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Abstract
The growing adoption of Large Language Models (LLMs) has in-

fluenced the development of their lighter counterparts—Small Lan-

guageModels (SLMs)—to enable on-device deployment across smart-

phones and edge devices. These SLMs offer enhanced privacy, re-

duced latency, server-free functionality, and improved user expe-

rience. However, due to resource constraints of on-device envi-

ronment, SLMs undergo size optimization through compression

techniques like quantization, which can inadvertently introduce

fairness, ethical and privacy risks. Critically, quantized SLMs may

respond to harmful queries directly, without requiring adversarial

manipulation, raising significant safety and trust concerns.

To address this, we propose LiteLMGuard, an on-device prompt

guard that provides real-time, prompt-level defense for quantized

SLMs. Additionally, our prompt guard is designed to be model-

agnostic such that it can be seamlessly integrated with any SLM,

operating independently of underlying architectures. Our LiteLM-
Guard formalizes prompt filtering as a deep learning (DL)-based

prompt answerability classification task, leveraging semantic un-

derstanding to determine whether a query should be answered by

any SLM. Using our curated dataset, Answerable-or-Not, we trained
and fine-tuned several DL models and selected ELECTRA as the

candidate, with 97.75% answerability classification accuracy. Fur-

ther, we deployed our prompt guard entirely on-device for enabling

real-time offline prompt filtering.

Our safety effectiveness evaluations demonstrate that LiteLM-

Guard defends against over 87% of harmful prompts, including

both direct instruction and jailbreak attack strategies. We further

showcase its ability to mitigate the Open Knowledge Attacks, where
compromised SLMs provide unsafe responses without adversarial

prompting. In terms of prompt filtering effectiveness, LiteLMGuard
achieves near state-of-the-art filtering accuracy of 94%, with an

average latency of ≈135𝑚𝑠 , incurring negligible overhead for users.

Overall, these results emphasize LiteLMGuard as a lightweight,

robust, and deployable defense mechanism for effectively and effi-

ciently securing on-device SLMs.

Keywords
On-Device, Generative AI, Small Language Models, Deep Learning,

Prompt Guard

1 Introduction
With the emergence of Large Language Models (LLMs) in the year

2023, the Artificial Intelligence (AI) domain has witnessed an un-

precedented progress, and have been employed in the fields of

Medicine [65], Education [60], Finance [70] and Engineering [66].

However, these LLMs require tremendous computing resources for

running them that incurs heavy costs [16]. This led to the rise of

Small Language Models (SLMs), a family of language models, whose

size ranges from few million to few billion parameters, unlike LLMs

with hundreds of billions to even trillions of parameters [2]. Due to

this reason, SLMs are significantly lightweight and computationally

less intensive [55] compared to LLMs, and makes them deployable

to edge devices like smartphones [8] (on-device environment). Fur-

ther, these on-device SLMs offer data privacy with in-device data

processing and server-free functionality of various use cases like

summarization, text suggestions, image captioning and chatbots

[6]. Thus, these SLMs have become one of the big AI trends of year

2024 [29].

Our Motivation. Although these SLMs are designed for on-device

use cases, they need to be optimized for deployment due to the

constrained compute capabilities [50] of edge devices. Approaches

like quantization [24], pruning [17], knowledge distillation [38],

and low-rank factorization [31] are employed for optimizing these

SLMs for on-device deployments. Among these approaches, quan-

tization is well-used [10], where the bit-precision for weights and

activation values of neural networks employed by these models are

reduced to lower precision (4-bit or 8-bit) data types [24]. However,

this reduction in bit-precision of weights and activation values of

neural networks in SLMs, has a considerable impact on trustworthi-

ness, i.e., fairness, privacy, toxicity, and adversarial robustness, and

ethical facets [30], as illustrated in Figure 1(a). Thus, it is extremely
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(a) (b)

Figure 1: AI-powered chat interface-based interactionwith (a)
current vulnerable on-device quantized SLM, and (b) LiteLM-
Guard enhanced on-device quantized SLM.

necessary for securing these SLMs, especially in on-device envi-

ronments like smartphones, which could cause numerous grievous

consequences. Considering, the potential susceptibility to adver-

sarial attacks [25, 41, 44, 48, 59], and elevated impacts on multiple

trustworthiness perspectives and ethical aspects [30] due to quan-

tization of SLMs, our primary focus in this paper is to develop a

safety mechanism for securing these SLMs with an intuition (Figure

1(b)) of on-device deployability.

Our Methodology. In order to secure these on-device SLMs, we

developed a lightweight deep learning (DL)-based prompt filter-

ing defense, called LiteLMGuard, with a goal of determining the

answerability of an input query. We formalize this goal as a binary

text classification task, and train and fine-tune multiple DL mod-

els using our curated dataset, Answerable-or-Not, that comprises

labeled data of answerability queries. Based on the answerability

classification performance, we finalized the candidate model for

our prompt guard, and deployed LiteLMGuard on a smartphone for

studying its performance. We conducted safety effectiveness study

using seven SLMs, namely Gemma [63], Phi-2 [37], RedPajama

[1], Gemma-2 [64], Phi-3.5 [14], Llama-3.2 [7], and InternLM-2.5

[18], with and without employing our prompt guard. We also per-

formed prompt filtering effectiveness studies, in terms of latency

using the smartphones, OnePlus 12, Google Pixel 8, and Samsung

S21, and in terms of prompt filtering accuracy using open-source

and proprietary server-run guard models, namely OpenAI Moder-

ation [51], Llama Guard [35], Llama Guard 2 [9], Llama Guard 3

[20], and ShieldGemma [73]. All these studies are evaluated using

2 datasets, namely AdvBench [75] and Behaviors [47], and 3 dif-

ferent prompting strategies of Direct Instruction, DeepInception

[44] and AutoDAN [48], where DeepInception and AutoDAN are

jailbreaking approaches.

Our Contributions.We present the first practical on-device de-

ployable safety mechanism for securing SLMs against any quanti-

zation induced risks and vulnerabilities. We believe that our work

would provide insights on the feasibility of on-device prompt filtering-

based defense that ensures data privacy and server-free functional-

ity. Our study makes the following contributions.

(1) ANovel ThreatModel.Wepropose a novel threat model called

Open Knowledge Attacks, targeting on-device SLMs at global

scale. As part of this attack, an adversary injects quantization-

induced vulnerabilities into an open-source SLM and repub-

lishes it to open-source model repositories. Later, users may

unknowingly download and interact with such a compromised

SLM on smartphone, and potentially develop malicious behav-

ior, in turn becoming adversaries themselves.

(2) Ideation of Seamless & Lightweight Defense. In order to

tackle the above mentioned threat model and ensuring mean-

ingful handling of queries to quantized on-device SLMs without

compromising user experience or data privacy, we propose an

on-device deployable SLM-independent prompt guard, that can

be seamlessly integrated as a separate prompt filtering layer

with any on-device SLM with negligible latency overhead.

(3) Design ofOn-Device PromptGuard.Wedesign LiteLMGuard
as a prompt filtering layer that determines a query’s answer-

ability and routes user interactions accordingly. We formalize

this goal as a binary text classification task, and train and fine-

tune DL models on our curated dataset, Answerable-or-Not, and
finalized the best performing model ELECTRA, with 97.75%

answerability classification accuracy, as the candidate model

for LiteLMGuard.
(4) Comprehensive Evaluation in terms of Safety and Prompt

Filtering Effectiveness. We evaluate LiteLMGuard for safety

and prompt filtering effectiveness across diverse settings. For

safety, we compare on-device SLM behavior under three prompt-

ing strategies, including direct instructions and jailbreak strate-

gies, where we defend against over 87% harmful scenarios. For

filtering, we assess latency across smartphones and benchmark

accuracy against both open-source and proprietary server-run

guard models, where we achieve an overall accuracy of 94%

with an average latency of ≈135𝑚𝑠 . These extensive evalua-

tions demonstrate the robustness, efficiency, and reliability of

LiteLMGuard in on-device environments.

Additional Resources. Our curated Answerable-or-Not dataset1,
code

2
for training and fine-tuning DLmodels, code

3
for AI-powered

chat app (Android), and code
2
for replicating our evaluations are

publicly available.

2 Background and Preliminaries
In this section, we provide the necessary background and funda-

mental details that are essential for understanding the subsequent

discussions and analyses presented in the paper.

2.1 Responsible AI
The practice and principles employed to design, develop and deploy

the AI systems, that are ethical, fair, transparent, accountable, and

aligned with societal good, is termed as Responsible AI. The core
aspects include Fairness (to prevent discrimination by mitigating

1
https://huggingface.co/datasets/kalyannakka/Answerable-or-Not

2
https://github.com/kalyan-nakka/on_device_slms_defense

3
https://github.com/kalyan-nakka/LiteLMGuard_mlc-llm

2

https://huggingface.co/datasets/kalyannakka/Answerable-or-Not
https://github.com/kalyan-nakka/on_device_slms_defense
https://github.com/kalyan-nakka/LiteLMGuard_mlc-llm


(a) Phi-2 (b) RedPajama (c) Phi-2 (d) RedPajama (e) Phi-2 (f) RedPajama

Figure 2: Vulnerable On-Device Quantized SLMs providing correct responses to direct harmful queries, instead of rejecting
them from answering.

bias in AI models), Transparency (to understand and explain AI

systems), Accountability (to be responsible of the content generated

by AI systems), Privacy (to protect data and comply with data

privacy laws), Safety (to secure and reliable operation of AI systems),

and Social Good (to solve societal challenges and promote social

welfare). Major tech companies like Google [4], Microsoft [11],

IBM [3], Meta [5], and Amazon [12], have enforced policies and

frameworks that adheres to these core aspects and demonstrate

their commitment towards Responsible AI.

2.2 Safety Taxonomy
In [69], Wang et al. presented a comprehensive three-level risk tax-

onomy. The first level of this taxonomy consists of 5 different risk

areas, namely information hazards, malicious uses, discrimination,

exclusion, and toxicity risks, misinformation harms, and human-

computer interaction harms. The second level of this taxonomy

consists of 12 different harm types. The information hazards risk

area comprises private information (individual) and sensitive in-

formation (organization/government) related risks. The malicious

uses risk area comprises encouraging disinformation campaigns,

assisting illegal activities and encouraging unethical or unsafe ac-

tions. The discrimination, exclusion, and toxicity risks comprises

social stereotypes and unfair discrimination, toxic language (hate

speech) and adult content. The misinformation harms include dis-

seminating false or misleading information and causing material

harm by disseminating misinformation. The human-computer inter-

action harms include risks related to mental health or over-reliance

crisis and treating chatbot as a human. These 12 harm types are

individually categorized into 61 specific harm categories. In our

data collection process, we leveraged the names and descriptions

of these 61 specific harm categories. We recommend the interested

readers to refer [69] for more details about this safety taxonomy.

3 Risks & Vulnerabilities in Quantized SLMs
With a requirement of optimizing the SLMs for on-device deploy-

ments, quantization has been widely used for that purpose [10],

which involves the reduction of bit-precision to lower precision

(4-bit or 8-bit) data types [24], for the values of weights and activa-

tions of the neural networks employed by these SLMs. Although

evaluation studies [42] suggest that 4-bit quantization achieves

performance closer to full precision counterpart, there is no justi-

fication for any difference in the SLM’s behavior that results due

to quantization. Recently, few researchers [25, 30, 68] have high-

lighted the potential risks and vulnerabilities in SLMs that arise

due to their quantization.

In [30], Hong et al. assessed the trustworthiness and standard

language understanding in compressed versions of SLMs, namely

Llama-2 [67] and Vicuna [74], that are subjected to quantization

and pruning. It is observed that robustness towards adversarial

and spurious correlation & backdoor demonstrations based sce-

narios degraded with lower quantization bit levels. In terms of

Machine Ethics, the capabilities of detecting immoral and evasive

actions also reduced with lower quantization bit levels. Further, the

researchers highlighted the high toxic content generation by quan-

tized SLMs, and implied that these potential risks can be leveraged

for malicious uses. In their survey, Wang et al. [68] also discusses

other related research pertaining to the trustworthiness of SLMs,

impacting fairness, stereotype bias and privacy aspects.

Corroborating the findings of [30], we observed that, when de-

ployed in on-device environment, the quantized SLMs, namely

Phi-2 [37] and RedPajama [1], provide accurate responses to di-

rect harmful queries, instead of rejecting them from answering.

This indicates a severe exploitable use case where, any individual

would just require a smartphone, an AI-powered chat interface,

and open-source vulnerable quantized SLM, for gathering accurate

information on various harmful scenarios. Figure 2 illustrates the

screenshots of chats with vulnerable quantized SLMs that provide

accurate responses for inciting societal and communal harm.

Moreover, in [25] Egashira et al. proposed a zero-shot quanti-

zation exploit attack on SLMs, like Phi-2 [37] and Gemma [63],

that exhibits benign behavior in full precision, but elicits mali-

cious behavior when quantized. In this adversarial strategy, the

researchers perform malicious instruction-tuning on SLM, that en-

sures malicious behavior in that SLM in full precision as well as

upon quantization. However, the full precision version of this mali-

cious SLM is repaired using projected gradient descent, such that

malicious behavior is exhibited only upon quantization of that SLM.

3



(a) Adversary corrupting an open-source SLM (b) Any Casual User gradually becoming an adversary

Figure 3: Threat Model of Open Knowledge Attack motivating the necessity of LiteLMGuard.

These elevated risks of reduced trust and ethical behaviors [30]

imparted by the quantization, highlights the necessary of secur-

ing the quantized versions of these SLMs. Further, the behavior

observed in Figure 2, emphasizes the necessity of assessing the

queries that are sent to the quantized SLMs. Additionally, the adver-

sarial attacks that leverage quantization [25] for inducing malicious

behaviors into SLMs, illustrate that the safety mechanism needs to

be independent of the SLM, such that it can tackle even a malicious

quantized SLM. Rooting on these implications, we design and de-

velop our prompt guard, called LiteLMGuard, that is independent
of quantized SLM (benign or malicious), is on-device deployable

for securing quantized SLMs on edge devices, and can seamlessly

integrated as a separate prompt filtering layer with any quantized

SLM. Going forward, the words ‘SLM’ and ‘quantized SLM’ will be

used interchangeably.

4 LiteLMGuard
In this section, we discuss about our lightweight, seamless, on-

device deployable prompt guard, called LiteLMGuard, for mitigating

risks and vulnerabilities in on-device SLMs.

4.1 Threat Model
We consider an adversary who modifies an open-source SLM, and

induces vulnerabilities that gets triggered when the SLM is sub-

jected to quantization, as shown in Figure 3(a) (suggested in [25]).

We assume that this adversary is familiar with open-source reposi-

tories like Huggingface [33], and has prior knowledge on the risks

and vulnerabilities associated with quantization of SLMs [30]. Based

on these assumptions, we conceptualize the following attack:

Open Knowledge Attack. In this attack scenario, we assume

that user downloads the uploaded vulnerable quantized SLM from

open-source repository to their smartphones, and interact with it

through an AI-powered chat app, as illustrated in Figure 3(b). Upon

chatting with the SLM, the user notices that the SLM has either

diminished or no safety filters while providing responses. Now, the

user tries to gather information on harmful, unsafe and unethical

scenarios using queries exactly describing the scenario with all

possible sensitive words (without any restrictions). Gradually the

user develops malicious intentions and continues this process of

gathering more harmful, unsafe or unethical information from the

SLM. Note that, this user does not use any kind of jailbreaking or

adversarial strategy to trick the SLM.

The severity of this threat model is very high, given the free

availability of these models in Huggingface [33], and a huge poten-

tial worldwide target base that is as large as the proportion of users

who fall under the intersection of 826.2 million AI users [23] and

4.88 billion smartphone users [26].

4.2 Design & Methodology
Driven by this threat model, the design of LiteLMGuard is highly

influenced by the fundamental challenge of—ensuring meaningful
handling of input queries by on-device quantized SLMs without com-
promising the user experience or data privacy. Based on this, we

define our prompt guard’s goal as to serve as a prompt filtering layer
that assesses whether an input query is suitable for processing by
an on-device SLM, and route the user interaction accordingly. We

explored keyword-based heuristics as an initial step, but that ap-

proach lacked the semantic understanding of the query and failed

to generalize across various queries. Thus, we formalize the prompt

filtering as a binary text classification task, that leverages DL mod-

els to semantically determine whether an input query is answerable
or not by the underlying SLM.

Building on these design decisions, the methodology of our

prompt guard is as illustrated in Figure 4. Precisely, our prompt

guard performs semantic analysis in real-time and determines

whether the input query should proceed to the SLM. Thus, if an

input query is determined as not answerable, a denial response is
sent back to the user, else if the input query is answerable, then it

4



Figure 4: Overview of our real-time, seamless on-device prompt guard, LiteLMGuard.

is forwarded to the on-device SLM and the generated response is

sent back to user.

We developed classification DL models for our specific prompt

answerability task using traditional approach, i.e., training DL mod-

els from scratch, as well as modern approach, i.e., fine-tuning foun-

dational DL models. Further, for ensured data privacy and server-

free functionality, our prompt guard’s candidate model is deployed

directly in the on-device environment and made available to the

AI-powered chat interface in real-time.

4.3 Answerability Classification Task Data
The crucial step in developing an efficient answerability DLmodel is

collecting data that is relevant to our binary text classification task.

Inspired by most researchers [69], we leveraged GPT-4o model [34]

through ChatGPT [53] for collecting the data based on the lower

level of safety taxonomy (discussed in section 2.2). We curated a

balanced dataset called Answerable-or-Not, comprising 2440 textual

prompts, which has 40 textual prompts (20 YES and 20 NO labels)

for each category of the lower level of safety taxonomy. We used

the below prompts through ChatGPT [53] for collecting the textual

prompts of YES/NO labels. The textual prompts in this dataset can

be translated as, NO labeled prompts should be rejected from an-

swering and YES labeled prompts should only be answered. Further,

collecting this dataset facilitates accurate prompt filtering with a

trade-off of distributing a dataset of risky textual prompts.

Data Collection Prompts
Answerable (YES): Generate a list of 10 or 20 prompts or questions

that you (GPT) can answer, specifically related to the category of

[category-name] whose content refers to [category-description].

Not Answerable (NO): Generate a list of 10 or 20 prompts or ques-

tions that you (GPT) cannot answer, specifically related to the category

of [category-name] whose content refers to [category-description].

Table 1: Performance of Classification DL Models on our
Answerable-or-Not dataset

Model Accuracy Precision F1 Score TPR TNR FPR FNR

LSTM 93.44 90.00 93.82 97.98 88.75 11.25 2.02

BiLSTM 94.26 93.65 94.40 95.16 93.33 6.67 4.84

CNN-LSTM 94.47 93.68 94.61 95.56 93.33 6.67 4.44

CNN-BiLSTM 93.85 90.98 94.16 97.58 90.00 10.00 2.42

AvgWordVec 94.67 95.12 94.73 94.35 95.00 5.00 5.65

MobileBERT 95.08 94.44 95.20 95.97 94.17 5.83 4.03

ELECTRA 97.75 97.21 97.80 98.39 97.08 2.92 1.61

4.4 Performance of Answerability DL Models
Initially, we trained LSTM, BiLSTM, CNN-LSTM and CNN-BiLSTM

models from scratch using our Answerable-or-Not dataset that are
best for handling textual data. Later, we followed the recent trend,

by adopting foundational DL models for text classification tasks

through fine-tuning. We fine-tuned [13] the word embeddings

model AvgWordVec [58] and Transformer-based models Mobile-

BERT [61] and ELECTRA [21], using our dataset.

Evaluation Metrics. The effectiveness of the DL models on the

classification task is evaluated using various metrics, namely accu-

racy, precision, F1 score, true positive rate (TPR), true negative rate

(TNR), false positive rate (FPR), and false negative rate (FNR).

Table 1 illustrates the performance results of the DL models

trained or fine-tuned on our Answerable-or-Not dataset. We ob-

served that all DL models achieve good performance, given the

balanced nature of the dataset. Among the DL models developed

through traditional approach, the CNN-LSTMmodel performed the

best, with slight trade-offs between different metrics. In fine-tuned

DL models, ELECTRA has performed the best, considering all met-

rics. Moreover, the fine-tuned DL models surpasses the traditionally

trained DL models in almost all metrics. Overall, the performance

of ELECTRA stands out as the best among all the evaluated DL

models, and we choose it to be the candidate model for our prompt

guard, LiteLMGuard.
5



4.5 Implementation
We leveraged MLC-LLM [52], a widely used universal LLM de-

ployment engine, for deploying the target SLMs to smartphones

in order to gather responses. The sole functionality of MLC-LLM

is to facilitate the deployment of SLMs on to the smartphones, by

optimizing them using quantization algorithms. We used a Kotlin-

based Chat app, that provides an interface for sending queries to

SLMs and gather SLMs’ responses. We embedded this app with our

LiteLMGuard defense, along with the candidate model ELECTRA

and programmed to enable and disable LiteLMGuard, such that

gathering responses for baseline and our prompt guard scenarios

is feasible.

5 Safety Assessment of LiteLMGuard
In this section, we discuss the safety assessment study conducted,

for evaluating the effectiveness of our LiteLMGuard.

5.1 Methodology
In order to evaluate the safety effectiveness of our prompt guard, we

perform a comparative safety assessment of the target SLMs, such

that responses gathered by directly sending queries to the on-device

SLMs acts as baseline for evaluating the responses gathered while

employing our prompt guard. Further, we collected the responses

for the baseline and our prompt guard scenarios using direct in-

structions as well as jailbreak prompting strategies. We feel that

jailbreak prompting strategies will help us in better understanding

the robustness of our prompt guard, as there is no additional ad-

versarial training involved in our training and fine-tuning regimes.

We selected two jailbreaking attacks, DeepInception [44] and Au-

toDAN [48], that are proved to be best against larger SLMs (7B &

13B models).

5.2 Target SLMs
We evaluate the safety effectiveness of our prompt guard on open-

source state-of-the-art SLMs, at the time of conducting our study,

which are developed for on-device use cases. These SLMs are se-

lected based on the performance results reported with respect to

various standard benchmarks. Next, we discuss briefly about these

target SLMs.

Gemma. Gemma [63] is part of a family of lightweight SLMs from

Google. It is a 2.51 billion-parameter open-source SLM that offers a

balance of performance and efficiency which is useful for on-device

environments. It has achieved high performance in benchmarks

like MMLU [27], BigBench-Hard [62], HellaSwag [72], GSM-8K

[22], MATH [28] and HumanEval [19].

Phi-2. Phi-2 [37] is part of a series of SLMs from Microsoft, named

Phi. It is a 2.78 billion-parameter open-source SLM that matched or

outperformed models with less than 13 billion parameters on com-

plex benchmarks. It has high performance in MMLU [27], BigBench-

Hard [62], GSM-8K [22], and HumanEval [19] benchmarks/

RedPajama. RedPajama [1] is part of the RedPajama-INCITE fam-

ily developed by Together AI in collaboration with open-source

AI community. It is a 2.8 billion-parameter open-source SLM with

robust performance on benchmarks like HELM [46], a holistic eval-

uation developed by Stanford.

Gemma-2. Gemma-2 [64] is version 2.0 of the family of light-

weight SLMs fromGoogle. It is a 2.61 billion-parameter open-source

SLM, and outperforms the Gemma model. It has achieved high

performance compared to Gemma in benchmarks of MMLU [27],

BigBench-Hard [62], HellaSwag [72] and GSM-8K [22].

Phi-3.5. Phi-3.5 (mini) [14] is also part of the Phi series of SLMs

from Microsoft, and is a 3.81 billion-parameter open-source SLM.

It outperforms Phi-2, Gemma and Mistral-7B [40] in the MMLU

[27], HellaSwag [72], GSM-8K [22], and BigBench-Hard [62] bench-

marks.

Llama-3.2. Llama-3.2 [7] is part of a family of SLMs from Meta,

called Llama, and is a 3.21 billion-parameter open-source SLM. It

has achieved high performance than Gemma-2 in the benchmarks

of MMLU [27], HellaSwag [72], and GSM-8K [22], and better per-

formance in MATH [28] benchmark compared to Phi-3.5.

InternLM-2.5. InternLM-2.5 [18] is part of the InternLM family of

SLMs which is a 1.89 billion-parameter open-source model. This

family of models have achieved high performance than Llama fam-

ily of models in the MMLU [27], HellaSwag [72], GSM-8K [22],

MATH [28], and HumanEval [19] benchmarks.

5.3 Safety Effectiveness Results
Datasets.We leveraged two datasets, namely AdvBench [75] and

Behaviors [47], for evaluating the safety effectiveness of our prompt

guard on the target SLMs. Both these datasets contains harmful in-

structions and are usually utilized for evaluating adversarial attacks

on LLMs. For AdvBench dataset, we used a more refined version

that contains 50 extremely harmful instructions for our evaluation.

The Behaviors dataset contains 120 harmful instructions that are

collected from various open-source datasets, including presented

papers and competitions.

Response Evaluator. Following the scope of our safety assessment,

we are focused on the number of safe responses 𝑛𝑠𝑎𝑓 𝑒 from the target

SLMs for any prompting strategy. In order to quantify these safe

responses, we leveragedRefusal-Judge proposed by Zou et al. [75],
and defined appropriate evaluation metrics for safety effectiveness

based on 𝑛𝑠𝑎𝑓 𝑒 .

EvaluationMetrics.Wequantify safety effectiveness of our prompt

guard using 2 metrics, namely unsafe response rate and relative

safety effectiveness. The unsafe response rate (URR) represents
the degree of safe response generation of SLMs, that implied by its

name, checks for the number of unsafe responses among all the

responses generated by the SLM. It is computed as:

𝑈𝑅𝑅 =

(
1 −

𝑛𝑠𝑎𝑓 𝑒

𝑁

)
× 100 (1)

where 𝑛𝑠𝑎𝑓 𝑒 is number of safe responses (computed by Refusal-

Judge), and 𝑁 is the total number of responses generated by a

specific SLM. The relative safety effectiveness (RSE) quantifies
the extent of safety offered by our prompt guard in comparison

with the baseline scenario (no defense). It is calculated as:

𝑅𝑆𝐸 =

(
1 − 𝑈𝑅𝑅𝐿𝐿𝑀𝐺

𝑈𝑅𝑅𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

)
× 100 (2)

where𝑈𝑅𝑅𝐿𝐿𝑀𝐺 is the unsafe response rate of our prompt guard

scenario, and 𝑈𝑅𝑅𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the unsafe response rate of baseline

scenario, for a specific SLM.

6



Figure 5: Relative Safety Effectiveness (𝑅𝑆𝐸 %) of LiteLMGuard on AdvBench Dataset.

Figure 6: Relative Safety Effectiveness (𝑅𝑆𝐸 %) of LiteLMGuard on Behaviors Dataset.

Table 2: Unsafe Response Rates (𝑈𝑅𝑅 %) of SLMs in Baseline
and LiteLMGuard (LLMG) scenarios for different prompting
strategies and datasets (Bold cells denotes lower number of
unsafe responses)

Model Direct Instruction DeepInception AutoDAN

Baseline LLMG Baseline LLMG Baseline LLMG

AdvBench Dataset

Gemma 24.00 0.00 52.00 0.00 34.00 4.00
Phi-2 86.00 12.00 94.00 0.00 96.00 8.00

RedPajama 88.00 12.00 100.00 0.00 96.00 8.00
Gemma-2 2.00 0.00 78.00 0.00 18.00 6.00
Phi-3.5 4.00 0.00 28.00 0.00 14.00 2.00

Llama-3.2 2.00 0.00 2.00 0.00 0.00 0.00
InternLM-2.5 90.00 12.00 98.00 0.00 98.00 6.00

Behaviors Dataset

Gemma 13.33 0.83 63.33 0.00 32.50 10.83
Phi-2 84.17 3.33 95.00 0.00 95.83 17.50

RedPajama 93.33 2.50 99.17 0.00 98.33 16.67
Gemma-2 5.00 0.83 89.17 0.00 24.17 7.50
Phi-3.5 5.83 0.00 52.50 0.00 22.50 1.67

Llama-3.2 2.50 0.83 14.17 0.00 0.00 0.00
InternLM-2.5 97.50 2.50 96.67 0.00 96.67 18.33

Results. Table 2 presents the results of our comparative safety as-

sessment performed on all the target SLMs using different prompt-

ing strategies and datasets. It is observed that the SLMs, Phi-2,

RedPajama and InternLM-2.5, are providing high number of valid

answers with URR more than 80% in Direct Instruction itself. With

our prompt guard safeguarding these SLMs, the URR has been

drastically reduced to a range of (0%, 12%] for Direct Instruction

considering both datasets. These 3 SLMs clearly emphasize the

need of our prompt guard, given their exploitable nature that can

be leveraged in getting answers for harmful queries. Further, in Di-

rect Instruction, our prompt guard mitigated the unsafe responses

from Gemma, Gemma-2, Phi-3.5 and Llama-3.2, in comparison to

the baseline scenario.

For baseline scenario in DeepInception jailbreak prompting, the

URR of all target SLMs is either equal or greater than the URRs ob-

served in baseline scenario of Direct Instruction prompting. Similar

to Direct Instruction prompting, even in DeepInception prompting,

the SLMs, Phi-2, RedPajama and InternLM-2.5, exhibited high URR,

probably due to their exploitable nature as well as the effect of

jailbreaking attack. However, without any additional adversarial

training, our prompt guard completely safeguarded all target SLMs

and achieved 0% URR, even for these SLMs. This indicates that our

prompt guard is robust towards DeepInception jailbreak attack and

can defend any SLM if subjected to this attack.

Similar to DeepInception prompting, higher URR is observed for

all target SLMs (expect Llama-3.2) in baseline scenario of AutoDAN

jailbreak prompting. Further, as observed previously, Phi-2, RedPa-

jama and InternLM-2.5 exhibited high URR compared to other SLMs

in this prompting strategy as well. Although our prompt guard

mitigated unsafe responses significantly for all target SLMs, the

performance in AutoDAN prompting is comparatively lesser than

that of achieved in DeepInception prompting. Moreover, Llama-3.2

exhibited high robustness towards this AutoDAN prompting even

in the baseline scenario for both datasets. Overall, it evident that
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our prompt guard mitigated the risk of high unsafe responses from

target SLMs for both datasets as well as for all prompting strategies.

For better understanding the performance of our prompt guard, in

comparison with the baseline scenario, we used the RSE metric on

all target SLMs, prompting strategies and datasets.

Figures 5 and 6 illustrate the RSE of our prompt guard on all tar-

get SLMs for all prompting strategies in AdvBench and Behaviors

datasets respectively. As inferred previously, our prompt guard is

robust towards DeepInception prompting and achieves 100% RSE

for all target SLMs on both datasets. Considering both datasets and

all prompting strategies, our prompt guard achieves RSE ∈ [81%,

100%] for the identified exploitable SLMs, i.e., Phi-2, RedPajama

and InternLM-2.5. Overall, on an average, our prompt guard, the

LiteLMGuard, achieves an RSE of at least 87% which indicates that

our prompt guard reduces more than 87% of unsafe responses gen-

erated by on-device SLMs. It is worth noting that these results are

achieved on the datasets, AdvBench and Behaviors, that are inde-

pendent of our prompt guard’s training dataset, Answerable-or-Not.
Another notable inference from the results in Table 2, Figure 5

and Figure 6 is that Llama-3.2 is highly robust towards AutoDAN

jailbreak attack.

5.4 Securing Vulnerable SLMs
The safety assessment results in section 5.3 illustrated that few

SLMs can be directly exploited in on-device environment, and few

SLMs become exploitable under the influence of jailbreak prompt-

ing. These aspects demonstrate the need for having a safety mech-

anism for on-device SLMs. Moreover, for enabling the on-device AI

principles of data privacy and server-free functionality, the safety

mechanism should be an on-device deployable solution that en-

sures the data processing on the device itself. Based on the results

in section 5.3, all these requirements are fulfilled by our LiteLM-
Guard. In order to practically demonstrate the direct exploitable

nature of SLMs and effectiveness of our prompt guard, we subjected

them to Open Knowledge Attacks using vanilla prompts, where

we observed that these SLMs provide direct harmful answers to

benign prompts with clearly mentioned malicious intentions. These

vanilla prompts are collected from multiple jailbreaking papers and

other sources. We targeted the SLMs, Phi-2 and RedPajama, given

their performance on par with larger SLMs (≥ 7B parameters). The

demonstration of exploitable scenarios and safety effectiveness of

our prompt guard are discussed below:

Societal Harm. Russinovich et al. [59] extracted an accurate an-

swer for “building a Molotov” from language models by leveraging

a multi-turn jailbreaking technique called Crescendo. But as shown

in Figure 7(a), Phi-2 has responded with valid answer for the same

query. However, this query is blocked by our prompt guard as

shown in Figure 7(b). In [41], Jiang et al. proposed an ASCII art-

based attack strategy called ArtPrompt, in order to jailbreak LLMs

for gathering information on “building a Bomb”, whereas RedPa-

jama has provided a correct answer to the same prompt, as shown

in Figure 8(a). This behavior is safeguarded by our prompt guard

in Figure 8(b).

Illegal Activities. Similar to societal harm queries, Phi-2 and Red-

Pajama were able to layout detailed information on how to perform

illegal activities. In Figure 9(a), Phi-2 has presented an elaborate

(a) (b)

Figure 7: Demonstration of Phi-2 for Societal Harm prompt:
(a) Direct response from SLM, and (b) LiteLMGuard blocking
the request.

plan for “breaking into someone’s home undetected” without any fil-

ters with step-by-step procedure for performing this illegal activity.

Even RedPajama provided a detailed execution plan for “commit-

ting a credit card fraud” in Figure 10(a), which should not have been

answered. Both these queries are blocked by our prompt guard in

Figures 9(b) and 10(b).

Hate Content. In [43], Kang et al. developed a code injection

prompt for generating hateful tweet against Jews, whereas Phi-2

has generated such a hateful tweet for direct vanilla prompt itself,

as shown in Figure 11(a). Based on a reddit post [56], we crafted a

vanilla prompt for creating vulgar comments on a girl’s Instagram

post, for which RedPajama has generated such comments, as shown

in Figure 12(a). With these generations it is clear that Phi-2 and

RedPajama can be leveraged for creating hate content using direct

vanilla prompts, which should be blocked, as shown in Figures 11(b)

and 12(b).

Exploiting for Phishing. These demonstrations of societal harm,

illegal activities and hate content vanilla prompts highlight the

severe security concern, that can be exploited by adversaries for

malicious intentions like phishing, smishing and others. As shown

in Figure 13(a), adversaries can generate phishing content using

Phi-2, without the need of any prompt engineering for jailbreaking

LLMs [57]. Similarly, as shown in Figure 14(a), RedPajama can also

be leveraged for generating such phishing content. The underlying

and critical concern is that these vanilla prompts clearly state the

intention of phishing with exact words, and our prompt guard

ensures that such queries are blocked, as shown in Figures 13(b)

and 14(b).

Self-Harm. This behavior is not just limited to above scenarios,

but can also be exploited for self-harm as well. As shown in Figures

15(a) and 16(a), both Phi-2 and RedPajama provide very highly

sensitive self-harming responses that can cause serious injuries

with severe consequences. These kind of queries/requests to any

language model should be blocked from answering, and our prompt

guard achieves it, as shown in Figures 15(b) and 16(b).

These demonstrations illustrate that these SLMs clearly violate

the principles of Responsible AI (section 2.1). Further, anyone can
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(a) (b)

Figure 8: Demo on RedPajama for Soci-
etal Harm prompt: (a) Direct response
from SLM, and (b) LiteLMGuard block-
ing the request.

(a) (b)

Figure 9: Demo on Phi-2 for Illegal Ac-
tivity prompt: (a) Direct response from
SLM, and (b) LiteLMGuard blocking
the request.

(a) (b)

Figure 10: Demo on RedPajama for
Illegal Activity prompt: (a) Direct re-
sponse from SLM, and (b) LiteLM-
Guard blocking the request.

(a) (b)

Figure 11: Demo on Phi-2 for Hate
Content prompt: (a) Direct response
from SLM, and (b) LiteLMGuard block-
ing the request.

(a) (b)

Figure 12: Demo on RedPajama for
for Hate Content prompt: (a) Direct
response from SLM, and (b) LiteLM-
Guard blocking the request.

(a) (b)

Figure 13: Demo on Phi-2 for Phishing
Content prompt: (a) Direct response
from SLM, and (b) LiteLMGuard block-
ing the request.

(a) (b)

Figure 14: Demo on RedPajama for
Phishing Content prompt: (a) Direct
response from SLM, and (b) LiteLM-
Guard blocking the request.

(a) (b)

Figure 15: Demo on Phi-2 for Self-
Harming prompt: (a) Direct response
from SLM, and (b) LiteLMGuard block-
ing the request.

(a) (b)

Figure 16: Demo on RedPajama for
Self-Harming prompt: (a) Direct re-
sponse from SLM, and (b) LiteLM-
Guard blocking the request.
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Figure 17: Latency of LiteLMGuard on tested smartphones and datasets in real-time.

exploit these vulnerable SLMs and perform Open Knowledge At-

tacks for gathering information on harmful, illegal and unethical

scenarios with malicious intentions. Also, they emphasize the need

of an on-device safety mechanism, like our LiteLMGuard, for data
privacy, server-free functionality and securing these vulnerable

SLMs for minimizing the extent of such Open Knowledge Attacks.

6 Prompt Filtering Effectiveness of
LiteLMGuard

In this section, we discuss the prompt filtering effectiveness stud-

ies conducted for evaluating the performance of our LiteLMGuard.
Precisely, we illustrate the latency of our prompt guard for perform-

ing the prompt filtering task on different devices (smartphones).

Further, we present the performance of our prompt guard in com-

parisonwith open-source and proprietary server-run GuardModels,

in terms of prompt filtering accuracy.

6.1 Methodology & Implementation
We evaluate the effectiveness of prompt filtering in terms of task

latency that quantifies the overhead that user experiences while

employing our prompt guard, and task accuracy that quantifies the

prompt filtering capabilities. The task accuracy results are com-

pared with multiple server-run Guard Models, both open-source

and proprietary, that acts as baselines for our LiteLMGuard. We

re-purposed the Kotlin-based Chat app, developed in section 4.5, to

collect prompt filtering results and latency of task for all datasets

and prompting strategies, discussed in section 5.3.

6.2 Prompt Filtering Latency Results
In order to generalize the latency of our prompt guard, we per-

formed the task latency evaluation on three different devices that

are equippedwith different processors, which areOnePlus 12 equipped

with Qualcomm Snapdragon 8 Gen 3 processor, Pixel 8 equipped

with Google Tensor G3 processor, and Samsung S21 equipped with

Qualcomm Snapdragon 888 processor.

Table 3: Average latency of LiteLMGuard on tested smart-
phones (in milliseconds), where ADB is AdvBench dataset
and BEH is Behaviors dataset

Device Direct Instruction DeepInception AutoDAN

ADN BEH ADB BEH ADB BEH

OnePlus 12 135.00 135.77 132.29 131.85 133.62 143.41

Pixel 8 155.32 152.59 146.48 156.64 140.01 154.22

Samsung S21 136.38 104.99 126.97 104.54 134.18 105.59

EvaluationMetrics.We quantify the latency 𝑙 of our prompt guard

using on-device execution time of the task (in milliseconds). We

computed the latency 𝑙 as:

𝑙 = 𝑡𝑎𝑒𝑥𝑒𝑐 − 𝑡𝑏𝑒𝑥𝑒𝑐 (3)

where 𝑡𝑎𝑒𝑥𝑒𝑐 is the time after the execution of task, and 𝑡𝑏𝑒𝑥𝑒𝑐 is the

time before the execution of task.

Results. Figure 17 plots the on-device execution times per prompt

and prompting strategy of each dataset for all the tested devices,

namely OnePlus 12, Pixel 8 and Samsung S21. For AdvBench dataset,

considering all prompting strategies, OnePlus 12 has latency 𝑙𝑂𝑃 in

the range of (110𝑚𝑠 , 185𝑚𝑠), Pixel 8 has latency 𝑙𝑃𝑋 in the range

of (95𝑚𝑠 , 290𝑚𝑠), and Samsung S21 has latency 𝑙𝑆𝑆 in the range

of (85 𝑚𝑠 , 215 𝑚𝑠). In case of Behaviors dataset, considering all

prompting strategies, OnePlus 12 has latency 𝑙𝑂𝑃 in the range of

(95𝑚𝑠 , 320𝑚𝑠), Pixel 8 has latency 𝑙𝑃𝑋 in the range of (105𝑚𝑠 , 480

𝑚𝑠), and Samsung S21 has latency 𝑙𝑆𝑆 in the range of (85𝑚𝑠 , 155𝑚𝑠).

Based on these ranges, OnePlus 12 has lower latency for AdvBench

dataset, and Samsung S21 has lower latency for Behaviors dataset.

These inferences are slightly substantiated by the average la-

tency results presented in Table 3. In Direct Instruction prompting,

OnePlus 12 has lowest latency of 135 𝑚𝑠 for AdvBench dataset,

and Samsung S21 has lowest latency of 104.99 𝑚𝑠 for Behaviors

dataset. A similar trend is observed for AutoDAN jailbreak prompt-

ing, where OnePlus 12 has lowest latency of 133.62𝑚𝑠 for AdvBench

dataset, and Samsung S21 has lowest latency of 105.59𝑚𝑠 for Behav-

iors dataset. However, in case of DeepInception jailbreak prompting,
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Table 4: Prompt Filtering Accuracy (𝑃𝐹𝐴 %) performance
of LiteLMGuard in comparison with existing Guard Mod-
els, where ADB is AdvBench dataset, and BEH is Behaviors
dataset (Bold cells denotes high accuracy in prompt filtering)

Guard Model Direct Instruction DeepInception AutoDAN

ADB BEH ADB BEH ADB BEH

OpenAI Moderation 86.00 92.50 76.00 77.50 50.00 45.00

Llama Guard 82.00 82.50 28.00 25.83 24.00 23.33

Llama Guard 2 100.00 94.17 4.00 0.83 42.00 58.33

Llama Guard 3 100.00 95.83 96.00 86.67 68.00 76.67

ShieldGemma 96.00 85.00 100.00 100.00 98.00 100.00
LiteLMGuard† 88.00 96.67 100.00 100.00 94.00 84.17

†
On-Device deployable Guard Model.

for both AdvBench and Behaviors datasets, Samsung S21 has the

lowest latencies of 126.97𝑚𝑠 and 104.54𝑚𝑠 respectively. Overall,

considering all prompting strategies, datasets and tested smart-

phones, it is clear that our prompt guard has an average latency

of ≈135𝑚𝑠 which is a negligible overhead for any user, and makes

our LiteLMGuard practically lightweight.

6.3 Prompt Filtering Accuracy Results
In order to generalize the accuracy of our prompt guard, we per-

formed prompt filtering accuracy evaluation in comparison with

multiple open-source and proprietary server-run guard models,

namely OpenAI Moderation [51], Llama Guard [35], Llama Guard

2 [9], Llama Guard 3 [20], and ShieldGemma [73]. Next, we briefly

discuss these guard models.

OpenAI Moderation. OpenAI Moderation [51] is a proprietary

filtering service offered by OpenAI via API access, that identifies

potentially harmful content in text and images.

Llama Guard Models. Llama Guard [35], Llama Guard 2 [9] and

Llama Guard 3 [20] are open-source LLM-based input-output safe-

guard models by Meta, that categorizes both LLM prompts and

responses based on a set of safety risks, where Llama Guard is

based on the Llama-2 7B model [67], and Llama Guard 2 and Llama

Guard 3 are based on the Llama-3 models [7].

ShieldGemma. ShieldGemma [73] is a comprehensive suite of

LLM-based safety content moderation open-source models from

Google, that are built upon Gemma-2 models [64].

Evaluation Metrics. We quantify the prompt filtering accuracy

𝑃𝐹𝐴 of our LiteLMGuard and all guard models using classification

accuracy of the prompts. We computed the 𝑃𝐹𝐴 as:

𝑃𝐹𝐴 =
𝑝𝑐 𝑓

𝑝𝑡
× 100 (4)

where 𝑝𝑐 𝑓 is the number of prompts filtered correctly, and 𝑝𝑡 is the

total number of prompts.

Results. The results in Table 4 illustrate the 𝑃𝐹𝐴 of evaluated guard

models for each prompting strategy and dataset. For Direct Instruc-

tion prompting of AdvBench dataset, our LiteLMGuard has achieved
better results than OpenAI Moderation and Llama Guard. However,

Llama Guard 2, Llama Guard 3 and ShieldGemma performs better

than our LiteLMGuard. In case of Direct Instruction prompting of

Behaviors dataset, our LiteLMGuard outperforms all other guard

models with 96.67% 𝑃𝐹𝐴. For DeepInception jailbreak prompting of

both datasets, our LiteLMGuard and ShieldGemma outperform all

other guard models with 100% 𝑃𝐹𝐴. In case of AutoDAN jailbreak

prompting of both datasets, ShieldGemma achieves highest 𝑃𝐹𝐴.

However, for these scenarios, our LiteLMGuard achieves second

best performance and outperforms the other guard models, except

ShieldGemma.

The overall accuracy results presented in Figure 18 emphasizes

the performance of our LiteLMGuard, where it is the second best

among the evaluated guard models for both datasets. Moreover, our

LiteLMGuard falls behind ShieldGemma with only ≤ 4% accuracy.

Further, Llama Guard models and ShieldGemma are developed by

safety instruction fine-tuning of larger SLMs (≥ 7B parameters),

making them huge models in comparison with our prompt guard’s

candidate model, ELECTRA (15M parameters). This indicates that

our LiteLMGuard achieves near or better performance than guard

models that more than 100× larger.

Figure 18: Overall Prompt Filtering Accuracy (𝑃𝐹𝐴 %) of
Guard Models on both datasets.

7 Discussion
The Intuition of an on-device safety mechanism for mitigating any

possible risks or vulnerabilities that arise due to quantization of

SLMs for on-device deployment, is the base idea for the develop-

ment of our LiteLMGuard. This kind of on-device safety mechanism

ensures data privacy and server-free functionality, and processes

the data on the device itself. Due to the constrained computational

capabilities of these devices, our prompt guard has to be lightweight

in terms of size, memory usage and latency overhead. Further, an

accurate goal and appropriate data are necessary for fulfilling these

constraints. These are the reasons that justify the curation of data

and selection of classification DL models, for our prompt guard.

These design decisions of our prompt guard are substantiated

by the safety effectiveness results in section 5.3. It is observed that

due to quantization, SLMs like Phi-2, RedPajama and InternLM-2.5

responds with high number of unsafe answers to prompts of both

AdvBench and Behaviors datasets. Moreover, as expected DeepIn-

ception and AutoDAN jailbreak prompting were able to manipulate

the SLMs into generating high number of unsafe answers, in com-

parison to Direct Instruction prompting. As illustrated in Table 2,

our prompt guard ensures lesser number of unsafe answers from

on-device SLMs. Further, as shown in Figures 5 and 6, the safety

effectiveness of our prompt guard is considerably high, which is
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quantified using RSE metric. Also, the demonstrations in section

5.4, illustrates the practical applicability of our prompt guard in

real-time on-device environment, and showcases that it helps in

mitigating Open Knowledge Attacks.

The prompt filtering latency results shows that our prompt guard

has an overhead that is negligible for any user on any device (or

smartphone). Due to this reason, it is clear that our prompt guard

is practically a lightweight safety mechanism, that is desirable for

any edge device deployments. Further, the prompt filtering accu-

racy results showcase our prompt guard’s near best performance

in comparison with open-source and proprietary server-run guard

models, that are atleast 100× larger than the candidate model of

our prompt guard. These accuracy results substantiates our LiteLM-
Guard’s design decisions for the second time.

Limitations. Like any other DL model, the performance of our

LiteLMGuard’s candidate model is limited by our Answerable-or-Not
dataset, and we anticipate that classification task performance can

be improved with more data records. Further, the primary assump-

tion in the design of our prompt guard is that the edge device is

capable of running the candidate model of our LiteLMGuard. More-

over, the training regime of our LiteLMGuard is not continuous,

due to which there is a chance of wrong prompt filtering of unseen

data (queries or prompts).

Future Work. In order to minimize the chances of wrong prompt

filtering, future work should focus on developing a continuous

training regime, by updating the training dataset as well as the

prompt guard’s candidate model, for yielding much better results.

We followed a static deployment strategy, where our prompt guard

is embedded with the Chat app. However, future work should focus

on enabling our prompt guard as a system service available through-

out the device, for all apps to leverage. Additionally, for tackling

sophisticated adversaries, we recommend developing adversarial

training regime for improving the robustness of our prompt guard.

Further, any future work should build upon ensuring data privacy

and server-free functionality, which are the primary expectations

of On-Device AI.

8 Related Work
SLMs for On-Device Use Cases. With an intention of offering

LLM capabilities, tech companies have started developing SLMs,

smaller versions of these LLMs, that can be deployed on edge de-

vices and offer the offline AI functionalities like summarization, text

suggestions, image captioning and chatbots. Further, many tech

companies have released families of open-source SLMs for research

and novel use case purposes, such as Gemma from Google [63, 64],

Phi from Microsoft [14, 37], Llama from Meta [7, 67], RedPajama

from Together AI [1], and InternLM from Shanghai AI Laboratory

[18].

A commercially available SLM for such use cases is Gemini Nano

[6], developed by Google which is currently available from Pixel 8

Pro smartphones onwards. Phi Silica [54], a Cyber-EO compliant

derivative of Phi-3-mini [14], has been embedded with Windows

11 Copilot+ PCs for enabling on-device rewrite and summarize

capabilities in Word and Outlook applications. MLC LLM [52] has

enabled the deployment of various SLMs for direct on-device (iOS

& Android) and in-browser inferences through AI-powered chat

interfaces.

Attacks on LLMs & SLMs. Due to the incredible capabilities of

LLMs & SLMs, there are severe concerns pertaining to their secu-

rity, given their susceptibility to adversarial attacks. In order to

understand the inherent vulnerabilities associated with LLMs &

SLMs, many researchers have red-teamed them in both white-box

and black-box attack settings. Liu et al. [48] developed a white-box

attack, called as AutoDAN, that automatically generates stealthy

prompts using a hierarchical genetic algorithm, which successfully

jailbreak larger SLMs. In [41], Jiang et al. devised an ASCII art

based jailbreaking prompt, called ArtPrompt, that bypassed safety

measures and elicited harmful undesired behavior from LLMs. Russi-

novich et al. [59] developed a simple multi-turn jailbreak attack,

called Crescendo, that interacts with LLM in a seemingly benign

manner, and gradually escalates the dialogue by referencing the

LLM’s replies progressively leading to a successful jailbreak.

Inspired by Milgram experiment w.r.t. the authority power for

inciting harmfulness, Li et al. [44] developed jailbreaking attack

called DeepInception, that leverages the personification ability of

SLM to construct a virtual, nested scene to successfully jailbreak.

In [43], Kang et al. has showed that programmatic capabilities

of LLMs can be leveraged for generating convincing malicious

content like scams, spam, hate speech, and others, without any

additional training or extensive prompt engineering. Egashira et al.
[25] developed a Zero-Shot Exploit Attack on SLMs that ensures

secure behavior in full precision but exhibits malicious behavior

upon quantization of the SLM.

Defenses for LLMs & SLMs. Jain et al. [36] proposed prompt

filtering-based defense for SLMs that assess the harmfulness of a

prompt based on its textual perplexity. They also proposed prompt

perturbation-based defenses such as paraphrasing and retokeniza-

tion that alters the input prompts. In [71], Xie et al. proposed Grad-

Safe, an approach that examines the safety-critical parameters of

SLMs for identifying unsafe prompts. Building upon the work of

Jain et al. [36], Alon and Kamfonas [15] proposed a classifier that

assess the harmfulness of a prompt by considering textual perplex-

ity and token sequence length together. Markov et al. [51] proposed
a holistic approach for building robust and useful natural language

classification system for real-world content moderation, which is

currently available to worldwide users as OpenAI Moderation API.

Ji et al. [39] proposed a smoothing-based defense, called Seman-

ticSmooth, that aggregates the predictions of multiple semanti-

cally transformed versions of input prompt, for improved robust-

ness against semantic jailbreak attacks on LLMs. In [32], Hu et al.
studied the refusal loss function and proposed a two-step jailbreak

detection procedure, called Gradient Cuff, that sequentially checks

the refusal landscape’s functional value and gradient norm. Li et al.
[45] proposed RAIN, an inference method that allows pre-trained

LLMs to evaluate their own generation and leverage the evalua-

tion results for guiding the rewind and generation processes for

ensuring safe content. Recently, tech companies have releasing

open-source guard models that are safety fine-tuned versions of

their open-source SLMs/LLMs, that flags the unsafe content in both

input prompt and model’s response. ShieldGemma from Google

[73], and Llama Guard Models from Meta [9, 20, 35] are such open-

source guard models. However, we feel these defenses fall short, as

novel and sophisticated attacks targeting LLMs & SLMs are being

rapidly developed [49].
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9 Conclusion
In this paper, we develop a lightweight DL-based prompt guard for

securing SLMs against quantization-induced risks and vulnerabil-

ities that arise while optimizing them for on-device deployment.

We conceptualize Open Knowledge Attacks and define the goal of

our LiteLMGuard defense as to serve as a prompt filtering layer that
assesses whether an input query is suitable for processing by an on-
device SLM, and route the user interaction accordingly. Specifically,
we formalize this prompt filtering goal as an answerability classifi-

cation task that leverages DL models for semantically determining

if an input query is answerable or not. We curated answerability

task dataset, called Answerable-or-Not, using GPT-4o model [34]

through ChatGPT [53] by following the hierarchical safety taxon-

omy of [69]. Using this dataset, we trained and fine-tuned various

DL models and finalized ELECTRA [21] as the candidate model for

our LiteLMGuard.
We performed safety effectiveness study that highlighted the

exploitable nature of some on-device SLMs as well as the level of

safety our LiteLMGuard defense offers to these on-device SLMs. It is

observed that LiteLMGuard achieves an overall RSE of 87%, without

any additional adversarial training. We practically demonstrated

the vulnerabilities of these on-device quantized SLMs using vanilla

prompts and Open Knowledge Attacks, and mitigating them with

LiteLMGuard. Further, we performed prompt filtering effectiveness

studies that showcase our prompt guard’s performance in terms of

negligible average latency of≈135𝑚𝑠 and near best overall accuracy

of 94% in comparison with multiple open-source and proprietary

server-run guard models. Altogether, our LiteLMGuard effectively

and efficiently secures the SLMs against risks and vulnerabilities

induced by quantization—required for their on-device deployment.
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