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REPRESENTATION GAPS OF RIGID PLANAR DIAGRAM MONOIDS

WILLOW STEWART AND DANIEL TUBBENHAUER

Abstract. We define non-pivotal analogs of the Temperley–Lieb, Motzkin, and planar rook monoids,
and compute bounds for the sizes of their nontrivial simple representations. From this, we assess
the two types of monoids in their relative suitability for use in cryptography by comparing their
representation gaps and gap ratios. We conclude that the non-pivotal monoids are generally worse
for cryptographic purposes.
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1. Introduction

The main question of this paper is how representations behave when a pivotal structure is relaxed
to a rigid, yet non-pivotal, one. Our primary objects of study are (partially) novel diagram cate-
gories that serve as non-pivotal analogs of classical diagram categories, such as the Temperley—Lieb
category.

1A. Setting the stage: diagram monoids and representation gaps. Motivated by the problem
of developing cryptographic protocols based on finite noncommutative monoids, [KST24] developed
a framework to connect monoidal categories and cryptography. Noncommutative monoids are often
vulnerable to linear attacks: an attacker can convert a protocol operating in such a monoid into a
linear algebra problem, enabling the use of powerful linear algebra techniques to break the encryption;
see e.g. [MR15] for examples. Converting such a protocol to linear algebra requires a nontrivial,
say simple or faithful, representation of the monoid. In short, a cryptographic protocol based on
a noncommutative monoid can be bypassed by targeting the nontrivial simple representations, so
if these are too low in dimension, the protocol will not be secure. The security of such a protocol
can be roughly measured by the representation gap (RepGap). As such, it is important to find
monoids with large RepGaps. There are also many other reasons to study these numerical invariants
of monoids, see, for example, [BG08, Go08].

Monoidal categories provide a wealth of such monoids, since each object X provides an endomor-
phism monoid End(X⊗n) for each n ∈ Z≥0, and by the Schur–Weyl dual of [COT24] it is expected
that their representations grow exponentially. In particular, [KST24, Section 4 & 5] discusses di-
agram monoids, which arise from endomorphisms of subcategories of the partition category. These
are split into the symmetric monoids, namely the partition monoid, rook Brauer monoid, Brauer
monoid, rook monoid, and symmetric monoid (group), and their planar counterparts, the planar
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partition monoid, Motzkin monoid, Temperley–Lieb monoid, planar rook monoid, and planar sym-
metric monoid (the trivial group). The main tools for computing the representations of these monoids
and their dimensions are based on cell theory (a.k.a. Green’s relations) as in [Gr51].

The paper [KST24] primarily explores planar monoids, noting that symmetric monoids may be
less suitable for cryptographic applications than their planar counterparts. While this hypothe-
sis remains unproven, it raises the question of how categorical structures, such as symmetry, in a
monoidal category influence the RepGap (see e.g. [EGNO15] or, more diagrammatic, [Tub22] for
background on such structures). This is where our story starts: The monoidal categories above
(excluding the rook categories and those for the groups) are pivotal, meaning every object X has a
left and right dual, which essentially means that the category is rigid, and further the double dual of
X is isomorphic to X. A natural generalization is to consider non-pivotal, rigid monoidal categories
as a potential source of monoids for cryptographic purposes. These are, in a sense, more “compli-
cated” than pivotal monoidal categories: For example, the Temperley–Lieb category is equivalent
to the category Rep(SL2) of finite dimensional representations of the special linear group (a classic
result; see [RTW32]) or quantum versions of the group SL2, and Schur–Weyl duality arguments
[Er95, So99, AST18] then imply that the RepGap problem can be solved using representation
theory of SL2. No such equivalence exists for any non-pivotal, rigid monoidal category and finite
dimensional representations of any group G.

Remark 1A.1. To avoid confusion, note that in the classical diagram categories under discussion,
the object X is self-dual. Relaxing this assumption, while retaining pivotality, would, for example,
require introducing an orientation. However, this is not what we do here: we break the symmetry of
left and right duals, and, as far as we can tell, the categories and monoids we study are (partially)
new. Importantly, we expect that passing to oriented versions of the classical diagram categories
does not affect the RepGap. For a related result, see [GT25] for the Schur–Weyl dual statement in
the context of the Brauer category. 3

This paper begins the study of this with non-pivotal, rigid analogs of some of the planar diagram
monoids above, namely the Temperley–Lieb monoid, Motzkin monoid, and the planar rook monoid.
The rigid Temperley–Lieb category, as we define it, has been studied as the free rigid monoidal
category, for example in [CSB21, St21, Tub22]. As far as we are aware, there is no existing
definition for a rigid analog for the Motzkin monoid. Since the planar rook category has no duals,
we treat it as a two-color submonoid of the rigid Motzkin monoid. We directly ignore the planar
partition monoid and the planar symmetric monoid, as the former is isomorphic to the even-strand
Temperley–Lieb monoids, see [HR05], and the latter is isomorphic to the trivial group.

1B. Results. One might assume that a more complicated monoidal category would translate to
more secure cryptographic protocols; however, surprisingly, we find that the RepGap and gap
ratio (=the RepGap normalized by the order of the monoid; we want this to drop to zero as slow as
possible) are largely worse for the non-pivotal diagram monoids. The asymptotic behavior of these
is summarized in the table below (more precise results are given in the main body of the paper),
with the pivotal monoids on the left and the non-pivotal monoids on the right. We also colored the
quantities that are larger when comparing between non-pivotal and pivotal.

Monoid RepGap Gap Ratio Monoid RepGap Gap Ratio

TL2n ≥ Θ(n−5/2 · 4n) ≤ Θ(n−3/4) rTL2n ≤ Θ(n−1/2 · 2n) ≥ Θ(n−1/4e−1/n)

Mo2n Gap1/n → 9 Ratio1/n → 1 rMo2n Gap1/n → 4 Ratio1/n → 1

pRo2n ≥ Θ(n−1/2e−1/n · 4n) ≥ Θ(n−1/4e−1/n) rpRo2n ≤ Θ(n−1/2 · 2n) ≤ Θ(0.87n)

Focusing on the Temperley–Lieb monoid, we see that while the gap ratio for the non-pivotal version
is slightly better, the RepGap is exponentially worse, illustrated by the Log10-scale plots in Figure 1.
For the Motzkin monoids our results are not fine enough to come to a conclusion for the gap ratio,
but the RepGap is again much worse.

We ideally aim for a more secure protocol over improved relative security for the computational
complexity, so in this case we still say that the pivotal Temperley–Lieb monoid is better for cryp-
tographic purposes than the non-pivotal analog; ditto for the Motzkin monoids. For the remaining
case, it is clear that the pivotal monoids are better. With this, we build on the results from [KST24]



REPRESENTATION GAPS OF RIGID PLANAR DIAGRAM MONOIDS 3

Figure 1. Left: comparison of the RepGaps in Log10 scale up to n = 1000; Right:
comparison of the gap ratios in Log10 scale at n = 100, with vertical lines indicating
where rTLn is truncated.

to determine that pivotal planar diagram monoids are generally better for cryptographic purposes
than non-pivotal planar diagram monoids.

The results related to the symmetric monoids in [KST24, Section 5] are much less precise than
those of the planar monoids. This is because there is greater difficulty in computing the dimensions
of simple representations for these monoids, although some work toward that has been done in, for
example, [DWH99, CdVM09, Tu24]. Future work based on this paper should thus begin from
these symmetric monoids, both in the pivotal and non-pivotal cases.

Remark 1B.1. We assume some familiarity with diagrammatic algebras, monoids, and categories,
and (sandwich) cellularity a.k.a. Green’s relations. There are many references for these, see e.g.
[KST24, Sections 3 and 4]. (For readers acquainted with diagram algebras such as the Temperley–
Lieb algebra, the monoids we study can be obtained by specializing all parameters, i.e., floating
components to 1.) 3

Remark 1B.2. Some parts of this paper are based on computer calculations. For the reader who wants
to run these calculations themselves, we have collected all relevant material on GitHub following the
link [St25]. This applies to all Mathematica and GAP computations in this paper. That page also
contains an erratum, which may be empty. 3

Acknowledgments. This paper is intended to be part of the first author’s PhD thesis.

We would like to thank Kevin Coulembier for bringing the rigid Temperley–Lieb category to our
attention. WS was supported by the Postgraduate Research Scholarship in Mathematics and Sta-
tistics (SC4238). DT was supported by the ARC Future Fellowship FT230100489 and contemplates
the various ways their life went awry, taking full responsibility.

2. Cells and monoid RepGaps

The main representation theory of monoids that we will be using is discussed in detail in [KST24,
Section 2 & 3], which we follow closely; see also [St16]. In this section, we will simply state the main
results and tools that we require without proof.

2A. Monoid representations. Let M be a finite monoid, and let K be a field. Except where
specified, K has arbitrary characteristic and representations are left representations over K. We
define preorders on M, called left, right and two-sided cell order, by

(a ≤l b)⇔ ∃c : b = ca,

(a ≤r b)⇔ ∃c : b = ac,

(a ≤lr b)⇔ ∃c, d : b = cad.
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Remark 2A.1. There are similar notions of cells in the study of cellular algebras as, e.g., in [GL96,
KX12, TV23, Tu24]. As in [KST24, Remark 3.1], these orders are in-line with the most common
convention used in the theory of cellular algebras but the opposite of the one usually used in monoid
theory. 3

We define equivalence relations, the left, right and two-sided equivalence, by

(a ∼l b)⇔ (a ≤l b and b ≤l a),

(a ∼r b)⇔ (a ≤r b and b ≤r a),

(a ∼lr b)⇔ (a ≤lr b and b ≤lr a).

The respective equivalence classes are called left, right respectively two-sided cells. We denote all
these by L, R and J and call two-sided cells J-cells. Finally, an H-cell H = H(L,R) = L∩R is an
intersection of a left L and a right cell R.

The picture to keep in mind is

H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34R

LJ

H(L,R) = H33

,(2A.2)

where we use matrix notation for the twelve H-cells in J . In this notation left cells are columns,
right cells are rows, the J-cell is the whole block and H-cells are the small blocks.

We will also write <l or ≥r etc., having the evident meanings. Note that the three preorders also
give rise to preorders on the set of cells, as well as between elements of M and cells. For example,
the notations L ≥l a or L ≤l L′ make sense. In particular, for a fixed left cell L we can define

M≥lL = {a ∈ M|a ≥l L},

as well as others which we will distinguish by the subscript. We write H(e) if H contains an idem-
potent e ∈ S. The H-cells of the form H(e) are called idempotent H-cells, and the J-cells J (e)
containing these H(e) ⊂ J (e) are called idempotent J-cells.

Notation 2A.3. When H(e) ∼= 1 is the trivial group, we say H(e) is trivial. This is the most relevant
case for planar diagram monoids (in fact, one might define planar diagram monoids to be those with
trivial H-cells). In the following, we will be specifically addressing the case H(e) ∼= 1. 3

We have minimal and maximal J-cells in the ≤lr-order. In our illustrations the minimal cell will
be at the bottom, so we call it the bottom cell Jb, while the maximal cell will be at the top, so we
call it the top cell Jt.

Lemma 2A.4. Every monoid has a unique bottom and top J-cell which are minimal respectively
maximal in the ≤lr-order. Both are idempotent J-cells. □

Cells can be considered M-representations, called cell representations or Schützenberger represen-
tations, up to higher order terms:

Lemma 2A.5. Each left cell L of M gives rise to a left M-representation ∆L = KL by

a � l ∈ ∆L =

{
al if al ∈ L,
0 else.

Similarly, right cells give right M-representations ∆R and J-cells give M-birepresentations. We have
dim(∆L) = |L| and dimK(∆R) = |R|. □
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The top and bottom cells of Lemma 2A.4 correspond to the two trivial representations of the
monoid M as in the following definition.

Definition 2A.6. Let G ⊂ M be the subgroup of all invertible elements of M, i.e. G is the group of
units. Then we define trivial representations

1b : M→ K, s 7→

{
1 if s ∈ G,

0 else,
1t : M→ K, s 7→ 1.

An M-representation M is called trivial if M ∼= 1b or M ∼= 1t. 3

The subscripts b and t are short for bottom and top, respectively. The top trivial representation
1t is also what is called the trivial representation 1 of S, the unit object of the monoidal category of
representations of S with 1⊗M ∼= M for any M-representation M .

Remark 2A.7. With respect to the above, we again warn the reader familiar with monoid theory
that the order we use for J-cells (a.k.a. Green’s J-classes) is opposite of the one often used in monoid
theory. Thus, what we call bottom/top is usually the top/bottom in monoid theory. In contrast, our
convention matches most of the cellular algebra literature. 3

The annihilator AnnM(M) = {s ∈ M|s �M = 0} of an M-representation M is a two-sided ideal of
M. An apex of M is a J-cell J such that, firstly, J ∩ AnnM(M) = ∅, and secondly, all J-cells J ′

with J ′ ∩ AnnM(M) = ∅ satisfy J ′ ≤lr J . In other words, an apex is the ≤lr-maximal J-cell not
annihilating M . The following justifies the terminology of the apex of a simple M-representation:

Lemma 2A.8. Every simple M-representation has a unique apex, and apexes correspond 1:1 to
idempotent J-cells. □

Then, we can classify the simple representations with the Clifford–Munn–Ponizovskĭı theorem or
H-reduction:

Theorem 2A.9. For a monoid M with only trivial H-cells:

{simple M-representations}/ ∼= 1:1←→ {idempotent J-cells} ,

and the association can be chosen (and we will do this) such that simple M-representations are mapped
to their apex. □

We can define a partial order, also denoted by ≤lr, on the set of simple M-representations by
saying that one simple is strictly smaller than another if its apex is strictly smaller.

We can estimate the size of simple representations with the following upper bound:

Lemma 2A.10. The dimension of the simple M-representation LJ associated to the apex J via
Theorem 2A.9 can be bounded by

dimK(LJ ) ≤ |L|,

where L ⊂ J is arbitrary. □

We call ssdimK(LJ ) := |L| = dimK∆L the semisimple dimension of J . This name is justified by
the following:

Proposition 2A.11. The following are equivalent for a monoid M with only trivial H-cells.

(a) The monoid M is semisimple over K.

(b) All J-cells are idempotent and square, and we have dimK(LJ ) = ssdimK(LJ ) for all J-cells
J , and LJ ∼= ∆L. □
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2B. The RepGap. We now define the main quantities that are important for cryptography. We
define them slightly differently when compared to [KST24] (which is the correct definition), but
that does not matter for our purposes; see Lemma 2B.2 below.

Definition 2B.1. The RepGap GapK (M) is the dimension of the smallest nontrivial simple rep-

resentation of M. The gap ratio is the quantity RatioK (M) := GapK (M)/
√
|M|. The semisimple

RepGap ssGapK(M) is the minimal semisimple dimension of the nontrivial simple M-representations.

The semsimple gap ratio is ssRatioK(M) := ssGapK(M)/
√
|M| 3

The semisimple RepGap is less important than the RepGap, but easier to compute.

Lemma 2B.2. The RepGap from Definition 2B.1 is always bigger or equal to the one in [KST24].
Moreover, for our reference diagram monoids, Temperley–Lieb, Motzkin and planar rook, the two
definitions agree. □

Our main results will imply that the rigid diagram monoids have a smaller RepGap than their
pivotal counterparts, even when using our more generous RepGap definition compared to [KST24].
Hence, by Lemma 2B.2, we can still say that they are worse for our purposes, and therefore we do
not have to (and will not) worry about the more subtle definition of the RepGap from [KST24].

Remark 2B.3. The gap ratio roughly measures the ratio of the security of the cryptographic protocol
based on the monoid to the computational complexity of the monoid. More precisely, recall that the
dimension of a simple representation over an algebraically closed field is at most the square root of
the size of the monoid.

If the RepGap is significantly smaller than this upper bound, then the impact from linear attacks
is greater; if the monoid is relatively large, the computational complexity for utilizing any encryption
protocols based on it is greater, however there is little security gain from this since it can be bypassed
by a linear attack, due to the smaller simple representation. In other words, the closer the RepGap
is to the square root of the size of the monoid, the less of an impact the linear attack will have. 3

Remark 2B.4. Faithfulness is the minimal dimension of nontrivial faithful representations. We will
not compute or discuss it further in this paper, as the RepGap and gap ratio are sufficient for
comparing the monoids we are interested in. 3

In practice, for cryptographic purposes, we generally look for families of monoids indexed by
n ∈ Z≥0 such that the RepGap tends to infinity exponentially with n, and the gap ratio
does not exponentially tend to zero. We will discuss examples of such monoids in the next
section.

3. Diagram categories and monoids

Martin [Mar91] and Jones [Jo94] discovered the partition algebra as a generalization of the
Temperley–Lieb algebra, extending the construction that relates the Temperley–Lieb algebra to the
Potts model in statistical mechanics; see [HR05] for a self-contained summary. Specializing the
parameter yields the partition monoid and its associated category.

3A. Pivotal diagram categories. The diagram monoids we refer to are submonoids of the parti-
tion monoid. For m ∈ Z≥0 the picture to keep in mind, taken from [Tu24], is:

• The partition monoid Pam of all diagrams of partitions of a 2m-element set. The planar
partition monoid pPam is the respective planar submonoid of Pam.

∈ Pam, ∈ pPam.

• The rook-Brauer monoid RoBrm consisting of all diagrams with components of size 1 or 2.
The planar rook-Brauer monoid pRoBrm = Mom is also called the Motzkin monoid.

∈ RoBrm, ∈Mom.
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• The Brauer monoid Brm consisting of all diagrams with components of size 2. The planar
Brauer monoid pBrm = TLm is known as the Temperley–Lieb monoid (sometimes TLm is
called Jones monoid or Kauffman monoid).

∈ Brm, ∈ TLm.

• The rook monoid or symmetric inverse semigroup Rom consisting of all diagrams with com-
ponents of size 1 or 2, and all partitions have at most one component at the bottom and at
most one at the top. The planar rook monoid pRom is the corresponding submonoid.

∈ Rom, ∈ pRom.

• The symmetric monoid/group Sm consisting of all matchings with components of size 1. The
planar symmetric group is trivial pSm

∼= 1.

∈ Sm, ∈ pSm.

We will only be considering the planar monoids, however we included the non-planar (“symmetric”)
monoids above for completeness. We also focus on TLm, Mom and pRom, since pSm is trivial and
pPam ∼= TL2m by [HR05, (1.5)].

These monoids each have corresponding monoidal categories, with objects made up of words in
a single letter • of length m ∈ Z≥0, and morphism sets consisting of diagrams like the above with
each letter in the object acting as a node. The endomorphism sets on objects of length m recover
the original monoids. Composition is given by stacking diagrams on top of each other, as long as the
objects in the middle are the same, then reducing based on the final pairings of each node (i.e. the
partition of nodes). When the diagrams are endomorphisms, this is the same composition as in the
original monoids.

For example, for the Temperley–Lieb category, TL, we have:

• • • • • •

• •

∈ HomTL(• • • • ••, ••).

Remark 3A.1. Further details about these monoids can be found in numerous sources; see, for
example, [HR05]. Since the partition category can be identified with cobordisms modulo certain
relations, [Ko04] provides a convenient framework for translating these monoids into categorical
language, see [Hu19] for an explicit summary. 3

We also pick particular values m for these monoids, for reasons that will become clear in the
following section. From now

we will simply write TLn,Mon, and pRon to mean endomorphisms on (••)⊗n instead,

which is equivalent to TLm,Mom, and pRom for m = 2n using the previous definitions. We also
truncate the monoids to keep only the representations that are sufficiently large, following [KST24,
Section 4].

Remark 3A.2. One key advantage of monoids over groups is their flexibility: we can truncate them
either from below, by annihilating small cells and adjoining a unit, or from above, by collapsing large
cells to an adjoint zero. This allows us to strategically eliminate representations that are too small,
and we will do this throughout. 3

Recall that this works as follows. Let D be any of our diagram monoids. Then the J-cells of D
are a subset of Z≥0, where every J-cell corresponds to a fixed number k ∈ Z≥0 being the number
of through strands. We can then define Da≤k≤b as the Rees factor (adjoining a unit, if necessary)

supported on the cells with a ≤ k ≤ b through strands. In this paper, we use TLT
n := TL0≤k≤2

√
2n

n ,

MoTn := Mo0≤k≤2
√
2n

n , and pRoTn := pRon−
√
2n≤k≤n+

√
2n

n .
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Theorem 3A.3. Assuming that charK = 0 for Mon and TLn, we have the following inequalities
for the asymptotics of the RepGaps and gap ratios:

2−5/2 · n−5/2 · 4n ≤ GapK TLT
n ≤ 2−5/2 · n−3/2 · 4n ,

f(n) · 9n ≤ GapKMoTn ≤ 2−3/2 · n−3/2 · 4n ,

π−1/2e−2− 1
3n · n−1/2 · 4n ≤ GapK pRoTn ≤ π−1/2 · n−1/2 · 4n ,

for some function f in n asymptotically smaller than (2n)−3/2. The ratios are

2−7/4π3/4 · n−7/4 ≤ RatioK TLT
n ≤ 2−3/4π3/4 · n−3/4 ,

π1/44−13−3/4 · f(n)n3/4 ≤ RatioKMoTn ≤
√
2π1/43−3/4 · n−3/4 ,

π−1/421/4e−2− 1
3n · n−1/4 ≤ RatioK pRoTn ≤ π−1/421/4 · n−1/4 ,

for the same f .

Proof. For TLT
n the bounds on the RepGap come from [KST24, Theorem 4E.2], noting that the

upper bound is from the semisimple RepGap. The pRoTn asymptotics come from the formulas in
[KST24, Section 4F]. The asymptotics for the gap ratios then follow easily when dividing by the
asymptotics of |TLn| and |pRon|, since the latter are straightforward binomials whose asymptotics
can be calculated directly in Mathematica.

For MoTn , the result that the exponential growth factor of the RepGap is 32n, and that it is worse
than 32n(2n)−3/2, is found in [Ar25].

To obtain an asymptotic for |Mon|, we can start with the recurrence for the Motzkin numbers in
[Be99], which naturally leads to a generating function and an asymptotic for the Motzkin numbers.
The sequence of sizes of the Motzkin monoid is a bisection of the Motzkin numbers, so we can
finally use [FS09] to obtain the asymptotic of |Mon|. [Ko12] has already calculated this to be

|Mon| ∼ (34n+3/2)/(16
√
πn3/2), from which we can get the gap ratio. □

Remark 3A.4. Strictly speaking, we should be taking the size of the truncated monoid on the de-
nominator in the gap ratios, however in the above we have used the full size of the monoids. We
justify this by observing that the asymptotic growth up to the exponential factor is the same for the
full monoid and truncated monoid. Indeed, if Mn =

∑n
k=0 f(n, k) is the size of the monoid, then

taking m(n) := max{f(n, k)|k = 0, 1, ..., n}, we have m(n) ≤ Mn ≤ nm(n). Taking the nth root

to find the exponential growth, (nm(n))1/n → (m(n))1/n since the contribution from n is negligible,

so by the sandwich theorem M
1/n
n → (m(n))1/n (note that for all the monoids we are dealing with,

f(n, k) is continuous in n and k).

Therefore, as long as MT
n contains m(n), which it does by design in the cases above, the asymptotic

of the nth root will be m(n), meaning they have the same exponential growth factor. As a result,
we can simply use the size of the monoid itself in the above ratios, when doing otherwise would be
computationally difficult, as long as n is sufficiently large. 3

3B. Non-pivotal diagram categories. Define left and right duals in the usual way, e.g. following
[EGNO15, Section 2].

Definition 3B.1. A monoidal category is rigid if every object has a left and right dual. An object
X in a rigid monoidal category with a dual X∗ is pivotal if X∗∗ ∼= X. A rigid monoidal category is
called pivotal if every object is pivotal. 3

Remark 3B.2. We have simplified the definition, however one should keep in mind that each dual is
actually a monoidal functor, and the isomorphisms are isomorphisms of monoidal functors. 3
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A key feature of the categories described above is that they are all pivotal. This follows from the
fact that the object • is self-dual, which is just the zigzag equations:

•

•

•

•

• =

•

•

; •

•

•

•

• =

•

•

.

In the following sections, we will compute the RepGaps and gap ratios for rigid, non-pivotal coun-
terparts to the familiar categories above, and compare them to the results for the original pivotal
versions. This will give some indication of which, between pivotal and non-pivotal, are more suitable
for use in cryptography.

The exploration of non-pivotal analogs is justified with the following result:

Lemma 3B.3. Let R,P be rigid monoidal categories and F : R → P a full monoidal functor. If
Y ∈ Obj(P ) such that Y is pivotal, then ∃X ∈ Obj(R) such that X is pivotal. Moreover, if P is a
pivotal monoidal category and F is additionally faithful, then R is also a pivotal monoidal category.

Proof. Since Y ∈ P is pivotal, Y is the left dual of Y ∗, so there is an evaluation morphism evY :
Y ⊗ Y ∗ → 1P . Since F is a full monoidal functor, ∃X ∈ Obj(R) and evX : X ⊗ X∗ → 1R such
that F (evX) : F (X) ⊗ F (X∗) → F (1R) = evY : Y ⊗ Y ∗ → 1P . Similarly, there is a corresponding
co-evaluation morphism in R, which means that X is a left dual of X∗, and since duals are unique
up to (unique) isomorphism [EGNO15, Proposition 2.10.5], this means X ∼= X∗∗ so X is pivotal.

If P is pivotal, the above argument gives a pivotal X ∈ Obj(R) for every Y ∈ Obj(P ), and if F is
faithful then this means that this is all the objects in R, i.e., every X ∈ Obj(R) is pivotal. □

Let G be a group and Rep(G) be the monoidal category of all finite dimensional representations
of G. Since V ∗∗ ∼= V for any finite dimensional vector space V , Rep(G) is pivotal.

Corollary 3B.4. Let R be a non-pivotal rigid monoidal category. Then there is no fully faithful
monoidal functor from R to Rep(G). □

This shows that a non-pivotal counterpart to the Temperley–Lieb, Motzkin, and planar rook
categories is meaningfully different, since the pivotal versions do have category equivalences toRep(G)
for some group G; for example, the Temperley–Lieb category (when the circle is evalauted to 2 instead
of 1) is equivalent to Rep(SL2) via the functor that sends • to the standard two-dimensional SL2-
representation.

Remark 3B.5. The categories we use where the parameter is evaluated to 1 are actually equivalent
to representations of quantum groups (or rather quantum enveloping algebras) and not groups, but
the difference wll not play a role for us. 3

This result also suggests that the monoids from non-pivotal categories will in some sense be more
complicated than those from the pivotal categories. When designing encryption protocols, it would
be more desirable to have more complicated, less easily described monoids, since that would hopefully
make it harder to decrypt. This is incredibly imprecise; however, the RepGap and gap ratio are useful
concrete tools to determine which monoids will likely be more effective for use in cryptography.

In the next three sections, we prove the following bounds on the RepGaps and gap ratios for the
non-pivotal TL, Mo, and pRo monoids:

Theorem 3B.6. We have the following inequalities for the asymptotics of the RepGaps and gap
ratios:

2−1/2π−1/2e−1− 1
3n · n−1/2 · 2n ≤ GapK rTLT

n ≤ 2−1/2π−1/2 · n−1/2 · 2n ,
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π−1/2e−
1
n · n−3/2 · 4n ≤ ssGapKrMoTn ≤ 4

√
2π−1/2e−

1
n · n−1 · 4n ,

√
2π−1/2e−4− 16

3n · n−1/2 · 2n ≤ GapK rpRoTn ≤
√
2n−1/2π−1/2 · 2n ,

21/4π−1/4e−1− 1
3n · n−1/4 ≤ RatioK rTLT

n ≤ 21/4π−1/4 · n−1/4 ,

π−1/2e−
1
n · n−3/2 ≤ ssRatioKrMoTn ≤ 4

√
2π−1/2 · n−1 ,

RatioK rpRoTn ≤ 23n/233n/45−5n/4 ≈ 0.87n .

Theorem 3B.6 will be proven case by case in the next sections. Note that Theorem 3B.6 implies
that the table in the introduction holds.

4. The rigid Temperley–Lieb monoid

We start with our first non-pivotal diagram monoid.

4A. Definition of rTLn. We now define a non-pivotal analog of the Temperley–Lieb category, a
rigid monoidal category that we call the rigid Temperley–Lieb category and denote by rTL.

Definition 4A.1. The objects, morphisms, and tensor product of rTL are defined as follows:

(a) The collection of objects Obj(rTL) consists of all finite words Xi1Xi2 ...Xin in the alphabet
{Xi : i ∈ Z}. We will typically only write the subscripts, for example the object X1X2X1X1

will often simply be written 1212. The empty word is denoted 1.

(b) The length of an object X = Xi1Xi2 ...Xin is length(X) = n, that is, the number of letters
used to make up the word. The length of 1 is zero.

(c) The collection of morphisms between two objects Hom(X,Y ), for X = Xi1Xi2 ...Xin and
Y = Xj1Xj2 ...Xjm , consists of all partitions of {1, 2, ...,m,−1,−2, ...,−n} into ordered pairs
(a, b), with the following properties:
(i) (a, b), a ∗ b < 0, is a valid pair ⇐⇒ j−b = ia,

(ii) (a, b), a > 0, b > 0, is a valid pair ⇐⇒ ib = ia + 1,

(iii) (a, b), a < 0, b < 0, is a valid pair ⇐⇒ j−b = j−a − 1,

(iv) the partition is planar, meaning there are no pairs [a, b], [u, v] such that a < u < b < v.

(d) It will be useful to represent such morphisms as diagrams, drawn vertically from j1, ..., jm to
i1, ..., in (i.e. just keeping the subscripts of the two objects, drawing from bottom to top),
connecting each pair via an unbroken line, we call a string. For example, the morphism
[(1,−1), (2,−6), (−2,−5), (−3,−4)] from X1X2X1X0X1X2 → X1X2 would be represented
by:

1 2 1 0 1 2

1 2

∈ HomTL(121012, 12).

The above conditions, when translated to the language of these diagrams, are:
(i) (a, b), with ab < 0 and j−b = ia, is called a through strand,

(ii) (a, b), with a > 0, b > 0 and ib = ia + 1, is called a cup, denoted cupx,x+1,

(iii) (a, b), with a < 0, b < 0 and j−b = j−a − 1, is called a cap, denoted capx,x−1,

(iv) and the partition being planar simply means that the diagram is planar, that is, no
strings are allowed to intersect.

Henceforth we will consider diagrams and partitions interchangeably.

(e) The size of a diagram f : X → Y is size(f) =
(
length(X), length(Y )

)
.
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(f) Composition of two morphisms f : X → Y and g : Y → Z, f ◦ g : X → Z, is given by
vertically placing the diagram f on top of the diagram g, then obtaining a new partition by
creating pairs that are connected by strings (noting that a string is not broken by a subscript).
For example:

1 0 1

1 2 1 0 1

◦

1 2 1 0 1

1 2 1 0 1

=

1 0 1

1 2 1 0 1

1 2 1 0 1

=

1 2 1 0 1

1 0 1

.

(g) The identity morphism on X ∈ Obj(rTL), denoted 1X , is simply the diagram consisting only
of through strands, that is, every subscript in X at the bottom of the diagram is connected
to its corresponding subscript at the top via a vertical line. 11 is defined as there being no
diagram, the empty diagram (or empty partition [ ]).

(h) Define a functor
⊗

: rTL× rTL→ rTL by:
(i) If X = Xi1Xi2 ...Xin , Y = Xj1Xj2 ...Xjm ∈ Obj(rTL), then

X ⊗ Y = Xi1Xi2 ...XinXj1Xj2 ...Xjm

that is, we simple concatenate the words X and Y , and

(ii) if f : X → Y ∈ HomrTL(X,Y ), g : A → B ∈ HomrTL(A,B), then we obtain f ⊗ g ∈
HomrTL(X⊗A, Y ⊗B) by placing the diagram g to the right of f , that is, concatenating
the diagrams horizontally.

We call the resulting construction the (set-theoretic) rigid Temperley–Lieb category. 3

Lemma 4A.2. With the structure above, rTL is a rigid monoidal category, and no object is pivotal.

Proof. The composition of morphisms in rTL is clearly associative, since we can simply stack all
multiplied diagrams and obtain the result by following the strings from their top-most objects to
the bottom-most objects they are connected to. Moreover,

⊗
defines a monoidal product, with the

empty word and diagram (1, 11) being the monoidal unit. So rTL is a monoidal category.

For every i ∈ Z, we have:

(a) The left dual of Xi is (X
∗
i = Xi−1, cupi−1,i, capi,i−1), and

(b) the right dual of Xi is (
∗Xi = Xi+1, cupi,i+1, capi+1,i),

which follows from the familiar zigzag equations:

(4A.3) i

i

i

i

i+ 1 =

i

i

; i

i

i

i

i− 1 =

i

i

.

Therefore, given an object X = Xi1Xi2 ...Xin , the left dual of X is the object X∗ = Xin−1⊗Xin−1−1⊗
... ⊗Xi2−1 ⊗Xi1−1, along with the evaluation and coevaluation morphisms, cupX∗,X and capX,X∗ ,
defined by vertically concatenating cups and caps on the corresponding subscripts of X and X∗. The
right dual is found similarly, and hence rTL is a rigid monoidal category.

Finally, X∗∗
i
∼= Xi+2 ≇ Xi and

∗∗Xi
∼= Xi−2 ≇ Xi, for all i ∈ Z, and hence no object in rTL is

pivotal. □
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We have defined rTL, the rigid Temperley–Lieb category, a rigid, non-pivotal analog of the
Temperley–Lieb category, and from this we pick the monoid of endomorphisms

rTLn := EndrTL(12)
⊗n

to analyze for cryptographic purposes. We call rTLn the rigid Temperley–Lieb monoid.

Remark 4A.4. The above definition does not include all endomorphisms in rTL of length 2n. This is
because, unlike in TL, we have multiple different objects of the same length, meaning the endomor-
phisms cannot be composed. As a result, the best we can do is pick one object for our endomorphism
monoid; the alternative would be to take a direct sum

⊕
X∈Obj(rTL),(X)=m EndrTL(X), however this

would require performing a completely different, generally nontrivial, calculation for each different
endomorphism monoid, for no discernible extra benefit.

The choice of (12)⊗n as our object is because it captures enough of the structure of endomorphisms
in rTL, while being relatively easier to compute cells. 3

4B. Computing cells for rTLn. We have the following sandwich factorization:

Lemma 4B.1. Every diagram d ∈ rTLn with k through strands can be written as τ ◦1α(k) ◦β, where
τ and β are diagrams of size (n, k) and (k, n) respectively, and α(k) = 12...12 is of length k, where
k is an even positive integer.

Proof. Firstly, clearly it is impossible to have a diagram with zero through strands, since there is no
valid cap arrangement on 12...12. Moreover, there cannot be a negative number of through strands,
so k must be a positive integer.

Now, consider the possibilities for through strands of a diagram in rTLn. Let k be the number
of through strands, and α(k) the sequence, of length k, of the letters paired by the through strands,
read from left to right. For example, the following diagram has the sequence 12:

1 2 1 2 1 2

1 2 1 2 1 2

.

If the leftmost through strand pairs two 2s, then on the left we will have an odd number of letters
on both the top and bottom. Since this is the leftmost through strand, the letters in the top must be
paired up independently from the letters in the bottom, and vice versa. This is clearly impossible,
since the number of letters in each is odd. A similar argument holds for the rightmost through strand.

If there is a through strand to the left that pairs the same letters as the through strand to its
right, then we will also have an odd number of letters on both the top and bottom, and the same
reasoning holds again. This therefore shows that the sequence α(k) must be of the form 12...12,
which is necessarily of even length.

The above reasoning is illustrated below, first with a “bad” sequence of through strands, which
cannot occur for any diagram in rTLn:

1 2 1 2 1 2 ... 1 2 1 2 ... 1 2 1 2 1 2

121212 ... 1 2 1 2 ... 1 2 1 2 1 2

α(k) = 221,

then with a “good” sequence that does appear in some diagrams in rTLn.
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121212 ... 1 2 1 2 ... 1 2 1 2 1 2

121212 ... 1 2 1 2 ... 1 2 1 2 1 2

α(k) = 1212.

Note that this is only a necessary condition for the sequence of through strands; for example, it is
also required that the leftmost through strand connects to the leftmost 1 on the bottom, and the
rightmost through strand connects to the rightmost 2 on the bottom.

Finally, the factorisation into τ ◦ 1α(k) ◦ β follows from observing that the result of a composition
depends only on the final pairings between the numbers in the very top object and very bottom
object, so we can “stretch out” the through strands like so:

1 2 1 2 1 2

1 2 1 2 1 2

=

1 2 1 2 1 2

1 2

1 2

1 2 1 2 1 2

= τ ◦ 11 2 ◦ β.

□

We will write 1α(k) = 1k, with k the number of through strands, since the meaning is clear. For
x ∈ rTLn, write kx for the number of through strands in x.

Lemma 4B.2. If x, y ∈ rTLn, then kx ≥ kxy and kx ≥ kyx. (The number of through strands cannot
decrease.)

Proof. In the composition xy, each strand arises from a strand in x and a strand in y, such that
there is a continuous line between the top object of x and the bottom object of y. Therefore, it is not
possible to increase the number of through strands in xy compared to x. It is possible to decrease
the number of through strands, since for example we have

1 2

1 2

1 2

=

1 2

1 2

.

Hence, 1kxy ≤ 1kx , and similarly 1kyx ≤ 1kx . □

With the above two lemmas, we can describe the cells of rTLn:

Proposition 4B.3. The cells of rTLn have the following properties:

(a) The J-cells of rTLn are indexed by the number of through strands, with order 2 <lr ... <lr 2n.
That is, number of through strands k is the apex of the J-cell.

(b) The size of the left and right cells of rTLn is given by the number of diagrams possible when
fixing the top and bottom half, respectively.
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(c) Every J-cell in rTLn is idemptotent.

Proof. The sandwich pictures below, which we will use from now on, are meant to show the factor-
ization in Lemma 4B.1. The reader unfamiliar with these illustrations is referred to [Tu24].

Fix a J-cell J , and suppose a, b ∈ J , meaning a ≤lr b and b ≤lr a. This means ∃c, c′, d, d′ ∈ rTLn

such that b = cad and a = c′bd′.

Using Lemma 4B.1, we have:

Bb

Tb

1kb =

Bd

Td

1kd

Ba

Ta

1ka

Bc

Tc

1kc

= 1kb ;

Ba

Ta

1ka =

Bd′

Td′

1kd′

Bb

Tb

1kb

Bc′

Tc′

1kc′

= 1ka .

In the left equation, the middle of the right hand side must resolve to 1kb , and since 1ka is contained
within that middle, ka ≥ kb (using Lemma 4B.2. Similarly, kb ≥ k), and thus ka = kb. This proves
(a).

Clearly, if ka = kb, then a ≤lr b and b ≤lr a, and hence the J-cells of rTLn are completely
determined by the number of through strands. Moreover, the above argument shows that a ≤lr

b =⇒ 1ka ≤ 1kb , making ≤lr a total order on the J-cells.

The argument for right and left cells is similar. If we have a, b ∈ J , with k through strands, then
the condition for a ∼r b is:

Bb

Tb

1k =

Bc

Tc

1kc

Ba

Ta

1k

;

Ba

Ta

1k =

Bc′

Tc′

1kc′

Bb

Tb

1k

.

which shows that a ∼r b ⇐⇒ Ta = Tb, i.e. the top halves of the diagrams are the same. Similar
reasoning shows that a ∼l b ⇐⇒ Ba = Bb, proving (b).

Finally, suppose we have a fixed J-cell J of apex k through strands. If k = 2n then the identity
is an idempotent in J .

Suppose now that 2 ≤ k < 2n. Then there exists a diagram of the form:

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1
...

...

2 1 2 1 2

...

1 2

where we have simply moved all caps and cups as far to the left as possible. Stacking this diagram on
top of itself shows that this diagram is idempotent, and hence every J-cell contains an idempotent. □

Remark 4B.4. k = 2n corresponds to the bottom J-cell and bottom trivial representation, and k = 2
corresponds to the top J-cell and top trivial representation. Those familiar with the representations
of TLn might be surprised, since the top trivial representation typically corresponds to k = 0, which
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is missing for rTLn. This can be reconciled by noting that k = 0 corresponds to the maximal number
of cups and caps in a Temperley-Lieb diagram, while k = 2 does the same in rTLn. 3

Example 4B.5. For rTL3 and rTL5 the cells are illustrated in Figure 2. It is explained in [St25]
how to produce these pictures in GAP. 3

J1

J2

J3

H(e) ∼= 1

H(e) ∼= 1

H(e) ∼= 1

Figure 2. Left: the cell structure of rTL5, produced with the Semigroups package
in GAP (adjusted to match our conventions): every block represents a J-cell, and
every shaded box an H-cell containing an idempotent. Right: the cell structure of
rTL3, with each H-cell written explicitly.

Now, we calculate the sizes of the left and right cells.

Proposition 4B.6. For a fixed number of through strands k, we have:

|Rk
n| =

(
n− 1
2n−k

2

)
, |Lkn| =

(
n

2n−k
2

)
,

moreover, the total number of elements in rTLn is
(
2n−1
n

)
.

Proof. Fix k through strands, and fix the letters in the diagram that each through strand pairs up.
Then, all that’s left is to arrange the cups and caps on the top and bottom respectively, and the
arrangements on the top and bottom are independent of each other.

Consider the bottom first. There are n letters on the bottom, and only 2n−2
2 = n− 1 spots a cap

can be placed (with no nesting allowed), since on the far left and far right we have 12. Of the 2n
total letters in the diagram, k are already paired up, so there are only 2n−k

2 remaining on each of the
bottom and top words.

Once we place the caps, there is only one possible arrangement of the through strands, since the
diagrams in rTLn are planar. Hence, the number of different bottom half diagrams is equal to the
number of ways to choose (2n− k)/2 pairs of letters (i.e. 1s and 2s) to be placed in the n− 1 valid

cap positions. This is equal to
( n−1

2n−k
2

)
, proving the formula for |Rk

n|.
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The size of the left cells can be computed similarly, noting that the far left 1 and the far right 2
can be used for cups on the top.

Finally, since the top and bottom are independent once we’ve fixed k through strands (note that
k must be even, by Lemma 4B.1), the total number of possible diagrams is

2n∑
k=0

k even

|Rk
n||Lkn| =

n∑
k=0

(
n− 1
2n−2k

2

)(
n

2n−2k
2

)
=

n∑
k=0

(
n− 1

n− k

)(
n

k

)
=

(
2n− 1

n

)
,

where the final step follows from the Chu–Vandermonde identity. □

4C. RepGap and gap ratio of rTLn. We are on the final round in our proof of Theorem 3B.6 for
rTLn. As a first step:

Proposition 4C.1. The simple rTLn-representation are indexed and ordered by 2 <lr ... <lr 2n.
Moreover, the right representations ∆Rk

n
are all simple, and provide a complete list, up to isomor-

phism, of the simple representations of rTLn.

Proof. The first statement is immediate from Theorem 2A.9 and Proposition 4B.3

SupposeW is a nontrivial subspace of ∆Rk
n
such thatW ̸= ∆Rk

n
. Let w ∈ basis(W ) such that w has

at least one cap (this always exists since W is nontrivial). Then, we find an x ∈ rTLn = basis(∆Rk
n
)

such that wx ∈ rTLn \ basis(W ), which shows that W cannot be rTLn-invariant, proving that ∆Rk
n

is simple.

Using Lemma 4B.1, we can write w = Tw ◦ 1k ◦ Bw, where Tw = T is the fixed top half of the
diagrams in rTLn.

Then, we define x = Tx ◦mx ◦Bx to have:

(a) k through strands, so mx = 1k,

(b) Bx ̸= By for any y ∈W , which is always possible to define since W ⊊ Rk
n,

(c) and Tx such that there is a cup placed directly to the left of every cap in Bw, which is always
possible since w has at least one cap, and there can be no caps on the far left of the object
1212... .

Then, using the zigzag equations (4A.3), Bw ◦ Tx is reduced to the identity on k through strands,
while Tw remains unchanged on the top. Therefore, xw = Tw ◦1k ◦Bx ∈ Rk

n, so xw ̸= 0, but xw /∈W
by definition of Bx, hence W cannot be rTLn-invariant. This is illustrated below:

Bx

Tx

1k

Bw

Tw

1k

=

Bx

Tw

1k

1k

... =

Bx

Tw

1k ̸∈W.

Finally, the fact that this is all the simple representations of rTLn follows from the classification
Theorem 2A.9. □

Remark 4C.2. All cell representations are semisimple, but the monoid rTLn is not semisimple: being
semisimple would imply that the sum of the squares of the simple representations is the order of the
monoid, but that is not true as our J-cells are not squares; cf. Proposition 4B.6. However, we can
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think of rTLn as being almost semisimple: only the slight asymmetry in its left and right cells sizes
prevents it from being semisimple. 3

Following [KST24], we will now truncate rTLn, similarly to TLn. From Proposition 4B.6 we find
that the maximum of |Rk

n| occurs at k = n+1 (simply by the properties of the binomial coefficient).
We consider the interval n+1−

√
2n ≤ k ≤ n+1+

√
2n, which has a width on the order of

√
2n, up

to a scalar, and is centered around the peak at k = n + 1. This is illustrated in Figure 3. To avoid
unwieldy superscripts, as with the pivotal monoids, we will denote this truncated monoid by rTLT

n .

Figure 3. Left: The dimension of the simple representations over k, for n = 100,
with vertical lines marking the truncation end points. Right: A Log10 version of the
same graph.

Now we can find the RepGap and gap ratio, and compare the results with those for TLn.

Theorem 4C.3. We have the following inequalities for the RepGaps and gap ratios of rTLT
n

2−1/2π−1/2e−1− 1
3n · n−1/2 · 2n ≤ GapK rTLT

n ≤ 2−1/2π−1/2 · n−1/2 · 2n ,

21/4π−1/4e−1− 1
3n · n−1/4 ≤ RatioK rTLT

n ≤ 21/4π−1/4 · n−1/4 .

This is true over an arbitrary field K.

Proof. The simple representations have dimension
( n−1

1
2
(2n−k)

)
(combining the previous two proposi-

tions), which obviously has a maximum of
( n−1

1
2
(n−1)

)
. Due to the symmetry of the binomial coefficient,

the minium will be at the two end points of the truncated interval, i.e. k = n + 1 ±
√
2n. Picking

the lower endpoint, we can easily find the asymptotics of these using Mathematica.

Finally, due to the reasoning in Remark 3A.4, the bounds on the gap ratio are calculated based
on |rTLn|. □

Combining this with Theorem 3A.3, we have the following conclusion for charK = 0 (which is
only needed for TLn itself, see Remark 4C.5).

Corollary 4C.4. Assume charK = 0. Then:

GapK rTLT
n ≤ n2 · 2−n ·GapK TLT

n ,

RatioK rTLT
n ≥ e−1− 1

3n · n1/2 · RatioK TLT
n .

Thus, we get the table entries as in the introduction. □

Although rTLn is slightly better than TLn in terms of the gap ratio, the fact that it is significantly
worse in terms of RepGap makes it less suitable for cryptographic purposes. Also, rTLn is essentially
semisimple over an arbitrary field, see Remark 4C.2, and for these reasons it may be too easy for
cryptography purposes.
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Remark 4C.5. The behavior of the monoid TLn/category TL is very different in prime characteristic
compared to charK = 0, see e.g. [An19, Sp23, STWZ23] (where we specialize so that the circle
parameter is one in these papers). In contrast, surprisingly, rTLn is characteristic free. 3

5. The rigid Motzkin monoid

In this section we define a non-pivotal version of the Motzkin algebra/monoid as, for example, in
[BH14]. This will be done in a similar way to the previous section, so we will be brief whenever
appropriate.

5A. Definition of rMon. Similarly to rTLn we define:

Definition 5A.1. The rigid Motzkin category rMo has objects the same as those in rTL, and
morphisms defined as partitions of those objects, similarly to rTL, however we also allow parts of
size 1, i.e. we allow unpaired partitions. In diagram form, this would be denoted by a top dot or
bottom dot, generally referred to as dots, as seen in the following example:

1 2 1 0 1 2

1 2 1 0 1 2

.

Composition of diagrams is defined similarly to rTL, for example:

1 2 1 0 1 2

1 2 1 0 1 2

1 2 1 0 1 2

=

1 2 1 0 1 2

1 2 1 0 1 2

.

Everything else, such as the tensor product, tensor unit, duals, etc., are defined in the same way as
in rTL. Finally, the rigid Motzkin monoid is

rMon := EndrMo(12)
⊗n,

where, as before, our object of choice is (12)⊗n. 3

We leave it to the reader to formulate and verify that rMo shares the same categorical properties
as rTL.

5B. Computing cells for rMon. We proceed analogously to rTL:

Lemma 5B.1. Any d ∈ rMon can be written

(5B.2) d = τ ◦ 1α(k) ◦ β

for diagrams τ, β ∈ rMo and some sequence α(k) of length k in 1 and 2, 0 ≤ k ≤ 2n.

Proof. If d ∈ rMon has k through strands, define the sequence α(k) as the sequence of through
strands read from left to right; explicitly, α(k)i = 1 if the ith through strand pairs two 1s, and
α(k)i = 2 if the ith through strand pairs two 2s. For example, the following diagram has the
sequence 12:

1 2 1 2 1 2

1 2 1 2 1 2

.
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Note that, unlike rTLn, the number of through strands can be any integer 0 ≤ k ≤ 2n.

Given the sequence α(k), the result follows via the same argument as that used for Lemma 4B.1,
as once again only the final partition matters when determining the result of a composition. For
example, the above diagram with α(k) = 12 becomes:

1 2 1 2 1 2

1 2

1 2

1 2 1 2 1 2

= τ ◦ 11 2 ◦ β.

The proof is complete. □

Now, for n ≥ 0 fix a sequence of k through strands α(k). Since the diagrams in rMon are planar,
the through strands create an ordered partition of both the top and bottom objects. For the above
example, α(k) partitions the bottom and top object into the blocks [[], [], [1212]] and [[12], [], [12]]
respectively, including the empty blocks.

Denote by ji, 1 ≤ i ≤ k+1, the size of the block to the left of the through strand α(k)i. Then we
have an ordered partition

(5B.3) j1 + j2 + ...jk+1 = 2n− k.

Define a partial order on the sequences α(k) by α(k) ≤ β(k′) ⇐⇒ α(k) is a subsequence of β(k′). Let
kx denote the number of through strands in the diagram x, and α(kx) the corresponding sequence.

Lemma 5B.4. For any diagrams x, y ∈ rMon, α(kx) ≥ α(kxy) and α(kx) ≥ α(kyx).

Proof. This follows by observing that composing two diagrams can never add any through strands,
while they can remove them. Through strands only occur in the composition xy when a number
in the top object of x is connected to a number in the bottom object of y via a continuous line.
Therefore, each through strand in xy is a result of a composition between a through strand in x and
a through strand in y, possibly with some caps and cups in the middle.

This naturally means that there is no way to add any new through strands via composition, since
they each must correspond to a pair of through strands from x, y. In all other cases, the through
strand from x or y will disappear in xy, to become either a cap, cup, or dot, since there is no
continuous line between the top object of x and the bottom object of y.

As a result, the resulting sequence of through strands of xy must be a subsequence of both α(kx)
and α(ky). The diagrams below summarize some of the possible cases for compositions involving
through strands:

1 1 1 2 1 1 2

1 1 1 2 1 1 2

1 1 1 2 1 1 2

=

1 1 1 2 1 1 2

1 1 1 2 1 1 2

.
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1 2 1 2 1 2 1

1 2 1 2 1 2 1

1 2 1 2 1 2 1

=

1 2 1 2 1 2 1

1 2 1 2 1 2 1

.

The general pattern is similar. □

Proposition 5B.5. The cells of rMon have the following properties:

(a) The J-cells of rMon are uniquely determined by the sequence of through strands α(k). That
is, each J-cell is of apex α(k), with a partial order given by the partial order on sequences.

(b) Within each J-cell, sizes of the right and left cells can be found by counting the number of
diagrams when fixing the top respectively bottom half. Explicitly, we have

|Rα(k)
n | =

∑
j1+...+jk+1

=2n−k

k+1∏
i=1

B0
jj

and

|Lα(k)n | =
∑

j1+...+jk+1
=2n−k

k+1∏
i=1

T
jj
0

where the sum is over the partition of through strands (5B.3), and B0
ji

and T ji
0 denote the

number of possible diagrams on the block of the bottom respectively top object of size ji.

(c) Every J-cell of rMon is idempotent.

Proof. Fix a J-cell J , and suppose a, b ∈ J , meaning a ≤lr b and b ≤lr a. This means ∃c, c′, d, d′ ∈
rMon such that b = cad and a = c′bd′.

Using Lemma 5B.1, we have:

Bb

Tb

1α(kb) =

Bd

Td

1α(kd)

Ba

Ta

1α(ka)

Bc

Tc

1α(kc)

= 1α(kb);

Ba

Ta

1α(ka) =

Bd′

Td′

1α(kd′ )

Bb

Tb

1α(kb)

Bc′

Tc′

1α(kc′ )

= 1α(ka).

In the left equation, the middle of the right hand side must resolve to 1α(kb), and since 1α(ka) is
contained within that middle, α(ka) ≥ α(kb) (using Lemma 5B.4. Similarly, α(kb) ≥ α(ka), and thus
α(ka) = α(kb).

Clearly, if α(ka) = α(kb), then a ≤lr b and b ≤lr a, and hence the J-cells of rMon are completely
determined by the sequences of through strands.

The argument for right and left cells is similar. If we have a, b ∈ J , with sequence of through
strands α(k), then the condition for a ∼r b is:
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Bb

Tb

1α(k) =

Bc

Tc

1α(kc)

Ba

Ta

1α(k)

;

Ba

Ta

1α(k) =

Bc′

Tc′

1α(kc′ )

Bb

Tb

1α(k)

.

which shows that a ∼r b ⇐⇒ Ta = Tb, i.e. the top half of the diagrams is the same. Similar
reasoning shows that a ∼l b ⇐⇒ Ba = Bb.

Given this, we know that the through strands of a diagram partition both the top and bottom into
blocks, with sizes given by (5B.3). For a fixed partition, these blocks are independent of each other,
thus the number of diagrams is the product of the number of diagrams within each block. Taking
the sum over all partitions gives the desired result.

Finally, if there are k through strands, the J-cell of apex α(k) contains an idempotent that has
pairs of dots everywhere there are no through strands (in general there are multiple of these for each
sequence of through strands). For example, if n = 3 and α(k) = 122, then the following diagram is
an idempotent in the corresponding J-cell:

1 2 1 2 1 2

1 2 1 2 1 2 .

The general case can be verified similarly. □

Remark 5B.6. In general, we cannot compare all J-cells of rMon, so there is no total order like with
rTLn, only the partial order determined by the sequences of through strands: Jα(k1) < Jα(k2) ⇐⇒
α(k1) is a subsequence of α(k2). As a result, we have a more complicated (or exciting) cell structure,
seen in Figure 4. 3

With this set up, we will continue to focus on the right cells, and the results for the left cells follow
similarly.

Proposition 5B.7. For all m ∈ Z≥0, the number of possible diagrams on the bottom object 1212...
of length m is given by:

(5B.8) A0
m = C

(⌊
m+ 1

2

⌋)
where C(l) denotes the lth Catalan number. Moreover, if instead we have 2121 of length m, then
the number of diagrams is A0

m+2 if m is even and Am+1 if m is odd.

Proof. Let m = 2l be even, and note that A0
0 = 1 (the only option is the empty diagram 11). We

claim that:

(5B.9) A0
2l =

l∑
i=1

A0
2i−2A

0
2l−2i

which is the familiar recurrence relation for the Catalan numbers, so assuming (5B.9), we obtain
A0

2l = C(l) = C(m/2). Observe also that if we consider 1212...121 of length 2l − 1, adding a 2 to
the right changes nothing, since it cannot pair with anything to the left, and there is no 1 to the
right to pair with. Therefore, A0

2l−1 = A0
2l so we finally have A0

m = C
(⌊

m+1
2

⌋)
.

Now, to prove (5B.9), consider the possibilities for the first 2 in 1212...12 (of length 2l):

1 2 1 2 ... 1 2 ... 1 2 1 2
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Figure 4. Left: The cell structure for rMo3. Right: explicit diagrams representing
the single elements of the four J-cells of size 1 for k = 3.

If we pair the first 2 with the ith 1 following that 2, we have 12...12 of length 2i− 2 under the cap,
and 12...12 of length 2l − 2i remaining outside the cap, noting that the interruption where the cap
is placed can be ignored, since the diagram is planar and thus we treat inside and outside the cap
separately. These can be arranged independently in A0

2i−2A
0
2l−2i ways. Setting i = l for the case

where the first 2 remains unpaired, we thus conclude the recurrence relation (5B.9).
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Finally, if we have 1212...12 of length m+2, the first 1 and the final 2 must remain unpaired, so
the number of diagrams A0

m+2 on this object is the same as the number of diagrams on 2121...21 of
length m. In the case 2121...212 of length m (i.e. odd), the final 2 must remain unpaired, so the
number of ways is the same as 2121...21 of length m− 1, which is A0

m+1. □

Consider now the following cases for α(k):

1 2 1 2 ... 1 2 ... 1 2 1 2

α(k)1 = 1

1212 ... 1 2 ... 1 2 1 2

α(k)k+1 = 2

,

,

1 2 1 2 ... 1 2 ... 1 2 1 2

α(k)1 = 2

1212 ... 1 2 ... 1 2 1 2

α(k)k+1 = 1

;

;

1 2 1 2 ... 1 2 ... 1 2 1 2

α(k)i−1α(k)i = 12

1212 ... 1 2 ... 1 2 1 2

α(k)i−1α(k)i = 11

,

,

1 2 1 2 ... 1 2 ... 1 2 1 2

α(k)i−1α(k)i = 21

1212 ... 1 2 ... 1 2 1 2

α(k)i−1α(k)i = 22

;

.

where 2 ≤ i ≤ k + 1. Recall from (5B.3) that the through strands partition the bottom object into
k + 1 blocks of size ≥ 0. Each block is of size ji and corresponds to the block to the left of the ith
through strand, except for block k+1, which corresponds to the block to the right of the kth through
strand. We summarise the above cases for each block, using Proposition 5B.7, in the following table:

Case Block Block Shape No. Diagrams

α(k)1 = 1 j1 even, j1 ≥ 0 12...12 C(j1/2)
α(k)1 = 2 j1 odd, j1 ≥ 1 12...121 C((j1 + 1)/2)

α(k)k+1 = 2 jk+1 even, jk+1 ≥ 0 12...12 C(jk+1/2)
α(k)k+1 = 1 jk+1 odd, jk+1 ≥ 1 21...212 C((jk+1 + 1)/2)

α(k)i−1α(k)i = 12 ji even, ji ≥ 0 21...21 C(ji/2 + 1)
α(k)i−1α(k)i = 21 ji even, ji ≥ 0 12...12 C(ji/2)
α(k)i−1α(k)i = 11 ji odd, ji ≥ 1 21...212 C((ji + 1)/2)
α(k)i−1α(k)i = 22 ji odd, ji ≥ 1 12...121 C((ji + 1)/2)

(5B.10)

Observe that for all even ji, except if α(k)i−1α(k)i = 12, the number of diagrams is equal to C(ji/2),
and for all odd ji, the number of diagrams is equal to C((ji + 1)/2). For this reason, we need the
following lemma.

Lemma 5B.11. Let α(k) be a sequence of k through strands with j occurrences of the block 12.
Then, we have:

(a) all such sequences β(k) with j occurrences of 12 have the same numbers of odd and even
blocks, and

(b) the number of such sequences is equal to
(
k+1
2j+1

)
.

Proof. For part (a), we begin with a sequence α(k) with j 12 blocks, then we show that if we create
a new sequence β(k) by changing a 1 into a 2 or a 2 into a 1, we either preserve the counts outlined
in the proposition, or the number of 12 blocks changes. We have the following cases:

(a) The first number is a 1 and α(k) = 11...12α(k)i≥m+1 where we have only considered up to
the first appearance of a 2 at i = m. Then if we set β(k) = 21...12α(k)i≥m+1, the number
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of 12 blocks hasn’t changed, the first block has changed from even to odd, and the second
block has changed from odd to even. Hence, the required counts remain the same.

(b) The first number is a 2 and α(k) = 22...211...12α(k)i≥m+1.
Then, if β(k) = 12...21...12α(k)i≥m+1 we have increased the number of 12 blocks.

(c) The last number is a 1 and in β(k) we change this 1 into a 2. Then there are two cases:
(i) α(k) = α(k)i≤k−2 21, then if β(k) = α(k)i≤k−2 22, we have changed the final block

from odd to even and changed the second last block from even to odd, leaving the rest
unchanged.

(ii) α(k) = α(k)i≤k−2 11, then if β(k) = α(k)i≤k−2 12, we have increased the number of 12
blocks.

(d) The last number is a 2 and in β(k) we change this 2 into a 1. Then there are two cases:
(i) α(k) = α(k)i≤k−2 22, then if β(k) = α(k)i≤k−2 21, we have changed the final block from

even to odd and changed the second last block from odd to even, so the overall counts
remain unchanged.

(ii) α(k) = α(k)i≤k−2 12, then if β(k) = α(k)i≤k−2 11, we have decreased the number of 12
blocks.

(e) α(k) = α(k)i≤m−11α(k)i≥m+1, and β(k) = α(k)i≤m−12α(k)i≥m+1. Then, there are four
cases:
(i) α(k) = α(k)i≤m−2111α(k)i≥m+2. If β(k) = α(k)i≤m−2121α(k)i≥m+2, then we have

increased the number of 12 blocks.

(ii) α(k) = α(k)i≤m−2112α(k)i≥m+2. If β(k) = α(k)i≤m−2122α(k)i≥m+2, then we have lost
a 12 block in the the m + 1st position and an odd block in the m − 1st position, but
gained a 12 block in the m− 1st position and an odd block in the m+ 1st position, so
the overall counts remain unchanged.

(iii) α(k) = α(k)i≤m−2211α(k)i≥m+2. If β(k) = α(k)i≤m−2221α(k)i≥m+2, then we have lost
an even block in the m − 1st position and an odd block in the m + 1st position, but
gained an odd block in the m− 1st position and an even block in the m+ 1st position,
so the overall counts remain unchanged.

(iv) α(k) = α(k)i≤m−2212α(k)i≥m+2. If β(k) = α(k)i≤m−2222α(k)i≥m+2, then we have
decreased the number of 12 blocks.

(f) α(k) = α(k)i≤m−12α(k)i≥m+1, and β(k) = α(k)i≤m−11α(k)i≥m+1. Then, there are four
cases:
(i) α(k) = α(k)i≤m−2121α(k)i≥m+2. If β(k) = α(k)i≤m−2111α(k)i≥m+2, then we have

decreased the number of 12 blocks.

(ii) α(k) = α(k)i≤m−2122α(k)i≥m+2. If β(k) = α(k)i≤m−2112α(k)i≥m+2, then we have lost
a 12 block in the m− 1st position and an odd block in the m+1st position, but gained
an odd block in the m − 1st position and a 12 block in the m + 1st position, so the
overall counts remain unchanged.

(iii) α(k) = α(k)i≤m−2221α(k)i≥m+2. If β(k) = α(k)i≤m−2211α(k)i≥m+2, then we have lost
an odd block in the m − 1st position and an even block in the m + 1st position, but
gained an even block in the m− 1st position and an odd block in the m+ 1st position,
so the overall counts remain unchanged.

(iv) α(k) = α(k)i≤m−2222α(k)i≥m+2. If β(k) = α(k)i≤m−2212α(k)i≥m+2, then we have
increased the number of 12 blocks.

Hence, since this covers every case for changing a 1 into a 2 or a 2 into a 1 for α(k), we have shown
that the numbers of odd and even blocks remain unchanged if the number of 12 blocks remains
unchanged.

Now, for part (b), consider a sequence α(k) of length k, made only of 1s and 2s, with j occurrences
of the substring 12. Firstly, observe that if j = 0, the number of possible sequences is clearly
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k + 1 =
(
k+1
1

)
, since it’s the number of sequences of the form 22...211...1 (including the sequences

of all 2s and all 1s).

Now suppose 1 ≤ j ≤
⌊
k
2

⌋
. Suppose the first 1 is in the ith position, 1 ≤ i ≤ k − 2j + 1, and

suppose there is a sequence of 1s of length l (including the first 1), 1 ≤ l ≤ k − i− 2j + 1:

k︷ ︸︸ ︷
22...2︸ ︷︷ ︸
i−i

11...11︸ ︷︷ ︸
l

∗ ∗ ∗︸︷︷︸
k−i−l+1

Then, we are placing 2j − 1 1s and 2s (including the first 2 after the 1s) somewhere inside the

remaining sequence of length k − i− l + 1, which can be done in
(
k−i−l+1
2j−1

)
ways.

Thus, the total number of ways is
∑k−2j+1

i=1

∑k−i−2j+2
l=1

(
k−i−l+1
2j−1

)
. Using the Hockey-Stick identity,

we obtain:
k−2j+1∑

i=1

k−i−2j+2∑
l=1

(
k − i− l + 1

2j − 1

)

=

k−2j+1∑
i=1

(
k − i+ 1

2j

)
=

(
k + 1

2j + 1

)
as required. □

Remark 5B.12. Lemma 5B.11 shows that to find the sizes of right cells, we only need to consider
the sequence of the form 1212...122...2, for each number of 12 blocks j, 0 ≤ j ≤

⌊
k
2

⌋
. Furthermore,

we see that the 12 blocks have C(ji/2 + 1) possible diagrams, which is larger than any of the other
blocks, and the number of different partitions (5B.3) also increases as j increases. We prove the
latter fact when discussing the planar rook monoid below (see Proposition 6B.1). Thus, the total
number of possible diagrams increases as j increases, with a minimum at j = 0. This means that
when finding the semisimple RepGap, we will need to focus on the j = 0 case. 3

We denote by Rk,j
n the right cell arising from this particular sequence.

Proposition 5B.13. Fix n ∈ Z≥0, 0 ≤ k ≤ n, and sequence of through strands α(k) with j 12

blocks, 0 ≤ j ≤
⌊
k
2

⌋
. Then, the size of the corresponding right cell is:

(5B.14) |Rk,j
n | =

k−j∑
r=0

(−1)r k − r + 1

2n+ k − r + 1

(
k − j

r

)(
2n+ k − r + 1

n

)
the size of the corresponding left cell is:

(5B.15) |Lk,jn | =
k−j+1∑
r=0

(−1)r k − r + 1

2n+ k − r + 3

(
k − j + 1

r

)(
2n+ k − r + 3

n+ 1

)
and the size of the monoid is:

(5B.16) |rMon| =
2n∑
k=0

⌊ k2⌋∑
j=0

(
k + 1

2j + 1

)
|Rk,j

n ||Lk,jn |.

Proof. We have the sequence
α(k) = 1212...12︸ ︷︷ ︸

2j

22...2︸ ︷︷ ︸
k−2j

creating an ordered partition of the bottom object, with sizes j1, j2, ..., jk+1 such that

j1 + j2 + ...jk+1 = 2n− k.

With reference to the table (5B.10), the blocks of the partition are as follows:

(a) j1 is even, j1 ≥ 0, and the number of possible diagrams in the block is C(j1/2)
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(b) jk+1 is even, jk+1 ≥ 0, and the number of possible diagrams in the block is C(jk+1/2)

(c) j2l is even, j2l ≥ 0, and the number of possible diagrams in the block is C(j2l/2 + 1) for
l = 1, 2, ..., j

(d) j2m+1 is even, j2m+1 ≥ 0, and the number of possible diagrams in the block is C(j2m+1/2)
for m = 1, 2, ..., j − 1

(e) jp is odd, jp ≥ 1, and the number of possible diagrams in the block is C((jp + 1)/2) for
p = 2j + 1, 2j + 2, ..., k

Hence, using Proposition 5B.5, we obtain

|Rk,j
n | =

∑
j1+...+jk+1

=2n−k

C(j1/2)C(j2/2+1)C(j3/2)...C(j2j/2+1)C((j2j+1+1)/2)...C((jk+1)/2)C(jk+1/2).

Now set x1 = j1
2 , x2l =

j2l
2 + 1 for l = 1, ..., j, x2m+1 = j2m+1

2 for m = 1, ..., j − 1, xp =
jp+1
2 for

p = 2j + 1, ..., k, and xk+1 =
xk+1

2 . Then, the above becomes

|Rk,j
n | =

∑
x1+...+xk+1=n

C(x1)C(x2)...C(xk+1).

This is almost the definition of the Catalan k-fold convolution, however we have x2l ≥ 1 and xp ≥ 1 for
l = 1, ..., j and p = 2j +1, ...k, so we instead need an alternating sum of Catalan k-fold convolutions
(noting that C(0) = 1):

|Rk,j
n | =

∑
x1+...+xk+1=n

xi≥0

C(x1)...C(xk+1)−
(
k − j

1

) ∑
x1+...+xk+1=n

xi≥0
x2=0

C(x1)...C(xk+1)

+... + (−1)k−j

(
k − j

k − j

) ∑
x1+...+xk+1=n

xi≥0
x2l,xp=0

C(x1)...C(xk+1)

where in each term we have set r of the k − j xi that are ≥ 1 to zero, noting that the formula will
remain the same regardless of which we choose, so we can simply multiply by a binomial coefficient.
From [LS25, Proposition 1.2], the formula for the Catalan k-fold convolution is∑

m1+...mk=n
mi≥0

C(m1)...C(mk) =
k

2n+ k

(
2n+ k

n

)

which finally gives

|Rk,j
n | =

k−j∑
r=0

(−1)r k − r + 1

2n+ k − r + 1

(
k − j

r

)(
2n+ k − r + 1

n

)
as required. The argument for left cells is similar.

Finally, observe that if we fix the sequence α(k), the top half and bottom half of the diagrams
become independent of each other. Thus, the number of possible diagrams in the monoid for each
sequence α(k) is the number of bottom half diagrams multiplied by the number of bottom half
diagrams, then to find the total |rMon| by taking the sum over all sequences α(k), then another sum
over all k, 0 ≤ k ≤ 2n.

Using Lemma 5B.11, we can then simplify this to give

|rMon| =
2n∑
k=0

⌊ k2⌋∑
j=0

(
k + 1

2j + 1

)
|Rk,j

n ||Lk,jn |.

□
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5C. Semisimple RepGap and gap ratio of rMon. As we have seen above, although rMon can
largely be treated in the same way as Mon, certain differences make rMon more intricate. This trend
will continue in this section.

Remark 5C.1. By Lemma 2A.10, the semisimple RepGap is an upper bound for the RepGap, and
we will see that this upper bound alone is enough to determine that rMon is less suitable for
cryptography than Mon. It is worth noting, however, that this upper bound is strictly larger than
the RepGap.

Using [Tu24, Proposition 2D.7], we can compute the dimensions of the simple representations by
computing the ranks of corresponding Gram matrices. Setting n = 3 and k = 2, we obtain ranks
4, 5, 5, and 12, in increasing order of dimension (using GAP). The semisimple dimension can be easily
computed via Proposition 5B.13, which gives 5 for j = 0 and 14 for j = 1.

This shows first and foremost that the RepGap is strictly smaller than the semisimple RepGap in
general, and it also reveals that there are further distinguishing features of the sequence of through
strands apart from simply the number of 12 pairs when we are at the level of simple representations.
In this case, the minimal simple dimension corresponds to the sequence 21. 3

We now compute the asymptotics of the semisimple RepGap for rMon. Using Mathematica, we
can simplify the equations from Proposition 5B.13 for the sizes of the left and right cells to:

|Rk,j
n | =

k + 1

2n+ k + 1

(
2n+ k + 1

n

)
2F1(j − k,−1− k − n,−k − 2n, 1)

+
k − j

2n+ k

(
2n+ k

n

)
2F1(j − k + 1,−k − n, 1− k − 2n, 1),

|Lk,jn | =
k + 1

2n+ k + 3

(
2n+ k + 3

n+ 1

)
2F1(j − k − 1,−2− k − n,−2− k − 2n, 1)

+
k − j + 1

2n+ k + 2

(
2n+ k + 2

n+ 1

)
2F1(j − k,−1− k − n,−1− k − 2n, 1).

Here, and throughout, 2F1 denotes the hypergeometric series:

2F1(a, b, c, z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
.

where (x)n = x(x+1)(x+2)...(x+n−1) is the Pochhammer symbol or rising factorial. In particular,
for m > 0,

(5C.2) 2F1(−m, b, c, z) =
m∑

n=0

(−1)n
(
m

n

)
(b)n
(c)n

zn

Note that, in our case, c ∈ Z<0, which creates some difficulties, as explained in the following remark:

Remark 5C.3. Typically, one leaves Pochhammer symbols undefined for negative integers, and Gauss’
hypergeometric series undefined for negative integers c. However, we are able to extend both to
negative integers in this case.

Firstly, for x ∈ Z>0, define (−x)n = (−x)(−x + 1)...(−x + n − 1). It’s easy to see that (−x)n =
(−1)n

∏n
r=0(x− r) = (−1)n(x− n+ 1)n, allowing us to return to the familiar Pochhammer symbol.

With this, noting that (−x)n = 0 if n > x, we obtain the finite sum (5C.2).

2F1(a, b, c, z) has been defined in some cases where c ∈ Z<0, when a < 0 or b < 0, such as for
Krawtchouk polynomials (introduced in [Kr29], later reformulated in terms of the hypergeometric
function [AW85, Appendix]). Some work has also been done towards generalizing this in [Gr17].
In our case, we can simply consider 2F1(−m, b, c+ ϵ, z) for some small ϵ > 0, then take the limit as
ϵ→ 0. Since all our sums are finite, we can write our arguments without the ϵ, implicitly assuming
we are taking limits. 3

Next we have the Chu–Vandermonde identity for the hypergeometric series.
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Lemma 5C.4. Let m ∈ Z>0 and b, c such that m+ c− 1 ̸= 0. Then

2F1(−m, b, c, 1) =
(c− b)m
(c)m

.

Proof. This is probably well-known, but we were not able to find a reference, so we give a proof. We
follow the proof from [Si05], which uses the method of Wilf–Zeilberger pairs. Define:

f(m) :=
(c)m

(c− b)m
2F1(−m, b, c, 1) =

m∑
k=0

(−m)k(b)k(c)n
k!(c)k(c− b)n

We also define for 0 ≤ k ≤ m:

F (m, k) =
(−m)k(b)k(c)m
k!(c)k(c− b)m

G(m, k) =
k(1− c− k)

m(m+ c− 1)

and

H(m, k) = F (m, k)G(m, k).

Then, we have the following equalities (noting that F (m, k) ̸= 0):

F (m, k)− F (m− 1, k)

F (m, k)
=

(−m)k(b)k(c)m − (−m+ 1)k(b)k(c)m−1(c− b+m− 1)

(−m)k(b)k(c)m

=
(m− k)(c+m− 1)−m(c− b+m− 1)

(m− k)(c+m− 1)

=
bm+ k(c− b+m− 1)

m(c+m− 1)

and

F (m, k + 1)G(m, k + 1)

F (m, k)
−G(m, k) =

(−m)k+1(b)k+1(c)k
(−m)k(b)k(c)k+1

(−c− k)

m(m+ c− 1)
+

k(k + c− 1)

m+ c− 1

=
(m− k)(b+ k) + k(k + c− 1)

m(m+ c− 1)

=
bm+ k(c− b+m− 1)

m(c+m− 1)
.

Thus, F (m, k)−F (m− 1, k) = F (m, k+1)G(m, k+1)−F (m, k)G(m, k) = H(m, k+1)−H(m, k),
and therefore

f(m)− f(m− 1) =
m∑
k=0

F (m, k)− F (m− 1, k) =
m∑
k=0

H(m, k + 1)−H(m, k).

The sum on the right is a telescoping sum that resolves to H(m,m + 1) − H(m, 0), and observing
that

(−m)m+1 = (−m)(−m+ 1)...(−m+m− 1)(−m+m) = 0 =⇒ F (m,m+ 1) = 0

and
0(1− c− 0)

m(m+ c− 1)
= 0 =⇒ G(m, 0) = 0

gives that f(m)− f(m− 1) = 0.

Hence, f(m) is constant for all m ∈ Z>0, so f(m) = f(0) = 1, and finally we rearrange

1 =
(c)m

(c− b)m
2F1(−m, b, c, 1)

to give the desired result. □

Remark 5C.5. Typical proofs of the Chu–Vandermonde identity use Gauss’ hypergeometric theorem
(see e.g. [AAR99, Corollary 2.2.3]), however these all require that Re(c − a + b) > 0, which is
insufficient for our purposes, hence the alternate, more general proof. 3
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Using Lemma 5C.4 and (−x)n = (−1)n(x−n+1)n, noting that the conditions in the lemma hold
for all the hypergeometric series involved in the simplification above, we can rewrite our formulas for

|Rk,j
n | and |Lk,jn | in terms of Pochhammer symbols of nonnegative integers, which have much more

straightforward asymptotic behavior.

|Rk,j
n | =

k + 1

2n+ k + 1

(
2n+ k + 1

n

)
(1 + j − k + n)k−j

(2 + j + 2n)k−j−1

+
k − j

2n+ k

(
2n+ k

n

)
(2 + j − k + n)k−j−1

(2 + j + 2n)k−j−2

=
(1− j + 2k)Γ(1 + j + 2n)

Γ(1 + j − k + n)Γ(2 + k + n)
,

|Lk,jn | =
k + 1

2n+ k + 3

(
2n+ k + 3

n+ 1

)
(n− k + j)k−j+1

(2n+ j + 2)k−j+1

+
k − j + 1

2n+ k + 2

(
2n+ k + 2

n+ 1

)
(n− k + j + 1)k−j

(2n+ j + 2)k−j

=
(2− j + 2k)Γ(2 + j + 2n)

Γ(1 + j − k + n)Γ(3 + k + n)
.

As with Mon, we truncate rMon to include the bulk of the monoid, while ensuring the repre-
sentations grow sufficiently quickly. Since they have similar shapes, we truncate at the same point:
k ≤ 2

√
2n. See Figure 5.

Figure 5. Left: the semisimple dimension over k, for n = 100, with a vertical line
showing the rightmost truncation endpoint. Right: A Log10 version of the same
graph.

We again denote this truncated monoid by rMoTn .

Theorem 5C.6. We have the following.

π−1/2e−
1
n · n−3/2 · 4n ≤ ssGapKrMoTn ≤ 4

√
2π−1/2e−

1
n · n−1 · 4n ,

π−1/2e−
1
n · n−3/2 ≤ ssRatioKrMoTn ≤ 4

√
2π−1/2 · n−1 .

Proof. We use the right cells and set j = 0 for the semisimple RepGap, since that gives the minimal

cell size. For fixed n over 0 ≤ k ≤ 2
√
2n, (1+k)Γ(1+2n)

Γ(1−k+n)Γ(2+k+n) has a maximum somewhere strictly in

0 < k < 2
√
2n, and is monotone increasing from 0 to the maximum, and monotone decreasing after

the maximum to 2
√
2n. The minimum will therefore be at one of k = 0 or k = 2

√
2n.
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Using Stirling’s approximation for the Gamma function, we get:

|Rk,j
n | ∼

e√
2π

(1− j + 2k)(j − k + n)−1/2−j+k−n(1 + k + n)−3/2−k−n(j + 2n)1/2+j+2n

∼ 2j+n(1− j + 2k)

n3/2
√
π

e−
j+j2−4jk+4(1+k+k2)

4n

≥ 4ne
−8− 1

n
− 2

√
2√
n

n3/2
√
π

(4
√
2n+ 1), substituting j = 0 and k = 2

√
2n,

or ≥ 4ne−
1
n

n3/2
√
π
, substituting j = 0 and k = 0.

The ratio of the k = 0 case to the k = 2
√
2n case asymptotically approaches e

8+ 2
√
2√
n /(1 + 4

√
2n),

which approaches 0, so our lower bound is 4ne−
1
n /n3/2√π.

The upper bound comes directly from the asymptotic computed by Mathematica, 2j+2n(1 − j +

2k)/n3/2√π, substituting j = 0 and k = 2
√
2n. j = 0 is to ensure we are still comparing the smallest

cells for each k, and it’s easy to see that this asymptotic is maximal at k = 2
√
2n within the bounds

of the truncated monoid.

To compute the asymptotic of |rMoTn |, we first obtain a lower bound using the method in Re-

mark 3A.4. Take k = 2
√
2n, which is not the maximum of

(
k+1
2j+1

)
|Rk,j

n ||Lk,jn | for fixed j and n,

however it is close. Then, obtaining the asymptotic of the summand via Stirling’s approximation
and Mathematica, we obtain

43+2ne
−16− 6

√
2√
n

n2π
(1 + 2

√
2n)2F1(

1

2
−
√
2n,−

√
2n,

3

2
, 4e

4
√
2√
n )

∼ 31+2
√
2n41+2ne

− 32
3
− 6

√
2√
n (
√
2 + 4

√
n)n−5/2π−1/2,

which has the exponential factor 16n. Thus, |rMoTn | ≥ 16n.

For the upper bound, we do the same thing with Stirling’s approximation, except without taking
k =
√
2n:(

k + 1

2j + 1

)
|Rk,j

n ||Lk,jn | ∼
21+2j+4n(−1 + j − 2k)(j − 2(1 + k))

n3π
e−

(7+(j−2k)2+6k
2n

(
1 + k

1 + 2j

)
.

The maximum of e−((7+(j−2k)2+6k)/2n is e−7/2n. Thus, taking the sum over 0 ≤ j ≤
⌊
k
2

⌋
and

0 ≤ k ≤ 2
√
2n, then taking the asymptotic in Mathematica, we obtain:

|rMoTn | ≤ O

(
25× 21+4n × 9

√
2n

n2π

)

which clearly has exponential growth factor 16n. Therefore, Ω(16n) ≤ |rMoTn | ≤ O(16n).

Using 16n as the size of the monoid, the semisimple gap ratio follows easily using the upper bounds
of the semisimple RepGap already obtained. □

Remark 5C.7. The asymptotic of the nth root of |rMoTn | is 16, however, unlike for rTL and the
pivotal planar monoids, this is significantly smaller than the size of the full monoid. Since |rMon| is
monotone increasing in n, we can use a direct calculation in Mathematica for n = 500 to see that 20
is a lower bound for the limit of |rMon|1/n as n→∞.

The reason for this discrepancy comes from the peculiar cell structure of rMon, which results in

a large number of small cells. For Rk,0
n , n fixed, the peak over k is significantly different to the peak

over k of the monoid size |rMokn| =
∑⌊ k2⌋

j=0

(
k+1
2j+1

)
|Rk,j

n ||Lk,jn |. This is visualized in Figure 6. Due to

this, the size of the truncated monoid is relatively small, since we need to truncate where the peak
of the right cells are.
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Figure 6. Left: the bulk of the monoid rMon, with the rightmost truncation end-
point marked by a vertical line, showing the truncation is much smaller than the
monoid size. Right: A Log10 version of the same graph.

This also reveals that the asymptotic of the nth root of the ratio of the RepGap to the square
root of the size of the monoid is less than 1, in contrast with the pivotal diagram monoids. There-
fore, the simple representations are significantly smaller than their upper bound, in the context of
Remark 2B.3. While truncating the monoid does result in a (semisimple) gap ratio of ∼ 1, we also
lose the bulk of the monoid. 3

Combining this with Theorem 3A.3, we have the following conclusion:

Corollary 5C.8. Assume charK = 0. For all ϵ > 0 and sufficiently large n,

Ω
(
(4− ϵ)n

)
≤ ssGapKrMoTn ≤ O

(
(4 + ϵ)n

)
< Ω

(
(9− ϵ)n

)
≤ GapKMoTn ,

Ω
(
(1− ϵ)n

)
≤ ssRatioKrMoTn ≤ O

(
(1 + ϵ)n

)
∋ RatioKMoTn .

Thus, we get the table entries as in the introduction. □

Therefore, rMon is significantly less suitable for cryptographic purposes than its pivotal counter-
part, since the semisimple gap is much worse, and the semisimple gap ratio is at best the same, up to
the exponential factor. Since the semisimple dimension is an upper bound for the simple dimension,
and in light of Remark 5C.1, we expect the RepGap and gap ratio to be even worse.

Figure 7. Visual comparison of the RepGaps between the non-pivotal and pivotal
Motzkin monoid, on a Log10 plot.
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Remark 5C.9. As before, the characteristic assumption in Corollary 5C.8 is needed for Mon itself.
Indeed, the Motzkin category is Schur–Weyl dual to sl2 [BH14, CG23], similarly to the Temperley–
Lieb category but with a different generating representation (namely the vector plus the trivial
representation), so the same comment as in Remark 4C.5 applies. 3

6. The “rigid” planar rook monoid

The planar rook monoid and its associated category have been discovered many times, see, e.g.,
[So02, KS15], and we will now define a non-pivotal version of it.

6A. Definition of rpRon. The planar rook monoid has no duals so it is naturally not possible to
define a non-pivotal analog. We instead define it as follows, which is more of a two-color variant of
the planar rook monoid:

Definition 6A.1. The “rigid” planar rook category (we drop the quotation marks from now
on) rpRo is the subcategory of rMo that contains only through strands and dots. As before,

rpRon := EndrpRo(12)
⊗n,

is the rigid planar rook monoid. 3

Remark 6A.2. Like the planar rook monoid, the planar symmetric monoid (the trivial group) also
has no rigid analog, however the two-color submonoid of rTLn consisting of only through strands is
isomorphic to the usual version, so we omit it from the discussion. 3

Remark 6A.3. Inspired by the rigid planar rook monoid, it is potentially worth investigating two-
color or n-color versions of the other diagram monoids, as somewhat of an intermediate between
pivotal and rigid. 3

6B. Computing cells for rpRon. The arguments for the rigid planar rook monoid, rpRon, are
very similar to those used for rMon.

We find the sizes of the left and right cells of rpRon via the same partition method used for rMon,
however, it is much easier since each block has only one possible diagram (all dots). Moreover, there
is no longer a difference between the left and right cells.

Proposition 6B.1. For each n, number of through strands k, and number of occurrences j of 12 in
the sequence of through strands α(k), the sizes of the left and right cells are:

|Lk,j
n | = |Rk,j

n | =
(
n+ j

k

)
.

Furthermore, we have

|rpRon| =
2n∑
k=0

⌊ k2⌋∑
j=0

(
k + 1

2j + 1

)(
n+ j

2

)2

.

Proof. Since each block only has one possible diagram, the count simply becomes the number of
partitions j1 + ... + jk+1 = 2n− k. Using the results from rMon, we know that j1, jk+1, and jm for
m = 2, 3, ...2j are all even, and the remaining k − 2j are odd. Therefore, we can write ji = 2yi for
i = 1, 2, ..., 2j, k+1, and ji = 2yi+1 for i = 2j+1, ...k, where each yi ≥ 0. So, the partition becomes:

2y1 + 2y2 + ...2y2j + 2y2j+1 + 1 + ...2yk + 1 + 2yk+1 = 2n− k =⇒ y1 + ...yk+1 = n− k + j.

Hence, |Lk,jn | = |Rk,j
n | is just the number of weak compositions of n − k + j into k + 1 parts, which

is, by, for example, [Bo16, Theorem 5.2]:(
n− k + j + k + 1− 1

k + 1− 1

)
=

(
n+ j

k

)
.

The final equation for |rpRon| follows from the exact same argument used for |rMon|. □
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Remark 6B.2. Once again, like in rMon, the sizes of the right cells (and left cells) increase with the
number of 12 blocks, meaning we need to focus on the j = 0 case for the RepGap. Moreover, this
proves the fact used previously in Remark 5B.12 that the number of different partitions increases as
j increases. As seen in Figure 8, we have a similar cell structure to rMo. 3

Figure 8. Left: The cell structure for rpRo3. Right: explicit diagrams representing
the single elements of the four J-cells of size 1 for k = 3.

6C. RepGap and gap ratio of rpRon. The key difference between rpRon rMon is that rpRon is
semisimple, and this follows from the following.

Proposition 6C.1. The right representations ∆
R

α(k)
n

are all simple, and form a complete list of the

simple right representations of rpRon, up to isomorphism.

Proof. The argument is very similar to that used for rTLn. Fix a sequence of through strands α(k)

and the corresponding J cell J
α(k)
n . Then we have right representations ∆

R
α(k)
n

. Let W be a nontrivial

subspace of ∆
R

α(k)
n

such that they are nonequal, and let w ∈ basis(W ). w = Tw ◦ 1α(k) ◦ Tb, using

Lemma 5B.1. Define x ∈ R
α(k)
n \ basis(W ) by x = Tx ◦ 1α(k) ◦Bx such that Bx ̸= By for any y ∈W ,

and Tx = B∗
w, where

∗
− denotes the anti-involution of the diagram Bw ∈ rMo that flips the diagram

upside down (see [Tu24] for more details on ∗
−).

Then, in the middle, each through strand and dot in Bw perfectly lines up with their counterpart
in Tx, resulting in the exact same sequence of through strands. Furthermore, Tw remains the same.

Therefore, xw = Tw ◦ 1α(k) ◦ Bx ∈ R
α(k)
n , so xw ̸= 0, however due to the definition of Bx we have

xw /∈W , and hence W cannot be rpRon-invariant. This is illustrated below:
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Bx

Tx

1α(k)

Bw

Tw

1α(k)

=

Bx

Tw

1α(k)

1α(k)

... =

Bx

Tw

1α(k) /∈W.

Finally, the fact that this is all the simple representations of rpRon follows from the classification
Theorem 2A.9. □

Remark 6C.2. The above proposition applies to left representations as well, as the arguments used
apply similarly to multiplication on the left. 3

Corollary 6C.3. rpRon is semisimple over (arbitrary) K. □

Proof. Every J-cell is idempotent by the same argument used in Proposition 5B.5 (in fact we con-
struct the same idempotents) and every J-cell is square, by Proposition 6B.1. Finally, combining
these facts with Proposition 6C.1 and Proposition 2A.11 proves that rpRon is semisimple over K. □

As with pRon, we truncate rpRoTn := rpRo
n
2
−
√
2n≤k≤n

2
+
√
2n

n . See Figure 9.

Figure 9. Left: the dimension of the simple representations over k, for n = 200,
with vertical lines marking the truncation end points. Right: A Log10 version of the
same graph.

Theorem 6C.4. The asymptotics of the RepGap and gap ratio of rpRoTn have the following inequal-
ities:

√
2π−1/2e−4− 16

3n · n−1/2 · 2n ≤ GapK rpRoTn ≤
√
2n−1/2π−1/2 · 2n ,

RatioK rpRoTn ≤ 23n/233n/45−5n/4 ≈ 0.87n .

Proof. As with rMo, we take j = 0 to get the minimal dimension of the representations.

The upper bound of the RepGap corresponds to k = n
2 , i.e. the maximum of the binomial

(
n+0
k

)
.

The lower bound corresponds to k = n
2−
√
2n, i.e. one of the endpoints of the truncated monoid. Since

these are straightforward binomial coefficients, we can easily find their asymptotics in Mathematica.
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For the ratio, to obtain the upper bound we consider the maximal RepGap, i.e. when k = n
2 .

Clearly,
√
|rpRoTn | ≥

(5n/4
n/2

)
, where we have taken only the summand, and substituted j = k

2 and

k = n
2 . Then, we have an upper bound for the gap ratio

RatioK rpRoTn ≤
(

n

n/2

)
/

(
5n/4

n/2

)
∼ 23n/233n/45−5n/4

using Mathematica again for the asymptotic. □

Remark 6C.5. As with rMo, the truncated monoid is much smaller than the full monoid, since the
location of the right cell peak is different to the location of the monoid peak, over k through strands,
seen in Figure 10. We can again find a lower bound for the asymptotic of |rpRon|1/n by observing

Figure 10. Left: the bulk of the monoid rpRon, with truncation endpoints marked
by vertical lines, showing the truncation is much smaller than the monoid size. Right:
A Log10 version of the same graph.

that it is monotone increasing in n, and calculating the result for n = 500 in Mathematica. We
therefore have |rpRon| ≥ Ω(8.9n), meaning we once again have the nth root of the ratio of the
RepGap to the square root of the size of the monoid being less than 1. 3

Remark 6C.6. The upper bound for the gap ratio is quite coarse, since we are picking only one
(non-maximal) term in the double sum that makes up |rpRoTn |. As a result, rpRon is significantly
worse for cryptographic purposes than pRon. In fact, since the gap ratio tends to zero exponentially
with n, rpRon is substantially worse than all other diagram monoids that appear in this paper. 3

Corollary 6C.7. For sufficiently large n:

GapK rpRoTn ≤
√
2e2+

1
3n · 2−n ·GapK pRoTn ,

RatioK rpRoTn ≤ π1/4e2+
1
3n · n1/4 · 0.87n · RatioK pRoTn .

Thus, we get the table entries as in the introduction. □
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Figure 11. Visual comparison of the RepGaps between the non-pivotal and pivotal
planar rook monoid, on a Log10 plot.

Figure 12. Visual comparison of the gap ratios between the non-pivotal and pivotal
planar rook monoid, on a Log10 plot.
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