS-MC DNN Data Reconstruction- Feature Reconstruction NA

Yu et al.[89] VanSL No Open Source SS-MC DNN Model Manipulation - Backdoor Attacks NA

SplitAum[93] VanSL No Open Source SS-SC DNN Label Inference - Gradient Based Label Inference NA

Zeng et al.[91] USL No Open Source SS-SC DNN Data reconstruction - GAN NA

Huang et al.[30] SFL No Open Source MS-MC DNN Label Inference - Smashed Based Label Inference NA

Gajbhiye et al.[19] SFL No Open Source MS-MC DNN Model Manipulation - Poisoning Attack NA

Xie et al.[86] VanSL Available SS-SC DNN Label Inference - Gradient Based Label Inference NA

Wu et al.[85] SFL Available MS-MC DNN Model Manipulation - Poisoning Attack NA

Ismail et al.[33] SFL No Open Source MS-MC DNN Model Manipulation - Poisoning Attack NA

Table 2: Comparison of prior Split Learning approaches, showing key attributes such as VanSL (Vanilla SL), SFL (Split Federated Learning), USL (U-Shaped
SL), VSL (Vertical SL), SS-SC (Single-Server Single-Client), SS-MC (Single-Server Multi-Client), MS-SC (Multi-Server Single-Client), and MS-MC (Multi-Server
Multi-Client). Model abbreviations include DNN (Dense Neural Network), CNN (Convolutional Neural Network) and 1D CNN (1 Dimensional Convolutional
Neural Network). The thick gray line separates defense papers (top) from attack papers (bottom) and NA stands for ’not applicable’.

24

https://github.com/CGCL-codes/GradientsScrutinizer
https://github.com/ege-erdogan/splitguard
https://github.com/ege-erdogan/splitout
https://github.com/TTitcombe/Model-Inversion-SplitNN
https://github.com/UnoriginalOrigi/SplitFSS
https://github.com/zlijingtao/ResSFL
https://github.com/phamngocduy/BinarizeLocalizedLayers
https://github.com/aidecentralized/InferenceBenchmark
https://github.com/pasquini-dario/SplitNN_FSHA
https://github.com/khoaguin/HESplitNet
https://github.com/khoaguin/HESplitNet
https://github.com/khoaguin/HESplitNet
https://github.com/SharifAbuadbba/split-learning-1D
https://github.com/hkanpak21/CURE
https://github.com/pasquini-dario/SplitNN_FSHA
https://github.com/ege-erdogan/unsplit.
https://github.com/ZeroWalker10/sl_similarity_label_inference.
 https://github.com/a-ayad/Split-ECG-Classification.
https://github.com/xiehahha/aaai_ppai23_split_learning_leakage
https://github.com/xxxcuss/asdf456jkk

	Introduction
	Review Scope and Methodology
	Split Learning (SL)
	Split Learning and Its Variants
	Data Partitioning Schemes
	Client-Server Participation Models
	Positioning SL within the PPML Landscape
	Attacks on Split Learning
	Attack Strategies
	Data Reconstruction Attacks
	Label Inference Attacks
	Property Inference Attacks
	Model Manipulation Attacks

	Attack Constraints
	Attack Effectiveness
	Defense For Split Learning
	Defense Strategies
	Protection Mechanisms
	Detection Mechanisms

	Defense Constraints
	Defense Effectiveness
	Attack Coverage and Defense Alignment
	Client-Server Setup and Deployment Scenarios
	Model and Dataset Considerations

	Key Observations and Takeaways

	Open Research Directions

	Related Work
	Conclusion
	Supplementary Material
	Additional Split Learning Variants
	Details of Data Reconstruction Attacks
	Details of Label Inference Attacks
	Details of Gradient-Based Label Inference:
	Details of Smashed-Based Label Inference:
	Details of Model Manipulation Attacks
	Details of Adversarial Attacks:
	Details of Backdoor and Poisoning Attack
	Supplementary Tables and Figures

