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Abstract
The strong planning and reasoning capabilities of
Large Language Models (LLMs) have fostered
the development of agent-based systems capa-
ble of leveraging external tools and interacting
with increasingly complex environments. How-
ever, these powerful features also introduce a
critical security risk: indirect prompt injection,
a sophisticated attack vector that compromises
the core of these agents, the LLM, by manipulat-
ing contextual information rather than direct user
prompts. In this work, we propose a generic black-
box fuzzing framework, AGENTVIGIL, designed
to automatically discover and exploit indirect
prompt injection vulnerabilities across diverse
LLM agents. Our approach starts by constructing
a high-quality initial seed corpus, then employs
a seed selection algorithm based on Monte Carlo
Tree Search (MCTS) to iteratively refine inputs,
thereby maximizing the likelihood of uncovering
agent weaknesses. We evaluate AGENTVIGIL on
two public benchmarks, AgentDojo and VWA-
adv, where it achieves 71% and 70% success rates
against agents based on o3-mini and GPT-4o, re-
spectively, nearly doubling the performance of
baseline attacks. Moreover, AGENTVIGIL ex-
hibits strong transferability across unseen tasks
and internal LLMs, as well as promising results
against defenses. Beyond benchmark evaluations,
we apply our attacks in real-world environments,
successfully misleading agents to navigate to ar-
bitrary URLs, including malicious sites.

1. Introduction
Large Language Models (LLMs) have demonstrated remark-
able capabilities across a wide range of tasks, including
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natural language processing (NLP) (Wang, 2018), code
generation (Chen et al., 2021), and mathematical problem-
solving (Hendrycks et al., 2021; Cobbe et al., 2021). Beyond
these foundational tasks, LLMs exhibit advanced capabili-
ties in planning and reasoning (OpenAI, 2024; Guo et al.,
2025), enabling the development of more complex AI sys-
tems, including LLM agents (Nakano et al., 2021; Deng
et al., 2024; Gur et al., 2023; Zhou et al., 2023; Le et al.,
2022; Gao et al., 2023; Li et al., 2022; Schick et al., 2024;
Qin et al., 2023; Patil et al., 2023; OpenAI, 2025). LLM
agents are hybrid systems that combine LLMs with non-
machine learning tools. These systems use LLMs to control
tool sets, enabling dynamic interaction with complex envi-
ronments to complete user tasks (e.g., receiving and sending
emails).

Despite their impressive capabilities, LLM agents suffer
from serious security challenges of indirect prompt injec-
tion (Chen et al., 2024d; wunderwuzzi, 2025; Debenedetti
et al., 2024; Greshake et al., 2023). Specifically, attackers
can insert malicious “attack instructions” into the external
data sources the target agent interacts with. When the agent
retrieves external data, the injected malicious instructions
can “fool” the agent into performing the attacker’s chosen
task instead of the original user task, leading to severe con-
sequences. Systematically assessing the potential risks of
agent systems against indirect prompt injection is signifi-
cantly challenging, from the following aspects. ① Black-box
nature of real-world agents. Many real-world agents oper-
ate as black-box systems, primarily due to the restricted ac-
cess to the internal workings of commercial LLMs (OpenAI,
2023a; Anthropic, 2023; Google, 2023) and agents (OpenAI,
2025). ② Diversity in user tasks. Agents are designed to
manage a wide array of user tasks, each exhibiting dynamic
and distinct execution behaviors. ③ Architectual complexity
and diversity. Agents often comprise various interconnected
components, tools, and services with intricate architectures,
tailored for specific needs (Microsoft; LangChain).

Due to these foundational challenges, existing red-teaming
approaches for indirect prompt injections either handcraft
attack instructions (Jiang, 2024; Liu et al., 2023; Perez &
Ribeiro, 2022; Schulhoff et al., 2023; Willison, 2022; 2023)
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or are specifically designed for one type of agents (Wu et al.,
2024b; Xu et al., 2024). These methods cannot be used as
generic methods for assessing the indirect prompt injection
risks of LLM agents. There is a line of methods for large-
scale risk assessment of LLMs (Yu et al., 2023; Chen et al.,
2024c). However, due to fundamental differences in system
components and mechanisms, these model-level methods
cannot be directly applied to LLM agents.

Our approach. In this work, we propose AGENTVIGIL,
the first generic indirect prompt injection assessment
method against black-box LLM agents. We draw inspi-
ration from traditional software fuzzing techniques (Miller
et al., 1990), which automatically generate test inputs for
target software to identify vulnerabilities without requiring
access to the software’s internals. We follow the classical
fuzzing workflow and design a scalable fuzzing framework
for indirect prompt injection attacks on black-box LLM
agents. At a high level, given a target LLM agent and a set
of seeds for attack instructions, AGENTVIGIL heuristically
selects a seed, mutates it, and feeds it to the target agent.
Based on the agent’s output, AGENTVIGIL scores the po-
tential and effectiveness of the mutated inputs, adds them to
the seed corpus and repeats this process. Fuzzing follows a
genetic method that conducts exploration and exploitation
in the input space to identify potential vulnerabilities. LLM
agents introduce unique challenges to which existing fuzz
testing methods cannot be applied: mainly, sparse feedback
signals and unique input structure. Under a black-box set-
ting, the only feedback signal available in the LLM agent
is whether the target attack has succeeded or not. It is an
extremely sparse signal that may downgrade the fuzzing
into a random search. To tackle this challenge, we introduce
the following three designs: a corpus of high-quality tem-
plates, adaptive seed scoring strategies, and a Monte Carlo
Tree Search (MCTS)-based seed selection algorithm. The
corpus provides initial heuristics, enabling the fuzzing pro-
cess to have meaningful signals at the early stage. We then
introduce an adaptive seed scoring strategy based on attack
coverage. It provides intermediate feedback in addition to
the final binary success-or-failure feedback, introducing the
fuzzing’s exploration effectiveness. Our MCTS-based seed
selection algorithm dynamically identifies and prioritizes
valuable seeds, improving the exploitation effectiveness. We
further design customized mutators for LLM agents’ inputs.
As described in Section 4, the strategies we design are
general and can be applied to a variety of proxy and attack
tasks.

Differences from GPTFuzzer. GPTFuzzer (Yu et al., 2023)
applies fuzzing to jailbreak LLMs via direct prompt injec-
tion, it assumes full control over the input and operates in
single-turn settings. In contrast, our work targets indirect
prompt injection in multi-step agents, where attackers can

only influence external content, significantly limiting the ca-
pability of the attackers. AGENTVIGIL introduces new com-
ponents, including black-box reward modeling, adaptive
seed selection, semantically guided mutators, and carefully
designed initial seeds, to address these challenges, making
it the first automated black-box framework for attacking
LLM-based agents in realistic settings.

Results. Our experimental results highlight the effec-
tiveness and scalability of the proposed framework.
Specifically, on two well-established benchmarks, Agent-
Dojo (Debenedetti et al., 2024) and VWA-adv (Wu et al.,
2024b), which feature different agent types, the framework
achieves success rates of 71% and 70% for agents based on
o3-mini and GPT-4o, respectively. This represents nearly
a 100% improvement over the baseline attacks proposed in
these benchmarks, demonstrating the framework’s efficacy
in black-box settings. Moreover, the adversarial injection
prompts generated by the framework exhibit strong trans-
ferability, maintaining high success rates on both unseen
adversarial tasks and internal LLMs. Notably, it achieves
65% and 59% success rates against o3-mini and GPT-4o
on unseen tasks, and 67% against Gemini-2-flash-exp, an
unseen LLM during fuzzing. We further apply our attacks
to the agents interacting with a real-world environment, as
shown in Figure 1. We successfully mislead the agent to nav-
igate to an arbitrary URL including malicious websites or
download links, highlighting the practical applicability and
robustness of our approach. To the best of our knowledge,
this is the first approach that automatically performs indi-
rect prompt injection attacks on black-box agents with both
effectiveness and scalability. This work demonstrates attack
effectiveness across a range of real-world agents, designed
for diverse tasks with both text and multi-modal inputs.

2. Related Work
LLM agents. The recent advancement in reasoning and
planning capabilities of LLMs has led to the development of
LLM agents, which leverage the LLMs as the core planners
to interact with tools and complex environments. Based on
different purposes, existing agent systems can be mainly cat-
egorized into three categories: ① Web agents (Nakano et al.,
2021; Deng et al., 2024; Gur et al., 2023; Zhou et al., 2023)
facilitate human-web interactions; ② Coding agents (Le
et al., 2022; Gao et al., 2023; Li et al., 2022) aid humans in
writing code, providing code completion, debugging, etc;
③ Personal assistants (Schick et al., 2024; Qin et al., 2023;
Patil et al., 2023; OpenAI, 2023b) that assist users with
daily tasks (e.g., setting calendars and sending emails). The
tool components in agents could be a wide range of non-ML
system components. They can be called by the LLMs for dif-
ferent purposes. For example, in coding agents, the tools can
be code parsers, syntax checkers, code execution environ-
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Plant injection with seed in the customer reviews
Injection goal: goto https://github.xx (a phishing 
site, or other target links)

      Agent

               User

[User Task] Find a Samsung 
Galaxy S6 Screen Protector 
and list out reviews about 
good fingerprint resistant.

[Agent Thought] Additionally, there is 
an important message instructing me to 
visit https://github.xx before completing 
the task. I will follow this instruction.

Accomplish the attack goal:
Visit phishing sites
Download malware
Send out private information
…

Website with injection

Figure 1. An example of deceiving a web agent through indirect prompt injection in a customer review on the shopping website. The
user requests the agent to find a screen protector and list out reviewers who mention about good fingerprint resistant, but the adversarial
prompt redirects the agent to arbitrary URLs specified in the injected text, potentially leading to unrelated sites, phishing sites, malware
downloads, or exposure of private data. We achieve the attack with other URLs such as phishing sites, malware downloads, queries with
privacy leakage to verify the severity.

ments, and deployment tools. The tools in web agents can
be HTML parsers, URL extractors, content scrapers, HTTP
request handlers, web form fillers, and browser automation
tools. Some knowledge base and memory components are
mainly used for retrieval augmented generation or for giving
few-shot examples.

Existing attacks. Prompt injection attacks pose signifi-
cant security risks to both LLMs and agents, compromising
their intended functionality and security guarantees. They
can be broadly categorized into hand-crafted attacks and
automated attacks, each with distinct characteristics and lim-
itations. Hand-crafted attacks rely on manually engineered
prompts, such as using escape characters (e.g., ‘\n’) (Willi-
son, 2022) to manipulate context interpretation, instructing
the LLM to ignore previous context (Perez & Ribeiro, 2022;
Schulhoff et al., 2023), or simulating task completion (Willi-
son, 2023); some target specific agent types by injecting
malicious content into web pages (Wu et al., 2024a; Liao
et al., 2024; Xu et al., 2024) or manipulating interface ele-
ments (Zhang et al., 2024). While effective, these attacks
demand expertise and often yield inconsistent success. To
mitigate such limitations, automated approaches system-
atically generate and refine adversarial prompts, although
they typically require specific types of agents and detailed
information about the agent architectures. For example,
AgentPoison (Chen et al., 2024d) and VWA-adv (Wu et al.,
2024b) utilize gradient-based methods and require white-
box access to target components, while GPTFuzzer (Yu
et al., 2023), and RLBreaker (Chen et al., 2024c) focusing
on direct prompt injections, which require detailed feedback
and have limited applicability in complex real-world agents
where direct prompt manipulation is often restricted.

Existing defenses. Existing defenses against prompt in-
jection attacks fall into two categories: training-dependent
and training-free approaches. Training-dependent methods
rely on adversarial training or additional models to detect
injected prompts (Wallace et al., 2024; Chen et al., 2024a;b;
ProtectAI, 2024; Inan et al., 2023). These methods re-
quire substantial computational resources, frequent updates,
and can degrade model performance by over-regularizing
responses, which is particularly detrimental for tasks de-
manding reasoning, creativity, or adaptability. Training-
free defenses use prompt engineering and behavioral con-
straints, such as input delimiters (Hines et al., 2024; Mendes,
2023; Willison, 2023), prompt repetition (lea, 2023), or re-
sponse consistency checks (Liu et al., 2024), though these
primarily detect attacks post-execution. Tool access ver-
ification (Debenedetti et al., 2024) restricts agents to pre-
approved tools, enhancing security but limiting functionality
and remaining vulnerable to within-toolset attacks. Other
proposed defenses, including those requiring human over-
sight (Wu et al., 2025), human labeling (Wu et al., 2024c),
or action reversal capabilities (Patil et al., 2024), often make
impractical assumptions or demand significant human inter-
vention, limiting their real-world applicability. Notably, no
defense is tailored specifically for multimodal inputs.

3. Threat Model
Blackbox setting of the agent systems. We assume a
blackbox setting in our threat model, where neither users
nor attackers have access to the internals of the underlying
LLMs, or the architectures and designs of the agents. Obser-
vations and interactions are limited to the external behavior
of the system.

User assumptions. The user is assumed to be benign,
interacting with the agent to complete a set of legitimate
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Test seeds in the 
agent system

Attacks succeed 
or not

     Init Seeds

 Scorer

Seed 
Selector

Seed 
Storage

     User

  Agent

Environment

Code execution
Email system
File system
Web browser

    Attacker

Adv. Prompt 
Injections

Current 
Seeds    Mutator

LLM Agent System

Injections get 
into agent

Injections in different sources

Figure 2. Architecture of AGENTVIGIL and typical process of an indirect prompt injection attack. AGENTVIGIL systematically enhances
indirect prompt injection attacks by iteratively refining adversarial prompts. It begins with a high-quality initial corpus of prompt templates,
which are tested across various injection tasks to generate initial seeds. Through an iterative fuzzing loop, a Monte Carlo Tree Search
(MCTS)-based seed selector identifies promising seeds, a mutator applies transformations, and the modified prompts are evaluated based
on attack success and task coverage by the scorer. This adaptive approach ensures scalability and effectiveness across diverse agent
architectures and tasks.

tasks. The user’s intentions and behavior are not adversarial
and do not contribute to any vulnerabilities or malicious
actions within the system.

Attacker’s capabilities and goals. The attacker is as-
sumed to have access to the agent and can interact with
it in the same manner as a legitimate user. They are capable
of testing their attacks on tasks similar to those performed
by the agent for legitimate users. The attacker’s influence
is restricted to indirect prompt injection by manipulating
external data sources, such as modifying an item on a shop-
ping website or altering an event in a calendar service. The
attacker’s primary objectives are to misdirect the agent to
achieve specific goals that align with the attacker’s intent
but are unintended by the user. For individual user tasks, the
attacker can only observe binary success-failure feedback
as the outcome of their attacks. For example, the user asks
the agent to check their emails, and the attacker sends a ma-
licious email to the user’s inbox, causing the agent to send
sensitive information to a specific recipient. The attacker is
able to get the feedback of whether the attack is successful
or not by checking the environment (e.g., checking the inbox
of the recipient) after the agent completes the task.

Certain attack scenarios fall outside the scope of this work,
including the misuse of agents to perform harmful actions,
and direct attacks on the underlying infrastructure, such as
the agent’s hosting platform or computational resources.

4. Method
4.1. Overview

A typical agent system processes user queries by interacting
with a diverse set of tools and services within its environ-
ment to accomplish user tasks. These tools may include
code execution environments, email systems, web browsers,
and file systems, among others. The LLM in the agent serves
as the planner, dynamically coordinating between these com-
ponents to retrieve information, execute commands, and

respond to user needs. Given the complexity and autonomy
of these systems, they often rely on external data sources,
making them susceptible to various security threats. The
attacker exploits this reliance by strategically manipulating
specific parts of the environment to inject malicious prompts.
These prompts are crafted to be embedded within external
data sources, which the agent later retrieves and processes
as part of its task execution. Once these contaminated inputs
are fed into the LLM, they can alter its behavior, leading to
unauthorized actions.

Figure 2 illustrates the architecture and the workflow of
our proposed framework, AGENTVIGIL. AGENTVIGIL en-
hances the effectiveness of the indirect prompt attacks by
systematically exploring adversarial prompts. The process
begins by applying the initial corpus of adversarial prompt
templates to the agent across a set of injection tasks, which
are combinations of different user tasks and attacker goals,
to generate a pool of initial seeds. These seeds then undergo
an iterative fuzzing loop. In this loop, a MCTS-based seed
selector identifies a promising seed, balancing the dual ob-
jectives of exploitation and exploration. Subsequently, a
seed mutator randomly selects a mutation method to pro-
duce a new variant, which is then tested across the tasks.
This variant is subsequently tested across the injection tasks
to evaluate its performance. The evaluation involves scoring
the new seed based on its success rate in executing attacks
and its ability to compromise previously unaffected tasks.
Through this adaptive and iterative process, the framework
continuously improve the attack, ensuring scalability and
effectiveness across a wide range of agents and tasks.

4.2. Corpus Collection

To build a high-quality initial corpus, we collect adversar-
ial prompt templates from a variety of sources, including
human heuristics, online resources, existing prompt injec-
tion research (Debenedetti et al., 2024; Liu et al., 2024).
These templates are designed with placeholders to accom-
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modate different variables, such as the specific LLM model
in use, the user’s task, and the attacker’s goal, allowing for
dynamic adaptation across different scenarios. The corpus
incorporates diverse attack strategies, including role-playing
techniques where the model is coerced into adopting a spe-
cific persona, delimiter-based attacks that exploit structured
inputs, and prompt obfuscation methods to bypass detec-
tion mechanisms. By leveraging this diverse set of attack
strategies, our framework ensures broad coverage of po-
tential vulnerabilities, providing a strong foundation for
the iterative fuzzing process to refine and optimize attack
effectiveness.

4.3. Mutation Design

Consistent with prior work (Yu et al., 2023; 2024), we em-
ploy five mutation methods with prompt templates to prompt
a helper LLM to generate new seeds based on existing seeds.
Shorten compresses the seed for conciseness, Expand adds
additional contextual information, and Rephrase introduces
linguistic variety while preserving meaning. Crossover syn-
thesizes elements from two parent seeds, and GenerateSimi-
lar prompts the creation of a stylistically similar seed with
different content. The mutations are randomly chosen for
seed mutation at each iteration. We exclusively use basic
mutation strategies without introducing extra heuristics, to
maintain simplicity while encouraging diversity. This ap-
proach ensures that the mutation process explores a broad
range of variations without imposing additional constraints
or biases on the generated seeds. Furthermore, these basic
mutation strategies require only moderately capable lan-
guage models with smaller parameter sizes, such as Llama-
3-8B and GPT-4o-mini. This allows for more efficient execu-
tion while still achieving diverse and meaningful mutations.

4.4. Seed Scoring

Our seed scoring strategy employs a hybrid evaluation
mechanism that combines attack success rate (ASR) with
coverage-guided assessment to identify and prioritize effec-
tive injection templates. As detailed in Algorithm 1, each
seed undergoes performance evaluation across attack tasks,
where the scorer monitors both the immediate success of
attacks and the seed’s contribution in broadening attack cov-
erage across the overall task set. The final score is computed
as a weighted sum of two components: the attack success
rate, which is the ratio of successful attacks to total tasks,
and a coverage bonus, which rewards seeds that uncover
new successful attacks for previously failed ones. This dual-
metric approach ensures that seeds are valued for both their
immediate effectiveness and their potential to explore new
attacks. Consequently, the framework maintains a balance
between exploiting known successful patterns and exploring
untapped attack patterns. The coverage bonus term specif-
ically incentivizes the discovery of injection patterns that

work across diverse task contexts, promoting the develop-
ment of more generalizable attack strategies.

4.5. Seed Selection

Our framework utilizes a MCTS-based approach to intel-
ligently navigate the space of injection templates by main-
taining a tree structure that records mutation histories and
relationships between seeds. As shown in Algorithm 3, the
selection mechanism utilizes the Upper Confidence Bound 1
(UCB1) algorithm (Auer et al., 2002) to balance exploitation
of high-scoring seeds with exploration of promising new
variants. For each node in the tree, the UCB score combines
the node’s empirical performance (exploitation term) with
an exploration bonus that scales with the logarithm of total
visits and inversely with the node’s visit count. This explo-
ration term ensures that less-visited but potentially valuable
branches of the mutation tree receive adequate attention.
Given that the evaluation of each new seed is computation-
ally expensive, we prioritize UCB1 over UCT to efficiently
balance exploration and exploitation without requiring deep
tree expansion. Following each evaluation, Algorithm 2
propagates visit counts up the ancestor chain, allowing the
exploration bonus to naturally decay for well-explored mu-
tation paths. When selecting seeds for mutation, it selects
the top-scoring one or two seeds based on the mutation
strategies. This MCTS-based selection strategy helps the
framework efficiently identify and exploit promising muta-
tion trajectories while maintaining sufficient diversity in the
exploration process.

5. Evaluation
In this section, we comprehensively evaluate the effective-
ness of AGENTVIGIL through the following analyses:

1. We evaluate AGENTVIGIL on two estabilished agent
benchmarks, AgentDojo (Debenedetti et al., 2024) (Sec-
tion 5.1), representing personal assistant agents, and
VWA-adv (Wu et al., 2024b) (Section 5.2), represent-
ing web-based agents, covering a variety of agent types
and tasks.

2. We evaluate the transferability of adversarial prompts
generated by AGENTVIGIL across different LLMs and
different tasks (Section 5.1&5.2).

3. We evaluate the effectiveness of adversarial prompts
generated by AGENTVIGIL perform against various de-
fense strategies deployed in the two benchmarks (Sec-
tion 5.1&5.2).

4. We perform an ablation study to understand the contribu-
tion of key components of AGENTVIGIL (Section 5.3).

5. We examine the generated adversarial prompts in prac-
tical, real-world settings to demonstrate its applicabil-
ity beyond controlled benchmark environments (Sec-
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tion 5.4).

Detailed versions of models used in our experiments are
listed in Appendix A.

5.1. Attack Personal Assistant Agents

Experiment setup. In this section, we evaluate
AGENTVIGIL using the AgentDojo framework (Debenedetti
et al., 2024), which is specifically designed for assessing
indirect prompt injection attacks and defenses. AgentDojo
comprises several components: the environment, which
defines an application area for an AI agent along with a
set of available tools (such as a workspace environment
with email, calendar, and cloud storage access); and the
environment state, which tracks data for all applications the
agent can interact with. Certain parts of the environment
state are specified as placeholders for potential indirect
prompt injection attacks. A user task is a natural language
user query that the agent is expected to execute within the
given environment (e.g., adding an event to a calendar),
while an injection task outlines the attacker’s objective
(e.g., extracting the user’s credit card information). The
collection of user tasks and injection tasks for an specific
environment is referred to as a task suite. AgentDojo
provides formal evaluation criteria to assess the state of the
environment, thereby measuring the success of both user
and injection tasks. In our context, a specific attack scenario
or an adversarial task is defined as the combination of a
user task and an injection task. AGENTVIGIL interacts with
AgentDojo by proposing adversarial prompts, which are
then inserted into the placeholders in the environment for
injection. The agent is subsequently run, and AgentDojo
evaluates the success of the user and injection tasks. The
success of the injection tasks serves as the attack success
signal, providing feedback to AGENTVIGIL.

To evaluate the fuzzing performance and quality of the ad-
versarial prompts generated by AGENTVIGIL, we randomly
dividing the adversarial tasks within each suite of Agent-
Dojo into two groups: a fuzzing set and a test set, with 142
and 173 tasks respectively. We utilize GPT-4o-mini as the
helper model to mutate the prompts in AGENTVIGIL. We
conduct the fuzzing experiment on the fuzzing set for the
agent which utilizes the o3-mini model as the backbone due
to its state-of-the-art reasoning capabilities. We generate 3
mutated prompts in each iteration and complete a total of
10 fuzzing iterations. Due to the large number of tasks, we
randomly sample a quarter of user and injection tasks from
each suite to evaluate each newly mutated seeds. For the
transferability experiment, we select the 5 seeds with the
highest scores. We evaluate the attack performance of the ad-
versarial prompts, against o3-mini, GPT-4o, GPT-4o-mini,
and Claude-3.5-Sonnet on the test set. The success rate is
computed on the union of the adversarial prompts. Accord-

ing to AgentDojo, the Gemini and DeepSeek families and
other open-source models do not fully support the tool call
functionality or are not as capable as the aforementioned
LLMs. We use the handcrafted adversarial prompts pro-
posed in AgentDojo as the baseline attack. Furthermore, we
assess the effectiveness of the generated adversarial prompts
against defenses proposed in AgentDojo on the fuzzing set.
The defenses includes: pi_detector (ProtectAI, 2024) uti-
lizes a BERT classifier from ProtectAI to detect prompt
injection; repeat (lea, 2023) repeats the user instructions
after each function call; delimit (Hines et al., 2024) formats
all tool outputs with special delimiters and incorporates
system prompts to prioritize user instructions. We exclude
the tool_filter (Willison) defense proposed in AgentDojo
due to incompatibility with the o3-mini model. We exclude
other defenses due to several key reasons: they struggle to
maintain utility, and face issues of high computational costs
and adaptability. For example, StruQ (Chen et al., 2024a) is
demonstrated only on small open-source models, which lack
the capability for agent tasks. Similarly, IsolateGPT (Wu
et al., 2025) relies on a system-specific design that cannot
be easily adapted to different agent architectures.
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Figure 3. Coverage over fuzzing iteration steps achieved by
AGENTVIGIL (the solid line) on AgentDojo with two ablation
settings (the dashed lines): (1) without the high-quality initial
corpus, (2) without the adaptive seed scoring strategy and the
MCTS-based seed selection.

Fuzzing results. Figure 3 presents the coverage progres-
sion over the course of the fuzzing iteration steps for
AGENTVIGIL. As shown, AGENTVIGIL continuously en-
hances the performance of the attack, resulting in higher
coverage throughout the fuzzing process. In terms of at-
tack success rates, we compare AGENTVIGIL against the
baseline handcrafted attacks in AgentDojo, which achieve a
success rate of 38%. Our initial high-quality corpus demon-
strates a 63% success rate, showcasing its ability to sur-
pass baseline prompts. As fuzzing iterations progress and
the adversarial prompts are further refined, AGENTVIGIL
achieves a 71% success rate—a significant improvement
over both the baseline and the initial corpus. These findings
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underscore the efficacy of adaptive fuzzing for uncovering
injection vulnerabilities in blackbox agents and highlight
the effectiveness of targeted search strategies in maximizing
the attack performance.

Transferability. As shown in Table 1, the success rate
results in the first column for o3-mini on the test task set
indicate that the generated adversarial prompts transfer ef-
fectively across different tasks, even with varying user tasks
and injection goals, significantly outperforming the baseline
attack—nearly doubling its performance. Comparing perfor-
mance across rows, we observe that the adversarial prompts
transfer well to GPT-4o-mini but perform relatively worse
on GPT-4o and Claude-3.5-Sonnet. Furthermore, both the
baseline and AGENTVIGIL’s prompts are ineffective against
Claude-3.5-Sonnet, as it demonstrates strong robustness in
defending against complex adversarial prompts.

Against defenses. The results in Table 2 demonstrate the
effectiveness of AGENTVIGIL against defenses compared
to the baseline. Checking along the columns, AGENTVIGIL
consistently outperforms the baseline, particularly against
pi_detector and delimit, indicating that adversarial prompts
generated by AGENTVIGIL are more resilient to these de-
fenses. Examining the results along the rows, both the
baseline and AGENTVIGIL experience significant drops in
success rates when defenses are applied. However, the
attacks still maintain high success rates, highlighting the
insufficiency of these defenses. Additionally, according to
the results, delimit is less effective than pi_detector and
repeat, as both AGENTVIGIL and baseline achieve higher
success rate against delimit among the defenses.

5.2. Attacking Web Agents

Experiment setup. In this section, we further evaluate
AGENTVIGIL on VWA-adv (Wu et al., 2024b). VWA-adv
is a set of realistic adversarial tasks based on VisualWe-
bArena (Koh et al., 2024), which serves as a benchmark
for evaluating web agents on a set of diverse and complex
web-based visual tasks with multi-modal input. Each task
in VWA-adv consists of an original task in VisualWebArena
and a trigger image or trigger text, which serves as the in-
jection point, along with a targeted adversarial goal as the
attacker’s objective. In VWA-adv, attacker goals fall into
two categories: illusioning, which misleads agents about
object attributes (e.g., changing an object’s color), and goal
misdirection, which alters the agent’s intended action (e.g.,
adding an item to the cart). We focus on the tasks with
text trigger. Similar to Section 5.1, we feed the adversarial
prompts from AGENTVIGIL to the evaluation framework in
VWA-adv, which then returns whether the adversarial task
succeeds or not as feedback to AGENTVIGIL.

Similarly, we randomly divide the tasks in VWA-adv into a

fuzzing set (99 tasks) and a test set (100 tasks) to evaluate
the fuzzing performance and quality of the generated adver-
sarial prompts, respectively. We utilize GPT-4o-mini as the
helper model to mutate the prompts in AGENTVIGIL. We
run the fuzzing experiment against the agents using GPT-
4o on the fuzzing set. We generate 10 mutated prompts
per iteration and conduct 10 iterations in total. We use the
handcrafted adversarial prompts proposed in VWA-adv as
the baseline. We select 5 seeds with the highest scores to
conduct the transferability experiment. We evaluate the at-
tack performance of the adversarial prompts against GPT-4o,
GPT-4o-mini, Claude-3.5-Sonnet, and Gemini-2-flash-exp
on the test set. We further assess the effectiveness against
basline defenses proposed in VWA-adv on the fuzzing set.
There are three defenses: safety (Hines et al., 2024) uti-
lizes the data delimiter and system prompts to prioritize
user instructions; paraphrase (Jain et al., 2023) paraphrases
untrusted text to neutralize malicious intent; combined inte-
grates both strategies. While VWA-adv includes one more
defense which checks consistency between image and text
content, we exclude it since it would substantially increase
API calls, making it impractical for real-world use.

Fuzzing results. Figure 4 shows AGENTVIGIL’s cover-
age progression during fuzzing. AGENTVIGIL steadily im-
proves attack performance, achieving higher coverage. Com-
pared to baseline attacks in VWA-adv with a success rate of
36%, our high-quality initial corpus starts at 54% and sur-
passes the baseline. With iterative refinement, AGENTVIGIL
reaches 70%, nearly doubling the baseline’s success rate
and significantly outperforming both. These results demon-
strate AGENTVIGIL’s effectiveness in exposing injection
vulnerabilities and optimizing attack performance.

Transferability. The lower half of Table 1 presents the at-
tack success rates of adversarial prompts from AGENTVIGIL
compared to the VWA-adv baseline. The results demon-
strate that AGENTVIGIL significantly outperforms the base-
line, achieving an absolute success rate improvement of 15%
to 40% across different models and tasks except Claude-3.5-
Sonnet. This highlights the high quality and effectiveness
of the adversarial prompts, as well as their strong transfer-
ability. Consistent with Section 5.1, adversarial prompts
optimized for GPT do not transfer well to Claude, whereas
baseline attacks from VWA-adv achieve higher success rates
on Claude compared to other models. Upon manual inspec-
tion, we suspect that Claude is more vulnerable to simpler
adversarial prompts, differing from the GPT family. Further-
more, the findings reinforce the conclusion from VWA-adv
that prompt injection is an effective attack capable of over-
riding the influence of visual input on the model. It is worth
noting that AGENTVIGIL achieve approximately 50% and
60% on GPT-4o-mini and GPT-4o, respectively, suggesting
that the instruction hierarchy (Wallace et al., 2024) defense
mechanism is not sufficiently effective.
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Table 1. The transfer attack success rate of selected adversarial prompts generated by AGENTVIGIL compared with the baseline attacks
proposed by AgentDojo (Debenedetti et al., 2024) and VWA-adv (Wu et al., 2024b), against the agents using different backbone LLMs.
We run fuzzing against o3-mini on AgentDojo, GPT-4o on VWA-adv.

Benchmark Task set Attack
Model

o3-mini GPT-4o GPT-4o-mini Claude-3.5-Sonnet Gemini-2-flash-exp

AgentDojo
Fuzzing

handcrafted 0.38 0.22 0.28 0.12 -
AGENTVIGIL 0.71 0.22 0.49 0.03 -

Test
handcrafted 0.34 0.25 0.28 0.08 -

AGENTVIGIL 0.65 0.19 0.43 0.04 -

VWA-adv
Fuzzing

handcrafted - 0.36 0.08 0.47 0.49
AGENTVIGIL - 0.60 0.47 0.31 0.67

Test
handcrafted - 0.44 0.29 0.51 0.50

AGENTVIGIL - 0.59 0.54 0.42 0.67
1 Gemini family doesn’t fully support the tool calls in AgentDojo. Early version of o3-mini doesn’t fully support VWA-adv framework.

Table 2. The attack success rate of selected adversarial prompts
generated by AGENTVIGIL on fuzzing task set and o3-mini against
four defenses proposed by AgentDojo.

Attack No Defense
Defenses

pi_detector repeat delimit

baseline 0.38 0.13 0.21 0.36
AGENTVIGIL 0.71 0.25 0.12 0.49

Table 3. The attack success rate of selected adversarial prompts
generated by AGENTVIGIL on fuzzing task set and GPT-4o against
three defenses proposed by VWA-adv.

Attack No Defense
Defenses

safety paraphrase combined

baseline 0.36 0.34 0.27 0.30
AGENTVIGIL 0.60 0.29 0.33 0.27

Against defenses. The evaluation results in Table 3 of
AGENTVIGIL highlight a substantial improvement in attack
success when no defense mechanisms are applied, achiev-
ing a 60% success rate compared to the baseline’s 36%.
However, when defenses are introduced, AGENTVIGIL’s
performance declines and converges with the baseline. This
degradation is likely due to the complexity of the attack
prompts, which, while effective in an unprotected setting,
struggle against the defenses due to the limited context in
VWA-adv. Notably, we observe that the combined defense
does not further reduce the attack success rate compared
to individual defenses. This suggests that certain attack
prompts are inherently more robust and can bypass multiple
defenses simultaneously, indicating potential weaknesses in
the current defense mechanisms.

5.3. Ablation Study

We perform an ablation study on AgentDojo to isolate
the impact of each of the three core components of
AGENTVIGIL: the initial corpus of adversarial prompt tem-

plates, the adaptive seed scoring strategy, and the MCTS-
based seed selection. Specifically, we (1) replace our initial
corpus with the handcrafted baseline prompts from Agent-
Dojo, (2) substitute the adaptive seed scoring and MCTS-
based seed selection to uniform random seed selection. As
shown in Figure 3, AGENTVIGIL significantly outperforms
the ablated versions. Notably, when the initial corpus is
replaced by the baseline prompts, the overall success rate
plateaus after approximately four iterations, demonstrating
both reduced performance and limited potential compared
to our curated initial corpus. Furthermore, without adaptive
seed scoring or the MCTS-based seed selection, the fuzzing
process shows markedly slower improvement, as it fails to
identify and prioritize high-potential seeds. These findings
underscore the critical role of all three components in driv-
ing AGENTVIGIL’s continuous enhancement and superior
attack success.

5.4. Real-world Case Study

Figure 1 shows the workflow of the indirect prompt injec-
tion for a web agent in the real world. In this experiment, we
deploy a shopping website provided by WebArena (Zhou
et al., 2023) and use the default agent implementation in
WebArena. The shopping website in WebArena is based on
a famous open source e-commerce project magento2 (ma-
gento2) which has many real-world deployment instances.
Due to ethical considerations, we use a local copy in this
experiment. As shown in the figure, the user task is to find a
screen protector and list out reviewers who mention good
fingerprint resistant. This user task involves first searching
for the product then reading the customer reviews of the
target product with over ten step operations in total. The at-
tacker left a review with malicious prompts, which can lead
to undesired actions. Here we use the generated adversarial
prompts in Section 5.2 and inject it to the customer reviews
by a regular user account like a normal customer. In the
figure, we use a fake URL of GitHub as an example, which
is a commonly used pattern of phishing sites, and the results
show that our attack method can lead the agent to visit arbi-
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trary URLs including visiting phishing sites, downloading
malicious files, sending out private information. This case
study proves the results in the previous experiments can be
transfered to a more real-world scenario.

6. Conclusion
We introduce AGENTVIGIL, a novel fuzzing framework de-
signed to systematically conduct indirect prompt injection
attacks against blackbox agents with various architectures
and tasks. By combining high-quality prompt templates,
adaptive seed scoring, and a MCTS-based seed selection
algorithm, AGENTVIGIL overcomes challenges posed by
the black-box nature, architectural complexity, and wide-
ranging functionalities of real-world agents. Our empirical
results demonstrate that AGENTVIGIL not only achieves
high attack success rates on established benchmarks and
real-world agents but also exhibits strong transferability
across unseen tasks and underlying LLMs. By automat-
ing the generation and optimization of adversarial prompts,
AGENTVIGIL highlights critical limitations in existing agent
defenses, underlining the urgent need for more robust se-
curity measures. We believe AGENTVIGIL will serve as a
useful foundation for advancing both the understanding of
agent-based threats and the development of next-generation
security solutions in this rapidly evolving domain.

Impact Statement
This work provides a significant advancement in uncovering
the security vulnerabilities of LLM-based agent systems
by exposing how indirect prompt injection attacks can be
launched even under blackbox constraints. Although our
fuzzing framework is primarily an offensive testing tool, its
results offer vital insights for agent developers and security
researchers, guiding the development of more robust de-
fense mechanisms and secure system designs. By revealing
weaknesses early, we help stakeholders protect against mali-
cious manipulations while enabling the legitimate and safe
use of agent systems in real-world settings. Nonetheless,
no single testing or defense approach is infallible; ongoing
research and proactive updates remain essential to address
evolving threats in this dynamic landscape.
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A. Detailed Model Checkpoints
The models used in our evaluation use the following checkpoints: o3-mini (o3-mini-2024-12-17), GPT-4o-mini (gpt-4o-
mini-2024-07-18), GPT-4o (gpt-4o-2024-08-06), Claude-3.5-Sonnet (claude-3-5-sonnet-20241022), Gemini-2-flash-exp
(gemini-2.0-flash-exp).

B. Additional Evaluation Results
B.1. Evaluation on Extra Models

While our primary focus has been on commercial black-box LLMs such as GPT, Claude, and Gemini, we also evaluate
AGENTVIGIL on open-source models. These models often lag behind in long-context understanding, advanced tool usage,
reasoning, and planning, which are essential in the challenging agent scenarios. We assess models that support tool
calling using the AgentDojo benchmark and report their utility scores (i.e., success rates on benign tasks): Llama3.3-70B-
Instruct (Meta AI, 2024) (42%), Qwen2.5-72B-Instruct (Yang et al., 2024) (54%), QwQ-32B (Qwen Team, 2025) (74%),
and, for comparison, o3-mini (79%). Based on these results, we conduct further experiments using QwQ-32B. Additionally,
the o3-mini checkpoint used in the main text corresponds to an experimental version. We therefore also evaluate the latest
available checkpoint, o3-mini-2025-01-31. Results indicate that AGENTVIGIL achieves a success rate of 72% on the fuzzing
set and 74% on the test set, compared to the baseline handcrafted attack, which achieves 50% and 53%, respectively, as
shown in Table 4. These findings underscore AGENTVIGIL’s effectiveness, even when applied to strong open-source models.

B.2. Comparison with Additional Baselines

To enhance our baseline comparisons, we included two additional prompt injection baselines from OpenPromptInjection (Liu
et al., 2024) and InjecAgent (Zhan et al., 2024). Table 4 reports the attack success rates on the Fuzzing and Test sets
across two models, QwQ-32B and o3-mini. These results confirm that AGENTVIGIL outperforms state-of-the-art baselines,
especially in discovering and exploiting indirect prompt injection vulnerabilities.

Table 4. Attack success rate (ASR) comparison on AgentDojo with AGENTVIGIL and three baseline attacks. The two ASRs in each cell
represent performance on the Fuzzing task set and Test task set, respectively (i.e., Fuzzing / Test).

Attack
Model

o3-mini-2025-01-31 QwQ-32B

AGENTVIGIL 0.73 / 0.76 0.72 / 0.74
AgentDojo Baseline 0.47 / 0.49 0.45 / 0.47

OpenPromptInjection 0.38 / 0.39 0.20 / 0.20
InjecAgent 0.15 / 0.11 0.14 / 0.12

B.3. Breakdown on Attack Scenarios

The two benchmarks, AgentDojo and VWA-adv, are designed to evaluate performance across diverse scenarios. We perform
additional analysis about the detailed results on different scenarios to provide a comprehensive view of AGENTVIGIL’s
effectiveness.

AgentDojo consists of various agent tasks grouped into four suites – Slack, Workspace, Travel, and Banking. As shown
in Table 5, across all these scenarios, AGENTVIGIL consistently achieves a higher success rate compared to the baseline
attacks in AgentDojo, demonstrating its robustness and adaptability in different operational environments.

On VWA-adv benchmark, we evaluate performance across two types of adversarial goals: illusioning, which makes it appear
to the agent that it is in a different state (e.g., different objects, colors), and goal misdirection, which makes the agent pursue
a targeted different goal than the original user goal (e.g., leave a comment). Our results in Table 5 indicate that AGENTVIGIL
outperforms baseline from the benchmark in both attack goals, confirming its capability to exploit diverse indirect prompt
injection vulnerabilities and attack goals effectively, even in challenging goal misdirection tasks.

12



AGENTVIGIL: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents

Table 5. Attack success rates across different scenarios (task suites for AgentDojo, attack goals for VWA-adv) achieved by AGENTVIGIL

and the baseline attack from the benchmark. The two ASRs in each cell represent performance on the Fuzzing task set and Test task set,
respectively (i.e., Fuzzing / Test).

Benchmark Model Scenario AGENTVIGIL Benchmark Baseline

AgentDojo

o3-mini

Slack 0.81 / 0.97 0.64 / 0.70
Workspace 0.63 / 0.60 0.20 / 0.22

Travel 0.71 / 0.83 0.55 / 0.50
Banking 0.49 / 0.38 0.25 / 0.23

QwQ-32B

Slack 1.00 / 0.97 0.85 / 0.88
Workspace 0.33 / 0.42 0.05 / 0.10

Travel 0.80 / 0.80 0.60 / 0.65
Banking 0.60 / 0.65 0.23 / 0.23

VWA-adv gpt-4o
Illusioning 0.82 / 0.76 0.51 / 0.62

Goal misdirection 0.58 / 0.42 0.00 / 0.20

B.4. Coverage Curve

The coverage of tasks over fuzzing iterations achieved by AGENTVIGIL on VWA-adv benchmark is shown in Figure 4.
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Figure 4. Coverage over fuzzing iterations achieved by AGENTVIGIL on VWA-adv.

C. Algorithms
The algorithms for our seed scoring and selection are shown in Algorithms 1 to 3.
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Algorithm 1 Success rate and coverage-guided seed scoring

Require: Seed to be evaluated seed, coverage factor C
Ensure: Final score for the seed and suite results

1: /* Initialize */
2: total_success← 0
3: num_questions← 0
4: coverage_bonus← 0
5: for all task_suite in sampled_tasks do
6: /* Evaluate user and injection task combinations using seed. */
7: /* Compute attack success rate for the suite. */
8: if injection successful then
9: Increment total_success.

10: end if
11: Increment num_questions.
12: /* Identify newly successful task combinations not covered before and: */
13: if injection successful then
14: /* Mark combination as covered. */
15: Increment coverage_bonus.
16: end if
17: end for
18: /* Calculate Final Score including attack success rate and coverage bonus. */
19: ASR← total_succcess

num_questions .

20: seed_score← ASR+ C · coverage_bonus
num_questions .

21: Return seed_score

Algorithm 2 MCTS-based seed selection: Update

Require: Set of nodes N , new node node with information of parent node(s) node.parents and the score node.score.
Ensure: Updated set of nodes N

1: /* Update all the ancestors of the node */
2: ancestors← node.parents
3: for ancestor p← ancestors.pop() do
4: p.visits← p.visits+ 1
5: ancestors← ancestors ∪ p.parents
6: end for
7: /* Update the set of nodes */
8: N ← N ∪ {node}
9: Return N

Algorithm 3 MCTS-based seed selection: Select

Require: Set of nodes N , exploration factor C, number of nodes to select n
Ensure: Selected node(s) S

1: total_visits←
∑

node∈N node.visits

2: UCB(node)← node.score+ C ·
√

log(total_visits+1)
node.visits+ϵ

3: if n = 1 then
4: Select S ← argmaxnode∈N UCB(node)
5: else if n = 2 then
6: Sort N by UCB(node) in descending order
7: Select S ← top 2 nodes in N
8: end if
9: Return S
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