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Abstract

The integration of AI into daily life has generated considerable attention and excitement, while also
raising concerns about automating algorithmic harms and re-entrenching existing social inequities. While
the responsible deployment of trustworthy AI systems is a worthy goal, there are many possible ways
to realize it, from policy and regulation to improved algorithm design and evaluation. In fact, since
AI trains on social data, there is even a possibility for everyday users, citizens, or workers to directly
steer its behavior through Algorithmic Collective Action, by deliberately modifying the data they share
with a platform to drive its learning process in their favor. This paper considers how these grassroots
efforts to influence AI interact with methods already used by AI firms and governments to improve model
trustworthiness. In particular, we focus on the setting where the AI firm deploys a differentially private
model, motivated by the growing regulatory focus on privacy and data protection. We investigate how
the use of Differentially Private Stochastic Gradient Descent (DPSGD) affects the collective’s ability
to influence the learning process. Our findings show that while differential privacy contributes to the
protection of individual data, it introduces challenges for effective algorithmic collective action. We
characterize lower bounds on the success of algorithmic collective action under differential privacy as a
function of the collective’s size and the firm’s privacy parameters, and verify these trends experimentally
by simulating collective action during the training of deep neural network classifiers across several datasets.

1 Introduction
The rapid proliferation of AI systems across multiple domains has been propelled by the ability of AI firms to
collect vast amounts of data for training purposes, which is sourced from public websites, users of the firm’s
products, and crowd workers. By leveraging these large-scale data, the firms are able to train increasingly
sophisticated model that not only improves their predictive capabilities but also expand the range of problems
that they can address. Despite its advantages, the extensive use of personal data in training machine learning
models has introduced pressing concerns about algorithmic harms, such as threats to privacy, exposure of
sensitive information, and biased decision-making that perpetuates social disparities.

In response to these concerns, various solutions have been proposed and implemented at different stages
of the model development pipeline. At the firm level, efforts towards building "trustworthy AI" often
involve fairness assessments, bias mitigation techniques, privacy auditing, and adversarial evaluations like
red teaming across multiple stages from data collection to model training and post-processing [Barocas
et al., 2023]. However, implementing these techniques may introduce trade-offs with the firm’s broader
objective of maximizing predictive performance and enhancing user engagement for more data. On the
other hand, several regional regulations such as the European Union’s General Data Protection Regulation
(GDPR) [European Parliament and Council of the European Union, 2016], Canada’s Personal Information
Protection and Electronic Document Act (PIPEDA) [Government of Canada, 2000] and The California
Privacy Rights Act (CPRA) [State of California, 2020] establish baseline privacy protections, yet compliance
with these laws alone does not guarantee socially responsible outcomes [Selbst et al., 2019, Utz et al., 2019].
In parallel with organization and regulatory measures, grassroots efforts of Algorithmic Collective Action is
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taking shape [Hardt et al., 2023], where users actively organize and contribute their data in a coordinated
manner to strategically influence model behavior “from below” [DeVrio et al., 2024].

Algorithmic collective action (ACA) [Hardt et al., 2023, OLSON, 1971] provides a principled framework
for understanding how a group of individuals, through coordinated changes in their data, can impact the
behavior of deployed models. Prior work has provided theoretical insights under assumptions such as Bayes
optimality, empirical risk minimization [Hardt et al., 2023], or robust optimization [Ben-Dov et al., 2024],
offering an informed view of how these assumptions can affect the effectiveness of collective action on model
behavior. However, the interaction between the actions of coordinated users and privacy-preserving techniques
employed by the model owners remains largely unexplored.

In this paper, we investigate this intersection, focusing on Differential Privacy (DP), a widely used method
for protecting individual-level data through the injection of calibrated noise into the learning process. In
particular, we study the application of differential privacy in deep learning settings through Differentially
Private Stochastic Gradient Descent (DPSGD), a common approach for preserving privacy during model
training. Motivated by strengthening of regulatory frameworks and growing consumer demand for privacy
guarantees, we seek to understand how differential privacy affects algorithm’s responsiveness to collective
action and success rate of such interventions.

We put forward a theory that examines the impact of differential privacy constraints on the effectiveness
of collective taking action on the firm’s learning algorithm. We operationalize this framework in practical
deep learning scenarios, and perform extensive experiments on multiple benchmark datasets showing that
while differential privacy provides strong guarantees to protect individual data, it inadvertently reduces the
collective’s ability to coordinate and alter the behavior of the firm’s model. This work offers a new lens on
the societal implications of using privacy-preserving techniques in machine learning, through the combination
of theoretical insight and empirical validation.

Our contributions are summarized as follows:

• We identify and characterize a trade-off between Differential Privacy and Algorithmic Collective Action.
Our theoretical model characterizes lower bounds on the collective’s success under differential privacy
constraints, in terms of the collective’s size and the privacy parameters.

• These theoretical findings are validated through extensive experiments on multiple datasets, showing
that differential privacy reduces the collective’s ability to influence the behavior of the model.

• We also measure empirical privacy through the lens of membership inference attacks, and find that the
collective’s presence in the data distribution offers some degree of empirical privacy.

2 Background
This section provides a formal introduction to algorithmic collective action and privacy-preserving training,
and defines the notation used throughout the paper.

2.1 Collective Action
Hardt et al. [2023] proposed a theoretical framework to model the dynamics between a firm’s learning
algorithm and a collective. Within this framework, the size of the collective is represented by a parameter
α > 0, which denotes the proportion of individuals within the data drawn from the base distribution P0.
The collective selects a strategy h : Z → Z, representing allowable modifications to data, where Z = X × Y
denotes the feature-label domain. Applying h to data drawn from P0 induces the collective’s distribution P∗.
The firm’s learning algorithm A then would encounter the following mixture of data distribution:

P = αP∗ + (1− α)P0,

As a result, the firm will deploy the classifier f = A(P) : X → Y, mapping from features to labels.
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Planting a signal In this work, we focus on the collective’s goal of influencing the firm’s learning behavior
by modifying both the features and labels for all data under their control–the feature-label strategy from Hardt
et al. [2023]. The data is modified in such a way that the classifier f learns to associate the transformed
version of features with the chosen target label y∗, where the transformation is defined by the function
g : X → X , resulting in the strategy h(x, y) = (g(x), y∗).

Definition of success While there are several learning-theoretic settings explored in Hardt et al. [2023],
this work focuses on characterizing the success criteria of the collective in the context of gradient-based
optimization, where the learner essentially selects a model from a parameterized family {fθ}θ∈Θ. By defining
the target model θ∗ that the collective desires to achieve by influencing the firm’s model θ, we measure the
success of the collective after t steps as:

St(α) = −∥θt − θ∗∥ .

Critical mass We are interested in finding the smallest size of the collective that can achieve a desired
level of success, which is referred to as the critical mass. Formally, for a given target success level S∗, the
critical mass is the smallest value α such that the achieved success S(α) ≥ S∗.

Consistent with the prior setup of [Hardt et al., 2023], we do not impose any convexity assumptions
on the objective function and consider a learner that observes the distribution Pt at each time step. Let
gPt(θt) = Ez∼Pt ∇ℓ(θt; z) be the expected gradient of the loss over the distribution Pt, measured at the
parameter θt ∈ Θ. The learner then performs the following gradient descent update:

θt+1 = θt − η gPt(θt).

With this, the collective aims to steer the firm’s model θ toward a target θ∗ by influencing the overall gradient
to align it with their desired direction.

Definition 1 (Gradient-redirecting distribution from Hardt et al. [2023]). Given an observed model θ and a
target model θ∗, the collective finds a gradient-redirecting distribution P ′ for θ where:

gP′(θ) = −1− α

α
gP0

(θ) + ξ · (θ − θ∗),

for some ξ ∈
(
0, 1

αη

)
. Once such a distribution is identified, we can sample modified data z′ ∼ P ′ to guide

the optimization process by setting:

h(z) = z′.

Intuitively, the gradient under distribution P ′ is composed of two terms—one that reverses and rescales
the original gradients gP0(θ), and another that pushes the parameters toward the collective’s desired model
θ∗. The following theorem formalizes the lower bound on the success of the collective when applying the
gradient-redirecting strategy.

Theorem 1 (Theorem 10 from Hardt et al. [2023]). Assume the collective can implement the gradient-
redirecting strategy at all λθ0 + (1− λ)θ∗, λ ∈ [0, 1]. Then, there exists C(α) > 0 such that the success of the
gradient-redirecting strategy after T steps is lower bounded by,

ST (α) ≥ − (1− ηC(α))
T ∥θ0 − θ∗∥ .

where C(α) is directly proportional to collective’s size α. As α increases (and consequently C(α)), the lower
bound on the collective’s success also increases. This result also implies that the collective can attain any
desired model θ∗, provided a continuous path exists from θ0 to θ∗ that does not encounter large gradients
with respect to the initial distribution P0.
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2.2 Privacy-preserving Training
In machine learning applications that involve sensitive data, it is essential to ensure the privacy of individual
records, especially if that model is to be deployed publicly. A common approach to formalize privacy
guarantees is through differential privacy (DP), which provides a mathematical framework for limiting the
information that a learned model can reveal about any single data point. DP is based on the concept of
neighboring datasets, which are defined as two datasets that differ in the data of a single record. An algorithm
(or “mechanism”) is said to be differentially private if it admits nearly the same statistical inference for two
neighboring datasets. The formal definition of DP from Dwork et al. [2006] is presented as follows.

Definition 2 ((ϵ, δ)-Differential Privacy). A randomized mechanism M : D → R with domain D and range
R satisfies (ϵ, δ)-differential privacy if for any two neighboring inputs d, d′ ∈ D and for any subset of outputs
S ⊆ R, it holds that

Pr[M(d) ∈ S] ≤ eϵ Pr[M(d′) ∈ S] + δ.

At a high level, ϵ quantifies the extent to which a single data point can influence the algorithm’s output,
while δ accounts for a small probability of exceeding the bound. DP is often applied to learning algorithms by
considering how the parameter identified is affected by the addition of carefully calibrated noise throughout
learning: the mechanism M(d) is a learning algorithm run on some dataset d, while the outcome S is a
particular parameter value θ found by the learning algorithm. To characterize the success of the collective in
a more practical setting, we use Differentially Private Stochastic Gradient Descent (DPSGD), proposed by
Abadi et al. [2016], which guarantees (ϵ, δ)-differential privacy, as detailed in Algorithm 1.

Algorithm 1 DPSGD Algorithm from Abadi et al. [2016]

Input: Dataset D, loss function ℓ, learning rate η, batch size B, noise scale σ, clipping threshold C, initial
model θ0
for t ∈ [T ] do

Uniformly draw mini-batch Bt from D
For each zi ∈ Bt, g

clip
i (θt) = clip(∇ℓ(θ; zi), C)

gDP(θt) =
1

|Bt|

((∑
i g

clip
i (θt)

)
+N (0, σ2C2I)

)
θt+1 = θt − η gDP(θt)

Return: θT and the overall privacy cost (ϵ, δ)

In a nutshell, DPSGD modifies standard stochastic gradient descent by adding noise to the gradient
updates, using the Gaussian mechanism [Dwork et al., 2014, Appendix A]. The noise multiplier σ, which
controls the scale of Gaussian noise added to the clipped gradients, is inversely proportional1 to the privacy
loss ϵ. A higher σ introduces more noise, offering stronger privacy guarantees (meaning smaller ϵ), but this
incurs the cost of the reduced utility of the model.

3 Collective Action under Differential Privacy
In this section, we provide a theoretical framework that characterizes bounds on the success of the collective
action under DP constraints. Our approach builds on and extends the foundational work of Hardt et al.
[2023], who initiated a principled study of the collective interacting with the firm’s learning algorithm.

Problem setup We assume that the firm deploys a private learning algorithm A with the objective of
preserving user data privacy. Given a data distribution P and a parameter space Θ, f = A(P) ∈ Θ represents
the model chosen by the firm. We consider a realistic learning scenario without convexity assumptions on the

1For a simple application of the Gaussian mechanism, this inverse relationship has a closed-form expression [Dwork et al.,
2014]. However, in DPSGD which involves repeated application of the mechanism across training iterations, the cumulative
privacy loss is tracked using privacy accountant [Abadi et al., 2016, Mironov, 2017]
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objective function, where gradient-based learning algorithms are typically used. In particular, we focus on
Differentially Private Stochastic Gradient Descent (DPSGD), a widely used algorithm for training models
under (ϵ, δ)-differential privacy constraints, and examine how this choice affects the success of collective
action.

At each time step t, we assume the learner observes the current data distribution Pt, allowing the collective
to adaptively interact with the learner by choosing P∗

t [Hardt et al., 2023]. This models the best-case scenario
for the collective, enabling us to analyze the potential effectiveness of its strategy under ideal conditions.
Given a clipping threshold C and a noise scale σ, the model parameters are updated by taking the gradient
step computed according to the DPSGD:

θt+1 = θt − η

(
E

z∼Pt

[clip(∇ℓ(θt; z), C)] +N (0, σ2C2I)

)
= θt − η

(
gclip
Pt

(θt) +N (0, σ2C2I)
)

= θt − η gDP
Pt

(θt)

where clip(g, C) = g ·min(1, C/∥g∥) denotes the gradient clipping operation, which scales the gradient g
to have norm of at most C. To maintain consistency with the analysis from Hardt et al. [2023], we use the
expectation of (clipped) gradients when performing each gradient descent update.

Theoretical results The most intuitive factor that limits the success of the collective when the firm uses
DPSGD is the algorithm’s inherent ability to limit the influence of any individual data point on the model’s
output. Gradient clipping reduces the collective’s ability to align the gradients with their desired direction,
while the injected noise further deflects this directional push. As a result, the signal that the collective is
trying to correlate with the target label also gets attenuated. This is equivalent to the collective introducing
a noisy signal, which in turn increases the efforts required for the collective to influence the outcome. We
now formalize this idea.

Theorem 2. Assume that the collective can implement the gradient-redirecting strategy from Definition
1 at all λθ0 + (1− λ)θ∗, where λ ∈ [0, 1] and θ0, θ

∗ ∈ Rd. Then, for a given clipping threshold C and noise
multiplier σ, there exists B(α,C) > 0, such that the success of the gradient-control strategy after T steps is
lower bounded with probability greater than 1− δ by,

ST (α, σ,C) ≥ − (1− ηB(α,C))
T ∥θ0 − θ∗∥ − σC · f1(B(α,C), T, η) · f2(d, δ),

where B(α,C) here is directly proportional to the collective’s size α and clipping threshold C, as it depends
on the norm of the clipped gradients. Therefore, as the clipping threshold increases, so does the norm of
the clipped gradient. The function f1 is the convergence-dependent scaling factor, while f2 quantifies how
much noise we might expect in high dimensions with high confidence (see Appendix A.2 for a full expression
of these two functions). Setting C = ∞, which corresponds to no clipping being applied to the gradient,
recovers C(α)–stated in Theorem 1–from B(α,C). In addition, setting the noise scale σ = 0, reducing the
learner to standard SGD algorithm, eliminates the second term entirely and reconstructs the bound from
Theorem 1. The formal proof for this theorem can be found in Appendix A.2.

Relation between privacy parameters and success Theorem 2 shows that the success of the collective
is inversely proportional to noise scale σ. From Section 2.2, we know that increasing σ leads to lower
privacy loss ϵ, meaning stronger privacy guarantees. Therefore, tightening privacy constraints by increasing σ
adversely affects the collective’s success.

Next, we examine the role of clipping threshold C, set by the firm, on the success of the collective.
In contrast to σ, this relationship involves more nuanced dynamics. Since B(α,C) depends directly on
the clipped gradient, its upper bound is an increasing function of C. This, in turn, causes the expression
− (1− ηB(α,C))

T in the first term of the sound bound to increase with clipping threshold C, leading to a
positive contribution to the collective’s success. However, second term introduces two opposing effects–while
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the linear dependence on C tends to reduce success as C increases, the function f1, which itself decreases
with C, counteracts the negative trend. As a result, the overall impact of the clipping threshold C on the
success of the collective is determined by the interplay between these competing influences.

4 Experiments
This section presents our experimental evaluation of how the critical mass of the collective changes when using
a differentially private learning algorithm. We perform experiments on standard image-based multi-class
classification benchmarks, including MNIST [LeCun and Cortes, 2010] and CIFAR-10 [Krizhevsky and Hinton,
2009], as well as a tabular binary classification task using the Bank Marketing dataset [Moro et al., 2014]. We
further evaluate how both the presence and the size of the collective influence vulnerability to membership
inference attacks under both private and non-private settings.

4.1 Strategy and Success of the Collective
As discussed in Section 2.1, we assume the collective comprises a proportion α ∈ [0, 1] of the training data
and aims to influence the algorithm’s behavior by planting a signal g(x) within the data they control. They
desire to steer the model’s prediction on transformed data points g(x) towards a desired target label y∗.
Specifically, we assess the effectiveness of the feature-label strategy, where the collective modifies the input
data—such as pixel values in images or entries in tabular data—and assigns a chosen target label y∗ to these
modified examples. Given a transformation g : X → X , the collective aims to maximize the following measure
of success:

S(α) = Pr
x∼P0

{f(g(x)) = y∗}.

That is, collective’s success is defined in terms of how the model’s predictions agree with the collective’s
chosen target label for evaluation data where the signal has been planted.

A straightforward way to measure S(α) in the experiments would be to plant a signal in all test points
and count how often the model successfully predicts the desired output. This corresponds to the accuracy on
the modified test data. Our objective is to determine the critical mass, denoted as α∗, the smallest size of
the collective required to achieve a fixed target success rate, by evaluating model accuracy on test data with
the planted signal. We do this by training multiple models on datasets where the collective controls different
amounts of data.

4.2 Experimental Setup
The datasets used, corresponding model architectures, and the specific data transformations applied by
collective to each dataset are detailed as follows.

MNIST We begin by performing experiments using the MNIST dataset, which contains grayscale images
of handwritten digits, each sized 28× 28 pixels. We balance the training dataset by randomly sampling 5,000
data points per class, resulting in a total of 50,000 samples across 10 classes. The test set is left unchanged
with 10,000 samples.

We use the standard ResNet18 [He et al., 2016] architecture but replace batch normalization with group
normalization [Wu and He, 2018] to ensure consistency when applying DPSGD, following prior work [Kurakin
et al., 2022, Luo et al., 2021]. This modification allows for accurate per-sample gradient computation, which
is required for enforcing differential privacy during training. For all experiments conducted in this work, we
use the SGD optimizer in the non-privacy setting and DPSGD for the privacy-preserving setting.

The transformation g applied on the input space modifies each image by setting the pixel values within
the 2 × 2 patch on the top-left corner to a fixed value of 50. To carry out the full feature-label strategy,
the label of each transformed image is reassigned to a class “8”, corresponding to the digit 8. We evaluate
the collective’s success by applying this transformation to all test samples and measuring the classification
accuracy, treating the target label 8 as the ground truth.
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(a) MNIST, fixed clipping at C = 1
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(b) MNIST, C = 5
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(c) MNIST, C = 10
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(d) CIFAR10, fixed clipping at C = 1
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(e) CIFAR10, C = 5
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(f) CIFAR10, C = 10

Figure 1: The success of the collective across ϵ. The top row shows results on the MNIST dataset, while
the bottom one on CIFAR-10. Each column corresponds to a different clipping threshold. For each plot, we
evaluate the collective’s success under different values of privacy budget ϵ and compare it with the baseline
case (ϵ = ∞, C = ∞), which corresponds to SGD without any privacy constraints. Collective size α ∈ [0, 1] is
reported as a percentage of the overall training dataset.

CIFAR-10 We also conduct experiments on the CIFAR-10 dataset, which consists of 60,000 color images
divided into 10 mutually exclusive classes, with 6,000 images per class. The dataset is partitioned into 50,000
training images and 10,000 test images. Each image is sized at 32×32 pixels.

We apply the same architecture as used for MNIST experiments, that is, ResNet18 with batch normalization
layers replaced by group normalization layers. In addition, we pre-train the ResNet-18 on the CIFAR-100
dataset, an extension of CIFAR-10 that consists of 60,000 32×32 color images categorized into 100 fine-grained
classes, with 600 images per class. We use this pre-trained model as the initialization for each CIFAR-10
training experiment in order to achieve improved accuracy under differential privacy constraints.

The transformation g here is a structured alteration to the image by modifying pixel intensities on a
regular grid, where every second pixel along every second row is adjusted by the magnitude of 2 [Ben-Dov
et al., 2024]. To ensure that the pixel values remain within the valid range [0, 255], any pixel that would
overflow when increased by 2 is instead decreased by 2. Each altered image is relabeled with a target class
“8”, corresponding to the label "ship".

Bank Marketing Lastly, we perform experiments on the UCI Bank Marketing dataset [Moro et al., 2014],
which contains 45,211 samples with 17 features describing client demographics and details of past marketing
campaigns. While the other datasets used in our experiments involve multiclass classification, the objective
of this dataset is to perform binary classification to predict whether a client will subscribe to term deposit.
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Figure 2: Success of the collective across ϵ on Bank
Marketing dataset [Moro et al., 2014]. We evaluate
collective’s success under different values of privacy
loss ϵ and compare it with baseline case (ϵ = ∞, C =
∞), which corresponds to SGD without any privacy
constraints.

For this dataset, we use a simple feedforward
neural network with a single hidden layer of 128 units,
followed by a ReLU activation function [Agarap,
2019], and a final fully connected layer that maps
the representation to the number of classes. For the
transformation g, we restrict the collective’s ability
to update only a specific feature of data they control,
and add a fixed offset of 50 to its value. We then
reassign the label of the collective’s data to the target
class “0”.

Implementation details We utilize the PyTorch
library for model implementation and training. For
differentially private training, we use the Opacus
framework,2 built on top of PyTorch, with its default
configurations, which uses Rényi Differential Privacy
(RDP) [Mironov, 2017] accounting for DPSGD. All
the models are trained for 30 epochs, and we report
baseline accuracies in Table 2. See Appendix C for
examples of the signals (which are designed to be
difficult to detect by humans) inserted onto samples
from the image classification datasets.

4.3 Results
We evaluate the success of the collective by training multiple models, each using a dataset where the collective
controls a different amount of the data. Our aim is to find the smallest collective’s size that reaches close to
100% accuracy on the altered test set. This evaluation is performed for multiple values of clipping threshold
C; for each value of C, we vary the privacy loss ϵ that the firm intends to tolerate.

Figure 1 (for MNIST and CIFAR-10 datasets) and Figure 2 (for Bank Marketing dataset) show a clear
trend: as the privacy loss decreases (corresponding to higher privacy), the critical mass required for the
success increases. This observation aligns with the theoretical results in Section 3, where the collective’s
success in Theorem 2 is inversely proportional to the noise scale σ, which appears in the second term of the
bound. This trend is consistent across different values of the clipping threshold C, as shown for C = 1, 5,
and 10 in each column of Figure 1. Consequently, when a firm deploys a model that prioritizes privacy at the
expense of accuracy, it negatively raises the threshold for effective collective action. In such scenarios, greater
coordination and organizational strength are required for the collective to accomplish its objective.

These findings reveal a trade-off between differential privacy and algorithmic collective action. While
stricter privacy protections are beneficial from regulatory or accountability perspectives, they increase the
burden on groups of individuals adversely affected by model outcomes who aim to influence the model’s
behavior.

4.4 Membership Inference Attack Evaluations
DP is appealing because it provides theoretical guarantees over how much privacy leakage is admitted by a
given learning algorithm. These guarantees hold for arbitrarily strong adversaries attempting to predict an
individual’s membership in the training data, even for adversaries who have access to side information [Dwork
et al., 2014]. Of course, not all machine learning models are trained with DP (especially considering that
the addition of noise can adversely affect model utility). To assess the privacy risks of a broader class of
learning algorithms, especially those trained without DP where theoretical guarantees cannot be established,
estimates of the empirical privacy leakage can be used [Hu et al., 2022].

2https://github.com/pytorch/opacus
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Figure 3: Success rate of Likelihood Ratio Attack (LiRA) [Carlini et al., 2022] evaluation on CIFAR-10
dataset. Each figure corresponds to a different setting of privacy constraints with privacy increasing from left
to right.

Collective’s size (α) ϵ = ∞ ϵ = 14.38 ϵ = 0.98

TPR @ 0.1% FPR AuC TPR @ 0.1% FPR AuC TPR @ 0.1% FPR AuC

0% 3.02% 81.78% 0.45% 67.42% 0.10% 52.36%
1% 0.11% 50.23% 0.08% 49.69% 0.09% 48.11%
7% 0.11% 50.02% 0.09% 49.33% 0.11% 49.78%
14% 0.10% 50.02% 0.10% 49.72% 0.08% 51.66%
21% 0.13% 50.17% 0.11% 49.89% 0.13% 49.21%
28% 0.10% 49.89% 0.11% 49.61% 0.07% 49.69%

Table 1: Evaluation of LiRA under varying privacy constraints using AUC and TPR at 0.1% FPR on
CIFAR-10 dataset. Lower TPR 0.1% FPR indicates better robustness to MIA, while with AuC the desired
metric is as close to 50% (random chance) as possible (i.e. 50.02% is better than 49.89%, which are both
better than 81.78%).

In keeping with this investigation of empirical privacy risks, we now investigate how the presence of a
collective can impact the vulnerability of the model to Membership Inference Attack (MIA) [Shokri et al.,
2017]. The goal of the MIAs is to determine whether a specific data point was included in the training
set. The collective controlling some part of the training data can alter the model’s decision boundaries
and learning pattern, which changes the likelihood of successful attacks. Our analysis aims to explore the
correlation between the size of the collective in the training data and the model’s susceptibility to MIA given
a learning algorithm used by the firm.

Experimental Setup We use Likelihood Ratio Attack (LiRA) [Carlini et al., 2022] to evaluate the
membership of the data point in the training set. LiRA determines the membership by comparing the model
output probabilities of the target model to that of several shadow models, trained on different subsets of
the data. We train 16 shadow models on the CIFAR-10 dataset with the same architectural configuration
mentioned in Section 4.2. Each shadow model is trained on half of the dataset (25,000 data points), leaving
another half for evaluation as non-members. We evaluate the success rates of the attack under different
settings of the collective’s size and learning algorithm on the CIFAR-10 dataset. We select six different
sizes of the collective α ∈ {0%, 1%, 7%, 14%, 21%, 28%} and three configurations of the learning algorithm–
(ϵ = 0.98, C = 1), (ϵ = 14.38, C = 1), and (ϵ = ∞, C = ∞, implying no privacy), totaling to 288 training
runs. To effectively determine the success of the attack, we report true-positive rates (TPR) at a very
low false-positive rate of 0.1% in addition to the area under the curve (AuC) of the receiver operating
characteristics (ROC).

Results Figure 3 presents the ROC curves showing the LiRA’s success rates under various configurations,
while Table 1 reports the corresponding AuC scores and the TPR @ 0.1% FPR values. We find that the

9



collective action during training improves empirical privacy by increasing the robustness to MIA (pushing
MIA success close to 50%, or random chance), even for models trained without DP. Specifically, we observe
that the presence of a collective comprising of as little as 1% of the dataset, there is noticeable improvement
in robustness against MIA for the models trained without any privacy constraints (Figure 3a) or with low
privacy when ϵ = 14.38 (Figure 3b) and that with high privacy when ϵ = 0.98 (Figure 3c). Moreover, the
introduction of collective does not appear to compromise the robustness to MIA already provided by DP
training across different privacy levels.

Why does ACA lead to improved empirical privacy? We speculate that this due to how ACA indirectly
affects model confidences. LiRA relies on likelihood ratios computed using the model’s predictive distribution.
The collective inserts a signal over a data subspace, meaning that the label function is no longer smooth.
Whereas model trained with supervised learning typically saturate their predictive confidences [Guo et al.,
2017, Papyan et al., 2020], a model trained on this new labeling function may hedge away from high-confidence
predictions, making it more difficult to determine training data membership based solely on model confidences.

5 Related Works

5.1 Collective Action
Collective action problems were central to 20th century social scientific inquiry [OLSON, 1971, Hardin,
1982, Marwell and Oliver, 1993], where various disciplinary perspectives were adopted to characterize the
circumstances under which a small yet organized group (e.g. a political action committee, labor union, or
voting block) could have an out-sized effect on social outcomes. More recently collective action problems
have been revisited in the context of socio-technical systems involving algorithms, especially those that rely
on data-driven prediction and decision-making.

As algorithmic systems become part of high-stakes decision-making, they can also cause socio-technical
harms that reinforce existing social inequalities, marginalize vulnerable groups, or create an inequitable
environment [Shelby et al., 2022]. In response, users of these systems may aim to collectively influence
algorithmic outcomes to be more equitable when traditional channels of accountability are not available.
Hardt et al. formalized the concept of Algorithmic Collective Action (ACA) as a setting in which users of a
system can steer the output of the machine learning algorithm to achieve a group objective [Hardt et al.,
2023]. This builds on the idea of Data Leverage, where individuals do not treat their data as passive inputs,
but rather as levers that can be used to influence the outcome of the algorithmic system [Vincent et al., 2020].

ACA may also face challenges similar to those faced with other modes of collective action (i.e. in non-
algorithmic settings). One such challenge is free-riding, where individuals benefit from a group’s effort without
participating, as mentioned in Olson’s theory of collective action [OLSON, 1971]. Sigg et al. refines this view
in their model of the #DeclineNow campaign, where DoorDash workers coordinated to reject low-paying jobs
[Sigg et al., 2024]. Their results show that collective strategies remain rational for individuals under labor
undersupply, but in oversupplied markets, free-riding becomes attractive, undermining participation.

Even when participation and incentives align, another challenge to the success of collective action could
depend on the type of learning algorithm. Ben-Dov et al. show that the success of ACA is highly dependent
on the properties of the learning algorithms, and recommend studying the learning algorithm when taking
into account the success of collective action [Ben-Dov et al., 2024].

5.2 Data Poisoning
At a technical level, the strategy followed for ACA is closely related to data poisoning attacks, where the
adversary manipulates the training dataset to degrade the performance of a predictive model. While data
poisoning involves malicious manipulation, ACA is not inherently adversarial and often pursues constructive
objectives. Moreover, ACA emphasizes coordination among the collective, often to align with societal or
personal objectives. We refer to the comprehensive surveys by Tian et al. [2022] and Guo et al. [2022]
which provide a detailed overview of data poisoning and backdoor attack techniques, respectively, along with
corresponding defense mechanisms. Foundational work by Gu et al. [2019] demonstrated that models can
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effectively mislead the classifier in realistic scenarios using special signals. Shejwalkar et al. [2023] showed
that semi-supervised learning models, which aim to preserve privacy by relying on unlabeled data, are still
vulnerable to such attacks. Ma et al. [2019] studies the robustness of differentially private learners against
data poisoning and shows that attackers can poison models effectively if they have access to sufficient portion
of the training data.

5.3 Private Machine Learning
Differential Privacy (DP) has emerged as a gold standard technique providing a formal privacy guarantee
in machine learning and data analysis [Cummings et al., 2024]. A range of techniques have been developed
to achieve DP, particularly for convex learning problems, including output perturbation [Chaudhuri et al.,
2011], objective perturbation [Chaudhuri et al., 2011, Kifer et al., 2012], and gradient perturbation [Bassily
et al., 2014]. In non-convex learning problems, especially in deep learning, DPSGD has become the prevailing
method [Abadi et al., 2016], due to its conceptual simplicity. By design, a differentially private mechanism
with privacy budget ϵ implicitly offers group privacy with a privacy kϵ for any group of size k [Dwork et al.,
2014, Thm 2.2]. However, for real-world scenarios with possibly large group size, differential privacy offers
limited protection. To account for these settings, variants such as attribute differential privacy [Zhang et al.,
2022] have been proposed, but their integration in modern machine learning training algorithms remains
challenging. Privacy accounting techniques for tracking privacy parameters (ϵi, δi) for individual data points
{xi} has also been proposed [Yu et al., 2022], suggesting that the global bounds can be improved upon,
although these improvements may be differentially distributed across constituent groups within the training
data.

5.4 Trade-offs in Trustworthy ML
Trustworthy machine learning focuses on the integration of trustworthiness principles, such as security, privacy,
fairness, robustness, and explainability, into the development of machine learning models. While all these
values are widely recognized as important, several recent studies have shown that they can be in tension with
each other. For instance, increasing fairness can decrease utility [Menon and Williamson, 2018, Yaghini et al.,
2023], adversarial robustness can make ML systems more vulnerable to privacy inference attacks [Song et al.,
2019], explanation algorithms can be arbitrarily manipulated to give fake evidence of fairness [Aïvodji et al.,
2019], or leveraged to perform powerful model stealing attacks [Milli et al., 2019]. This work contributes to
raising awareness of the trade-off between privacy and ACA’s effectiveness.

6 Discussion

6.1 Tensions Between Privacy and Other Trustworthy ML Goals
To accommodate the regulatory needs for the protection of individual privacy, such as being compliant
with GDPR [European Parliament and Council of the European Union, 2016], companies can implement
differentially private algorithms. DPSGD builds on the SGD algorithm by introducing a clipping threshold
and sensitivity of the gradients computed from individual data points to a certain norm and adding noise to
the aggregated gradient before updating the global model. Although algorithms trained using DP protect user
privacy, this could also affect the success of ACA. This work exists alongside the larger literature on works
that study tensions between privacy and other trustworthy AI interventions [Ferry et al., 2023]. Examples
include tensions between differential privacy and fairness [Bagdasaryan et al., 2019, Fioretto et al., 2022] as
well as tension between differential privacy and explainability. Bagdasaryan et al. [2019] that models trained
using DPSGD can disproportionately reduce the accuracy for underrepresented groups such as having lower
accuracy for black faces than for white faces when compared to the non-DP model. This disparate impact
may also lead to vulnerability towards MIAs, as empirically shown in Kulynych et al. [2019]. Fioretto et al.
[2022] explores situations in which privacy and fairness may have goals that are similar or different, and
studies the reasons behind how DP may exacerbate bias and unfairness.

This work adds to the broader research discussion on trade-offs in trustworthy machine learning, where
we explore the tensions between privacy and algorithmic influence.
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6.2 Privacy as Anti Cooperation Strategy
Data privacy is used to protect users from possible harm involving misuse of personal information. This
could also motivate users to participate in collective action, as they are less likely to be identified. However,
some institutions may also use privacy interventions as a pretext to limit accountability and transparency
[Van Loo, 2022]. Privacy and data protection laws can also be exploited to strengthen the surveillance
infrastructure [Yew et al., 2024]. Additionally, privacy laws can be used to withhold workplace data from
worker representatives during collective bargaining citing legal data privacy responsibilities [Gould, 2024].
This work characterizes the impact of platform privacy interventions on the success of ACA. Although such
interventions can be justified, platforms can also adopt privacy as a pretext [Van Loo, 2022] to defend against
ACA. Although we have found no specific evidence that privacy is being used as a shield against ACA, there
are real-world cases in which Big Tech firms use privacy to justify exclusionary conduct [Chen, 2022, Tůmová,
2024].

6.3 Cooperation as an Implicit Privacy Strategy
As observed in Section 4.4, algorithmic collective action can inadvertently provide empirical privacy against
membership inference attacks. The feature-label strategy employed by collective can be said to mirror the
randomized-response technique in collecting survey samples, where each respondent flips their true answer with
some probability so that the collector only sees a noisy signal, yet aggregate statistics remain accurate [Blair
et al., 2015]. Similarly, when collective “flips” its label in the coordinated manner, it injects randomness into
training labels. Although, in the current over-parameterized regime of deep learning, the model is able to
correlate the transformation g applied by the collective with the target label y∗. While the collective action
with this strategy may offer empirical resistance to MIA, it does not provide any formal privacy guarantees
in the sense of differential privacy.

6.4 Role of Pre-training and Fine-tuning in Trustworthy ML
The final privacy parameters (ϵ, δ) for DPSGD are derived through a composition analysis, by considering
the cumulative effect of applying the Gaussian mechanism to parameter gradients at every step of training.
Because the overall privacy leakage scales with the number of training steps, and because training deep
neural networks typically requires many epochs of model updates, practitioners have tended towards applying
DPSGD to the fine-tuning stage of model training, assuming that a suitable model initialization θ0 is available
through pre-training on publicly available data [Papernot et al., 2020].3 Our experiments have covered both
popular settings for DPSGD—private training from scratch (as in our MNIST experiments) and private
fine-tuning (as in our CIFAR-10 experiments)—and applied ACA in each case. However, there are reasons to
prefer the pre-training/fine-tuning paradigm beyond just privacy considerations, as the model utility has been
shown to scale with dataset size and parameter count [Kaplan et al., 2020]. Indeed, AI practitioners have
moved strongly towards the use and on-the-fly adaptation of pre-trained models in recent years [Bommasani
et al., 2021]. This raises interesting questions about the role of ACA in shaping the behavior of modern
models: are collectives most effective when inserting signals into pre-training data, fine-tuning data, preference
data used for post-training, or some combination of these options?

6.5 Broader Impacts
ACA allows collectives to influence the outcomes of algorithmic systems and mitigate harms without directly
relying on service providers and can be seen as a "response from below" [DeVrio et al., 2024] strategy. At
the same time, depending on the motivation of the collective, ACA also has the potential of being misused
either as data poisoning attacks or to exacerbate the preexisting harms. A system may also have multiple
competing collectives with conflicting goals. This makes the motivation of the collectives an important factor
in understanding the border social impact of ACA.

3This approach has also been critiqued for eschewing privacy considerations for individuals whose data comprises the
pre-training dataset [Tramèr et al., 2024].
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One possible motivation for collectives to organize could be the introduction of privacy-preserving
techniques. Although these techniques offer data privacy and prevent the misuse of personal data, they
could also have unintended consequences [Calvi et al., 2024]. These consequences could be in the forms
of disparate impact [Bagdasaryan et al., 2019, Kulynych et al., 2019] or exacerbating bias [Fioretto et al.,
2022]. Consequently, firms may also strategically adopt such privacy-preserving techniques not only to protect
individual data but also to weaken the influence of groups acting on their learning algorithm. There is also a
risk of fairwashing [Aïvodji et al., 2019] or using privacy as a pretext to limit accountability [Van Loo, 2022].
Paradoxically, knowing that DP is used could empower collective action. If individuals believe that their
actions are masked by DP, they may be more willing to participate in collective action.

Our work takes a step towards understanding the competing tensions between privacy-preserving training
and how differential privacy may affect the success of collective action.

7 Conclusion
In this paper, we focus on the intersection of Algorithmic Collective Action and Differential Privacy. Specif-
ically, we investigated how privacy-preserving training using DPSGD affects the ability of a collective to
influence model behavior through coordinated data contributions. Our key contributions are a theoretical
characterization and empirical validation of the limitations that differential privacy imposes on collective
action, highlighting how the collective’s success depends on the model’s privacy parameters. We further
evaluated empirical privacy through membership inference attacks and observed that the collective’s presence
in the training data can provide some privacy benefits. More broadly, this work offers a novel perspective on
the societal implications of using privacy-preserving techniques in machine learning, highlighting important
trade-offs between individual data protection and the capacity for collective influence over decision-making
systems.

Having established and characterized the tradeoff between DP and ACA, there are several promising
directions for future work that might shed further light on the relationship between these two concepts.
This includes a examination of alternative DPSGD design choices, such as the choice of clipping threshold
or privacy accountant. Another direction of research is to investigate the potential of using activation
functions specifically designed for privacy-preserving training, which are shown to improve the privacy-utility
trade-offs [Papernot et al., 2021] and could also enhance the collective’s success under differential privacy.
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A Theoretical Results

A.1 Tail bounds on norm of scaled standard Gaussian distribution
Lemma 1. Let Y1, . . . , YD ∼ N (0, σ2) be independent Gaussian random variable, and define the scaled
chi-squared distribution as,

S = ∥Y ∥2 =

√√√√ D∑
i=1

Y 2
i

Then, for any δ ∈ (0, 1), with probability of 1− δ,

S ≤ σ
(√

D +
√
2 log 1/δ

)
(1)

Proof. Since each Yi ∼ N (0, σ2), we can write Yi = σZi, where Zi ∼ N (0, 1). Then,

S =

√√√√ D∑
i=1

Y 2
i = σ

√√√√ D∑
i=1

Z2
i = σ

√
U

Let U =
∑D

i=1 Z
2
i . A standard tail bound for the chi-squared distribution (refer to the Corollary 1 in Laurent

and Massart [2000]) gives, for any t > 0,

P
(
U ≥ D + 2

√
Dt+ 2t

)
≤ e−t

Substituting t = log(1/δ) we can obtain, with probability at least 1− δ,

U ≤ D + 2
√
D log(1/δ) + 2 log(1/δ)

≤ D + 2
√
2D log(1/δ) + 2 log(1/δ)

=
(√

D +
√
2 log(1/δ)

)2

Taking square root and multiplying by σ on both sides, we get the required bounds.

A.2 Proof for Theorem 2
The gradient-redirecting strategy induces the following gradient evaluated on Pt,

gDP
Pt

(θt) = αgDP
P′

t
(θt) + (1− α)gDP

P0
(θt)

= αgclip
P′

t
+ (1− α)gclip

P0
+N (0, σ2C2I)

= αξc(θt) (θt − θ∗) +N (0, σ2C2I) (2)

where ξc(θt) =
||gclip

P′
t
(θt) +

1−α
α gclip

P0
(θt)||

||θt − θ∗||
,

where to get Equation 2, we start by following a similar strategy to Hardt et al. [2023], which expresses the
sum of expected gradients as a scalar multiple of the model update direction (θt − θ∗). Refer to Definition 1.
With ξcmin = minλ∈[0,1] ξ(λθ0 + (1− λ)θ∗), and using parameters update equation, we can derive an upper
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bound on the difference between the learned and optimal parameter as follows:

∥θT − θ∗∥ ≤
∥∥θT−1 − η

(
αξc(θT−1) (θT−1 − θ∗) +N (0, σ2C2I)

)
− θ∗

∥∥
=

∥∥(1− ηαξc(θT−1)) (θT−1 − θ∗)− ηN (0, σ2C2I)
∥∥

≤
∥∥(1− ηαξcmin) (θT−1 − θ∗)− ηN (0, σ2C2I)

∥∥ (3)

≤
∥∥∥(1− ηαξcmin)

T
(θ0 − θ∗)− ηN (0, σ2C2I)

(
1 + (1− ηαξcmin) + · · ·+ (1− ηαξcmin)

T−1
)∥∥∥ (4)

=

∥∥∥∥∥∥(1− ηαξcmin)
T
(θ0 − θ∗)−N (0, σ2C2I)

(
1− (1− ηαξcmin)

T
)

αξcmin

∥∥∥∥∥∥ (5)

d
=

∥∥∥∥∥∥(1− ηαξcmin)
T
(θ0 − θ∗) +N (0, σ2C2I)

(
1− (1− ηαξcmin)

T
)

αξcmin

∥∥∥∥∥∥ (6)

≤ (1− ηαξcmin)
T ∥θ0 − θ∗∥+ 1− (1− ηαξcmin)

T

αξcmin

∥∥N (0, σ2C2I)
∥∥ . (7)

By applying Lemma 1, we can further upper bound the right-hand side with probability greater than 1− δ,
assuming that θ has d degrees of freedom,

∥θT − θ∗∥ ≤ (1− ηαξcmin)
T ∥θ0 − θ∗∥+

σC
(
1− (1− ηαξcmin)

T
)

αξcmin

(√
d+

√
2 log 1/δ

)
Collective success is defined simply as the negative difference norm between the learned and optimal parameters.
Therefore our upper bound on the parameter norm difference becomes a lower bound on collective success:

ST (α,C, σ) ≥ −∥θT − θ∗∥

= − (1− ηB(α,C))
T ∥θ0 − θ∗∥ − σC · f1(B(α,C)T, η) · f2(d, δ), (8)

where B(α,C) = αξcmin, f1(B(α,C), T, η) =
(1−(1−ηαξcmin)

T )
αξcmin

and f2(d, δ) =
(√

d+
√
2 log 1/δ

)
, which gives

us the final bound. Additional details for some steps of the proof are provided for clarity. In step 3, we
substitute θT−1 with a smaller value, which results in a relaxed upper bound. Step 4 involves unrolling the
gradient-update recursion leading to a geometric series whose first term is 1 and common ratio 1− ηξcmin.
In step 6, we use the fact that adding or subtracting a zero-centered Gaussian random variable results in
random variables that are equal in distribution. Finally, in step 7, we apply the triangle inequality, where the
sum of norms is greater than or equal to the norm of the sum.

B Additional Experimental Results
Table 2 shows baseline predictive accuracies for DP-trained classifiers on CIFAR-10. Figure 4 and Table 3
extend our results from Section 4.4 to include MIA results on the SVHN dataset.
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Privacy loss ϵ Noise multiplier σ C = 1 C = 5 C = 10

14.38 0.5 72% 61% 55%
4.42 0.7 66% 52% 49%
2.30 0.9 59% 49% 46%
1.57 1.1 56% 48% 42%
1.20 1.3 52% 45% 37%
0.98 1.5 46% 43% 35%

Table 2: Test set accuracies under different privacy configurations for models trained on CIFAR-10. The
non-private baseline (ϵ = ∞, σ = 0, C = ∞) achieves 85% accuracy.
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Figure 4: Success rate of Likelihood Ratio Attack (LiRA) [Carlini et al., 2022] evaluation on SVHN dataset.
Each figure corresponds to a different setting of privacy constraints with privacy increasing from left to right.

Collective’s size α
ϵ = ∞ ϵ = 14.38 ϵ = 0.98

TPR @ 0.1% FPR AuC TPR @ 0.1% FPR AuC TPR @ 0.1% FPR AuC
0% 0.65% 60.89% 0.11% 51.98% 0.11% 50.23%
1% 0.09% 50.54% 0.13% 50.33% 0.08% 49.83%
7% 0.07% 50.13% 0.11% 50.04% 0.08% 50.17%
14% 0.11% 49.47% 0.10% 50.56% 0.10% 49.72%
21% 0.07% 50.01% 0.10% 50.43% 0.08% 50.09%
28% 0.06% 50.35% 0.08% 50.29% 0.10% 50.41%

Table 3: Evaluation of LiRA under varying privacy constraints using AUC and TPR at 0.1% FPR on SVHN
dataset. Lower TPR 0.1% FPR indicates better robustness to MIA, while with AuC the desired metric is as
close to 50% (random chance) as possible.
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C Data Visualization
Figure 5 shows examples of MNIST data points with and without the signal inserted by the collective. Figure
6 visualizes the same thing, but for data from the CIFAR-10 dataset.

Without signal

With signal

Figure 5: MNIST samples with and without adding application of transformation g

Without signal

With signal

Figure 6: CIFAR-10 samples with and without adding application of transformation g
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