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On the Price of Differential Privacy for Spectral
Clustering over Stochastic Block Models

Antti Koskela∗, Mohamed Seif∗, Andrea J. Goldsmith

Abstract—We investigate privacy-preserving spectral cluster-
ing for community detection within stochastic block models
(SBMs). Specifically, we focus on edge differential privacy (DP)
and propose private algorithms for community recovery. Our
work explores the fundamental trade-offs between the pri-
vacy budget and the accurate recovery of community labels.
Furthermore, we establish information-theoretic conditions that
guarantee the accuracy of our methods, providing theoretical
assurances for successful community recovery under edge DP.

Index Terms—Differential Privacy, Graphs, Stochastic Block
Model, Perturbation, Community Detection, Spectral Clustering.

I. INTRODUCTION

Community detection within networks is a pivotal challenge
in graph mining and unsupervised learning [1]. The primary
objective is to identify divisions (or communities) in a graph
where connections are densely concentrated inside commu-
nities and sparsely distributed between them. The Stochas-
tic Block Model (SBM) is widely utilized to represent the
structural patterns of networks [2]. In the SBM framework,
nodes are assigned to specific communities, and the probability
of connections between any two nodes is based on their
community memberships. Specifically, nodes within the same
community are more likely to be connected than those in
different communities. This variation in connection probabil-
ities is fundamental to the challenge of detecting communi-
ties. Research aimed at studying and enhancing community
detection methods using the SBM approach has been highly
active, with numerous advancements and discoveries detailed
in comprehensive reviews such as the one by Abbe et al. [3].

Network data, such as the connections found in social
networks, often contain sensitive information. Therefore, pro-
tecting individual privacy during data analysis is essential.
Differential Privacy (DP) [4] has become the standard method
for providing strong privacy guarantees. DP ensures that the
inclusion or exclusion of any single user’s data in a dataset
has only a minimal effect on the results of statistical queries.

In the realm of network or graph data, both edge and
node privacy models have been investigated. As discussed in
[5], two primary privacy concepts have been introduced for
analyzing graph data: (1) Edge DP, which aims to safeguard
individual relationships (edges) within a graph by utilizing
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randomized algorithms to minimize the impact of any specific
edge’s presence or absence during analysis, and (2) Node
DP, which focuses on protecting the privacy of nodes and
their associated connections (edges). Edge DP is better suited
for private community detection, as it focuses on protecting
individual relationships, which are central to defining and
identifying community labels. Additionally, DP algorithms
have been adapted to address specific network analysis tasks,
such as counting stars, triangles, cuts, dense subgraphs, and
communities, as well as generating synthetic graphs [6], [7],
[8], [9]. More recently, in our previous work, we explored
community detection in SBMs under the edge privacy model
for various settingsand established sufficient conditions for
recoverability thresholds using ML-based estimators and their
semidefinite relaxations [10], [11], [12].

In the existing literature, efficient algorithms for community
detection in SBMs have been developed using spectral meth-
ods, such as those detailed in [13], [14], as well as through
semidefinite programming (SDP) approaches [15]. While these
spectral methods have demonstrated significant effectiveness
in terms of the computational complexity in identifying com-
munity structures, there remains a limited understanding of
their performance under privacy constraints. Specifically, there
is a notable gap in knowledge regarding private spectral
methods for various community recovery requirements, includ-
ing partial and exact recovery. This highlights an important
area for future research aimed at ensuring that community
detection techniques can both preserve privacy and maintain
high accuracy across different recovery requirements (e.g.,
exact or partial recovery) within the SBM framework.

Related Work. The closest related work to our study
is [16], in which the authors analyze the consistency of
privacy–preserving spectral clustering under the Stochastic
Block Model (SBM). While insightful, their results stop short
of deriving explicit separation conditions that tie together
the SBM parameters (e.g., block edge probabilities, number
of communities) and the privacy budget ε. Pinpointing these
conditions is essential for understanding when private spectral
methods can provably recover communities and how the
privacy constraint degrades the signal–to–noise ratio required
for success.

Our earlier efforts [10], [11] addressed this question from
an optimization standpoint by casting community detection
as a semidefinite program (SDP). Although the SDP approach
delivers strong statistical guarantees, its polynomial-time com-
plexity renders it impractical for the massive graphs that arise
in modern social-network or e-commerce platforms—often
containing tens of millions of nodes and billions of edges.
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trade-off analysis is still needed—one that links scalable
private algorithms to explicit separation thresholds expressed
in terms of SBM parameters and the privacy budget ε.
Closing this theoretical gap would pave the way for deploy-
able, high-accuracy, privacy-preserving community detection
that (i) scales to multi-million-node graphs, (ii) respects
user-level differential-privacy guarantees, and (iii) achieves the
full spectrum of recovery objectives—exact, partial, or weak
consistency—studied in the SBM literature.

Contributions. We make the following key contributions
to privacy-preserving spectral clustering under edge DP for
community detection on the symmetric binary SBM1:

1) Graph Perturbation-Based Mechanism: We apply the
randomized response technique to perturb the adjacency
matrix of the graph. Subsequently, a spectral clustering
algorithm is executed on the perturbed graph to recover
community structures. This approach inherently satisfies
ϵ-DP for any ϵ > 0 due to the post-processing property
of differential privacy.

2) Subsampling Stability-Based Mechanism: Inspired by
the work of [4], we introduce the subsampling stability-
based estimator, which involves generating multiple cor-
related subgraphs by randomly sampling edges with
probability qs. A non-private clustering algorithm is then
applied to each subgraph, and the resulting community
labels are aggregated into a histogram. The stability of
this histogram, influenced by parameters such as (p, q),
(ϵ, δ), qs, and the number of subgraphs m, ensures
accurate recovery of the original community labels.

3) Noisy Power Iteration Method: We execute the power
method while injecting carefully calibrated Gaussian
noise at every matrix–vector multiplication to obfuscate
each edge’s contribution. Subsequently, the normalized
noisy eigenvectors are used to form the clustering em-
bedding. This approach inherently satisfies (ϵ, δ)-edge DP
for any ϵ > 0 (with suitably small δ) via the Gaussian
mechanism and iterative composition.

4) Tradeoff Analysis and Theoretical Guarantees: We
investigate the fundamental tradeoffs between the privacy
budget and the accuracy of community recovery. Addi-
tionally, we provide theoretical guarantees by establishing
information-theoretic conditions that ensure successful
community detection under edge DP. Furthermore, we
provide a lower bound on the overlap rate between
the estimated labels and the ground truth labels of the
communities.

Notation. Boldface uppercase letters denote matrices (e.g.,
A), while boldface lowercase letters are used for vectors (e.g.,
a). We use Bern(p) to denote a Bernoulli random variable
with success probability p. For asymptotic analysis, we say
the function f(n) = o(g(n)) when limn→∞ f(n)/g(n) = 0.
Also, f(n) = O(g(n)) means there exist some constant C > 0
such that |f(n)/g(n)| ≤ C, ∀n, and f(n) = Ω(g(n)) means
there exists some constant c > 0 such that |f(n)/g(n)| ≥ c,
∀n.

1Generalizing the privacy mechanisms to multiple communities is a suffi-
ciently interesting direction and is left for future work.

II. PROBLEM STATEMENT & PRELIMINARIES

We consider an undirected graph G = (V,E) consisting
of n vertices, where the vertices are divided into two equally
sized communities C1 and C2, V = C1 ∪ C2 and E is the
edge set. The community label for vertex i is denoted by
σ∗
i ∈ {−1,+1},∀i ∈ [n]. Further, we assume that the graph

G is generated through an SBM, where the edges within the
same community are generated independently with probability
p, and the edges across the communities C1 and C2 are
generated independently with probability q. The connections
between vertices are represented by an adjacency matrix
A ∈ {0, 1}n×n, where the elements in A are drawn as follows:

Ai,j ∼

{
Bern(p), i < j, σ∗

i = σ∗
j ,

Bern(q), i < j, σ∗
i ̸= σ∗

j

with Ai,i = 0 and Ai,j = Aj,i for i > j.

Definition 1 (Laplacian Matrix). Let G = (V,E) be undi-
rected graph. The Laplacian L ∈ Rn×n of G is the matrix
defined as

L = D−A,

where D ∈ Rn×n is the degree matrix, which is a diagonal
matrix where each diagonal entry dii is defined as dii =∑n

j=1 Aij , and all off-diagonal entries of D are zero.

Community Detection via Spectral Method. Spectral
clustering partitions the vertices of a graph G into communities
by leveraging its spectral properties. To accomplish this, we
perform an eigen decomposition of the Laplacian matrix L,
obtaining its eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn

and their corresponding eigenvectors u1,u2, . . . ,un. In the
case of dividing the graph into two communities, spectral
clustering specifically utilizes the eigenvector associated with
the second smallest eigenvalue λ2 of L. This eigenvector
effectively captures the essential structure needed to separate
the graph’s vertices into distinct communities based on the
graph’s connectivity [17].

Definition 2 ((β, η)-Accurate Recovery). A community re-
covery alghorithm σ̂(G) = {σ̂1, σ̂2, · · · , σ̂n} achieves (β, η)-
accurate recovery (up to a global flip) if

Pr
(
err rate

(
σ̂(G),σ∗) ≤ β

)
≥ 1− η, (1)

where the probability is taken over both the randomness of the
graph G (drawn according to an SBM) and the randomness
of the algorithm. Here, the error rate (up to a global flip) is
defined via the Hamming distance as

err rate
(
σ̂(G),σ∗) =

1

n
· min
s∈{+1,−1}

Ham
(
σ̂(G), sσ∗).

Definition 3 ((ϵ, δ)-edge DP). A (randomized) community
estimator σ̂ as a function of G satisfies (ϵ, δ)-edge DP for
some ϵ ∈ R+ and δ ∈ [0, 1], if for all pairs of adjacency
matrices G and G′ that differ in one edge, and any measurable
subset S ⊆ Range(σ̂), we have

Pr(σ̂(G) ∈ S) ≤ eϵPr(σ̂(G′) ∈ S) + δ,
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Algorithm 1 Spectral Clustering Algorithm

1: Input: G(V, E)
2: Output: Labeling vector σ̂(A)
3: Compute Laplacian: L = D−A
4: Eigen decomposition of L: obtain λi,ui

5: Select Fiedler vector u2 for λ2

6: Assign communities:

σ̂(v) =

{
1 if u2,v ≤ 0

−1 otherwise

7: Optional: Flip labels to minimize clustering error
8: Return: σ̂(A)

where the probabilities are computed only over the randomness
in the estimation process. The setting when δ = 0 is referred
as pure ϵ-edge DP

III. MAIN RESULTS & DISCUSSIONS

We first establish a lower bound for all DP community
recovery algorithms applied to graphs generated from binary
SBMs, utilizing packing arguments under DP [18]. We then
consider three different DP community recovery algorithms:
graph perturbation-based mechanism, subsampling stability-
based mechanism and a noisy power method applied on the
adjacency matrix.

A. General Lower Bound for ϵ-edge DP Community Recovery
Algorithms

We establish a rigorous lower bound for all differentially
private community recovery algorithms operating on graphs
generated from SBMs. Our methodology closely follows the
frameworks outlined in [18], [19], focusing on the notion of
edge DP. Precisely speaking, we define the classification error
rate as

err rate(σ̂(A),σ∗)

=
1

n
·min{Ham(σ̂(A),σ∗),Ham(−σ̂(A),σ∗)}.

Let us consider a series of pairwise disjoint sets Si, i ∈ [m].
Each set Si contains vectors u ∈ {±1}n, where n is the vector
dimension. A vector u is included in Si if err rate(u,σi) with
a fixed vector σi does not exceed the threshold β. This is
formally expressed as:

Si = {u ∈ {±1}n : err rate(u,σi) ≤ β}, (2)

i = 1, 2, . . . ,m, where Si’s are pairwise disjoint sets.
We next derive the necessary conditions for

Pr(σ̂(A) ∈ Si) ≥ 1− η (3)

as a function of the SBM parameters and the privacy budget.
Note that the randomness here is taken over the randomness
of graph G that is generated from SBM(σi, n, p, q).

Lemma III.1. Let σi be a fixed vector and the set Si be
defined as in Eq. (2) for some β > 0. Suppose the condition
of Eq. (3) holds. Then,

(1− η)2 ≤
(
EA,A′∼Π(A,A′)

[
e2ϵHam(A,A′)

])
× Pr(σ̂(A′) ∈ Si),

Proof. Without loss of generality, let us consider a graph
A ∼ SBM(σ1, n, p, q) that is generated from the ground truth
labeling vector σ∗ = σ1. Further, for this case, we want to
derive the necessary conditions for any ϵ-edge DP recovery
algorithms that

Pr(σ̂(A) ∈ S1) ≥ 1− η

which implies that
m∑
i=2

Pr(σ̂(A) ∈ Si) ≤ η, (4)

where A ∼ SBM(σ1, n, p, q).
We next individually lower bound each term in Eqn. (4). To

do so, we first invoke the group privacy property of DP [4]
and show that for any two adjacency matrices A and A′, we
have

Pr(σ̂(A) ∈ S) ≤ eϵHam(A,A′) Pr(σ̂(A′) ∈ S),

for any measurable set S ⊆ {±1}n. For each i = 1, 2, · · · ,m,
taking the expectation with respect to the coupling distribution
Π(A,A′) between A and A′ and setting S = Si, yields the
following:

EA,A′∼Π(A,A′) [Pr(σ̂(A) ∈ Si)]

≤ EA,A′∼Π(A,A′)

[
eϵHam(A,A′) Pr(σ̂(A′) ∈ Si)

]
which implies that

Pr(σ̂(A) ∈ Si)

≤EA,A′∼Π(A,A′)

[
eϵHam(A,A′) Pr(σ̂(A′) ∈ Si)

]
(a)

≤
(
EA,A′∼Π(A,A′)

[
e2ϵHam(A,A′)

])1/2
×
(
EA,A′∼Π(A,A′)

[
Pr2(σ̂(A′) ∈ Si)

])1/2
≤
(
EA,A′∼Π(A,A′)

[
e2ϵHam(A,A′)

])1/2
× (Pr(σ̂(A′) ∈ Si))

1/2
,

from which we further get that

1− η
(b)

≤
(
EA,A′∼Π(A,A′)

[
e2ϵHam(A,A′)

])1/2
× (Pr(σ̂(A′) ∈ Si))

1/2
,

and

(1− η)2 ≤
(
EA,A′∼Π(A,A′)

[
e2ϵHam(A,A′)

])
× Pr(σ̂(A′) ∈ Si),

(5)

where step (a) follows from applying Cauchy-Schwartz
inequality. In step (b), we invoked the condition in Eqn. (3).
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We next focus on computing the term
EA,A′∼Π(A,A′)

[
e2ϵHam(A,A′)

]
in the expression of

Lemma III.1. This together with Lemma III.1 leads to
the general lower bound for the number of vertices in the
graph.

It is worthwhile mentioning that the Hamming distance
between two labeling vectors σ and σ′ (each of size n)
directly determines how many rows in the adjacency matrices
A and A′ are generated from the same versus different
distributions. More precisely, we have two cases: case (1):
Ham(σ,σ′) rows in A and A′ have elements generated from
different distributions, and case (2): n − Ham(σ,σ′) rows
have elements from the same distribution.

Case (1): In this case, the probability the corresponding
elements in the two matrices A and A′ are different is
q̄ = 1− (q · p+ p · q) = 1− 2pq.

Case (2): In this case, the probability the corresponding
elements in the two matrices A and A′ are same is p̄ = 1−
(p2 + q2).

Guided by these insights, we are ready to prove our general
lower bound.

Theorem III.1 (Necessary Condition). Define ∆ ≜ e2ϵ +(
1− e2ϵ

)(
p2 + q2

)
− 1. Suppose there exists an ϵ-edge DP

mechanism such that, for any ground truth labeling vector
σ∗ and for G ∼ SBM(σ∗, n, p, q), the mechanism outputs σ̂
satisfying the (β, η)-accurate recovery condition (1). Then, a
necessary condition is that n must satisfy

n ≥
βA+

√
β2A2 + 8 (1− 8β)∆B

8β (1− 8β)∆
.

where A = log
(

1
8eβ

)
and B = log

(
1
η

)
.

Proof. We next focus in calculating the term
MHam(A,A′)(2ϵ) ≜ EA,A′∼Π(A,A′)

[
e2ϵHam(A,A′)

]
with

the following set of steps:

MHam(A,A′)(2ϵ)

=
(
MHam(A,A′):same dist.(2ϵ)

)(n−Ham(σ,σ′))

×
(
MHam(A,A′):different dist.(2ϵ)

)Ham(σ,σ′)
,

where,

MHam(A,A′):same dist.(2ϵ) = e2ϵp̄+ (1− p̄),

MHam(A,A′):different dist.(2ϵ) = e2ϵq̄ + (1− q̄).

We then can readily show that,

MHam(A,A′)(2ϵ)

≤
(
MHam(A,A′):same dist.(2ϵ)

)(n−Ham(σ,σ′))·Ham(σ,σ′)

= (e2ϵ + (1− e2ϵ)(p2 + q2))(n−Ham(σ,σ′))·Ham(σ,σ′).

Plugging (6) in (5) yields the following:

Pr(σ̂(A′) ∈ Si) ≥
(1− η)2

MHam(A,A′)(2ϵ)
.

Finally, we lower bound the packing number m with respect
to err rate. Building upon the framework established in [19],
we can readily demonstrate that

m ≥ 1

2
· |BHam(σ

∗, 4βn)|
|BHam(σ∗, 2βn)|

,

where BHam(σ
∗, tβn) = {σ ∈ {±1}n : Ham(σ,σ∗) ≤ β}

and |BHam(σ
∗, tβn)| is the number of vectors within the

Hamming distance of tβn from σ∗ for t > 0. It includes
all vectors that can be obtained by flipping any tβn elements
of σ∗. Thus, we can further lower bound m as

m ≥ 1

2
·
(

n
4βn

)(
n

2βn

) ≥ 1

2
·
(

1

8eβ

)2βn

.

Recall that, we have

(m− 1) · (1− η)2

MHam(A,A′)(2ϵ)
≤ η. (6)

Taking the logarithm for both sides of (6), we have

8βn(n− 8βn) · log(e2ϵ + (1− e2ϵ)(p2 + q2))

≥ 2βn · log
(

1

8eβ

)
+ log

(
1

η

)
which implies

8βn(n− 8βn) · log(e2ϵ + (1− e2ϵ)(p2 + q2))

≥2βn · log
(

1

8eβ

)
+ log

(
1

η

)
and further

⇒ log(e2ϵ + (1− e2ϵ)(p2 + q2))

≥
log
(

1
8eβ

)
4(n− 8βn)

+
log
(

1
η

)
8βn(n− 8βn)

and
e2ϵ + (1− e2ϵ)(p2 + q2)− 1

≥
log
(

1
8eβ

)
4(n− 8βn)

+
log
(

1
η

)
8βn(n− 8βn)

(7)

Solving the last inequality of Eq. (7) for n, we get the lower
bound

n ≥
βA+

√
β2A2 + 8 (1− 8β)∆B

8β (1− 8β)∆
.

where A = log
(

1
8eβ

)
and B = log

(
1
η

)
.

We next present our three private spectral-based algorithms
and outline their respective accuracy guarantees. The privacy
analysis of the methods is based on standard techniques of DP
[4].
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B. Graph Perturbation-Based Mechanism

We next provide a novel analysis for the spectral method ap-
plied on the randomized response released edge-DP adjacency
matrix.

Definition 4 (Randomized Response Perturbation Mecha-
nism). Let A be the adjacency matrix of the graph. Under
Warner’s randomized response [20] with a uniform perturba-
tion parameter µ = 1/(eϵ+1), the perturbed adjacency matrix
is given by

Â = A+E,

where E is a symmetric perturbation matrix with i.i.d. entries:

Eij =

{
0, with probability 1− µ,

1− 2Aij , with probability µ.
(8)

The noise matrix E defined in Eqn. (8) clearly satisfies

E[Eij ] = µ
(
1− 2Aij

)
,

var(Eij) = µ (1− µ)
(
1− 2Aij

)2
.

The analysis is based on decomposing the random release
of the adjacency matrix to a deterministic and random terms.
We first state some auxilisry results needed for the main result.

1) Auxiliary Results for Graph Perturbation Mechanism:
The analysis of the graph perturbation mechanism is based on
a decomposition of the error into deterministic and random
terms and to this end we first need high-probability bounds
for the terms ∥L− E[L]∥ and ∥L̂− L∥.

Lemma III.2 (Concentration of Laplacian Matrices [21]).
Let L be a Laplacian whose elements are drawn from a
nonhomogeneous Erdös-Rényi model, where each edge (i, j)
is generated independently with probability pij . Then, the
following holds true with probability at least 1− η,

∥L− E[L]∥

≤CIII.2

(√
nmax

(i,j)
pij log(n/η) + log(n/η)

)
,

where CIII.2 is a universal constant, and η ≥ n−10.

Next, we introduce two essential lemmas that underpin our
main results.

Lemma III.3 (Concentration of Perturbed Laplacian Matrices
via Randomized Response Mechanism). Given a Laplacian
matrix L and its perturbed version L̂ via a randomized
response mechanism. The following holds true for a universal
constant CIII.3:

∥L̂− L∥ ≤ CIII.3

√
(
∑
i<j

µij(1− µij)) · log(n/η)

with probability at least 1− η.

Proof. We are now interested in upper bounding the operator
norm (spectral norm) ∥L̂− L∥.

To apply standard matrix concentration inequalities, define
the centered random variables:

Xij = (Âij −Aij)− E[Âij −Aij ]

= (Âij −Aij)− µij(1− 2Aij).

Now, Xij are independent (for distinct edges) zero-mean
bounded random variables with |Xij | ≤ 1.

The matrix of interest is:

Â−A =
∑
i<j

(Âij −Aij)(Eij +Eji),

where Eij is the matrix unit with a 1 in position (i, j) and 0
elsewhere.

Inserting the centered version

Â−A =
∑
i<j

[Xij + µij(1− 2Aij)](Eij +Eji)

we have

Â−A =
∑
i<j

Xij(Eij +Eji)︸ ︷︷ ︸
Z

+
∑
i<j

µij(1− 2Aij)(Eij +Eji)︸ ︷︷ ︸
M

.

Here, Z is a zero-mean random symmetric matrix, and M
is a deterministic offset matrix.

Next, consider the degree matrix changes. Since D̂ii =∑
j Âij ,

D̂−D = diag

∑
j

(Âij −Aij)

 .

This can also be expressed as a sum of independent random
vectors along the diagonal. By a similar reasoning, the change
in degree matrix can also be decomposed into a zero-mean
part plus a deterministic part.

Overall, we have:

E = L̂− L = (D̂−D)− (Â−A)

= (D̂−D)− Z−M.

We will focus on the zero-mean part to apply a matrix
Bernstein-type inequality. In our case, the random variables
Xij correspond to modifications of single entries. The matrices
we sum over are rank-2 updates (like (Eij + Eji) and their
diagonal adjustments). Each such update has operator norm at
most 2.

The variance parameter σ2 depends on sums of variances
µij(1− µij). Summing over all edges, we get:

σ2 = O

∑
i<j

µij(1− µij)

 .

In a sparse or moderately dense regime, this is often O(n),
but depends on the distribution of pij .

Thus, with high probability,

∥Z∥2 = O(
√
σ2 log n)

= O

√(
∑
i<j

µij(1− µij)) log n

 .

Recall E = L̂−L = (D̂−D)−Z−M. A similar argument
applies to (D̂ −D), which also can be viewed as a sum of
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independent diagonal updates. The matrix Bernstein or Vector
Bernstein inequality can handle these diagonal terms similarly.

The deterministic part M is known and can be bounded
separately. The main random fluctuation is in Z and (D̂−D).
Combining these results, we obtain a concentration inequality
of the form:

P
(
∥L̂− L∥ ≥ t

)
≤ 2n exp

(
−ct2∑

i<j µij(1− µij) + t

)
,

for some absolute constant c. For t large enough, this yields
a bound like:

∥L̂− L∥ ≤ C

√√√√√
∑

i<j

µij(1− µij)

 log(n/η)

with probability at least 1− η.

2) Main Result for Graph Perturbation Mechanism: We are
now ready to state the main results for the graph perturbation
mechanism.

Theorem III.2 (Distance to Ground Truth Labels). Let u2 and
û2 be the second eigenvectors of the unperturbed Laplacian
matrix L and the privatized Laplacian matrix L̂ obtained
via Warner’s randomized response, respectively. Then, with
probability at least 1− 3η, we have

min
s∈{±1}

∥û2 − su2∥2

≤ 4
√
2

n(p− q)
·
(
qn +

√
8µ(1− µ)n log (2/η)

+
4

3
√
n
log (2/η)

)
.

Proof. The proof is based on a brief perturbation analysis of
the difference ∆L = L̂− L. Starting with the definition,

∆Lu2 = (L̂− L)u2 = (∆D)u2 − Eu2,

observe that ∆D is diagonal, and hence its action on u2 can be
recast in terms of E. In particular, we derive the component-
wise expression

(∆Lu2)i =

n∑
j=1

Eij

(
u2i − u2j

)
,

thereby yielding

∆Lu2 =

n∑
i=1

n∑
j=1

Eij

(
u2i − u2j

)
ei,

where ei is the i-th standard basis vector.
Next, we decompose Eij into its mean and zero-mean parts:

Eij = µij

(
1− 2Aij

)
+ Ẽij , where E

[
Ẽij

]
= 0.

Define the random vectors

xij = Ẽij

(
u2j − u2i

) (
ei − ej

)
,

so that the difference of Laplacians acting on u2 becomes

∆Lu2 =
∑
i<j

xij + d,

where d is a deterministic vector resulting from the means
µij (1− 2Aij).

To control the magnitude of the random sum
∑

i<j xij ,
we use the vector Bernstein Inequality [22]. Specifically, two
crucial quantities must be bounded:

(i) The norm of each summand xij . Since |u2i−u2j | ≤ Du

and Ẽij takes values in a bounded set, each summand obeys

∥xij∥2 ≤ 2 |Ẽij |Du ≤ 2Du ≜ Lij .

Hence Lij ≤ 2Du. It is worth highlighting that we normalize
the labeling vectors by a 1/

√
n factor. In this case, we have

Du = 2/
√
n.

(ii) The sum of variances. We compute

σ2 =
∑
i<j

E
[
∥xij∥22

]
= 4

∑
i<j

µij (1− µij) (u2i − u2j)
2.

By the vector Bernstein Inequality, for any t > 0,

Pr
(∥∥∥∑

i<j

xij

∥∥∥
2
≥ t

)
≤ 2 exp

( −t2/2
σ2 + (L t)/3

)
,

where L = maxi<j Lij . Solving in terms of a confidence
parameter η, we obtain that with probability at least 1− η,∥∥∥∑

i<j

xij

∥∥∥
2
≤
√

2σ2 log
(
2/η
)
+

L

3
log
(
2/η
)
.

Since ∆Lu2 is this sum plus the deterministic term d, we
conclude:∥∥∆Lu2

∥∥
2
≤ ∥d∥2 +

√
2σ2 log

(
2/η
)
+

L

3
log
(
2/η
)

with probability at least 1− η.
Substituting back into the Generalized Davis-Kahan Theo-

rem [23], we obtain:

∥u2 − û2∥2

≤
√
2 ·
∥d∥2 +

√
2σ2 log (2/η) +

L

3
log (2/η)

|λ̂3 − λ2|
.

By Weyl’s inequality [24], we can readily show the following
lower bound on λ̂3 − λ2:

λ̂3 − λ2 ≥
n(p− q)

2
− 2∥L− E[L]∥ − ∥L̂− L∥. (9)

Continuing from the provided inequalities and incorporating
the concentration results from Lemma III.2 and Lemma III.3,
we arrive at the claim.

The above result holds under the following separation con-
dition between p and q. Specifically, for a universal constant
C = 4 ·max(2CIII.2, CIII.3), with CIII.2 and CIII.3 given
in Lemmas III.2 and III.3, respectively, it is required that

n(p− q) ≥ C
[
T +

n√
2

√
µ(1− µ)

√
log(n/η)

]
,

where T ≜
√
np log(n/η) + log(n/η).

This separation condition ensures that the difference p − q
is large enough relative to n and the parameters µ, η so that
the upper bound in Eqn. (9) on the distance to the ground
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Fig. 1: Overlap rate vs n, for ϵ = 1, p = 0.25, q = 0.0025,
and δ = 10−6. A fair comparison is ensured by setting the same
total failure probability δfailure = 0.01 for both mechanisms. For the
Graph-perturbation mechanism, the confidence level η is directly set
to δfailure. For the Subsampling stability mechanism, η is adjusted to
satisfy the condition 3mη = δfailure.

truth labels (denoted as C1(ϵ, η)) is meaningful and captures
the success of the privatized spectral method.

We next translate the norm difference bound into a statement
about the overlap (fraction of correctly identified labels). This
connection allows us to interpret the effects of the privacy
mechanism directly in terms of the clustering accuracy.

Lemma III.4 (Overlap Rate for Graph Perturbation Mech-
anism). Consider the graph perturbation mechanism, which
satisfies ϵ-edge DP. Define the overlap rate between the ground
truth labels σ∗ and the estimated labels σ̂(G) obtained via
the private spectral method as

overlap rate
(
σ̂(G),σ∗) ≜ 1 − err rate

(
σ̂(G),σ∗).

Under the conditions of Theorem III.2, we have

overlap rate
(
σ̂(G),σ∗) ≥ 1 − CIII.2(ϵ, η)

8

with probability at least 1 − 3η, where CIII.2(ϵ, η) is deter-
mined by the right hand side of the inequality of Theorem III.2.

C. Subsampling Stability-Based Mechanism

The key idea in this algorithm is to create m correlated
subgraphs {G1, G2, . . . , Gm} of the original graph G where
each subgraph Gℓ is generated by randomly subsampling
with replacement of the edges in G with probability qs. We
then apply our non-private spectral method σ̂(Gℓ) on each
subgraph Gℓ. The labeling vectors σ̂(Gℓ) are then represented
on a histogram. Now, define count(σ) ≜ |{k ∈ [m] :
σ̂(Gk) = σ}|. As shown in [4], the stability of the histogram
is proportional to the difference between the most frequent
bin (i.e., the mode) and the second most frequent bin. In other
words, the most frequent outcome of the histogram agrees
with the outcome of the original graph with high probability

Algorithm 2 Subsampling Stability Mechanism

1: Input: Graph G = (V, E), privacy budget ϵ, δ, graph
structure properties.

2: Output: Private labelling vector σ̂.
3: Compute the base sampling probability qs ←

min(1, ϵ/(32 log(n))).
4: Compute m← ⌈log(n/δ)/q2s⌉.
5: Subsample m subgraphs {G1, G2, . . . , Gm} using qs.
6: Compute the label vectors σ̄ = (σ̂(G1), . . . , σ̂(Gm)).
7: Aggregate the label vectors via majority voting and com-

pute the stability score:

d̂←
count(1) − count(2)

4mqs
− 1.

8: Add Laplace noise to ensure privacy:

d̃← d̂+ Lap(0, 1/ϵ).

9: if d̃ > log(1/δ)/ϵ then
10: Output σ̂final = mode(σ̄).
11: else
12: Output ⊥ (a random label vector).
13: end if

under an appropriate choice of the SBM parameters (p, q),
the privacy budget (ϵ, δ), the edge sampling probability qs,
and the number of subsampled weighted graphs m. For further
details on the mechanism and stability of community detection
algorithms over SBMs, please refer to our previous work in
[11]. We summarize the mechanism in Algorithm 2.

1) Auxiliary Result for the Subsampling Stability Mecha-
nism: The proof of the main theorem for the Subsampling Sta-
bility Mechanism is based on the same perturbation analysis
as the analysis of the graph perturbation mechanism presented
in the previous subsection. For this analysis, we will need
the following concentration bound for the Laplacian matrix
released by the subsampling stability mechanism.

Lemma III.5 (Concentration of Subsampled Laplacian Matri-
ces). Consider an undirected graph with n nodes and edge
set E, represented by the Laplacian matrix L. Let L̂ be
the Laplacian matrix of a subsampled graph, obtained by
independently including each edge (i, j) ∈ E with probability

qs,ij = qs · (1− r(i, j)),

where qs is a base sampling probability, r(i, j) ∈ [0, 1] is a
removal probability determined by the edge-specific subsam-
pling mechanism. The following concentration bound holds for
a universal constant CIII.5:

∥L̂− L∥ ≤ CIII.5

√
(
∑
i<j

qs,ij(1− qs,ij)) · log(n/η),

with probability at least 1− η.

2) Main Result for the Subsampling Stability Mechanism:

Theorem III.3 (Distance to Ground Truth Labels). Let u2 and
û2 be the second eigenvectors of the unperturbed Laplacian
matrix L and the Laplacian matrix L̂ of the subsampled graph
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Gℓ obtained via the subsampling mechanism, respectively.
Then, with probability at least 1− 3η, we have

min
s∈{±1}

∥û2 − su2∥2

≤ 4
√
2

n(p− q)
·
(
∥d∥2 +

√
2σ2 log (2/η)

+
L

3
log (2/η)

)
≜ CIII.3(ϵ, η),

where, d is a deterministic part of the perturbation, derived
from the adjusted edge sampling mechanism where ∥d∥2 =
2qs√
n

√
q

p+q · |E|, |E| represents the total number of edges in the

graph, and σ2 = 16
n · qs(1− qs)|Einter|, where |Einter| denotes

the number of inter-community edges. This is the variance of
the edge sampling noise, with qs which can be further upper
bounded as σ2 ≤ 4

n ·
q

p+q · |E|, and L = max(i,j)∈E ∥xij∥2 ≤
4/
√
n is the upper bound on the norm of the noise components.

Proof. The proof is based on the same perturbation analysis
as the analysis of the graph perturbation mechanism given
in the proof of Thm. III.2, with the bound of Lemma III.5
used instead for the high-probability bound for the term ∥L̂−
L∥.

The above result holds under the following separation con-
dition between p and q. Specifically, for a universal constant
C = 4 ·max (2CIII.2, CIII.5), with CIII.2 and CIII.5 given
in Lemmas III.2 and III.5, respectively, it is required that

n(p− q) ≥ C
[
T +

n√
2

√
qs(1− qs)

√
log(n/η)

]
,

where T ≜
√

np log(n/η) + log (n/η).
Remark III.1 (Impact of qs on the Distance Bound). The edge
sampling probability qs plays a crucial role in the trade-off
between privacy and spectral accuracy. As qs decreases:

• The deterministic perturbation ∥d∥2 and the variance
σ2 decrease, reflecting reduced magnitudes of the
subsampling-induced noise.

• However, the spectral gap λ̂3−λ2 (refer to Eqn. (9)) also
decreases significantly due to the increased instability of
the subsampled graph, particularly when critical edges
are removed.

Here, λ̂3 is the third smallest eigenvalue of the subsampled
graph Gℓ. This reduction in the spectral gap dominates the
bound, leading to an overall increase in the upper bound on
the distance ∥û2 − su2∥2.

Lemma III.6 (Overlap Rate for Subsampling Stability Mech-
anism). Consider the subsampling stability-based mechanism,
which satisfies (2ϵ, δ)-edge DP. The overlap rate between
the ground truth labels σ∗ and the final estimated labels
σ̂final obtained via majority voting on m correlated subgraphs
{G1, . . . , Gm} satisfies:

overlap rate(σ̂final,σ
∗) ≥ 1− CIII.3(ϵ, η)

4
−O

(
1√
m

)
,

with probability at least 1 − 3mη, where CIII.3(ϵ, η) is the
error contribution from the non-private spectral method for
individual subsampled Graph Gℓ.

Proof Sketch. For a single subsampled graph Gℓ, the label-
ing σ̂(Gℓ) satisfies: overlap rate(σ̂(Gℓ),σ

∗) ≥ 1 − CIII.3,
implying that at most CIII.3n nodes are mislabeled in each
subgraph. Let Sℓ ⊆ [n] denote the set of mislabeled nodes for
subgraph Gℓ, so |Sℓ| ≤ CIII.3n. The final labeling σ̂final is
obtained by taking a majority vote over the m subgraphs. A
node i is mislabeled in σ̂final if it is mislabeled in more than
m/2 subgraphs.

Let Xi denote the number of subgraphs in which node i
is mislabeled. Since E[Xi] = mCIII.3, the probability that
Xi ≥ m/2 can be bounded using Hoeffding’s inequality:

Pr(Xi ≥ m/2) ≤ exp

(
−2
(m
2
−mCIII.3

)2
/m

)
.

Aggregating the probability of mislabeling across all nodes,
the fraction of mislabeled nodes (denoted as M) in the
final labeling satisfies that |M|

n ≤ 2CIII.3 + O (1/
√
m),

where 2CIII.3 accounts for the worst-case overlap between
mislabeled nodes across subgraphs.

D. Noisy Power Iteration Method

As motivation, we build on the approach of [25], which
applies power iteration to the centered adjacency matrix

B = A− ρ11⊤, ρ = 1⊤A1/n2.

We tailor this procedure to the differential-privacy setting by
replacing the standard power iteration with the noisy power
method of [26]:

xt = Byt−1 + zt, yt−1 = xt−1/ ∥xt−1∥2 ,

where zt ∼ N (0, C2σ2In) and C limits the 2-norm sensitivity
of the product Byt−1 with respect to change of a single edge
in the graph. The DP guarantees are then obtained from a
composition analysis of the Gaussian mechanism. To this end,
we need to bound the sensitivty of the multiplication Byt−1

w.r.t. to change of a single edge, as formalized in the following
lemma.

Lemma III.7. Let A and A′ differ in a single element, and
let y ∈ Rn with ∥y∥2 = 1. Then,

∥By −B′y∥2 ≤ ∥y∥∞ +
1

n
.

Proof. Let A and A′ differ in (i, j)th element. As B = A−
ρ11T , where ρ = 1TA1/n2 (and similarly B′ = A′− ρ′11T
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TABLE I: Comparison of error bounds and summarization of the practical methods: Graph Perturbation vs. Noisy Power
Iteration.

Method Graph Perturbation Mechanism Noisy Power Iteration

Error in the Second Eigenvector mins∈{±1} ∥û2 − su2∥2 = O

(
q

p−q
+ 1

eϵ/2(p−q)
√
n

)
mins∈{±1} ∥yN − su2∥2 = O

( √
logn

ϵ(p−q)
√
n

)
Noise Source Randomized graph perturbation Added noise in iterative updates

Time Complexity O(n3) with full eigendecomposition
Õ(n2) (leaving log factors) with power or Lanczos iteration

Dense SBM: O
(
(n logn)N

)
= O(n(logn)2)

Sparse SBM: O(nN) = O(n logn)

Space Complexity O(n2) Dense SBM: O(n logn), Sparse SBM: O(n)

Algorithm 3 Noisy Power Iteration

1: Input: Adjacency matrix A ∈ {0, 1}n×n, positive integer
N

2: Output: Private labelling vector σ̂.
3: Set ρ = 1TA1/n2, B = A− ρ11T .
4: Draw y0 randomly from the unit sphere Bn−1.
5: for t = 1 to N do
6: xt = Byt−1 + zt,

zt ∼ N
(
0, (∥yt−1∥∞ + 1

n )
2σ2In

)
.

7: yt = xt/ ∥xt∥2.
8: end for
9: σ̂ = yt/|yt|.

for ρ′ = 1TA′1/n2), we have that:

∥By −B′y∥2 ≤ ∥Ay −A′y∥2
+
∥∥(1TA1/n2 − 1TA′1/n2)11Ty

∥∥
2

= ∥yjei∥2 +
1

n2

∥∥(1T (A−A′)1)11Ty
∥∥

= |yj |+
1

n2

∥∥11Ty
∥∥
2

= |yj |+
1

n2
∥1∥2 |1

Ty|

= |yj |+
|
∑n

i=1 yi|
n

3
2

≤ max
j
|yj |+

∑n
i=1 |yi|
n

3
2

= ∥y∥∞ +
∥y∥1
n

3
2

≤ ∥y∥∞ +

√
n ∥y∥2
n

3
2

= ∥y∥∞ +
1

n
,

where ei is the i-th standard basis vector. In the last inequality
we have used the relation ∥y∥1 ≤

√
n∥y∥2 which holds for

all y ∈ Rn, and in the last equality the assumption ∥y∥2 = 1.
This completes the proof of the lemma.

With the above y-adaptive sensitivity bound, we get the
noisy power method depicted in Algorithm 3.

Remark III.2. The privacy guarantee of Algorithm 3 follows
from the facts that analyzing an N -wise composition of Gaus-
sian mechanisms, each with noise ratio σ, is equivalent to an-
alyzing a Gaussian mechanism with noise ratio σ/

√
N and by

applying standard tail bounds for the Gaussian distribution [4].
In particular, choosing σ = 1

ϵ

√
4N log

(
1/δ
)

ensures that the
entire sequence x1, . . . ,xN is (ϵ, δ)-differentially private. Note
that Step 9 involves only post-processing of data-dependent
intermediate values and therefore incurs no additional privacy
cost.

1) Auxiliary Results for Noisy Power Iteration Method:
The utility analysis of Algorithm 3 follows directly from [26,
Thm. 1.3]. The general result of [26, Thm 1.3] is stated for a
block matrix iteration. By carefully following the proof of [26,
Thm 1.3], we observe that it can be adapted to yield a ”1−η”
high-probability bound by replacing [26, Lemma A.2] with
the following result, which is specifically tailored to the noisy
power vector iteration and applied using the sensitivity bound
of Lemma III.7.

Lemma III.8. Let u ∈ Rn be a unit vector, and let
g1, . . . ,gL ∼ N (0, σ2In) be independent Gaussian vectors.
Then, for any η ∈ (0, 1), with probability at least 1 − η, we
have simultaneously

max
ℓ∈[N ]

|u⊤gℓ| ≤ σ

√
2 log

(
2N

η

)
and

max
ℓ∈[N ]

∥gℓ∥ ≤ σ

(
√
n+

√
2 log

(
2N

η

))
.

Proof. Since u is a unit vector, each u⊤gℓ is distributed
as a one-dimensional Gaussian N (0, σ2). Standard Gaussian
concentration inequalities imply that for t ≥ 0,

Pr
(
|u⊤gℓ| ≥ σt

)
≤ 2e−t2/2 and

Pr
(
∥gℓ∥ ≥ σ(

√
n+ t)

)
≤ e−t2/2.

Applying a union bound over the 2N events and setting t =√
2 log (2N/η), the claim follows.

Using Lemma III.8 in the proof of [26, Thm 1.3] instead
of [26, Lemma A.2], we directly have the following high-
probability version of [26, Thm 1.3].

Lemma III.9. If we choose σ = ϵ−1
√

4N log(1/δ), then the
Noisy Power Iteration of Algorithm3 with N iterations sat-
isfies (ϵ, δ)-edge DP. Moreover, after N = O

(
λ1

λ1−λ2
log n

)
iterations we have with probability at least 1− η that
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∥∥(I− u2u
T
2 )yN

∥∥
2
≤

σ(maxt∈[N ] ∥yt∥∞ + 1
n )
(√

n+
√
2 log (2N/η)

)
λ1 − λ2

,
(10)

where λ1 ≥ λ2 denote the two largest eigenvalues of the
matrix B and u2 denotes the eigenvector corresponding to
the eigenvalue λ1.

For lower bounding the spectral gap λ1−λ2 for the shifted
matrix B, have the following lemma from [25].

Lemma III.10. Let p and q be parametrized as

p =
α log n

n
, q =

β log n

n
(11)

for some constant α > β > 0. Let λ1 ≥ λ2 ≥ . . . ≥ λn be
the eigenvalues of the matrix B = A − ρ11T , where ρ =
1TA1/n2. Then, for sufficiently large n, for some constants
c1 and c2, it holds with probability at least 1−2n− 1

2(α+β+1) −
c2n

−3 that

λ1 ≥
α− β

3
log n

and

|λi| ≤ 2c1
√
log n, i = 2, . . . , n.

We directly get the following corollary from Lemma III.10.

Corollary III.1. Suppose p = α logn
n and q = β logn

n for
constants α > β > 0, and let λ1 ≥ λ2 ≥ · · · ≥ λn be the
eigenvalues of the matrix B = A−ρEn, with ρ = 1

n21
⊤
nA1n-

Then, for all sufficiently large n, with probability at least
1− 2n− 1

2(α+β+1) − c2n
−3, it holds that

1

λ1 − λ2
≤ 1

1
3 (p− q)n− 2c1

√
log n

,

where c1 and c2 are the constants from Lemma III.10.

Proof. Lemma III.10 directly gives the following lower bound
for the spectral gap:

λ1 − λ2 ≥
α− β

3
log n− 2c1

√
log n.

Taking reciprocals yields:

1

λ1 − λ2
≤ 1

α−β
3 log n− 2c1

√
log n

.

Substituting p andn q into the expression above:

1

λ1 − λ2
≤ 1

1
3 ·

(p−q)n
logn · log n− 2c1

√
log n

=
1

1
3 (p− q)n− 2c1

√
log n

.

This completes the proof of Corollary III.1.

2) Main Result for Noisy Power Iteration: We are now
ready to prove the main convergence theorem for the
noisy power method. Notice that we can always bound
maxt∈[N ] ∥yt∥∞ by 1 since yt has unit norm for all t ∈ [N ].

Theorem III.4. If we choose σ = ϵ−1
√
4N log(1/δ) and

C = ∥y∥∞ + 1
n , the Noisy Power Iteration with N iterations

satisfies (ϵ, δ)-DP. Moreover, with N = O
(

λ1

λ1−λ2
log n

)
iter-

ations, for some constants c1 and c2, it holds with probability
at least 1− 2n− 1

2(α+β+1) − c2n
−3 that

min
s∈{±1}

∥yN − su2∥2 ≤

√
2σ(1 + 1

n )

(
√
n+

√
2 log

(
2N
η

))
1
3 (p− q)n− 2c1

√
log n

.

Proof. By simple linear algebra, we first derive a lower bound
for the left-hand side of the inequality (10). Since u2 and yN

are of unit norm, we have that∥∥(I− u2u
T
2 )yN

∥∥2
2
= ∥yN∥22 − 2(uT

2 yN )2 + (uT
2 yN )2

= 1− (uT
2 yN )2

and furthermore, since ∥yN∥2 = ∥u2∥2 = 1,

min
s∈{±1}

∥yN − su2∥22 = min
s∈{±1}

(
2− 2s(uT

2 yN )
)

= 2− 2|uT
2 yN |

≤ 2 ·
(
1− (uT

2 yN )2
)

= 2
∥∥(I− u2u

T
2 )yN

∥∥2
2

which implies

min
s∈{±1}

∥yN − su2∥2 ≤
√
2
∥∥(I− u2u

T
2 )yN

∥∥
2
. (12)

The claim follows then from the inequality (12), Lemma III.9
and Cor. III.1.

Corollary III.2. Under the assumptions of Thm. III.4, we have
that with probability at least 1− 2n− 1

2(α+β+1) − c2n
−3 − η,

min
s∈{±1}

∥yN − su2∥2 = O

(√
log 1/δ

ϵ(p− q)

√
log n

n

)
.

Proof. We also have that

λ1

λ1 − λ2
= 1 +

λ2

λ1 − λ2

= 1 +O

( √
log n

(p− q)n

)
= O(1)

and therefore N = O
(

λ1

λ1−λ2
log n

)
= O(log n).

Substituting σ and N into eqn. (10) and neglecting a
logN = O(log log n) factor, we have that with probability
at least 1− 2n− 1

2(α+β+1) − c2n
−3 − η,

∥u2 − yN∥2 = O

(√
log 1/δ

ϵ(p− q)

√
log n

n

)
.

This completes the proof of the corollary.

Remark III.3. We remark that, analogous to the graph
perturbation-based mechanism, the error bound provided in
Theorem III.4 for the noisy power iteration method can be



11

directly translated into a lower bound on the overlap rate using
Lemma III.4. We formalize this in the following lemma.

Lemma III.11 (Overlap Rate for Noisy Power Iteration).
Consider the private spectral method based on noisy power
iteration that estimates the second eigenvector u2 of the
unperturbed graph Laplacian. Let yN denote the final estimate
after N iterations, and suppose that

min
s∈{±1}

∥yN − su2∥2 ≤ ∆,

with probability at least 1− η̃. Here, η̃ is taken directly from
Theorem III.4, and ∆ corresponds to the upper bound on
the Euclidean distance given in the same theorem. Then, the
overlap rate between the estimated labels σ̂ = sign(yN ) and
the true labels σ∗ satisfies

overlap rate(σ̂,σ∗) ≥ 1− ∆2

8
,

with probability at least 1− η.

3) Tighter Privacy Analysis for Noisy Power Iteration:
To further optimize the privacy-utility trade-offs for the noisy
power iteration, we consider a tighter privacy analysis via so-
called dominating pairs of distributions [27].

The noisy power iteration algorithm with N steps can be
see as an adaptive composition of the form

M(N)(G) =
(
M1(G),M2(M1(G), G), . . . ,

MN (M1(G), . . . ,MN−1(G), G)
)
.

We obtain accurate (ϵ, δ)-differential privacy guarantees for
adaptive compositions by leveraging dominating pairs of dis-
tributions, as introduced in [27]. Due to the scaling of the noise
in Algorithm 3, the privacy loss at each step is dominated
by that of the Gaussian mechanism with sensitivity 1 and
noise standard deviation σ. Accordingly, the dominating pair
of distributions for each step is given by (P,Q), where
P = N (1, σ2) and Q = N (0, σ2).

Applying standard composition results [27], [28] to these
dominating pairs, it follows that the N -fold adaptive compo-
sition of Algorithm 3 is itself dominated by the pair (P,Q),
where P = N (1, Nσ2) and Q = N (0, Nσ2). Thus, the
resulting (ϵ, δ)-DP guarantee corresponds to that of the Gaus-
sian mechanism with sensitivity 1 and noise parameter

√
Nσ.

The analytical expression from [29, Thm. 8] then yields the
following bound.

Lemma III.12. Algorithm 3 is
(
ϵ, δ(ϵ)

)
-DP for

δ(ϵ) = Φ

(
− ϵσ√

T
+

√
N

2σ

)
− eϵΦ

(
− ϵσ√

N
−
√
N

2σ

)
,

where Φ denotes the CDF of the standard univariate Gaussian
distribution.

To compute ϵ as a function σ and δ or σ as a function of ϵ
and δ, the expression of Lemma III.12 can be inverted using,
e.g., bisection method.

IV. EXPERIMENTAL COMPARISONS

Two of out of the three discussed algorithms perform well
in practive: the graph perturtbation based mechanism and the
noisy power method. Table I summarized the derived error
bounds for these two methods. We notice that the error bounds
are similar except for the additional constant term in the bound
for the graph perturbation mechanism.

A. Synthetic SBM Graphs

These differences are also reflected in the experimental
results shown in Fig. 2, 3, and 4 where we empirically
measure the overlap rate for synthetic SBM graphs. Fixing
the probabilities p and q, we see that the noisy power method
becomes the better one as the n (number of nodes) increases.

In Fig. 2, 3, and 4, each point describes the mean of 1000 ex-
periments. The required σ-values for the noisy power method
were computed using the expression given in Lemma III.12,
based on ϵ, δ and the number of iteration N which was fixed
to 8 for all experiments.
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Fig. 2: Overlap vs ϵ, when n = 200, p = 0.2, q = 0.02, δ = n−2.

B. Political Blogs Dataset

We consider a symmetrized version of the Political Blogs
dataset [30], originally a directed network of hyperlinks be-
tween U.S. political blogs collected in 2005. In this version,
the direction of links is ignored, resulting in an undirected
graph with 1,490 nodes and 16,718 edges. Each node repre-
sents a blog and is annotated with a label in {1,−1} based
on its content. Edge weights reflect the number of mutual
hyperlinks between blog pairs, capturing the strength of their
connection.

This dataset turns out to be more challenging for the noisy
power method, as the eigenpair used for the deflation is not as
good approximation of the leading eigenpair of the adjacency
matrix A as in case of SBMs. We experimentally observe
that only some of the randomly drawn initial vectors y0 for
Algorithm 3 converge towards the second eigenvector of A.
To this end, we consider a variant, where we first privately
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Fig. 3: Overlap vs ϵ, when n = 400, p = 0.2, q = 0.02, δ = n−2.
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Fig. 4: Overlap vs ϵ, when n = 800, p = 0.2, q = 0.02, δ = n−2.

search for a suitable initial vector by adding symmetric nor-
mally distributed σ2 variance noise to A and setting y0 of
Algorithm 3 to be the second eigenvector of the resulting noisy
matrix. As a result, the total privacy guarantee can be seen as
a (N +1)-wise decomposition of Gaussian mechanisms, each
with noise scale σ, and we again get the (ϵ, δ)-DP guarantees
using Lemma III.12.

Fig. 5 shows the performance of the graph perturbation
method and the noisy power method as a function of ϵ, when
δ = 1/n2 for the noisy power method. In addition to the results
for the fully private method where we privately initialize y0

for Algorithm 3, we show the convergence with a randomly
chosen initial value that converges to the second eigenvector
of A.

In Fig. 5, each point describes the mean of 100 experiments.
The number of iterations N was fixed to 3 for the noisy power
method.
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Fig. 5: Overlap vs ϵ for the Political Blogs dataset.

V. CONCLUSION

We developed privacy-preserving spectral clustering meth-
ods for community detection over the binary symmetric
SBMs under edge DP. Our approaches include (1) a Graph
Perturbation-Based Mechanism, which perturbs the adjacency
matrix using either randomized response, followed by spectral
clustering, (2) a Subsampling Stability-Based Mechanism,
which leverages subsampling and aggregation for accurate
recovery, and (3) an edge DP power method that adds carefully
calibrated Gaussian noise to each matrix–vector multiplication,
guaranteeing edge DP for every intermediate eigenvector es-
timate while still converging to the true leading eigenvectors.
We also analyzed the tradeoff between privacy and accuracy,
providing theoretical guarantees. Future work will generalize
these ideas to (i) SBMs with more than two communities and
(ii) graphs exhibiting degree heterogeneity.
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