
ar
X

iv
:2

50
5.

05
84

3v
1

 [
cs

.C
R

]
 9

 M
ay

 2
02

5

Enhancing Noisy Functional Encryption for
Privacy-Preserving Machine Learning

Linda Scheu-Hachtel and Jasmin Zalonis

Univerity of Mannheim, Mannheim, Germany
{linda.scheu-hachtel, zalonis}@uni-mannheim.de

Abstract. Functional encryption (FE) has recently attracted interest
in privacy-preserving machine learning (PPML) for its unique ability to
compute specific functions on encrypted data. A related line of work
focuses on noisy FE, which ensures differential privacy in the output
while keeping the data encrypted. We extend the notion of noisy multi-
input functional encryption (NMIFE) to (dynamic) noisy multi-client
functional encryption ((Dy)NMCFE), which allows for more flexibility
in the number of data holders and analyses, while protecting the privacy
of the data holder with fine-grained access through the usage of labels.
Following our new definition of DyNMCFE, we present DyNo, a con-
crete inner-product DyNMCFE scheme. Our scheme captures all the
functionalities previously introduced in noisy FE schemes, while being
significantly more efficient in terms of space and runtime and fulfilling a
stronger security notion by allowing the corruption of clients.
To further prove the applicability of DyNMCFE, we present a protocol
for PPML based on DyNo. According to this protocol, we train a privacy-
preserving logistic regression.

Keywords: (Noisy) Multi-Client Functional Encryption · Differential Privacy ·
Privacy-Preserving Analysis.

1 Introduction

Privacy-preserving machine learning (PPML) is crucial for extracting insights
from large datasets in sensitive domains like finance, healthcare, and social re-
search. The necessity to protect the privacy of the data holders sparked an
extensive research in PPML.

In this work, we consider a medical-inspired scenario, applicable to other
contexts as well. We assume the presence of a trusted authority, e.g., an ethics
committee, that provides a platform for PPML, for example as a sub-feature of
an eHR app [44]. On this platform, data holders with sensitive information can
voluntarily register to participate in analyses. Analysts can also register, initiate
new studies, and invite data holders to contribute their data securely.

As an example, assume an analyst wants to train a model to predict risk
factors for lung cancer. They can open an analysis with requested attributes

https://arxiv.org/abs/2505.05843v1

2 L. Scheu-Hachtel and J. Zalonis

"age", "smoker", "BMI", "chronic disease" and "lung cancer". Then, the data
holders can submit their personal data for these requested attributes to the
analyst, who stores the data under some pre-determined label, or decline/ignore
the request. Once enough data is provided, the analyst and other interested
parties in the same attributes can run their analysis. However, we assume all of
the data holders will only participate if:

i) They only have to provide their data and not actively engage in the analysis.
ii) Their privacy remains protected.

Additionally, we assume that the authority has limited resources and should
not receive the plaintexts or learn the result of the analysis. To address ii), we
must not only protect the plain data, ensuring input privacy, but also require
additional measures to safeguard output privacy, as the analysis results may leak
information [13].

The only common approach to obtain both directly is local differential privacy
(LDP) [38]. LDP perturbs data at its source, either through randomized response
or addition of noise, such that the original values cannot be determined. This
way, the perturbed data can be collected on a public sever, where any analyst
can use it without further user involvement. However, this approach requires
an enormous amount of perturbation, which severely impacts the utility of any
model trained on such data [30, 40].

Therefore, a lot of research focuses on techniques combining mechanisms
providing input privacy with global differential privacy (GDP) [20]. Unlike LDP,
GDP perturbs the analysis output rather than the raw data, resulting in lower
utility loss. A widely used GDP-based approach for PPML is federated learning
(FL) [31], but since the raw data remains untouched, additional protection is
required when data is outsourced. Other common approaches for PPML com-
bining input privacy with GDP are based on multi-party computation (MPC)
[25, 26, 51] and (fully) homomorphic encryption ((F)HE) [24, 27, 28], each of-
fering different trade-offs discussed in Section 3.

Recently, functional encryption (FE) [41, 49, 14], has been widely discussed
to be helpful in PPML. FE overcomes the all-or-nothing decryption limitations
of standard encryption schemes, as it provides designated decryption keys. A
decryption key dkf is associated with a specific function f and instead of de-
crypting directly to the plain input, the decryption key applied to the ciphertext
only reveals the decryption of f(x) and nothing more. Further, it allows to out-
source some of the computational overhead to the analyst, which is necessary
if the trusted party has limited resources and the data holders are not actively
involved, i.e. i) is fulfilled.

Zalonis et al. [50] introduced the notion of noisy multi-input functional en-
cryption (NMIFE), which is a method to combine GDP and multi-input func-
tional encryption (MIFE). The idea is to equip the functional decryption key
dkf with a noise value ν sampled according to some distribution to obtain
f(x1, . . . , xn) + ν instead of f(x1, . . . , xn). By choosing an appropriate distri-
bution, this is enough to realize GDP. The security of NMIFE schemes ensures
that the decryption key does not leak anything about the noise value.

Enhancing Noisy FE for PPML 3

Unfortunately, while a lot of research in FE aims to realize arbitrary func-
tions, i.e., general circuits, these techniques require heavy tools such as indistin-
guishability obfuscation or polynomial hardness of assumptions on multilinear
maps [12, 23, 48]. As a result, these schemes are far from being practical. Cur-
rently, efficient (N)MIFE schemes are only feasible for specific families of func-
tions, namely linear functions [6, 17, 39] and quadratic functions [11, 5]. However,
all of the latter require pairings on bilinear groups, making them rather slow.
Thus, we focus on linear functions, which can already be used for many applica-
tions. Specifically, we present a protocol leveraging ideas from FL, which allows
the training of, e.g., linear or logistic regression models.

To meet the requirements of the use case presented above, we extend the def-
inition of NMIFE to noisy multi-client functional encryption (NMCFE), similar
as from MIFE to multi-client functional encryption (MCFE) [15], to achieve a
stronger security notion and inherit additional benefits relevant to our scenario.
Unlike NMIFE, NMCFE equips each ciphertext with an additional label. Only
those ciphertexts encrypted under the same label can be combined. This enables
a more fine-grained access as it prevents the combination of ciphertexts with dif-
ferent labels and thus mitigates mix-and-match attacks. In our scenario, these
labels could refer to the name of the study or dataset, but could also be time
stamps for a long-term medical study. Additionally, in contrast to NMIFE, the
security of NMCFE allows clients to be corrupted, i.e., the adversary may pos-
sess the encryption keys of corrupted clients without compromising the security
and privacy of the remaining clients.

We further extend NMCFE to a dynamic setting, where data holders can
dynamically register to be part of the dynamic NMCFE (DyNMCFE) for future
analysis or drop out without the need to set up a new scheme any time the
participants change. As all analyses remain within the same scheme and are
overseen by one trusted party, e.g. an ethical committee, this party can easily
keep the privacy loss of each participating data holder under control.

With DyNMCFE, we obtain a perfectly tailored primitive to our described
scenario. We present a concrete, efficient scheme that supports linear functions.
Like all other (MI)FE schemes supporting GDP, it only allows one encryption per
client. By using labels, we allow one encryption per client-label pair, effectively
enabling multiple encryptions per client across different labels. This may still
seem like a limitation, however when training ML models using a predefined
dataset is common, especially in a medical context and when combining ML
with GDP. Therefore if we assume that each client submits its data with specific
attributes only once to a dataset associated with a given label, allowing multiple
encryption per slot is unnecessary.

Contributions Our contributions are the following.
– We formalize the notion of DyNMCFE and its security. This is a natu-

ral combination from regular MCFE and the definition of NMIFE provided
in [50] enhanced to a dynamic setting. In particular, we achieve a stronger
security notion as NMIFE, as we allow the dynamic registration of clients
and corruptions.

4 L. Scheu-Hachtel and J. Zalonis

– We provide a protocol capturing the described scenario above using DyN-
MCFE for linear functions as our main cryptographic building block. This
protocol ensures both input and output privacy and can be used to realize
efficient PPML.

– Following our new definition and requirements for the protocol, we present
DyNo, an efficient DyNMCFE scheme for inner-product functionality, allow-
ing for a polynomial number of clients. Its security solely relies on a pseudo-
random function (PRF). This construction is sufficient to provide GDP and
more efficient than any previous noisy FE scheme for inner-product func-
tionality. Tested on datasets of different sizes, our implementation operates
in milliseconds, whereas concurrent schemes take seconds, if not minutes or
hours.

– In addition, we use our protocol to train a differentially private logistic re-
gression on encrypted data, which satisfies input as well as output privacy.
This is the first logistic regression realized by an inner-product FE scheme.

Outline The paper is structured as follows. In Section 2, we present the necessary
background on DP and the private gradient descent (GD) algorithm. Section 3
gives an overview and comparison of different approaches to realize PPML and
their suitability for the specific scenario described above. The class of DyNM-
CFE is introduced in Section 4. We propose the protocol for our application in
Section 5. Based on the requirements, we present our concrete linear DyNMCFE
construction in Section 6. Section 7 contains the benchmarking of our scheme
as well as the results of the trained logistic regression. We conclude this work in
Section 8.

1.1 Related Work

Noisy Functional Encryption Bakas et al. [8, 9] were the first to combine FE and
DP. They used the construction of [4] for inner-product MIFE to obtain GDP
queries to an encrypted database. However, they only considered the aggregated
sum and not weighted sums. Moreover, they lack a proper security definition for
incorporating noise in the decryption key.

Zalonis et al. [50] filled this gap by introducing noisy FE together with the
notion of noise-hiding security and a tailored correctness definition. In partic-
ular, noise-hiding allows for the function to be known by the decryptor, but it
demands the noise to be hidden. This relaxation from function-hiding, where the
decryption key leaks nothing about the function itself, allowed them to transform
a function-hiding into a more efficient noise-hiding scheme. This scheme allows
only one message to be encrypted per client, which is already sufficient for their
discussed use case of PPML. However, their scheme is still based on pairings,
which are known to be slow. Compared to our construction, their approach is
less efficient in both size and runtime and neither supports the corruption of
clients nor the dynamic generation of encryption keys.

In an independent work, Escobar et al. [21] also combined GDP and FE.
They consider an encrypted dataset to which an adversary may pose queries

Enhancing Noisy FE for PPML 5

via an FE scheme. Their security definition is coined on computational DP, i.e.,
an adversary cannot efficiently distinguish between the outputs of the queries
on neighboring datasets. Our security definition, extended from [50], is much
broader, as it only considers GDP as a use case. Moreover, we consider the
multi-client setting, whereas they only have a single data holder encrypting the
whole dataset. Note that this is also covered by our definition if we set the
number of clients to be one.

A comparison between our scheme and the schemes from Zalonis et al. and
Escobar et al. in size of the master secret key msk, the encrypted database X
with n plaintext of size m and decryption key dk can be found in Table 1. Here,
G,G1 and G2 are cyclic groups of order q and | · | denotes the size of their
elements. We ignore public information such as the function embedded inside
the decryption key, the associated label and client, as those are negligible and
part of any protocol. Also, we stress that all of these schemes only allow the
encryption of one ciphertext per data holder.

Table 1. Comparison of sizes of all current FE schemes for data in Zq realizing GDP,
where n is the number of data holders, m is the vector length of the data and λ the
security parameter.

|msk| |Enc(X)| |dk|
[50] n(m+ 3)|G2| n(m+ 5)|G1| (m+ 5)|G2|
[21] 3λ (nm+ 2)|G| 4 log q
Ours nλ1 nm log q log q

Privacy-Preserving Machine Learning using Functional Encryption There exist
some works which combine ML and FE. Although most of them simply focus
on prediction [13, 19, 33, 43], some also include training. For instance, Xu et
al. [49] employed a 5-layer neural network by observing that the input to the
activation function is simply an inner-product of the weights and the data. This
inner-product in the first layer is computed using their own presented scheme.
All of the other computations are made in the clear. Panzade et al. [41] improved
the speed of the scheme using another (function-hiding) IPFE. However, both
of them leak the intermediate results and are only selective-IND-CPA secure,
whereas our scheme is adaptively secure and provides output privacy.

Recently, Chang et al. [14] combined FL and FE using several MCFE schemes.
Their model updates are merged using MCFE, which concludes a lower privacy
loss, but still none that provides DP. Moreover, they need to re-encrypt their
ciphertexts in each iteration, whereas our data holders only submit their data
once and do not have to participate in the analysis.

1 This can be reduced to λ if the clients’ keys are generated using, e.g., a PRF.
However, this introduces an additional overhead in other algorithms and only makes
sense in the non-dynamic version.

6 L. Scheu-Hachtel and J. Zalonis

2 Preliminaries

2.1 Notation

We always denote the security parameter by λ ∈ N, which parametrizes each
scheme and adversary. For integers m,n ∈ Z, let [m;n] := {x ∈ Z|m ≤ x ≤ n}
and [n] := [1;n]. For x ∈ R, ⌊x⌉ is its rounding to the nearest integer. For clarity,
we use bold symbols to denote vectors, i.e., x is a vector, where x[j] is its jth

element. In contrast, objects of some collection that is not regarded as a vector
are indexed using subscripts (or superscripts in some cases). For example, xi

represents a vector, not a component of some vector. If i runs through some
index set [n], it means that there are n vectors x1, . . . ,xn. If the n objects are
scalars (or not explicitly vectors), we will write x1, . . . , xn instead. For a function
f : X1×· · ·×Xn → Y and some ν ∈ Y, we denote by (f+ν)(x) := f(x)+ν for all
x ∈ X1×· · ·×Xn. For a subset ∆ ⊆ Y , we define f +∆ = {f +ν | ν ∈ ∆}. For a
set S ⊆ N, we sometimes write f({xi}i∈S) = f(xi1 , . . . , xi|S|) for i1 ≤ · · · ≤ i|S|,
ij ∈ S, j ∈ [|S|].

We use the abbreviation PPT to mean probabilistic polynomial time. A func-
tion negl : N → R+ is said to be negligible if for every c ∈ N, there exists a
τ ∈ N such that for all x ∈ N with x > τ , it holds that |negl(x)| < 1/xc.

For a distribution D over some set ∆, Pr[x← D(∆)] denotes the probability
that x is sampled according to D over ∆. If D(∆) is clear from the context,
we simply write D. For any set ∆, s $← ∆ represents the process of uniformly
sampling an element s ∈ ∆. For two probability distributions D and D′ over the
same domain ∆, we write D ≡ D′ to indicate that they are equally distributed.

We restrict ourselves to inner-product MIFE schemes. More precisely, we con-
sider functions of the form fy1,...,yn

(x1, . . . , xn) =
∑

i∈[n]⟨xi,yi⟩, i.e., each func-
tion can be identified with a vector y = (y1, . . . ,yn) ∈ (Zm)n. The class of multi-
input inner-product functionalities over Zq is defined by Fm

q,n := {fy1,...,yn
:

(Zm
q)n → Zq | yi ∈ Zm

q }. Whenever we write fy ∈ Fm
q,n, we assume that y can

be divided into n equal vectors of size m.

2.2 Differential Privacy

DP ensures that changing or removing a single individual from a private dataset
does not alter the output of an evaluation over this dataset by more than a
negligible margin. The overall result should remain approximately the same re-
gardless of whether an individual participates in the evaluation or not. Hence,
their private attributes remain protected, but it is still possible to infer some
information from the dataset. One important property of DP is its robustness
under post-processing [20]. In other words, if the output of a DP mechanism is
further processed by another function, the result still fulfills DP.

There are two main forms of DP, LDP and GDP. Since the latter is more
common and assumed as the classical DP, global is often omitted when it is clear
from the context. Formally, we define LDP as follows:

Enhancing Noisy FE for PPML 7

Definition 1 (Local Differential Privacy [38]). A randomized mechanism
f : X → Y is ϵ-local differentially private if for all S ⊆ Range(f) and for all
x, x′ ∈ X :

Pr[f(x) ∈ S] ≤ exp(ϵ) Pr[f(x′) ∈ S],

where the probability space is over the coin flips of the mechanism f .
In LDP each record is perturbed directly before the analysis, whereas in GDP

it is perturbed during or after the analysis. We define GDP as follows. Denote
by X ≃ X ′ that two databases X,X ′ ∈ X are adjacent, i.e., differ in only one
entry.
Definition 2 (Global Differential Privacy). A randomized mechanism f :
X → Y is (ϵ, δ)-differentially private if for all S ⊆ Range(f) and for all adjacent
inputs X ≃ X ′:

Pr[f(X) ∈ S] ≤ exp(ϵ) Pr[f(X ′) ∈ S] + δ,

where the probability space is over the coin flips of the mechanism f . If δ = 0,
we say that f is ϵ-differential private.

Typically, in the case of GDP, there is a curator, which has hold of the data
X, and an analyst, who wants to evaluate some function f . The curator returns
a perturbed evaluation of the function, i.e., f̃(X) = f(X) + ν. This noise ν is
sampled from a distribution whose parameters are dependent on the leakage of f
and the so called privacy budget of the individuals. As the analyst might query
more than one function, it is important that the authority keeps track of the
privacy budget and does not answer any more queries once it is consumed. More
precisely, if the analyst queries n functions fi, i ∈ [n] which are (ϵi, δi) private,
then the consumed privacy budget is (

∑
i∈[n] ϵi,

∑
i∈[n] δi).

In order to set the parameters of output perturbing distributions, we make
use of the l2-sensitivity. This is a measure of how much one individual, i.e., one
record, influences the output of a function.
Definition 3 (l2-sensitivity). The l2-sensitivity of a function f : X → Y is
∆2(f) = maxX,X′∈X ,X≃X′ ||f(X)− f(X ′)||2.

Balle et al. [10] introduced the so called analytic Gaussian mechanism, that
is mostly used in the ML context.
Definition 4. Let f : X → Rd be a function and ∆2(f) its sensitivity. Let Z be
a d-dimensional, centered, independent Gaussian random variable with variance
σ2 and u = ∆2(f)

σ . For any ϵ ≥ 0 and δ ∈ [0, 1], the analytic Gaussian output
perturbation mechanism f̃(x) = f(x) + Z is (ϵ, δ)-DP if and only if

Φ
(u
2
− ϵ

u

)
− exp(ϵ)Φ

(
−u

2
− ϵ

u

)
≤ δ, (1)

where Φ denotes the Gaussian cumulative distribution function.
Let GM(ϵ, δ,∆2(f)) → D be the algorithm that on input of the privacy

parameters and the sensitivity outputs a d-dimensional, centered, independent
Gaussian distribution whose parameter fulfill (1). GM can be implemented effi-
ciently using binary search.

8 L. Scheu-Hachtel and J. Zalonis

2.3 Private Gradient Descent

In order to train a ML model, or more precisely its parameters θ, one common
approach is to use GD [2], which is an iteration based optimization algorithm.
The goal is to minimize the loss function L(θ, ·) of the model. In private GD,
additional privacy measures are applied such as the addition of DP noise.

Let X = {(xi)}i∈[n] be a dataset with m attributes, where x[0] := 1 is
a constant, (xi[1], . . . ,xi[m]) the record and x[m + 1] ∈ {0, 1} the dependent
variable. Moreover, let α be the learning rate and ∇L the gradient of L. Let
Fθ(X) := α

n

∑
i∈[n]∇L(θ, (xi)). In traditional GD, the parameters are updated

in each iteration t by

θ(t+1) := θ(t) + F
(t)
θ (X). (2)

In contrast, in private GD, the parameters are adjusted by applying additional
privacy-preserving noise, i.e.,

θ(t+1) := θ(t) + F
(t)
θ (X) + ν(t), (3)

where ν(t) is sampled according to a DP distribution.

3 Approaches to Privacy-Preserving Machine Learning

The advantages and disadvantages of using MPC, HE and FE in the context of
PPML have been studied in detail in, e.g, [50, 14]. In this section, we expand their
comparison to our specific scenario and focus on the applicability of solutions
based on LDP, FL, MPC, HE and FE. Recall that our scenario requires that:

i) The trusted party has limited resources.
ii) Data holders can join dynamically.
iii) Data holders do not have to actively participate during the analysis.
iv) The input and output privacy is ensured.
v) The analyst decides on when the analysis is performed.

For MPC and HE we can always obtain DP through (one of) the trusted
parties, thus we can assume that output privacy is always given in the scenarios.

Local Differential Privacy In LDP, each data holder locally randomizes their
data using some mechanism M such that Definition 1 is satisfied. After that
the data is collected and can be stored on a publicly available server, without
compromising the privacy. Through the randomization, the data does not leak
the plaintexts. A major advantage of LDP is that individuals perturb their data
once and do not have to participate any further, independent on the analysis.
By the post-processing property of (L)DP, the privacy is protected, no matter
how many functions are evaluated on the data. Moreover, there is no need for a
trusted party, especially one with demanding resources.

However, while LDP provides stronger individual privacy guarantees and ful-
fills all of the above requirements, this comes at the cost of severely degraded
data utility due to the high level of noise that needs to be added to each indi-
vidual data point [30, 40].

Enhancing Noisy FE for PPML 9

Federated Learning FL is a well known approach to enable the training of ML
models via an iterative GD algorithm over partitioned data, without revealing
the plain or pseudonymized data. Usually, FL is used if data holder possess
multiple data records. It has been getting an increasing interest not only from
academia but also from industry [1, 52, 22].

The core idea is that each data holder trains a local model on their local data
and that these models are merged. More precisely, each data holder trains some
iterations of the GD on their local data, optimizing their weights. Then, the
trained weights are aggregated over all parties and again distributed to resume
the local training with aggregated weights.

FL was proposed to preserve privacy during training by sharing no plain
data but only the intermediate results after the iterations. As these may still
leak too much information, before sharing the local intermediate results, some
well chosen noise is added to conceal the concrete result and provide DP.

With FL we can obtain i) and iii)- v). However, as the model is trained
locally, this requires the active participation of the data holders during training,
which violates iii). Moreover, if we assume a minimal trust model, i.e., as few
data holders as possible, each data holder only possesses one record. Hence, the
overall amount of noise per local model is significant, almost resembling LDP.

Multi-Party Computation In MPC, a given function is jointly computed by a set
of parties, where each parties obtains a so-called share of the input data from
the data holders. To obtain, iv), it is important that no party is in possession of
all shares. Otherwise, decryption is possible and the plain data is leaked.

While MPC protocols are highly efficient, and the data holders do not need
to be involved after providing their data, fulfilling iii), it still has some disadvan-
tages. First of all, it is important that no untrusted party is in possession of all
of the shares, as otherwise decryption would be possible. Hence, the security of
most MPC protocols either requires the majority of the computing parties to be
trusted, or only considers a passive adversary who honestly follows the protocol.
If the data is collected over a period of time, as considered in our dynamic use
case, each of the computing parties has to potentially store the received shares
over a long time. They cannot be collected by the analyst as they would oth-
erwise be able to decrypt. Lastly, there are high communication costs between
the parties. Thus, a communication network with strong delivery guarantee is
required. In conclusion, it is hard to fulfill conditions i), ii) and v).

Homomorphic Encryption The idea of HE is that one can operate over encrypted
data similar than over plain data, i.e. for certain functions f one can also compute
f∗ over the ciphertexts, where Dec(ek, f∗(ct1, . . . , ctn)) yields f(x1, . . . ,xn). In
particular, HE allows for complex functions without revealing any intermediate
result, ensuring iv). However, this comes at the cost of high computational power
of the executing party.

As the key used for decryption is independent of the computation applied
to the ciphertexts, it should not be in possession of the party that holds the
ciphertexts. This leaves two options: First, the analyst is in possession of the

10 L. Scheu-Hachtel and J. Zalonis

decryption key, which implies that we are in need of a trusted computing party
with the necessary resources to evaluate the function on the ciphertexts. The
analyst only obtains the final ciphertext, which contains the (possibly perturbed)
function evaluation. Second, the authority is in possession of the decryption key
and the analyst performs the computation. In this case, additional measures
are necessary to verify that the analyst has correctly computed the intended
function, e.g., using verifiable HE [47]. However, verifications either require a
trusted execution environment or zero-knowledge proofs, which yield an excessive
overhead in the complexity of the function. Hence, although ii) and iii) are
fulfilled, in both scenarios the trusted party is in need of a lot of resources,
contradicting i).

Noisy (Dynamic Multi-Client) Functional Encryption Classical noisy FE [50] al-
lows decryption of a noisy function’s evaluation on encrypted data, i.e., any party
in possession of a decryption key for a function f can obtain f(x1, . . . , xn) + ν
from the ciphertexts and decryption key and nothing more, ensuring iv). There-
fore data holders only need to participate by submitting their encrypted data to
the analyst, giving v), while the rest of the communication is between the ana-
lyst and authority, providing iii). Moreover, the generation of decryption keys is
comparably low effort, fulfilling i).

However, to obtain ii), we have to resort to our new definition of DyNMCFE,
which also covers all of the advantages above. Hence, DyNMCFE seems like the
perfect fit for our scenario. More precisely, the data holders encrypt their data
under the label ℓ using an encryption key from the trusted authority, which they
receive upon registration. After they submit their ciphertexts to the analyst, they
are not a part of the analysis anymore and only act if they want to join a different
analysis. All further communication will then be between the authority and the
analyst, who queries functions to receive decryption keys for their analysis.

The only disadvantage is the limitation in the function’s complexity. We solve
this drawback in Section 5 and provide a protocol how ML models such as linear
or logistic regression can be trained with only a linear scheme.

Conclusion The best fits for the described scenario, where conditions i)-v) are
fulfilled, are DyNMCFE and LDP. All that is left is the utility of the trained
models of the analyst. For this reason, we use LDP as a baseline to compare our
utility to in Section 7.

4 Noisy Multi-Client Functional Encryption

In the following we combine the established notions of MCFE [32] and NMIFE
[50] and extend it to the new class of (Dy)NMCFE.

As in the case of NMIFE, an NMCFE scheme allows to evaluate perturbed
n-ary functions fℓ on encrypted data, receiving only fℓ(x1,ℓ, · · · ,xn,ℓ)+ν. Stem-
ming from the notion of MCFE, we introduce labels ℓ to the ciphertext and each
decryption key, ensuring that only ciphertexts and decryption keys with the

Enhancing Noisy FE for PPML 11

same label can be combined. This ensures a fine-grained access structure and is
especially helpful to achieve DP, where each function evaluation on a different
set of data should contain its own perturbation noise. In addition, this allows
for different vector lengths of xi, i.e. different number of attributes, per label, as
each function only can be applied to the specific encoded label.

The extension to the dynamic setting is inspired by Chotard et al. [16], where
the encryption key generation is separated from the setup phase. This allows us
to dynamically register new clients, eliminating the need for a pre-defined number
of clients. In an DyNMCFE each function fℓ,S is additionally associated with a
set S of clients, i.e., it can only be applied to the ciphertexts of these particular
clients. Our definition allows for a polynomial number of clients, which suffices
in practice, as the number of data holders is also bounded by, e.g., the people
living in a country1. A naive way to achieve this with classical NMCFE would
be to set the function coefficients for the clients i /∈ S to zero, but this would
require a pre-defined number of clients, which could be unpractical.

4.1 Definition and Correctness

In the following we give the formal definition of DyNMCFE, where we mark
deviations from NMIFE coming from each modification in boxes, i.e., from
multi-client and dynamic number of clients respectively. In other words, if
we strip away these changes, it gives us the formal definition of NMIFE as in
[50].

Definition 5 ((Dynamic) Noisy Multi-Client Functional Encryption).
Let Fmmax

λ,nmax
= {Fmℓ

S } be a family of sub-families Fmℓ

S , parameterized by an index

set S ⊆ [nmax], nmax = poly(λ), and mmax ≥ mℓ ∈ N , containing functions

f : (Xmℓ

ℓ)|S| → Yℓ. Let L = {0, 1}∗ ∪ {⊥} be a set of labels. A dynamic noisy
multi-client functional encryption scheme (DyNMCFE) of polynomial arity for
Fmmax

λ,nmax
and L is a tuple of five efficient algorithms NMCFE = (Setup, EKeyGen,

Enc,KeyGen,Dec) of the following form:

Setup(1λ,mmax, nmax): Takes as input the security parameter λ, the maximum
vector length mmax and maximum number of clients nmax. It outputs a set
of public parameters pp implicitly defining the function family and a master
secret key msk. All remaining algorithms implicitly take pp.

EKeyGen(msk, i) : Takes as input the master secret key msk, an index i ∈ [nmax]

and generates a secret encryption key eki. It sets msk := msk ∪ (i, eki) and
returns eki.

Enc(eki, xi, ℓ): Takes as input the encryption key eki for a slot i ∈ [nmax], a
message xi ∈ Xmℓ

ℓ and a label ℓ ∈ L . It outputs a ciphertext ct
i, ℓ

.

1 It is important to note that in our concrete scheme presented in Section 6.2, this
bound can be chosen arbitrarily large (as long as it remains polynomial in the security
parameter), without sacrificing any efficiency.

12 L. Scheu-Hachtel and J. Zalonis

KeyGen(msk, S, f, ℓ, D): Takes as input the master secret key msk, a function f

of arity |S| ⊆ [nmax], a label ℓ ∈ L and a distribution D over some subset
∆ ⊆ Yℓ such that Pr [f +∆ ∈ Fmℓ

S] = 1. Sample ν ← D and output a
decryption key dk

f, ℓ , S
.

Dec(dk
f, ℓ , S

, {ct
i, ℓ
}
i∈ S

): Takes as input the decryption key dkf,ℓ,S and |S|
ciphertexts {cti,ℓ}i∈S, all encrypted under the same label used for the decryp-
tion key. It outputs a value z ∈ Yℓ.

The definition is equivalent to its non-dynamic version if all parameters are
fixed and encryption keys are generated during setup. In detail, if S = [nmax]
for all keys, mℓ = mmax for all ℓ ∈ L being part of the public parameters, and
each eki is generated during setup, this yields NMCFE.

Remark 1. The knowledgeable reader may notice that in contrast to the defini-
tion of classical MCFE, the functions are also tied to the labels. This is necessary
to ensure that only decryption keys under the same label as the ciphertexts are
able to decrypt these, which is needed for DP to ensure independent noise in
each function evaluation. Generally, the label can always be provided to KeyGen,
but is ignored inside the algorithm to guarantee that each key can be applied to
the ciphertexts independent of their labels.

Correctness The correctness definition for an NMIFE scheme says that if all al-
gorithms have been applied correctly, then the distribution of Dec(dkf ,Enc(x))−
f(x) should be indistinguishable from Df . This results in obtaining f(x)+ν with
almost the same probability as the probability that ν is drawn. For DyNMCFE,
the definition is modified such that decryption keys can only decrypt those ci-
phertexts which share the same label and are in the corresponding index set.

Formally, we obtain the following definition, which is a straightforward adap-
tation from [50].

Definition 6 (Correctness of DyNMCFE). A dynamic NMCFE scheme
NMCFE = (Setup,EKeyGen,Enc,KeyGen,Dec) is correct if for any security pa-
rameter λ, maximum number of clients nmax = poly(λ) for all S ⊆ [nmax],
f ∈ Fmℓ

S , mmax ∈ N, ℓ ∈ L, xi ∈ Xmℓ

ℓ for all i ∈ |S|, mℓ ≤ mmax ∈ N and all
distributions Df over some set ∆ ⊆ Yℓ with f + ∆ ∈ Fmℓ

S , when (pp,msk) ←
Setup(1λ,mmax), {eki ← EKeyGen(msk, i)}i∈S and cti,ℓ ← Enc(eki, xi, ℓ), it
holds:

Pr
[
Dec(KeyGen(msk, S, f, ℓ,Df), {cti,ℓ}i∈S)− f({xi}i∈S)

]
≡ Df ,

where the probability is taken over the random coins of the algorithms of DyNMCFE.

4.2 Security of NMCFE

Informally speaking, an NMCFE scheme is considered secure, if the ciphertexts
and decryption keys do not reveal any information about the plaintext data

Enhancing Noisy FE for PPML 13

and the noise for any label, except for the desired information fℓ({xi,ℓ}i∈S)+ ν.
Similar as in the definition of DyNMCFE (Definition 5), Definition 7 combines
the security definitions of NMIFE, MCFE and takes inspiration from [16].

The biggest difference from (N)MIFE to (N)MCFE is the allowance of cor-
ruptions, which means that the adversary can corrupt clients and obtain their
encryption keys. Moreover, the admissibility conditions must hold with respect
to each label ℓ and each queried subset of clients S.

It is necessary that before any decryption key query including clients in S is
posed, the clients in S are already registered and have obtained an encryption
key. For this reason, we introduce a dummy oracle QEKeyGen, which generates
encryption keys. We stress that the adversary does not receive an output from
that oracle and hence, does not obtain any other encryption keys other than
those they corrupted.

For now, we only consider security for one-time schemes, i.e., schemes, which
only permit one ciphertext per label and client. These schemes suffice for our use
case as each function evaluation needs its own independent noise for different
datasets. We stress that all concurrent noisy FE schemes also only provide one-
time security.

In the following, Dν defines the distribution that outputs ν with probability
one. Deviations from one-time NMIFE coming from MCFE and the dynamic
setting are again marked in the respective boxes. If a whole algorithm or condi-
tion exists due to that change, only its name will be marked.

Definition 7 (One-time Security of DyNMCFE). Consider the DyNM-
CFE scheme DyNMCFE= (Setup,EKeyGen,Enc,KeyGen,Dec) for a maximum
plaintext length of mmax, maximum number of clients nmax and label set L. For
any security parameter λ, consider the following INDDyNMCFE

β game between an
adversary A and a challenger C. The game involves a set HS of honest clients,
initialized to HS := [nmax], a set of corrupted clients CS, initialized to CS := ∅
and a set of queried index sets per label S, initialized to S := ∅.

Initialization: At the beginning, C runs (pp,)← Setup(1λ,mmax, nmax). Then,
they choose a random bit β ← {0, 1} and hand pp to A.

Corruption queries: A can pose queries to the corruption oracle QCor(i)

before any other queries to obtain eki ← EKeyGen(msk, i). C set CS := CS ∪
{i} and HS := HS \ {i}. Any further query to QCor(i) is answered with the
same eki.

Encryption key queries: The adversary A can adaptively pose encryption
key queries QEKeyGen(i), for which C generates eki ← EKeyGen(msk, i) and
updates msk := msk ∪ {eki}. For any given i ∈ [nmax], only one query is
allowed and any subsequent query for i is ignored. Nothing is returned to A.

Encryption queries: The adversary A can adaptively transmit encryption quer-
ies QEnc(i, x0

i , x
1
i , ℓ). If either i ∈ CS or QEKeyGen(i) has been previously

called, they are answered by cti,ℓ ← Enc(eki, x
β
i , ℓ) and ignored otherwise.

For any given pair (i, ℓ), only one query with return value is allowed and any
subsequent queries involving the same (i, ℓ) are ignored.

14 L. Scheu-Hachtel and J. Zalonis

Decryption key queries: A can adaptively pose queries QKeyGen(S , f, ℓ,

ν0, ν1) to receive functional decryption keys. If for all i ∈ S, i ∈ CS or
QEKeyGen(i) has been called, C returns dkf,ℓ,S ← KeyGen(msk, S, f, ℓ,Dνβ)

and updates S := S ∪ (ℓ, S). Otherwise, the request is ignored.
Finalize: A outputs a bit β′ ∈ {0, 1}. C checks, if A acted admissibly. If not, C

sets β′ = 0. A wins, if β′ = β.

Depending on the specification of the game defined in advance, we call A
admissible, if all of the following conditions hold.

i) If i ∈ CS, then for any query QEnc(i, x0
i , x

1
i , ℓ), x0

i = x1
i , i.e., A cannot

trivially distinguish both cases by creating their own ciphertexts.
ii) For all (ℓ, S) ∈ S, QEnc(i, ·, ·, ℓ) has been queried for all i ∈ HS ∩S, i.e.,

for each queried function, decryption should be possible.
iii) For any label ℓ ∈ L, any tuple (ℓ, S) ∈ S, any family containing all honest

encryption queries with respect to S, i.e., {QEnc(i, x0
i , x

1
i , ℓ)}

i∈ HS∩S
, for

any family of inputs {xi ∈ Xmℓ

ℓ }i∈CS , any query QKeyGen(S , f, ℓ, ν0, ν1),
we require that:

f({x0
i } i∈S

) + ν0 = f({x1
i } i∈S

) + ν1, (4)

i.e., no function evaluation can yield distinction.

The advantage of A in this game is defined as

AdvINDDyNMCFE,A(λ) =
∣∣∣Pr(INDDyNMCFE

0 (λ,A) = 1)

− Pr(INDDyNMCFE
1 (λ,A) = 1)

∣∣∣ .
A DyNMCFE scheme DyNMCFE provides IND-security, if AdvINDDyNMCFE,A(λ) ≤
negl(λ).

In particular, conditions i) - iii) are commonly used to prevent trivial attacks
through either the possession of encryption keys or through varying function
evaluations. Note that ii) is required such that Equation (4) always has to hold,
as soon as there is a function query including at least one honest client. These
restrictions are common in FE and are simply modified to fit our use of labels
and subsets of clients.

In general, the security definition can be further generalized to allow different
modifications. such as adaptive corruptions, i.e., enabling corruptions at any
point in time, allowing more than one ciphertext per slot per label or requiring
that ν0 = ν1, which would yield regular MCFE. Such a definition is included
in Appendix A for a non-dynamic NMCFE, as it facilitates our proofs. Note an
DyNMCFE scheme which satisfying Definition 7 suffices for our use case and any
modification, except for the adaptive corruptions, does not give us any benefit.

Enhancing Noisy FE for PPML 15

5 Privacy-Preserving Protocol

In the scenario described in Section 1, we assume that the data is distributed
across multiple data sources. Via a central trusted entity, analysts and data
holders can be connected and the analysis can be performed. In the following,
we propose a protocol for PPML based on DyNMCFE. To prove the efficiency
of the proposed protocol, we train a logistic regression model on medical data in
Section 7 using DyNo (Section 6). Our generic approach is not limited to logistic
regression but allows for linear or linearly approximated ML models, which are
trained using an iteration-based algorithm, e.g., private GD. To describe our
protocol, we first examine the parties involved.

Parties We consider three different parties.

Authority: The authority is a trusted party with limited resources who handles
the setup of the DyNMCFE scheme. They provide encryption keys to the
data holders and decryption keys to the analyst. This could be for example
a hospital or an ethical committee that oversees such studies. On request of
a function f , they answer truthfully with a perturbed decryption key dkf ,
where the noise ν is sampled according to a DP providing distribution. They
keep track of the privacy budget, ensuring that DP is always achieved.

Data Holder: We assume the data is distributed between several parties, e.g.,
the patients themselves, where each party is in possession an entire record.
They are willing to submit their individual data to research honestly (possi-
bly at different points in time). On the one hand, they still want to maintain
their privacy and on the other hand, do not wish to actively participate in
the process themselves.

Analysts: The analysts want to learn information from the research data, e.g.,
by training some ML model. They can behave maliciously in the sense that
they can corrupt data holders, i.e., work with them to obtain their data in
plain or even their secret keys, and request any functions supported by the
functionality of DyNMCFE. As the sampled noise directly depends on the
queried function and not on the training of the ML model, the privacy of
the data holders remains protected.

Design Considerations Although there is extensive research in the area of FE,
efficient schemes are still restricted to support only linear or quadratic functions.
For efficiency, we focus on linear schemes. In fact, a linear scheme suffices for
our use case for the following reason. Remember that in private GD, we want
to compute Fθ(X) to update our gradients, which is the sum over all gradients
∇L(θ,xi), i.e., Fθ(X) := α

n

∑
i∈[n]∇L(θ, (xi)). Particularly, each ∇L only de-

pends on the record of one individual. Hence, if ∇L can be approximated as a
polynomial, we can precompute its monomials to obtain an extended plaintext
x̃i. As each monomial now has its own slot, ∇L can be computed as a scalar
product between x̃i and its respective coefficients, i.e., it can be seen as a linear
function. To ensure that only the necessary monomials are determined and the

16 L. Scheu-Hachtel and J. Zalonis

coefficients are rightfully multiplied with the monomials, we can identify this
transformation with a mapping M : X → X̃ . This way, Fθ(X) can be correctly
evaluated by a linear DyNMCFE scheme.

M influence the size of the plaintext and hence of the ciphertext. Thus,
they have to be known before encryption to verify that the scheme supports the
individual plaintexts of that particular size. In our scheme, this should generally
not be a problem as the maximum bit-length is rather large. Moreover, it is
desirable that the overall plaintext size does not grow too much as this directly
influences the overall runtime. This will be further discussed in Section 7.

Protocol Given the three parties and the linearized private GD algorithm, our
PPML protocol is as follows.

The authority sets up the environment for the DyNMCFE scheme with a
maximum plaintext bit-length lmax and a label space L2.

Whenever a data holder joins the system, they exchange their privacy budget
(ϵi, δi) for the individual encryption key.

Whenever an analyst wants to start a new analysis on data that has not been
provided yet, they send a request to the authority about what data they need
and the form of the data, e.g., some normalization factors, realized by M . If
the required data is within the limits of the scheme, the authority approves the
study and assigns the analysis an unused label ℓ ∈ L. The request is forwarded
together with all necessary information to the data holders.

Each data holder can decide, whether they want to participate and tell the
authority their decision. If they do, they encrypt their data according to the
requirements and submit it to a server which can be accessed by the analyst.
Although they may submit different data under several labels, possibly over time,
they are not involved further in the evaluation process. It is also possible that
a data holder registers at this point in time and participates in the particular
study. This exchange is displayed in Figure 1.

To train an ML model on the gathered ciphertexts using GD, teh analyst first
initialize the weights of the model, θ(0). In each iteration t, they pose queries
including the requested functions according to M and the amount of privacy
budget in said iteration, i.e., (Fθ(t) = {Fθ(t) [j]}j∈[0;m], (ϵ

(t), δ(t))). The authority
checks if this would exceed any participant’s remaining budget. If so, they contact
the analyst to remove the particular individual’s in the next decryption key
queries. Otherwise, they update each participant’s privacy budget according to
the consumption of privacy and compute D ← GM(ϵ(t), δ(t), ∆2(F

(t)
θ)), which

provides DP according to Definition 4. They generate the functional decryption
keys with respect to D and return them to the analyst.

After each iteration, the analyst updates their model parameters θ and starts
the next iteration by again requesting functional decryption keys. The process
ends after a fixed number of iterations T or if the privacy budget of all data

2 Technically, we also require a maximum number of clients nmax. However, as nmax =
poly(λ), we can set it to 234, which is more than twice of current world population.
Hence, this restriction is ignored in the protocol.

Enhancing Noisy FE for PPML 17

Data Holder i Authority Analyst
Study request (X ,M)

Approval with ℓ(ℓ,X ,M)

Join? If yes:
Register

x̃ = M(x) Iℓ := Iℓ ∪ {i}
cti ← Enc(eki, x̃, ℓ)

cti

Fig. 1. Analysis request and data gathering.

holders is exceeded. Figure 2 shows the training phase if none of the data holders’
privacy budgets are depleted before iteration T .

Note that all of the decryption keys can be made public for other analysts.
Further, another analyst may conduct a training as in Figure 2 for a different
model, depending on the remaining privacy budget.

Threat Model and Privacy Analysis We require that the authority honestly gen-
erates the decryption keys and takes care of the privacy budget. As the authority
tracks the privacy budget of the data holders over all labels and function queries,
DP and hence output privacy is always guaranteed. Note that at least one trusted
party is always required, especially in protocols using HE or MPC. LDP would
be the only approach without a trusted party, but distorts the utility of the
trained model, as we show in Section 7.

The analyst on the other hand may collude with data holders. More precisely,
they may know their data and even their particular encryption keys. The privacy
of the non-colluding data holders is still guaranteed due to DP and the allowance
of corruptions of the DyNMCFE scheme.

Moreover, the analyst is not limited to functions which help them train a ML
model. However, due to the assurance of DP, the analyst would only jeopardize
the usefulness of their model by asking for other decryption keys.

Overall, by employing this approach, both input and output privacy of all
individuals are ensured.

6 DyNo: A concrete DyNMCFE instantiation

In this section, we present our one-time DyNMCFE scheme, DyNo. The main
idea of DyNo is similar to the one-time MIFE scheme of Abdalla et al. [3], which
makes use of the linearity of the one-time pad. We extend their scheme to support
noise-hiding, i.e., to be a secure NMIFE scheme. Let us first recall their scheme
and our extension to noise-hiding, before we present DyNo.

18 L. Scheu-Hachtel and J. Zalonis

Authority Analyst

Initialize θ(0)

(Fθ(0) , (ϵ(0), δ(0)))

Check (ϵi, δi)∀i ∈ Iℓ
D← GM(ϵ(t), δ(t),∆2(F

(t)
θ))

∀j ∈ [0;m] :
dk0j ← KeyGen(msk, Iℓ, Fθ0 [j], ℓ,D[j])
(ϵi, δi) := (ϵi − ϵ(0), δi − δ(0))∀i ∈ Iℓ

{dk0j}j∈[0;m]

∀j ∈ [0;m] :
θ(1)[j]← Dec(dk0j , {cti}i∈Iℓ)

(Fθ(1) , (ϵ(1), δ(1)))

· · · · · ·{dkT−1
j }j∈[0;m]

∀j ∈ [0;m] :
θ(T)[j]← Dec(dkT−1

j , {cti})

Fig. 2. Training phase.

6.1 Warm up: NMIFEot

In the following we refer to the scheme of Abdalla et al. [3] as MIFEot. Extensions
implemented to lift MIFEot to a noisy variant NMIFEot are marked in boxes. If
D is chosen to be the all-zero distribution, both schemes are equivalent.

Construction 1. (NMIFEot) Let Fm
q,n be the class of multi-input inner products

over Zq. NMIFEot scheme for Fm
q,n consists of the following algorithms:

Setupot(1λ,m, n): On input of the security parameter λ, the vector length m and
number of clients n, set msk := ∅. For all i ∈ [n], run eki ← EKeyGenot(msk, i)
and return msk.

EKeyGenot(msk, i): On input of the master secret key msk, sample eki
$← Zm

q .
Set msk := msk ∪ {(i, eki)} and return eki.

Encot(eki,xi): On input of the encryption key eki and message xi ∈ Zm
q for slot

i ∈ [n], return cti := (i, ci := xi + eki mod q).
KeyGenot(msk, fy, D): On input of the master secret key msk = {(i, eki)}i∈[n],

a function fy defined through y = (y1, . . . ,yn) and a distribution D over
Zq, sample ν ← D. Return dky = (y, z :=

∑
i∈[n]⟨eki,yi⟩ - ν mod q).

Decot(dky, ct1, . . . ctn): On input of the decryption key dky = ((y1, . . . ,yn), z)
and ciphertexts cti = (i, ci), i ∈ [n], return

∑
i∈[n]⟨ci,yi⟩ − z mod q.

Enhancing Noisy FE for PPML 19

Correctness The correctness of the scheme in Zq follows directly by the way z
is chosen and that

∑
i∈[n]⟨ci,yi⟩ =

∑
i∈[n]⟨xi + eki,yi⟩. Thus, the result after

decryption is f(x1, . . . ,xn) + ν, whose distribution is solely determined by Df .

Remark 2. For correctness in Z, the modulus q has to be chosen large enough.
In particular, assume maxj∈[m] xi[j] < X for all i ∈ [n], maxj∈[mn] y[j] < Y and
Pr(ν > d) ≤ negl(λ), where ν ← Df , for all queried f . Then NMIFEot is correct
in Z, if

nmXY + d < q. (5)

Security For our security proof, we use the information theoretical security of
MIFEot as described above. In a sequence of games we transform NMIFEot to
MIFEot, which concludes the following theorem. Its proof can be found in Ap-
pendix B.1.

Theorem 1. The NMIFEot scheme presented in Construction 1 is IND-secure
with AdvINDNMIFEot,A(λ) = 0 for any PPT adversary A.

6.2 DyNo: An efficient DyNMCFE scheme

Recall that the difference between NMIFE and DyNMCFE is the use of labels
and the ad-hoc registration of clients. Thus, we need the encryption keys eki to
be dependent on the label. As we additionally require that the keys are labeled
as well, we can simply replace the one-time pad with a PRF. This PRF takes
as input the encryption key eki of client i and the label ℓ. If eki is sampled
uniformly at random, this function is computationally indistinguishable from a
truly random function. A formal definition is given in Definition 11.

For any PRF PRF of output length m, denote by PRFm′ the PRF which
only outputs the first m′ ≤ m values. This transformation is straightforward by
cutting for example the last m−m′ values.

Construction 2. (DyNo) Let {Fmmax

q,S }S⊆[nmax] be the family of sub-families
of multi-input inner-products over Zq with maximum attributes mmax and max-
imum number of clients nmax. Let L be the supported label space and PRF :
{0, 1}λ × L → Zmmax

q . The DyNo scheme for {Fmmax

q,S }S⊆[nmax] consists of the
following algorithms:

Setup(1λ,mmax, nmax): On input of the security parameter λ, maximum vector
length mmax and maximum number of clients nmax, set msk := ∅. Output
msk and the public parameters pp = (mmax, nmax,L,PRF).

EKeyGen(msk, i): On input of the master secret key and slot i ∈ [nmax], sample
eki

$← {0, 1}λ. Update msk := msk ∪ {(i, eki)} and return eki.
Enc(eki,xi, ℓ): On input of the secret key eki, a plaintext xi ∈ Zm

q with m ≤
mmax, for slot i ∈ [nmax] and a label ℓ ∈ L, calculate ζ = PRFm(eki, ℓ) and
return cti,ℓ = (i, ℓ, ci := xi + ζ mod q).

20 L. Scheu-Hachtel and J. Zalonis

KeyGen(msk, S, fy, ℓ,D): On input of the master secret key msk, a set of indices
S ⊆ [nmax], a function fy, a label ℓ ∈ L and a noise distribution D, if there
exists (i, ·) /∈ msk for some i ∈ S, return ⊥. Otherwise, sample ν ← D
and calculate ζi = PRF(eki, ℓ) for all i ∈ S. Return dky,ℓ,S = (ℓ,y, z :=∑

i∈S⟨ζi,yi⟩ − ν mod q).
Dec(dky,ℓ,S , {cti,ℓ}i∈S): On input of the decryption key dky,ℓ,S = (ℓ, {yi}i∈S , z)

and ciphertexts {cti,ℓ = (i, ℓ, ci)}i∈S, return
∑

i∈[S]⟨ci,yi⟩ − z mod q.

Note that the construction can serve as an alternative to NMIFEot for a
single label if we aim to minimize the size of the encryption keys and set nmax =
n,mmax = m. This is especially of interest if the data to be encrypted is large.
The size of a ciphertext is m log q bits, both in NMIFEot and DyNo, which matches
the size of a encryption key in NMIFEot, whereas the encryption key in DyNo is
of size λ. Thus, if m log q > λ, there is a space savings, though this comes with
increased computational costs from the PRF. In practical applications, we find
that q tends to grow rapidly, which enhances the effectiveness of DyNo. There are
two primary reasons for this. Firstly, we require correctness in Z rather than Zq,
necessitating that q be sufficiently large, specifically q > nmXY + d, where X,
Y , and d provide bounds on the ciphertexts, functions, and noise, respectively.
Secondly, to convert real-world data in R to data in Z, a common technique is to
employ fixed-point arithmetic using a scaling, as elaborated in Section 5. As X
and Y may need to be quite large to achieve the desired precision this directly
effects q and therefore the key sizes for NMIFEot.

Remark 3. In a similar manner as Abdalla et al. [4], DyNo (respectively, NMIFEot)
can be utilized to transform any single input IPFE scheme, fulfilling certain prop-
erties, to a secure label-keyed NMCFE (respectively, NMIFE) scheme, which
allows to encrypt multiple messages per client per label. The only difference we
have to make is to exchange MIFEot with DyNo (respectively, NMIFEot).

Most inner-product scheme based on lattices and bilinear groups fulfill the
required properties, e.g., [6, 39]. This gives us an even broader family of noise-
hiding functions which do not rely on function-hiding and can be build from
lattices. As we are only interested in one-time schemes for DP, we will not go
further into this topic, but leave it as an interesting observation.

Correctness Similar as in the case of NMIFEot, one can directly see that the
scheme is correct in Zq, if the PRF in use is deterministic. Correctness in Z
follows if Equation (5) is fulfilled.

Security The security of DyNo relies on the security of the underlying PRF as
well as NMIFEot. We focus on deterministic PRFs, as these are more efficient
and more common in practice.

Theorem 2. If NMIFEot from Construction 1 is IND-secure and PRF is secure,
then DyNo from Construction 2 is IND-secure. In particular, for any PPT ad-
versary A, there exist PPT adversaries B1 and B2 such that

AdvINDDyNo,A(λ) ≤ 2nmaxqℓ · AdvPRF,B1
(λ) + qℓ · AdvINDNMIFEot,B2

(λ),

Enhancing Noisy FE for PPML 21

where qℓ denotes the number of distinct labels queried to QEnc and QKeyGen.

The theorem can be proven by straightforward reduction to the non-dynamic
variant, where all secret keys are sampled during the setup phase. On the other
hand, for the non-dynamic variant, we show that it suffices to show security for
one label. From there on, we only have to rely on the security of the PRF, i.e.,
PRF can only be distinguish from a truly random function with negligible ad-
vantage. At this point, an adversary against NMIFEot can perfectly simulate the
view of an attacker against the modified scheme. Since NMIFEot is information
theoretically secure, the IND-security of DyNo follows. The whole proof can be
found in Appendix B.2.

7 Implementation

We provide an implementation of our DyNMCFE scheme DyNo employed in
Section 6.2. All experiments were performed on a system running Ubuntu 22.04.2
LTS, 256GB RAM and 18 vCPUs (AMD Epyc 7272).

As real world data usually takes values in R instead of Zq, we make use
of fix-point arithmetic. More precisely, a value x ∈ R is converted to ⌊x · s⌉
for an appropriate scaling factor s and an accordingly chosen q. This scaling
factor determines for example the level of precision. Choosing it large enough
is especially important in the presence of DP as the noise also has to be in Zq.
Normally, this value is rather small. However, depending on the rounding of
the noise, the added noise may be larger than necessary for DP, which reduces
the utility of the model. Note that scaling or any normalization process can be
considered as part of M and do not influence the overall protocol presented in
Section 5.

In order to achieve DP, we use the analytic Gaussian mechanism, as dis-
played in Definition 4, which is included in the Google Go library [46]. Their
implementation of the analytic gaussian mechanism employs binomial random
variables and appropriate rounding to argue for DP on integers.

As our PRF, on which the security of DyNo is based on, we choose AES-
256 as implemented in the Go crypto library [7]. This is a standard protocol
recommended by NIST [45] and plausibly post-quantum secure [42].

Moreover, we consider the non-dynamic variant for comparison, i.e., the en-
cryption keys are generated as part of the setup and all clients part of the anal-
ysis. The overall runtime and communication costs are almost the same for the
dynamic version, except that there may be data holders which never participate
in any analysis, but query an encryption key. In addition, we did not include
the request for the analysis and the participation check, as both are implicitly
present in any protocol, including the non-dynamic NMCFE scheme. However,
these should be negligible.

22 L. Scheu-Hachtel and J. Zalonis

7.1 Benchmarks

We compare the runtime of DyNo with the schemes of Zalonis et al. [50], DiffPIPE,
and Escobar et al. [21], RIPFE. These are currently the only (noisy) MIFE
schemes providing inner-product functionality and supporting DP.

Let N = nm be the size of the dataset. Table 2 shows the runtime of all three
schemes on the same datasets for different dataset sizes N , where xi ∈ [0, 216]m

for all i ∈ [n] and y ∈ [0, 27]N were sampled randomly. RIPFE only supports one
client, i.e., n = 1, so we set m = N . Since DiffPIPE is pairing based, it becomes
very slow for big m. DiffPIPE is originally a multi-input scheme, therefore to
better compare runtimes, we set n = m =

√
N . We evaluate our scheme for both

partitions of the dataset and achieve better runtimes in all algorithms. Even for
larger datasets of size 106, we are still in the range of seconds and milliseconds,
respectively. While running DiffPIPE with N = 106, we needed to cancel the
setup phase on our server after several days as the RAM was exhausted.

Table 2. Runtime comparison of all FE schemes supporting DP. Since DiffPIPE did
not terminate after several days for N = 106, we are not able to present runtimes.

N n m Scheme Setup Enc KeyGen Dec

102

1 102 RIPFE [21] 3.50 s 0.25 s 1.89 ms 0.14 s
1 102

DyNo
0.01 ms 0.12 ms 0.14 ms 0.01 ms

10 10 0.01 ms 0.09 ms 0.11 ms 0.02 ms
10 10 DiffPIPE [50] 37.25 ms 5.55 ms 77.12 ms 1.06 s

104

1 104 RIPFE [21] 3.51 s 24.48 s 17.83 ms 1.51 s
1 104

DyNo
0.01 ms 4.23 ms 3.13 ms 1.31 ms

102 102 0.06 ms 2.27 ms 0.77 ms 1.28 ms
102 102 DiffPIPE [50] 57.32 s 0.23 s 5.64 s 25.20 s

106

1 106 RIPFE [21] 3.59 s 41.03 min 2.23 s 33.09 s
1 106

DyNo
0.019 ms 0.31 s 0.24 s 75.41 ms

103 103 0.47 ms 50.93 ms 30.48 ms 85.45 ms
103 103 DiffPIPE [50] - - - -

7.2 Logistic Regression

Besides benchmarking, we also train a logistic regression using DyNo. We only
consider the data exchange (including providing the encryption keys) and the
training process, as any other costs can be seen as negligible and appear in any
other protocol as well. For the sake of simplicity, we assume that all data holders
share the same privacy budget.

As a baseline, we compare the utility to LDP, as this is the only primitive that
neither requires the active participation of the data holders nor one or multiple
trusted parties with a lot of computational power.

Enhancing Noisy FE for PPML 23

Model Let X = {xi}i∈[n] be a dataset where each xi ∈ Rm+2 includes m real
features, a binary label xi[m + 1] ∈ {0, 1}, and a constant xi[0] = 1. For the
sake of readability, we define in the following zi :=

∑
j∈[0;m] θ[j]xi[j]. The goal

of a logistic regression training is to find optimal θ∗ ∈ Rm+1, e.g., using private
GD, such that given a fresh x, the classification y can be predicted with high
probability. More precisely, it should hold that ⌊σ(zi)⌉ = xi[m + 1] with high
probability, where σ(x) = 1

1+exp (−x) is the sigmoid function.
Let T be a predefined number of iterations, α the learning rate and θ0 ∈

Rm+1 randomly chosen. In a logistic regression, each update of the parameters,
i.e., (2), is given as

θ(t+1)[j] := θ(t)[j] +
α

n

∑
i∈[n]

(
xi[m+ 1]− σ(z

(t)
i)

)
xi[j]. (6)

Inner-product Transformation Since DyNo only supports inner-product func-
tionality we need to adapt the training algorithm. A naive approach would be
to view Equation (6) as two nested inner-products. First, z(t)i is calculated and
plugged into σ. Then, σ(z(t)i) is regarded as the function vector for xi to calculate
the outer sum.

However, this approach requires to add noise twice in each iteration to pre-
serve privacy, which is too much noise to ensure the convergence towards optimal
model parameter. To reduce the amount of noise, (6) can be calculated directly
by the underlying DyNMCFE scheme, if we linearize it.

Conveniently, the sigmoid function can be approximated by the least square
polynomial g(x) of degree 3 over the domain [−8, 8] [29]. More precisely, for

g(x) = −a1x3 + a2x+ 0.5

with a1 = 0.81562/83 and a2 = 1.20096/8, it holds that g(x) ≈ σ(x) for x ∈
[−8, 8].

Replacing σ(x) with g(x) in Equation (6) yields a polynomial f(x) of degree
4. The monomials of f consist only of variables from the same xi, which means
that all of them can be precomputed by client i. Thus, as established in Section 5,
instead of encrypting just xi, client i precomputes all unique monomials up to
degree 4 and encrypts them as well, yielding x̃i. In total, as we only have to
consider unique monomials, this extends the number of values in each ciphertext
to m̃ = 1

24m
4 + 5

12m
3 + 35

24m
2 + 37

12m+ 2. This allows us to capture the update
function as a inner-product with the expanded encrypted values. The coefficients
for the function can be found in Appendix C.

Remark 4. As m̃ grows polynomial in m, this method is only suitable for datasets
with relatively small number of attributes. For a large number of m, we may have
to resort to a linear approximation of the sigmoid function (g′(x) = 0.5+0.25x).
Then, the number of values to be encrypted shrinks down to m̃ = 0.5·(3m+m2).
Although this number is still quadratic, the only existing MIFE scheme which
supports quadratic functions also requires to encrypt (x ⊗ x,x, 1) to obtain

24 L. Scheu-Hachtel and J. Zalonis

truly quadratic functions [5], and they lack to protect the intermediate results
by incorporating noise.

To ensure that (ϵ, δ)-DP is provided after the last iteration, we set this as our
privacy budget (ϵmax, δmax). In each iteration, a fraction of this privacy budget is
consumed without exceeding (ϵmax, δmax) in total. The privacy budget could be
divided equally among all iterations, i.e., each iteration fulfills (ϵmax/T, δmax/T)-
DP. However, to achieve a better convergence, we dynamically adapt the the
privacy budget consumed in each iteration by spending less at the beginning
and more towards the end, as it is also done in [18]. In other words, in the first
iterations, we statistically have larger noise values, which can still be smoothed
out in the later iterations, where statistically smaller noise values are added.

To determine the amount of noise, we must look at the sensitivity of the
update function. Although each of the coefficients of θ(t) is calculated separately
in the GD, the whole iteration can be seen as evaluating a function with an
(m + 1)-dimensional output. Without loss of generality, we may assume xi ∈
[0, 1]m+2. Let Θ =

∑
j∈[0;m] |θ[j]|. Then, the l2-sensitivity of each iteration is

bounded by

∆(Fθ) ≤
√
m+ 1

α

n
(1 + |a1Θ3 − a2Θ|). (7)

Results We train a logistic regression on four standard benchmarking datasets
from the medical context: the Low Birth Weight Study (LBW) [34], Prostata
Cancer Study (PCW) [36], Umaru Impact Study (UIS) [37] and Nhanes III [35].
Table 3 shows the dataset sizes and the total runtime for 50 iterations. We did
not consider any optimizations of the GD such as for example batching, which
could further improve the overall runtime.

The communication costs for each dataset are displayed in Table 4. The
scaling factor is set to be s = 106. For LBW, PCS and UIS, we set the modulus
q = 264 and for NHANES III, q = 272. We noticed that y ∈ [−5, 5], i.e., each
queried function slot consists of ⌈log2(10 · s)⌉ bits. The rest of the table can be
computed according to Table 1.

Table 3. Runtime for training of the logistic regression with 50 iterations on different
datasets in minutes.

Dataset n m Total runtime
LBW 189 10 0.19 min
PCS 380 8 0.24 min
UIS 575 8 0.33 min

NHANES 16 427 11 42.29 min

Figure 3 displays the utility compared to LDP in form of accuracy of the first
three datasets for a fixed number of iterations T = 50 in dependency of ϵmax.
The parameter δmax = 1/n is fixed.

Enhancing Noisy FE for PPML 25

Table 4. Package sizes for the encryption process per client, per iteration in the training
process and in total after 50 iterations, including the encryption key and ciphertext
exchange.

Dataset Encryption GD Iteration Total
eki ct f dkf

LBW 256 b 7.9 KB 32.61 KB 88 B 3.06 MB
PCS 256 b 3.93 KB 13.29 KB 72 B 2.13 MB
UIS 256 b 3.93 KB 13.29 KB 72 B 2.88 MB

NHANES 256 b 12.10 KB 48.41 KB 108 B 197.02 MB

The utility highly depends on the dataset, the privacy budget and the learn-
ing rate, which can be also seen through the LDP values. For small epsilon, the
noise may be too large such that convergence is not possible, which we marked
by setting the accuracy to 0. We stress that by simply guessing the dependent
variable, an accuracy of 0.5 is always possible, which can be also achieved by a
random model. Therefore, LDP is not better than guessing for small epsilon.

1 2 3 4 5 6 7 8
0.4

0.5

0.6

0.7

ϵmax

ac
cu

ra
cy

LBW
PCS
UIS

Fig. 3. Model utility for 50 rounds, in
dependency of ϵmax. The dashed line
shows peak accuracy on plaintext after
500 rounds. Dotted lines represent the
maximal accuracy achieved with LDP
with 500 rounds.

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

ϵmax

it = 50

it = 100

it = 150
max acc
local DP

Fig. 4. Model utility on Nhanes III
versus ϵmax and training rounds. The
dashed line shows peak accuracy on
plaintext after 500 rounds; the dia-
mond marks max convergence without
noise. Dotted lines indicate LDP’s best
accuracy at 500 rounds. Accuracy = 0
means no convergence.

Another trade-off comes from the number of iterations and the privacy bud-
get. The more rounds we train with a fixed privacy budget, the smaller the
privacy budget per iteration and thus, the larger the noise. On the other hand,
less iterations may not be enough to reach a good convergence. Figure 4 visualize
this consideration based on NHANES III. Even without noise, a relatively small

26 L. Scheu-Hachtel and J. Zalonis

number of iterations may not be enough to reach the best possible parameter,
but for higher number of iterations, it takes a larger ϵ to obtain a good utility.

Hence, although the training of our logistic regression is relatively fast (see
Table 3), there is still the drawback regarding the number of iterations and the
privacy. However, this problem is a common problem using private GD and only
indirectly dependent on our scheme. In fact, since we only add the noise at the
end of the iteration, i.e., after all inputs of the clients have been combined, and
not before, the amount of noise needed is reduced, as can be seen compared to
LDP in Figure 3 and Figure 4. This is because one individual does not influence
the function outcome as heavily.

8 Conclusion

In this work, we introduced the class of DyNMCFE, which supports DP and
can be used in PPML settings where the data holders want to be excluded
from the analysis and the authority has limited resources. We gave a concrete
instantiation of a DyNMCFE scheme, namely DyNo. This scheme is faster than
any previous instantiation of noisy FE, such that even the training of a logistic
regression model can be realized in reasonable time. We believe that it can also be
embedded into other ML protocols to obtain output privacy. To further improve
the utility and efficiency, many optimizations known from privacy-preserving ML
are possible, for example optimal partition of the privacy budget or batching.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/, software available from tensorflow.org

2. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K.,
Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016
ACM SIGSAC conference on computer and communications security. pp. 308–318
(2016)

3. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-
product functional encryption. pp. 128–157 (2019). https://doi.org/10.1007/
978-3-030-17259-6_5

4. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional en-
cryption for inner products: Function-hiding realizations and constructions without
pairings. pp. 597–627 (2018). https://doi.org/10.1007/978-3-319-96884-1_20

5. Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption:
Stronger security, broader functionality. In: Theory of Cryptography Conference.
pp. 711–740. Springer (2022)

https://www.tensorflow.org/
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20

Enhancing Noisy FE for PPML 27

6. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. pp. 333–362 (2016). https://doi.org/10.
1007/978-3-662-53015-3_12

7. Authors, T.G.: crypto/aes package. https://pkg.go.dev/crypto/aes@go1.23.2
(2024), https://pkg.go.dev/crypto/aes@go1.23.2, version go1.23.2

8. Bakas, A., Michalas, A.: Heal the privacy: Functional encryption and privacy-
preserving analytics. arXiv preprint arXiv:2205.03083 (2022)

9. Bakas, A., Michalas, A., Dimitriou, T.: Private lives matter: A differential private
functional encryption scheme. In: Proceedings of the Twelveth ACM Conference
on Data and Application Security and Privacy. pp. 300–311 (2022)

10. Balle, B., Wang, Y.X.: Improving the Gaussian mechanism for differential pri-
vacy: Analytical calibration and optimal denoising. In: Dy, J., Krause, A. (eds.)
Proceedings of the 35th International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 80, pp. 394–403. PMLR (10–15 Jul 2018),
https://proceedings.mlr.press/v80/balle18a.html

11. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Annual In-
ternational Cryptology Conference. pp. 67–98. Springer (2017)

12. Boyle, E., Chung, K.M., Pass, R.: On extractability obfuscation. pp. 52–73 (2014).
https://doi.org/10.1007/978-3-642-54242-8_3

13. Carpov, S., Fontaine, C., Ligier, D., Sirdey, R.: Illuminating the dark or how to
recover what should not be seen in fe-based classifiers. Proceedings on Privacy
Enhancing Technologies 2020(2), 5–23 (2020)

14. Chang, Y., Zhang, K., Gong, J., Qian, H.: Privacy-preserving federated learning
via functional encryption, revisited. IEEE Transactions on Information Forensics
and Security 18, 1855–1869 (2023)

15. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. pp. 703–732 (2018). https:
//doi.org/10.1007/978-3-030-03329-3_24

16. Chotard, J., Dufour-Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Dynamic de-
centralized functional encryption. In: Micciancio, D., Ristenpart, T. (eds.) Ad-
vances in Cryptology – CRYPTO 2020. pp. 747–775. Springer International Pub-
lishing, Cham (2020)

17. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner
product functional encryption from the k-Linear assumption. pp. 245–277 (2018).
https://doi.org/10.1007/978-3-319-76581-5_9

18. Du, J., Li, S., Chen, X., Chen, S., Hong, M.: Dynamic differential-privacy preserv-
ing sgd. arXiv preprint arXiv:2111.00173 (2021)

19. Dufour-Sans, E., Gay, R., Pointcheval, D.: Reading in the dark: Classifying en-
crypted digits with functional encryption. Cryptology ePrint Archive (2018)

20. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Founda-
tions and Trends® in Theoretical Computer Science 9(3–4), 211–407 (2014)

21. Escobar, F.A., Canard, S., Laguillaumie, F., Phan, D.H.: Computational differ-
ential privacy for encrypted databases supporting linear queries. Proceedings on
Privacy Enhancing Technologies 4, 583–604 (2024)

22. Fan, T., Kang, Y., Ma, G., Chen, W., Wei, W., Fan, L., Yang, Q.: Fate-llm: A
industrial grade federated learning framework for large language models. arXiv
preprint arXiv:2310.10049 (2023)

23. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM
Journal on Computing 45(3), 882–929 (2016)

https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://pkg.go.dev/crypto/aes@go1.23.2
https://pkg.go.dev/crypto/aes@go1.23.2
https://proceedings.mlr.press/v80/balle18a.html
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-319-76581-5_9

28 L. Scheu-Hachtel and J. Zalonis

24. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

25. Goldreich, O.: Secure multi-party computation. Manuscript. Preliminary version
78(110), 1–108 (1998)

26. Keller, M.: Mp-spdz: A versatile framework for multi-party computation. In: Pro-
ceedings of the 2020 ACM SIGSAC conference on computer and communications
security. pp. 1575–1590 (2020)

27. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model train-
ing based on the approximate homomorphic encryption. BMC medical genomics
11, 23–31 (2018)

28. Kim, M., Lee, J., Ohno-Machado, L., Jiang, X.: Secure and differentially private
logistic regression for horizontally distributed data. IEEE Transactions on Infor-
mation Forensics and Security 15, 695–710 (2019)

29. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X., et al.: Secure logistic regression
based on homomorphic encryption: Design and evaluation. JMIR medical infor-
matics 6(2), e8805 (2018)

30. Li, M., Tian, Y., Zhang, J., Fan, D., Zhao, D.: The trade-off between pri-
vacy and utility in local differential privacy. In: 2021 International Conference
on Networking and Network Applications (NaNA). pp. 373–378 (2021). https:
//doi.org/10.1109/NaNA53684.2021.00071

31. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: Challenges, meth-
ods, and future directions. IEEE signal processing magazine 37(3), 50–60 (2020)

32. Libert, B., Titiu, R.: Multi-client functional encryption for linear functions in
the standard model from LWE. pp. 520–551 (2019). https://doi.org/10.1007/
978-3-030-34618-8_18

33. Ligier, D., Carpov, S., Fontaine, C., Sirdey, R.: Privacy preserving data classifi-
cation using inner-product functional encryption. In: International Conference on
Information Systems Security and Privacy. vol. 2, pp. 423–430. SciTePress (2017)

34. LogisticDx: Diagnostic tests for models with a binomial response. lbw: Low birth
weight study data (8 2024), https://rdrr.io/rforge/LogisticDx/man/lbw.html

35. LogisticDx: Diagnostic tests for models with a binomial response. nhanes3: Nhanes
iii data (8 2024), https://rdrr.io/rforge/LogisticDx/man/nhanes3.html

36. LogisticDx: Diagnostic tests for models with a binomial response. pcs: Prostate
cancer study data (8 2024), https://rdrr.io/rforge/LogisticDx/man/pcs.html

37. LogisticDx: Diagnostic tests for models with a binomial response. uis: Umaru im-
patct study data (8 2024), https://rdrr.io/rforge/LogisticDx/man/uis.html

38. Mahawaga Arachchige, P.C., Bertok, P., Khalil, I., Liu, D., Camtepe, S., Atiquz-
zaman, M.: Local differential privacy for deep learning. IEEE Internet of Things
Journal 7(7), 5827–5842 (2020). https://doi.org/10.1109/JIOT.2019.2952146

39. Mera, J.M.B., Karmakar, A., Marc, T., Soleimanian, A.: Efficient lattice-based
inner-product functional encryption. pp. 163–193 (2022). https://doi.org/10.
1007/978-3-030-97131-1_6

40. Naseri, M., Hayes, J., Cristofaro, E.D.: Toward robustness and privacy in fed-
erated learning: Experimenting with local and central differential privacy. CoRR
abs/2009.03561 (2020), https://arxiv.org/abs/2009.03561

41. Panzade, P., Takabi, D.: Fenet: Privacy-preserving neural network training with
functional encryption. In: Proceedings of the 9th ACM International Workshop on
Security and Privacy Analytics. pp. 33–43 (2023)

42. Rao, S., Mahto, D., Yadav, D.K., Khan, D.: The aes-256 cryptosystem resists
quantum attacks. Int. J. Adv. Res. Comput. Sci 8(3), 404–408 (2017)

https://doi.org/10.1109/NaNA53684.2021.00071
https://doi.org/10.1109/NaNA53684.2021.00071
https://doi.org/10.1109/NaNA53684.2021.00071
https://doi.org/10.1109/NaNA53684.2021.00071
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-030-34618-8_18
https://rdrr.io/rforge/LogisticDx/man/lbw.html
https://rdrr.io/rforge/LogisticDx/man/nhanes3.html
https://rdrr.io/rforge/LogisticDx/man/pcs.html
https://rdrr.io/rforge/LogisticDx/man/uis.html
https://doi.org/10.1109/JIOT.2019.2952146
https://doi.org/10.1109/JIOT.2019.2952146
https://doi.org/10.1007/978-3-030-97131-1_6
https://doi.org/10.1007/978-3-030-97131-1_6
https://doi.org/10.1007/978-3-030-97131-1_6
https://doi.org/10.1007/978-3-030-97131-1_6
https://arxiv.org/abs/2009.03561

Enhancing Noisy FE for PPML 29

43. Ryffel, T., Dufour-Sans, E., Gay, R., Bach, F., Pointcheval, D.: Partially encrypted
machine learning using functional encryption. arXiv preprint arXiv:1905.10214
(2019)

44. Slawomirski, L., et al.: Progress on implementing and using electronic health record
systems: Developments in oecd countries as of 2021. OECD Health Working Papers
No. 160 (2023). https://doi.org/10.1787/4f4ce846-en

45. of Standards, N.I., (NIST), T., Dworkin, M.J., Turan, M.S., Mouha,
N.: Advanced encryption standard (aes) (2023-05-09 04:05:00 2023).
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197-upd1, https:
//tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936594

46. Team, D.P.: Differential privacy library (dp lib v2.0.0) (2024), https://github.
com/google/differential-privacy

47. Viand, A., Knabenhans, C., Hithnawi, A.: Verifiable fully homomorphic encryption
(2023), https://arxiv.org/abs/2301.07041

48. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Annual Cryptology Conference. pp. 678–697. Springer (2015)

49. Xu, R., Joshi, J.B., Li, C.: Cryptonn: Training neural networks over encrypted data.
In: 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS). pp. 1199–1209. IEEE (2019)

50. Zalonis, J., Armknecht, F., Scheu-Hachtel, L.: Differentially private functional en-
cryption. Proceedings on Privacy Enhancing Technologies 2, 509–530 (2024)

51. Zhao, C., Zhao, S., Zhao, M., Chen, Z., Gao, C.Z., Li, H., Tan, Y.a.: Secure multi-
party computation: theory, practice and applications. Information Sciences 476,
357–372 (2019)

52. Ziller, A., Trask, A., Lopardo, A., Szymkow, B., Wagner, B., Bluemke, E., Nouna-
hon, J.M., Passerat-Palmbach, J., Prakash, K., Rose, N., et al.: Pysyft: A library
for easy federated learning. Federated Learning Systems: Towards Next-Generation
AI pp. 111–139 (2021)

A Broader definition of NMCFE

Definition 8 (Noisy Multi-Client Functional Encryption). Let {Fm
n }n∈N

be a family of sets Fn of functions f : X1×· · ·×Xn → Y. Let L = {0, 1}∗∪{⊥} be
a set of labels. A noisy multi-client functional encryption scheme (NMCFE) for
Fn and L is a tuple of four efficient algorithms NMCFE = (Setup,Enc,KeyGen,Dec)
of the following form:

Setup(1λ,m, n): Takes as input the security parameter λ, the number of clients
n and vector length m. It outputs a set of public parameters pp, a master
secret key msk as well as secret keys eki, for each slot i ∈ [n]. All of the
remaining algorithms implicitly take pp.

Enc(eki, xi, ℓ): Takes as input the secret key eki for a slot i ∈ [n], a message
xi ∈ Xi and a label ℓ ∈ L. It outputs a ciphertext cti,ℓ.

KeyGen(msk, f, ℓ,D): Takes as input the master secret key msk, a function f ∈
Fn, a label ℓ ∈ L and a distribution D over some ∆ ⊆ Y such that Pr [f +∆ ∈ Fn] =
1. Sample ν ← D and output a decryption key dkf,ℓ.

Dec(dkf,ℓ, ct1,ℓ, . . . , ctn,ℓ): Takes as input the decryption key dkf,ℓ and n cipher-
texts ct1,ℓ, . . . , ctn,ℓ, all encrypted under the same label used for the decryp-
tion key. It outputs a function evaluation f(x1, . . . , xn) + ν ∈ Y.

https://doi.org/10.1787/4f4ce846-en
https://doi.org/10.1787/4f4ce846-en
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197-upd1
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936594
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936594
https://github.com/google/differential-privacy
https://github.com/google/differential-privacy
https://arxiv.org/abs/2301.07041

30 L. Scheu-Hachtel and J. Zalonis

The following is a generalized security definition that covers existing defini-
tions for (noisy) MIFE and MCFE. Hence, our notation includes several options.
We will briefly explain some of these to enhance the clarity of the technical def-
inition. If we set the noise to always be zero, we obtain the classical security
definition of MCFE. Additionally, if we set L = {⊥}, we get the security def-
inition for MIFE. Another consideration is the number of required encryption
queries per slot i ∈ [n], i.e., exactly one (one) or at least one (pos).

The specification for handling the labels in the decryption keys is another
consideration when building an NMCFE scheme. The keys can either be valid for
all ciphertexts (all) or only for those, which share the same label as the key (lab).
This is directly related to Equation (8), as the decryption must only protect the
trivial attack, i.e., the inputs of the ciphertext queries posed by the adversary
yield different function evaluations, if the key and the ciphertexts are generated
under the same label. If the key is not tied to the label (all), then Equation (8)
should hold for all queried functions, as long as only ciphertexts under the same
label are combined.

Finally, it makes a difference at what point clients are corrupted, i.e., whether
they are corrupted from the start (static (sta) corruptions) or at a later point
(adaptive (ad) corruptions).

In the following, Dν defines the distribution that outputs ν with probability
one.

Definition 9 (Security of NMCFE). Let NMCFE be an NMCFE scheme for
n clients and L be a label set. For specifications ww ∈ {sta, ad}, xx ∈ {nh, mh},
yy ∈ {one, pos}, zz ∈ {lab, all}, and any security parameter λ, consider the
following game ww-xx-yy-zz-INDNMCFE

β between an adversary A and a challenger
C. The game involves a set HS of honest clients, initialized to HS := [n], and a
set of corrupted clients CS, initialized to CS := ∅.
Initialization: At the beginning of their interaction, C runs (pp,msk, {eki}i∈[n])←

Setup(1λ,m, n). Then, it chooses a random bit β ← {0, 1} and gives pp to
A.

Encryption queries: A can adaptively make encryption queries QEnc(i, xi, ℓ),
which C replies with cti,ℓ ← Enc(eki, xi, ℓ). Denote by qEncc,i,ℓ the total number
of queries of the form QEnc(i, ·, ℓ).

Challenge encryption queries: A can adaptively transmit challenge encryp-
tion queries CQEnc(i, x0

i , x
1
i , ℓ), which are answered with cti,ℓ ← Enc(eki, x

β
i , ℓ).

Denote by qCEncc,i,ℓ the total number of queries CQEnc(i, ·, ·, ℓ).
Decryption key queries: The adversary A can adaptively obtain functional

decryption keys via queries QKeyGen(f, ℓ, ν). In response, C returns dkf,ℓ ←
KeyGen(msk, f, ℓ,Dν). Denote by qKeyGenk,ℓ the total number of queries CQEnc(·, ℓ, ·, ·).

Challenge decryption key queries: The adversary can adaptively pose queries
CQKeyGen(f, ℓ, ν0, ν1) to receive functional decryption keys. In response, C
returns dkf,ℓ ← KeyGen(msk, f, ℓ,Dνβ). Denote by qCKeyGenk,ℓ the total number
of queries CQEnc(·, ℓ, ·, ·).

Corruption queries: A can query the corruption oracle QCor(i) to obtain eki.
C set CS := CS ∪ {i} and HS := HS \ {i}.

Enhancing Noisy FE for PPML 31

Finalize: A outputs a bit β′ ∈ {0, 1}. C checks, if A acted admissibly. If not, C
sets β′ = 0. A wins, if β′ = β.

Depending on the specification of the game defined in advance, we call A
admissible, if all of the following conditions hold. Denote by qc,i,ℓ the total number
of encryption and challenge encryption queries to slot i under label ℓ, i.e., qc,i,ℓ =
qEncc,i,ℓ + qCEncc,i,ℓ . Similarly, let qk,ℓ be the total number of decryption and challenge
decryption key queries under label ℓ, i.e., qk,ℓ = qKeyGenk,ℓ + qCKeyGenk,ℓ .

– If i ∈ CS, then for any query CQEnc(i, x0
i , x

1
i , ℓ), x0

i = x1
i .

– For any family storing all honest and all challenge encryption queries, i.e.,
{CQEnc(i, x0

i , x
1
i , ℓ) or QEnc(i, xi, ℓ)}i∈HS , for any family of inputs {xi ∈

Xi}i∈CS , any label ℓ ∈ L, any query CQKeyGen(fℓ, ℓ, ν
0, ν1), we define x0

i :=
xi and x1

i := xi for i ∈ CS and any slot queried to QEnc(i, xi, ℓ) and ν0 := ν
and ν1 := ν for any query QKeyGen(fℓ, ℓ, ν), and we require that:

fℓ(x
0
1, . . . , x

0
n) + ν0ℓ = fℓ(x

1
1, . . . , x

1
n) + ν1ℓ . (8)

If one slot i ∈ HS has not been queried, then there is no restriction.
– If ww = sta, the adversary should output CS at the beginning of the game

and does not have access to QCor(·) afterwards.
– If xx = mh, then for all queries CQKeyGen(f, ℓ, ν0, ν1), ν0 = ν1 = 0.
– If yy = anyot, then for any slot i ∈ [n] and ℓ ∈ L, qc,i,ℓ ≤ 1. In other words,

the adversary can pose at most one (challenge) encryption query per slot.
– If yy = one, then for any slot i ∈ HS and ℓ ∈ L, it holds that if qCEncc,i,ℓ > 0

or qCKeyGenk,ℓ > 0, then qc,j,ℓ = 1 for any slot j ∈ HS. In other words, for
any label, if there is one honest (challenge) encryption query or challenge
decryption key query, then all honest slots have to be queried exactly once.

– If yy = pos, then for any slot i ∈ HS and ℓ ∈ L, it holds that if qCEncc,i,ℓ > 0

or qCKeyGenk,ℓ > 0, then qc,j,ℓ > 0 for any slot j ∈ HS. In other words, for any
label, the adversary makes either at least one challenge query for each slot
i ∈ HS or none. Moreover, for any label, if the adversary queries a challenge
decryption key, they also have to pose at least one (challenge) encryption
query per slot.

– If zz = all, then for any f ∈ Fn, dkf,ℓ = dkf,ℓ′ for all ℓ, ℓ′ ∈ L. In other
words, the decryption keys for a function f are the same for each label and
can thus be seen as independent of the label.

The advantage of A in this game is defined as

Advww-xx-yy-zz-IND
NMCFE,A (λ) =

∣∣∣Pr(ww-xx-yy-zz-INDNMCFE
0 (λ,A) = 1)

− Pr(ww-xx-yy-zz-INDNMCFE
1 (λ,A) = 1)

∣∣∣
We say that an NMCFE scheme NMCFE provides ww-xx-yy-zz-IND-security, if
Advww-xx-yy-zz-IND

NMCFE,A (λ) ≤ negl(λ).

32 L. Scheu-Hachtel and J. Zalonis

Note that this security definition is the same as Definition 7 for ww-xx-yy-zz =
sta-nh-one-lab and if all encryption keys are generated during setup. In fact, for
our proposed scheme, DyNo, we will show that thee non-dynamic version fulfills
sta-nh-one-lab-IND-security and conclude that this suffices for the IND-security
of DyNo.

In case only one label is used, i.e., L = {⊥}, the declaration of zz is omitted.
Moreover, we omit the label index in the notation above, e.g., only write qk
instead of qk,ℓ. In a similar manner, if no corruptions are allowed, we omit ww.

To simplify our security proofs, we introduce the notion of 1-label security,
as it is common in the MCFE setting [32]. In this modified game, the adversary
is only allowed to pose challenge queries under a single label ℓ∗. Although this
may seem as a strong restriction, we show via a sequence of hybrid arguments
that is equivalent to Definition 7.

Definition 10 (1-label security of NMCFE). Let NMCFE be a NMCFE
scheme for n clients and L be a label set. For ww, xx, yy, zz defined as in
Definition 7 and β ∈ {0, 1}, we define the game 1-ww-xx-yy-zz-INDNMCFE

β as in
Definition 7, except for the following changes in the oracle queries:

Encryption queries: A can adaptively make encryption queries QEnc(i, xi, ℓ),
which C replies with cti,ℓ ← Enc(eki, xi, ℓ). If one label corresponds to ℓ∗

queried to CQEnc, the game ends and returns 0.
Challenge encryption queries: A can adaptively transmit challenge encryp-

tion queries CQEnc(i, x0
i , x

1
i , ℓ), which are answered with cti,ℓ ← Enc(eki, x

β
i , ℓ).

These queries can be made on at most one label ℓ∗. Further queries with dis-
tinct labels will be ignored.

Decryption key queries: A can adaptively pose queries QKeyGen(f, ℓ, ν) to
obtain functional decryption keys. C returns dkf,ℓ ← KeyGen(msk, f, ℓ,Dν). If
one label corresponds to ℓ′ queried to CQKeyGen, the game ends and returns
0.

Challenge decryption key queries: The adversary can adaptively receive func-
tional decryption keys by posing queries CQKeyGen(f, ℓ, ν0, ν1). In response,
C returns dkf,ℓ ← KeyGen(msk, f, ℓ,Dνβ). These queries can be made on at
most one label ℓ′. Further queries with distinct labels will be ignored.

The same conditions defining the admissibility of an adversary as in Defini-
tion 7 apply to an adversary A playing the 1-ww-xx-yy-zz-INDNMCFE

β game. The
advantage of A is defined as

Adv1-ww-xx-yy-zz-IND
NMCFE,A (λ) =

∣∣∣Pr(1-ww-xx-yy-zz-INDNMCFE
0 (λ,A) = 1)

− Pr(1-ww-xx-yy-zz-INDNMCFE
1 (λ,A) = 1)

∣∣∣
We say that an NMCFE scheme NMCFE provides 1-ww-xx-yy-zz-IND-security,
if

Adv1-ww-xx-yy-zz-IND
NMCFE,A (λ) ≤ negl(λ).

Enhancing Noisy FE for PPML 33

This definition allows ℓ∗ ̸= ℓ′. However, note that if this is the case, then
ν0l = ν1l for all decryption key queries l ∈ [qk,ℓ′] under the condition that
A is an admissible adversary. Moreover, f(x0

1, . . . , x
0
n) = f(x1

1, . . . , x
1
n) for all

{xb
i}i∈[n],b∈{0,1}. Thus, the adversary would always play the game in the xx = mh

setting, which is the weaker security definition. The similarity of both security
definitions in that particular setting has been proven for example by Libert et
al. [32]. We will focus on the case where ℓ∗ = ℓ′.

Lemma 1. Let MCFE be a scheme that is 1-ww-xx-yy-zz-IND-secure. Then it
is also secure against a PPT adversary A against its ww-xx-yy-zz-IND security.
Namely, for any PPT adversary A, there exists a PPT adversary B such that.

Advww-xx-yy-zz-IND
MCFE,A (λ) ≤ qℓ · Adv1-ww-xx-yy-zz-IND

MCFE,B (λ),

where qℓ denotes the number of distinct labels queried by A to CQEnc and
CQKeyGen in the original security game.

Proof. Let A be an efficient adversary in the ww-xx-yy-zz-IND-security game.
We show that A implies an MCFE adversary in the 1-ww-xx-yy-zz-IND. Assume
A makes encryption and decryption key queries for qℓ distinct labels. Denote
by ℓj , j ∈ [qℓ] the jth distinct label that was queried to one of the challenge
oracle. We use a standard hybrid argument over the distinct labels that A queries
throughout the attack. More precisely, let Gk with k ∈ {0, . . . , qℓ} be the game in
which the challenger responds in the following way to encryption and decryption
key queries QEnc(i, x0

i , x
1
i , ℓj) and QKeyGen(f, ℓj , ν

0, ν1):

– If j ≤ k, reply with Enc(eki, x
0
i , ℓj) and KeyGen(f, ℓj , ν

0), respectively.
– If j > k, reply with Enc(eki, x

1
i , ℓj) and KeyGen(f, ℓj , ν

1), respectively.

We assume that all of the restrictions imposed by the admissibility of the adver-
sary remain the same. By construction, an adversary A against the ww-xx-yy-
zz-IND-security of Definition 7 yields a distinguisher between G0 and Gqℓ . On the
other hand, for any k ∈ {0, 1, . . . , qℓ}, an efficient distinguisher Ak between Gk

and Gk+1 implies the existence of an efficient adversary Bk in the 1-ww-xx-yy-
zz-INDMCFE

β game such that Advk,k+1
Ak

(λ) = Adv1-ww-xx-yy-zz-IND
MCFE,Bk

(λ). The reason is
that Bk can simulate Ak’s view as follows.

Initialization: Bk obtains pp from its own challenger and hands it to Ak.
Encryption queries: For each query QEnc(i, x0

i , x
1
i , ℓj) from Ak, Bk acts as

follows.
– If j ≤ k, Bk poses the encryption query QEnc(i, x0

i , ℓj) to its own oracle
and forwards the response to Ak.

– If j = k+1, Bk poses the challenge encryption query CQEnc(i, x0
i , x

1
i , ℓj)

to its own challenger and relays the response back to Ak.
– Otherwise, Bk transmits the query QEnc(i, x1

i , ℓj) and returns the answer
to Ak.

Decryption key queries: Bk does the following for each decryption key query
CQKeyGen(f, ℓj , ν

0, ν1) from Ak.

34 L. Scheu-Hachtel and J. Zalonis

– If j ≤ k, Bk sends the query QKeyGen(f, ℓj , ν
0) to its own challenger and

relays the answer back to Ak.
– If j = k+1, Bk poses the challenge encryption query CQKeyGen(f, ℓj , ν

0, ν1)
and sends the response to Ak.

– Otherwise, Bk queries QKeyGen(f, ℓj , ν
1) and transmits the answer to

Ak.
Corruption queries: For each query QCor(i) from Ak, Bk makes the same

query to its own corruption oracle and transmits the answer to Ak.
Finalize: Bk outputs the same bit β′ as Ak.

Summing up the underlying probabilities concludes the proof.

B Security proofs

Throughout this section, denote by P(A,Gi) the probability that an adversary
A outputs the correct β in Gi, i.e., that A wins Gi.

B.1 Security of NMIFEot

To prove the security of NMIFEot, we need the information-theoretical security
of MIFEot. Abdalla et al.[3] showed:

Theorem 3. ([3]) The MIFEot scheme as described above fulfills ad-mh-one-
IND-security. In other words, for any adversary A, Advad-nh-one-IND

MIFEot,A (λ) = 0.

Using this theorem, we can now show the security of NMIFEot.

Proof (Proof of Theorem 1). Consider the adversaryA against the ad-nh-one-IND-
security of NMIFEot. We prove the theorem using two reductions. Let sel-sta-
nh-one-INDMIFEot

β (λ) be a variant of the sta-nh-one-INDMIFEot

β (λ) game, where
the selective adversary has to additionally specify the encryption challenges
{xb

i}i∈[n],b∈{0,1} together with the corrupted set CS at the beginning of its in-
teraction with the challenger. First, consider an adversary B1 against the sel-
sta-nh-one-IND security of NMIFEot. B1 can simulate A’s view in the following
manner.

Upon interaction with A, B1 guesses A’s ciphertext queries (x0
i ,x

1
i) as well

as the set of corrupted clients CS and commits them along with all key queries
(f l

y, ν
0
l , ν

1
l), which are admissible with respect to {(x0

i ,x
1
i)i∈[n]} to their own

selective oracle.
Whenever A poses a ciphertext query (x0

i ,x
1
i), B1 checks if their guess was

correct. If so, they query their own oracle and send the result to A. Otherwise,
they output 0.

Whenever A poses a corruption query for i ∈ [n], B1 checks if i ∈ CS. If so,
they give eki to A. Otherwise, they output 0.

Whenever A poses a key query (f l
y, ν

0
l , ν

1
l), B1 checks if it belongs to its

set of key queries. If so, they query their own oracle and send the result to A.
Otherwise, they output 0.

Enhancing Noisy FE for PPML 35

If all guesses were correct, B1 outputs the same bit as A.
Note that if all queries were guessed successfully in advance, B1 perfectly

simulates A’s view. The probability that all ciphertext queries are guessed cor-
rectly is exactly q−2nm. On the other hand, the probability that B1 guesses CS
correctly is 2−n. If B1’s guess coincides with A’s initial, then all of the key queries
A poses are covered by the set of key queries B1 committed to their oracle as it
contains all admissible key queries with respect to the same ciphertexts. Thus,
it holds that

Advad-nh-one-IND
NMIFEot,A (λ) ≤ 2−nq−2nmAdvsta-nh-one-sel-IND

NMIFEot,B1
(λ).

Next, let B2 be an adversary against the ad-mh-one-IND-security of MIFEot for
the family Fq,n+⌈qk/m⌉, where qk is the amount of key queries B1 poses. They
simulate the view of B1 as follows.
B2 obtains the set of ciphertext queries {xb

i}i∈[n],b∈{0,1} and function queries
{(f l

y, ν
0
l , ν

1
l)}l∈[qk] from B1. For j ∈ [⌈qk/m⌉], B2 sets xβ

n+i = (νβ1+(i−1)m, . . . ,

νβm+(i−1)m), where νβl = 0 for all l > qk. B2 also receives the set of corrupted
clients, CS. They query their own corruption oracle on any index i ∈ CS to
obtain eki. {eki}i∈CS is handed to B1.
B2 answers B1’s encryption queries for i ∈ [n] by invoking their own oracle

to obtain cti. This is directly sent to B1. Further, B2 also queries their oracle on
(x0

i ,x
1
i) for i ∈ [⌈qk/m⌉].

To answer the lth decryption key query of (f l
y, ν

0
l , ν

1
l) of B1, B2 sets ỹ =

(y⊤, e⊤l)
⊤, where el is the vector of unity of dimension dm with d ∈ N being

the smallest number such that qk ≤ dm. Parsing ỹ = (ỹ1, . . . , ỹn+[⌈qk/m⌉]) ∈
Zm(n+[⌈qk/m⌉]), they query their oracle for f l

ỹ to receive z. Finally, B2 calculates
z̃ = z −

∑
i∈[⌈qk/m⌉]⟨ctn+i, ỹn+i⟩ and sends it to B1.

At the end of their interaction, B2 outputs the same bit as B1.
Clearly, the ciphertext queries are equivalent in both cases. B2’s key queries

are admissible with respect to (8) as by construction,∑
i∈[n+⌈qk/m⌉]

⟨cti, ỹl
i⟩ − z =

∑
i∈[n]

⟨xβ
i ,y

l
i⟩+ νβl =

∑
i∈[n]

⟨x0
i ,y

l
i⟩+ ν0l

for all β ∈ {0, 1} by the restrictions imposed on B1.
Moreover, it holds that

z̃ =
∑

i∈[n+⌈qk/m⌉]

⟨eki, ỹl
i⟩ −

∑
i∈[⌈qk/m⌉]

⟨xn+i + ekn+i, ỹ
l
n+i⟩

=
∑
i∈[n]

⟨eki,yl
i⟩ − νβl .

Thus, B2 perfectly simulates B1’s view. But as Advad-mh-one-IND
MIFEot,B2

(λ) = 0 by The-
orem 3, the claim follows.

36 L. Scheu-Hachtel and J. Zalonis

B.2 Security of DyNo

First, let us recall the formal definition of a PRF.

Definition 11. For any PRF PRF from D to R and any security parameter λ
we define the experiment INDPRF

β between an adversary A and a challenger C in
the following way.

Initialization: C samples K
$← {0, 1}λ and β

$← {0, 1}.
Challenge phase: For a query ℓ ∈ D posed by A, C returns PRF(K, ℓ) if β = 0

and RF(ℓ) otherwise. Here, RF denotes a function computed on the fly.
Finalize: A outputs a bit β′ ∈ {0, 1}. If β′ = β, A wins.

The advantage of an adversary A is defined as

AdvPRF,A(λ) =
∣∣∣Pr(INDPRF

0 (λ,A) = 1) − Pr(INDPRF
1 (λ,A) = 1)

∣∣∣ .
PRF is called secure, if for any PPT adversary A, there exists a negligible function
negl such that AdvPRF,A(λ) ≤ negl(λ).

For our security proof, we need the non-dynamic version of DyNo, which is
defined as follows.

Construction 3. (Non-dynamic DyNo) Let Fm
q,n be the class of multi-input

inner products over Zq. The non-dynamic DyNo scheme for Fm
q,n consists of the

following algorithms:

Setup(1λ,m, n): On input of the security parameter λ, number of clients n and
vector length m, sample eki

$← {0, 1}λ for all slots i ∈ [n]. Set msk :=
({eki}i∈[n]) and output both as well as the public parameters pp.

Enc(eki,xi, ℓ): On input of the secret key eki, a plaintext xi ∈ Zm
q for slot i ∈ [n]

and a label ℓ ∈ L, calculate ζ = PRF(eki, ℓ) and return cti,ℓ = (i, ℓ, ci :=
xi + ζ mod q).

KeyGen(msk, fy, ℓ,D): On input of the master secret key msk, a function fy, a
label ℓ ∈ L and a noise distribution D, sample ν ← D and calculate ζi =
PRF(eki, ℓ) for all i ∈ [n]. Return dky,ℓ = (ℓ,y, z :=

∑
i∈[n]⟨ζi,yi⟩ − ν

mod q).
Dec(dky,ℓ, {cti,ℓ}i∈[n]): On input of the decryption key dky,ℓ and ciphertexts cti,ℓ =

(i, ℓ, ci), parse dky,ℓ = (ℓ, {yi}i∈[n], z) and return
∑

i∈[n]⟨ci,yi⟩ − z mod q.

Theorem 4. Let NMCFE be as in Construction 3 and DyNo as in Construction
2. Then, for any PPT adversary A against the IND-security of DyNo, there exists
a PPT adversary B such that

AdvINDDyNo,A(λ) ≤ Advsta-nh-one-lab-IND
NMCFE,B (λ).

Enhancing Noisy FE for PPML 37

Proof. We denote by 0k the all-zero vector of length k. B simulates A’s view
as follows. Upon interaction, B sets n := nmax and m := mmax, which works as
both are at most polynomial in λ. Moreover, B sets E := ∅ as the set of indices
for which an encryption key has been queried.

If A poses a corruption query for slot i ∈ [n], B queries their own corruption
oracle to obtain eki, which is forwarded to A. B updates E := E ∪ {i}.

Whenever A queries its encryption key oracle on index i, B sets E := E ∪{i}.
Whenever A poses an encryption query (i,x0

i ,x
1
i , ℓ), where xβ

i is of length mℓ

B checks if i ∈ E . If so, they query there own oracle CQEnc(i, x̃i
0, x̃i

1, ℓ), where
x̃i

β = (xβ
i ,0m−mℓ

) ∈ Zm
q to obtain cti,ℓ. They hand ct′i,ℓ = (cti,ℓ[1], . . . , cti,ℓ[mℓ])

to A. Otherwise, they return nothing.
Whenever A poses a decryption key query (S, f, ℓ, ν0, ν1), B checks if S ⊆ E .

If not, return ⊥. Otherwise, B interprets f = {yi}i∈S . They set ỹi = yi for
i ∈ S, ỹi = 0mℓ

for i ∈ [n] \ S and interpret f ′ = {ỹi}i∈[n]. B queries their own
oracle on (f ′, ℓ, ν0, ν1) and forwards the result.

In the end, B outputs the same bit as A. This perfectly simulates A’s view.
Note that B is admissible by the admissibility of A.

Now, in order to prove the security of Construction 2, i.e., Theorem 1, we
simply have to prove the following theorem.

Theorem 5. If NMIFEot from Construction 1 is sta-nh-one-IND secure and
PRF is secure, then NMCFE from Construction 3 is sta-nh-one-lab-IND-secure.
In particular, for any PPT adversary A, there exist PPT adversaries B1 and B2
such that

Advsta-nh-one-lab-IND
NMCFE,A (λ) ≤ 2nqℓ · AdvPRF,B1

(λ)

+ qℓ · Advsta-nh-one-IND
NMIFEot,B2

(λ),

where qℓ denotes the number of distinct labels queried to CQEnc and CQKeyGen.

Proof. For simplicity, we consider the case where A only queries CQEnc and
CQKeyGen on label ℓ∗ and never on any other label. We show that for PPT
adversaries B and B′, it holds that

Adv1-sta-nh-one-lab-IND
NMCFE,A (λ) ≤ 2n · AdvPRF,B(λ)

+ Advsta-nh-one-IND
NMIFEot,B′ (λ).

By Lemma 1, this concludes the theorem.
Assume that there are h honest clients, which are by definition of the security

game known by the challenger before A can make any queries and let HS =
{i1, . . . , ih}. For our proof, we utilize a sequence of hybrid games. Denote by
P(A,Gi) the probability that A outputs the correct β in game Gi, i.e., that A
wins Gi. The games are as follows:

G0: This game corresponds to the case β = 0.

38 L. Scheu-Hachtel and J. Zalonis

G1: This game is the same as G0, except to answer any encryption or decryption
key queries for label ℓ ∈ L, C sets ζiη = RF(iη, ℓ) for all η ∈ [h] with RF being
a random function computed on the fly. In other words, the pseudorandom
values of the honest clients are changed to truly random values. In Lemma
2, we exhibit a PPT adversary B0 such that:

|P(A,G0)− P(A,G1)| ≤ h · AdvPRF,B0
(λ).

G2: This game is the same as G1, except that C answers all challenge queries with
β = 1, i.e., cti,ℓ = ζi+x1

i as the output of our encryption for all i ∈ [n], ℓ ∈ L
and z =

∑
i∈[n]⟨ζi,yi⟩ − ν1 as the output of the key generation algorithm.

In Lemma 3, we exhibit a PPT adversary B1 such that:

|P(A,G0)− P(A,G1)| ≤ Advsta-nh-one-IND
NMIFEot,B1

(λ).

G3: This game corresponds to the case where C sets β = 1 in the original game,
i.e., it is the same as G1 except that ζi are generated by PRF instead of RF
for all i ∈ [n]. By the same argument as in Lemma 2, it holds that there
exists a PPT adversary B2 such that:

|P(A,G2)− P(A,G3)| ≤ h · AdvPRF,B2
(λ).

Putting everything together with the fact that there can be at most n honest
clients, we obtain the theorem.

Lemma 2. There exists a PPT adversary B0 such that

|P(A,G0)− P(A,G1)| ≤ h · AdvPRF,B0
(λ),

where h denotes the number of honest clients.

Proof. We prove the lemma by using a hybrid argument over the h honest clients,
relying on the security of the PRF. Let HS = {i1, . . . , ih}. Without loss of
generality, we assume i1 < · · · < ih. Define G0,η, η ∈ [h], to be the same game
as G0,η−1 where G0,0 = G0, except to answer any encryption or decryption key
queries for label ℓ ∈ L, C sets ζiη = RF(iη, ℓ) with RF being a random function
computed on the fly.

It is clear that

|P(A,G0)− P(A,G1)| =
∑
η∈[h]

|P(A,G0,η−1)− P(A,G0,η)| (9)

as G0,0 = G0 and G1 = G0,h.
We show that for every η ∈ [h], there exists PPT adversary B0,η against the

security of the PRF such that

|P(A,G0,η−1)− P(A,G0,η)| ≤ AdvPRF,B0,η
(λ).

We build B0,η so that it simulates G0,η−1+β to A when interacting with the
experiment as described in Definition 11. Given CS sent by A, run (pp,msk =

Enhancing Noisy FE for PPML 39

{eki}i∈[n])← Setup(1λ,m, n) and give pp and {eki}i∈CS toA. For all i ∈ CS, B0,η
can answer queries QEnc(i,xi, ℓ) and CQEnc(i,x0

i ,x
1
i , ℓ

∗) using eki to calculate
cti,ℓ = Enc(eki,xi, ℓ) and cti,ℓ = Enc(eki,x

0
i , ℓ

∗), respectively. The ciphertext
cti,ℓ is returned to A.

In order to answer (challenge) encryption queries for i ∈ HS or (challenge)
decryption key queries, B0,η sets ζi in the following manner:

– i < iη: ζi = RF(i, ℓ),
– i = iη: Query own oracle on input (iη, ℓ) to obtain ζi = ζiη ,
– i > iη: ζi = PRF(eki, ℓ).

Any QEnc(i,xi, ℓ) and CQEnc(i,x0
i ,x

1
i , ℓ

∗) queries are answered using this ζi,
i.e., B0,η returns cti,ℓ = (i, ℓ,xi+ ζi mod q) and cti,ℓ = (i, ℓ,x0

i + ζi mod q), re-
spectively. To answer queries to QKeyGen(fy, ν, ℓ) and CQKeyGen(fy, ν

0, ν1, ℓ∗),
first, B0,η calculates ζi = PRF(eki, ℓ) for all i ∈ CS. Then, for all i ∈ HS,
B0,η calculates ζi as above. Identify fy as y = (y1, . . . ,yn) and compute z =∑

i∈[n]⟨ζi,yi⟩ − ν, where ν := ν0 in challenge decryption key queries. Finally,
send dky,ℓ = (ℓ,y, z) to A.

In the end, B0,η outputs the same bit as A. Note that B0,η perfectly sim-
ulates A’s view and is admissible with respect to A’s restrictions. Thus, by
Equation (9), the claim follows.

Lemma 3. There exists a PPT adversary B1 such that

|P(A,G0)− P(A,G1)| ≤ Advsta-nh-one-IND
NMIFEot,B1

(λ).

Proof. We build an adversary B1 against the sta-nh-one-IND security of NMIFEot

as follows.
Given CS sent by A, B1 samples Ki ← {0, 1}λ and hands {eki}i∈CS to A. Any

encryption queries QEnc(i,xi, ℓ) from A are answered with cti,ℓ = (i, ℓ,xi + ζi
mod q), where ζi = PRF(eki, ℓ) if i ∈ CS and ζi = RF(i, ℓ) else, where RF de-
notes a random function. Similarly, all decryption key queries QKeyGen(fy, ν, ℓ)
are answered by first calculating ζi = PRF(eki, ℓ) if i ∈ CS and ζi = RF(i, ℓ) oth-
erwise. Then, B1 sets z =

∑
i∈[n]⟨ζi,yi⟩−ν by identifying fy as y = (y1, . . . ,yn)

and returns dki,ℓ to A.
Whenever B1 obtains a query CQEnc(i,x0

i ,x
1
i , ℓ

∗), they query their own en-
cryption oracle on input (i,x0

i ,x
1
i). If i ∈ HS, the received ciphertext is directly

forwarded to A. Otherwise, B1 ignores the output of its oracle and calculates
ci = PRF(eki, ℓ

∗) + x0
i mod q instead. The ciphertext cti,ℓ∗ = (i, ℓ∗, ci) is then

given to A. Note that in this case, it has to hold that x0
i = x1

i in order for A
to be admissible. Thus, B1 does not make any assumptions about the value of β
by choosing to encrypt x0

i .
Upon receiving a challenge decryption key query CQKeyGen(fy, ν

0, ν1, ℓ∗),
B1 views fy as y = (y1, . . . ,yn) and calculates z1 =

∑
i∈CS⟨ζi,yi⟩. Then, they

queries their own decryption key oracle on input (fỹ, ν
0, ν1), where ỹi = yi if

i ∈ HS and 0 else, to obtain dkỹ = (ỹ, z2). Send dky,ℓ∗ := (ℓ∗,y, z1 + z2) to A.

40 L. Scheu-Hachtel and J. Zalonis

At the end of their interaction, B1 outputs the same bit as A. If A is admis-
sible, then so is B1. First, B1 queries each slot i ∈ [n] of NMIFEot exactly once, if
A poses exactly one challenge query CQEnc(i,x0

i ,x
1
i , ℓ

∗) and uses only one label
ℓ∗. Second, note that for B1’s decryption key queries, it holds that∑

i∈[n]

⟨x0
i , ỹi⟩+ ν0 =

∑
i∈HS

⟨x0
i ,yi⟩+ ν0

=
∑
i∈HS

⟨x1
i ,yi⟩+ ν1 =

∑
i∈[n]

⟨x1
i , ỹi⟩+ ν1

because
∑

i∈CS⟨x0
i ,yi⟩ =

∑
i∈CS⟨x1

i ,yi⟩ by admissibility of A.
Further, B1 perfectly simulates A’s view. This is clear for any (challenge)

encryption and regular decryption key queries. In case of challenge decryption
key queries, note that

z1 + z2 =
∑
i∈CS
⟨PRF(eki, ℓ∗),yi⟩+

∑
i∈HS

⟨ζi,yi⟩ − νβ ,

where ζi is a random value. Thus, the lemma follows.

C Derivation of Formulas

To implement the logistic regression, we have to know what the coefficients of y
are for each element in xi. For brevity, let xi[m+ 1] = yi. Writing Equation (6)
for j ∈ [0;m] as a linear function for fixed coefficients up to degree 4 yields

θ[j] := θ[j] +
∑
i∈[n]

α

n

((
−1

2
+ (a1θ[0]

3 − a2θ[0]) + yi

)
xi[j]

+
∑
k∈[m]

(−a2θ[k] + 3a1θ[0]
2)xi[k]xi[j]

+
∑

k1,..,km≥0
k1+..+km=2

3a1θ[0]

(
2

k1, .., km

) ∏
l∈[m]

θ[l]klxi[l]
klxi[j]

+
∑

k1,..,km≥0
k1+..+km=3

3a1

(
3

k1, .., km

) ∏
l∈[m]

θ[l]klxi[l]
klxi[j]

)
,

where (
n

k1, k2, .., km

)
=

n!

k1!k2! · · · km!

is the multinomial coefficient. This way, we have a formula for y for each entry
in the extended x̃i.

	Enhancing Noisy Functional Encryption for Privacy-Preserving Machine Learning

