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Abstract—Decentralized storage faces a fundamental trade-

off between replication overhead, recovery efficiency, and

security guarantees. Current approaches either rely on full

replication, incurring substantial storage costs, or employ

trivial erasure coding schemes that struggle with efficient

recovery, especially under high churn. We present Walrus, a

novel decentralized blob storage system that addresses these

limitations through multiple technical innovations.

At the core of Walrus is Red Stuff, our first contribution.

Red Stuff is a two-dimensional erasure coding protocol that

achieves high security with only 4.5x replication factor, while

providing self-healing of lost data. This means that recovery

is done without centralized coordination and requires band-

width proportional to the lost data. Finally, Red Stuff is the

first protocol to support storage challenges in asynchronous

networks, preventing adversaries from exploiting network

delays to pass verification without actually storing data.

This allows Red Stuff to be deployable in cryptoeconomic

systems that go beyond the classic honest-malicious setting.

However, Red Stuff on its own is not sufficient for

Walrus as it is designed with a static set of participants in

mind. To further support decentralization, we also introduce

a novel multi-stage epoch change protocol that efficiently

handles storage node churn while maintaining uninterrupted

availability during committee transitions. Our system in-

corporates authenticated data structures to defend against

malicious clients and ensures data consistency throughout

storage and retrieval processes. Experimental evaluation

demonstrates that Walrus achieves practical performance at

scale, making it suitable for a wide range of decentralized

applications requiring high-integrity, available blob storage

with reasonable overhead.

I. Introduction
Blockchains support decentralized computation through

the State Machine Replication (SMR) paradigm [1]. However,
they are practically limited to distributed applications that
require little data for operation. Since SMR requires all val-
idators to replicate data fully, it results in a large replication
factor ranging from 100 to 1000, depending on the number
of validators in each blockchain.
While full data replication is practically needed for com-

puting on state, it introduces substantial overhead when
applications only need to store and retrieve binary large
objects (blobs) not computed upon1. Dedicated decentralized
storage [2] networks emerged to store blobs more efficiently.

1A recent example includes ‘inscriptions’ on bitcoin and other chains, see
https://medium.com/@thevalleylife/crypto-terms-explained-exploring-bitco
in-inscriptions-51699dc218d2.

For example, early networks like IPFS [3] offer robust re-
sistance to censorship, enhanced reliability and availability
during faults, via replication on only a small subset [4].
Decentralized blob storage is invaluable to modern decen-

tralized applications. We highlight the following use-cases:
• Digital assets, managed on a blockchain, such as non
fungible tokens (NFTs) need high integrity and availabil-
ity guarantees provided by decentralized blob stores. The
current practice of storing data off-chain only secures
metadata, while the actual NFT data remains vulnerable to
removal or misrepresentation depending on the browser2.

• Digital provenance of data assets is also increasingly im-
portant in the age of AI: to ensure the authenticity of
documentary material; to ensure training data sets are not
manipulated or polluted; and to certify that certain models
generated specific instances of data [5]. These applications
benefit from authenticity, traceability, integrity and avail-
ability decentralized stores provide.

• Decentralized apps, whether web-based or as binaries,
need to be distributed from decentralized stores. Today,
the majority of decentralized apps rely on traditional web
hosting to serve their front ends and client-side code,
which offers poor integrity and availability. Decentralized
stores may be used to serve web and dapps content directly
while ensuring its integrity and availability. Similarly,
decentralized stores can ensure binary transparency for
software and support the storage needs of full pipelines
of reproducible builds to support the strongest forms of
software auditing and chain of custody [6], [7].

• Decentralized storage plays a critical role in ensuring data
availability for roll-ups [8], the current scaling strategy
of Ethereum. In this setting, storage nodes hold the data
temporarily allowing blockchain validators to recover it for
execution. As a result, the system imposes replication costs
solely on the netted state of the roll-up, rather than the full
sequence of updates (e.g. transactions).

• Finally, the integration of decentralized storage with en-
cryption techniques marks a significant paradigm shift [9].
This approach offers users comprehensive data manage-
ment aligned with the Confidentiality, Integrity, and Avail-
ability (CIA) triad, eliminating the need to rely on cloud

2A recent proof of concept attack is described here: https://moxie.org/20
22/01/07/web3-first-impressions.html

https://arxiv.org/abs/2505.05370v2


services as fiduciaries. This integration unlocks numerous
promising applications, including sovereign data manage-
ment, decentralized data marketplaces, and computational
operations over encrypted datasets. Although this paper
does not focus on these applications,Walrus, can naturally
function as the storage layer for encrypted blobs. This
approach provides a structured, layered framework that al-
lows encryption overlays to focus on creating a secure and
efficient Key Management System (KMS) without worrying
about data availability.
In brief, secure decentralized blob stores are critical for all

applications where data is relied upon by multiple mutually
distrustful parties and needs to be stored in a credibly neutral
store that provides high authenticity, integrity, auditability
and availability.

A. Approaches to Decentralized Storage

Protocols for decentralized storage generally fall into two
main categories. The first category includes systems with full

replication, with Filecoin [3] and Arweave [10] serving as
prominent examples. The main advantage of these systems
is the complete availability of the blob on the storage nodes,
which allows for easy access and seamless migration if a
storage node goes offline. This setup enables a permissionless
environment since storage nodes do not need to rely on each
other for file recovery. However, the reliability of these sys-
tems hinges on the robustness of the selected storage nodes.
For instance, assuming a classic 1/3 static adversary model
and an infinite pool of candidate storage nodes, achieving
“twelve nines” of security – meaning a probability of less
than 10−12 of losing access to a file – requires storing more
than 25 copies on the network3. This results in a 25x storage
overhead. A further challenge arises from Sybil attacks [11],
where malicious actors can pretend to store multiple copies
of a file, undermining the system’s integrity.

The second category of decentralized storage services [12]
uses Reed-Solomon (RS) encoding [13]. RS encoding reduces
replication requirements significantly. For example, in a sys-
tem similar to blockchain operations, with n nodes, of which
1/3 may be malicious, and in an asynchronous network, RS
encoding can achieve sufficient security with the equivalent
of just 3x storage overhead. This is possible since RS encoding
splits a file into smaller pieces, that we call slivers, each
representing a fraction of the original file. Any set of slivers
greater in total size to the original file can be decoded back
into the original file.

However, an issue with erasure coding arises when a
storage node goes offline, and needs to be replaced by
another. Unlike fully replicated systems, where data can
simply be copied from one node to another, RS-encoded
systems require that all existing storage nodes send their
slivers to the substitute node. The substitute can then recover
the lost sliver, but this process results in O(|blob|) data

3The chance that all 25 storage nodes are adversarial and delete the file
is 3−25 = 1.18× 10−12.

being transmitted across the network. Frequent recoveries
can erode the storage savings achieved through reduced
replication, which means that these systems need a low churn
of storage nodes and hence be less permisionless.
Regardless of the replication protocol, all existing de-

centralized storage systems face an additional challenges:
the need for a continuous stream of challenges to ensure
that storage nodes are incentivized to retain the data and
do not discard it. This is crucial in an open, decentralized
system that offers payments for storage and goes beyond the
honest/malicious setting. Current solutions always assume
that the network is synchronous such that the adversary
cannot read any missing data from honest nodes and reply
to challenges in time.

B. Introducing Walrus

We introduce Walrus, a new approach to decentralized
blob storage. It follows the erasure codes type of architecture
in order to scale to 100s of storage nodes providing high
resilience at a low storage overhead. At the heart of Walrus,
lies a new encoding protocol, called Red Stuff that uses a
novel two-dimensional (2D) encoding algorithm that is self-
healing. Specificaly, it enables the recovery of lost slivers
using bandwidth proportional to the amount of lost data
(O( |blob|n ) in our case). Moreover, Red Stuff incorporates
authenticated data structures to defend against malicious
clients, ensuring that the data remains consistent.
One unique feature of Red Stuff is its ability to work in

an asychronous network while supporting storage challenges,
making it the first of its kind. This is only possible thanks
to the two-dimensional encoding that allows for different
encoding thresholds per dimension. The low-threshold di-
mension can be used from nodes that did not get the symbols
during the write flow to recover what they missed, whereas
the high-threshold dimension can be used for the read flow
to prevent the adversary from slowing down honest nodes
during challenge periods and collecting sufficient information
to reply to challenges.
One final challenge for Walrus, and in general, any

encoding-based decentralized storage system is operating se-
curely across epochs each managed by a different committee
of storage nodes. This is challenging because we want to
ensure uninterrupted availability to both read and write blobs
during the naturally occurring churn of a permissionless
system, but if we keep writing data in the nodes about to
depart, they keep needing to transfer them to the nodes that
are replacing them. This creates a race for the resources of
those nodes, which will either stop accepting writes or fail to
ever transfer responsibility. Walrus deals with this through
its novel multi-stage epoch change protocol that naturally
fits the principles of decentralized storage systems.
In summary, we make the following contributions:

• We define the problem of Asynchronous Complete Data-
Sharing and propose Red Stuff, the first protocol to solve
it efficiently even under Byzantine Faults (Section III)



TABLE I: Comparing Decentralized Storage Systems & Algorithms

Replication for
10−12 Security

Write/Read
Cost

Single Shard
Recovery Cost

Asychronous
Challenges

Non-Blocking
Epoch Change

Replication 25x O(n|blob|) O(|blob|) Unsupported Unsupported
Classic ECC 3x O(|blob|) O(|blob|) Unsupported Unsupported

Walrus + Red Stuff 4.5x O(|blob|) O( |blob|
n

) Supported Supported

• We present Walrus, the first permissionless decentralized
storage protocol designed for low replication cost and the
ability to efficiently recover lost data due to faults or
participant churn (Section IV).

• We show how Walrus leverages Red Stuff to implement
the first asynchronous challenge protocol (Section IV-F)

• We provide a production-ready implementation of Walrus
and deploy a public testnet of Walrus. We then measure
its performance and scalability (Section VII).

II. Models and Definitions
Walrus relies on the following assumptions.

A. Cryptographic assumptions

Throughout the paper, we use hash() to denote a collision
resistant hash function. We also assume the existence of
secure digital signatures and binding commitments.

B. Network and adversarial assumptions

Walrus runs in epochs, each with a static set of storage
nodes. At the end of the epoch n = 3f + 1 storage nodes
are elected as part of the the storage committee of the epoch
and each one controls a storage shard such that a malicious
adversary can control up to f of them.
The corrupted nodes can deviate arbitrarily from the pro-

tocol. The remaining nodes are honest and strictly adhere to
the protocol. If a node controlled by the adversary at epoch
e is not a part of the storage node set at epoch e + 1 then
the adversary can adapt and compromise a different node at
epoch e+ 1 after the epoch change has completed.
We assume every pair of honest nodes has access to a

reliable and authenticated channel. The network is asyn-
chronous, so the adversary can arbitrarily delay or reorder
messages between honest nodes, but must eventually deliver
every message unless the epoch ends first. If the epoch ends
then the messages can be dropped.
Our goal is not only to provide a secure decentralized

system but to also detect and punish any storage node
that does not hold the data that it is assigned. This is a
standard additional assumption for dencentralized storage
system to make sure that honest parties cannot be covertly
compromised forever.

C. Erasure codes

As part of Walrus, we propose Asynchronous Complete
Data Storage (ACDS) that uses an erasure coding scheme.
While not necessary for the core parts of the protocol, we
also assume that the encoding scheme is systematic for some

of our optimizations, meaning that the source symbols of the
encoding scheme also appear as part of its output symbols.

Let Encode(B, t, n) be the encoding algorithm. Its output
are n symbols such that any t can be used to reconstruct
B. This happens by first splitting B into t symbols of size
O( |B|t ) which are called source symbols. These are then
expanded by generating n − t repair symbols for a total
of n output symbols. On the decoding side, anyone can
call Decode(T, t, n) where T is a set of at least t correctly
encoded symbols, and it returns the blob B.
ACDS shares some similarities with Asychronous Verifi-

able information Dispersal (AVID) [14], [15], given that the
main goal of both protocol is to distribute data. However,
they also have significant differences most notably the lack of
completeness in AVID protocols which is critical for Walrus.
A more in depth discussion is provided in Section VIII.

D. Blockchain substrate

Walrus uses an external blockchain as a black box for
all control operations that happen on Walrus. A blockchain
protocol can be abstracted as a computational black box
that accepts a concurrent set of transactions, each with
an input message Tx(M) and outputs a total order of
updates to be applied on the state Res(seq, U). We assume
that the blockchain does not deviate from this abstract and
does not censor Tx(M) indefinitely. Any high-performance
modern SMR protocol satisfies these requirements, in our
implementation we use Sui [16].

III. Asynchronous Complete Data Storage (ACDS)

We first define the problem of Complete Data Storage
in a distributed system, and describe our solution for an
asynchronous network which we refer to as Asynchronous
Complete Data Storage (ACDS). Secondly, we show its cor-
rectness and complexity.

A. Problem Statement

In a nutshell a Complete Data Storage protocol allows a
writer to write a blob to a network of storage nodes (Write

Completeness), and then ensures that any reader can read
it despite some failures and byzantine behaviour amongst
storage nodes (Validity); and read it consistently, despite a po-
tentially byzantine writer (Read Consistency). More formally:

Definition 1 (Complete Data Storage). Given a network of

n = 3f + 1 nodes, where up to f are byzantine, let B be a

blob that a writer W wants to store within the network, and



share it with a set of readers R. A protocol for Complete Data

Storage guarantees three properties:

• Write Completeness: If a writer W is honest, then every

honest node holding a commitment to blob B eventually

holds a part p (derived from B), such that B can be recovered

from O
(
|B|
|p|

)
parts.

• Read Consistency: Two honest readers, R1 and R2, reading

a successfully written blob B either both succeed and return

B or both return ⊥.

• Validity: If an honest writer W successfully writes B, then an

honest reader R holding a commitment to B can successfully

read B.

B. Strawman Design

In this section, we iterate through two strawman designs
and discuss their inefficiencies.

Strawman I: Full Replication: The simplest protocol uses
full replication in the spirit of Filecoin [3] and Arweave [10].
The writer W broadcasts its blob B along with a binding
commitment to B (e.g., HB = hash(B)), to all storage nodes
and then waits to receive f + 1 receipt acknowledgments.
These acknowledgments form an availability certificate which
guarantees availability because at least one acknowledgement
comes from an honest node. The writer W can publish
this certificate on the blockchain, which ensures that it is
visible to every other honest node, who can then request a
Read(B) successfully. This achieves Write Completeness since
eventually all honest nodes will hold blob B locally. The rest
of the properties also hold trivially. Notice that the reader
never reads ⊥.

Although the Full Replication protocol is simple, it requires
the writer to send an O(n|B|) amount of data on the network
which is also the total cost of storage. Additionally, if the
network is asynchronous, it can cost up to f +1 requests to
guarantee a correct replica is contacted, which would lead to
O(n|B|) cost per recovering storage node with a total cost
of O(n2|B|) over the network. Similarly, even a read can be
very inefficient in asynchrony, as the reader might need to
send f + 1 requests costing O(n|B|).

Strawman II: Encode & Share: To reduce the upfront data
dissemination cost, some distributed storage protocols such
as Storj [17] and Sia [18] use RS-coding [13]. The writer
W divides its blob B into f + 1 slivers and encodes 2f
extra repair slivers. Thanks to the encoding properties, any
f + 1 slivers can be used to recover B. Each sliver has a
size of O( |B|n ). The writer W then commits to all the slivers
using a binding commitment such as a Merkle tree [19] and
sends each node a separate sliver together with a proof
of inclusion4. The nodes receive their slivers and check
against the commitment; if the sliver is correctly committed,
they acknowledge reception by signing the commitment. The
writer W can then generate an availability certificate from
2f + 1 signatures and post it on the blockchain.

4Writer W could prove consistency among all slivers, but this is overkill
for ACDS.

S31

S11

S21

S41

Encode: 
from f+1 to nslivers

Fig. 1: Encoding a Blob in one dimension. First the blob is
split into f+1 systematic slivers and then a further 2f repair
slivers are encoded

A reader continuously requests slivers from the nodes
until it receives f + 1 valid replies (i.e., replies that are
verified against the commitment). The reader is guaranteed
to receive them since at least f + 1 honest nodes have
stored their sliver. The reader then reconstructs blob B from
the slivers and then additionally, re-encodes the recovered
value and recomputes the commitment [19], [20]. If writer
W was honest, the recomputed commitment will match the
commitment from the availability certificate and the reader
outputs B. Otherwise, writer W may not have committed
to a valid encoding, in which case the commitments do not
match and the reader outputs ⊥.
As before, the nodes that did not get slivers during the

sharing phase can recover them by reading B. If the output
of the read operation is ⊥, the node returns ⊥ on all
future reads. Otherwise, the node stores their encoded sliver
and discards the rest of B. Note this recovery process is
expensive: recovery costs O(|B|) even if the storage cost
afterwards is O( |B|n ).
This second protocol reduces the dissemination costs sig-

nificantly at the expense of extra computation (encoding/de-
coding and committing to slivers from B). Disseminating blob
B only costs O(|B|)5, which is the same cost as reading it.
However, complete dispersal still costs O(n|B|), because as
we saw the process of recovering missing slivers requires
downloading the entire blob B. Given that there can be up
to f storage nodes that did not manage to get their sliver
from writer W and need to invoke the recovery protocol, the
protocol has O(n|B|) total cost. This is not only important
during the initial dispersal, but also in cases where the
storage node set changes (at epoch boundaries) as the new
set of storage nodes need to read their slivers by recovering
them from the previous set of storage nodes.

C. Final design: Red Stuff

The encoding protocol above achieves the objective of a
low overhead factor with very high assurance, but is still not
suitable for a long-lasting deployment. The main challenge
is that in a long-running large-scale system, storage nodes
routinely experience faults, lose their slivers, and have to be
replaced. Additionally, in a permissionless system, there is

5There may be an extra O(logn) cost depending on the commitment
scheme.



some natural churn of storage nodes even when they are
well incentivized to participate.

Both of these cases would result in enormous amounts of
data being transferred over the network, equal to the total
size of data being stored in order to recover the slivers for
new storage nodes. This is prohibitively expensive. We would
instead want the system to be self-healing such that the cost
of recovery under churn is proportional only to the data that
needs to be recovered, and scale inversely with n.

To achieve this, Red Stuff encodes blobs in two dimen-
sions (2D-encoding). The primary dimension is equivalent to
the RS-encoding used in prior systems. However, in order to
allow efficient recovery of slivers of B we also encode on a
secondary dimension. Red Stuff is based on linear erasure
coding (see section II) and the Twin-code framework [21],
which provides erasure coded storage with efficient recovery
in a crash-tolerant setting with trusted writers. We adapt
this framework to make it suitable in the byzantine fault
tolerant setting with a single set of storage nodes, and we
add additional optimizations that we describe further below.

Encoding: Our starting point is the second strawman
design that splits the blobs into f+1 slivers. Instead of simply
encoding repair slivers, we first add one more dimension to
the splitting process: the original blob is split into f + 1
primary slivers (vertical in the figure) into 2f +1 secondary
slivers (horizontal in the figure). Figure 2 illustrates this
process. As a result, the file is now split into (f +1)(2f +1)
symbols that can be visualized in an [f + 1, 2f + 1] matrix.
Given this matrix we then generate repair symbols in both

dimensions. We take each of the 2f+1 columns (of size f+1)
and extend them to n symbols such that there are n rows.
We assign each of the rows as the primary sliver of a node
(Figure 2a). This almost triples the total amount of data we
need to send and is very close to what 1D encoding did in the
protocol in Section III-B. In order to provide efficient recovery
for each sliver, we also take the initial [f+1, 2f+1] 6 matrix
and extend with repair symbols each of the f+1 rows (of size
2f +1) and extend them to n symbols (Figure 2b) using our
encoding scheme. This creates n columns, which we assign
as the secondary sliver of each node, respectively.

Write protocol: The Write protocol of Red Stuff uses
the same pattern as the RS-code protocol. The writer W first
encodes the blobs and creates a sliver pair for each node. A
sliver pair i is the pair of ith primary and secondary slivers.
There are n = 3f + 1 sliver pairs, as many as nodes.

Then, W sends the sliver commitments to every node,
along with the respective sliver pair. The nodes check their
own sliver pair against the commitments, recompute the
blob commitment, and reply with a signed acknowledgment.
When 2f +1 signatures are collected, W generates a certifi-
cate and posts it on-chain to certify the blob’s availability.
In theoretical asynchronous network models with reliable

delivery the above would result in all correct nodes eventu-
6We do not expand the expanded primary silver matrix, only the initial

one. This is why the replication is 4.5x. This also means that during recovery
nodes might need to locally expand their slivers to get 3f + 1 symbols.
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from f+1 to n

primary
slivers

(a) Primary Encoding in two dimensions. The file is split into 2f+1 columns
and f + 1 rows. Each column is encoded as a separate blob with 2f repair
symbols. Then each extended row is the primary sliver of the respective
node.
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S13

S23

Encode rows: 
from 2f+1 to n

secondary slivers

(b) Secondary Encoding in two dimensions. The file is split into 2f + 1
columns and f + 1 rows. Each row is encoded as a separate blob with f
repair symbols. Then each extended columns is the secondary sliver of the
respective node.

Fig. 2: 2D Encoding / Red Stuff

ally receiving a sliver pair from an honest writer. However, in
practical protocols the writer needs to stop re-transmitting.
It is safe to stop the re-transmission after 2f + 1 signatures
are collected, leading to at least f + 1 correct nodes (out of
the 2f +1 that responded) holding a sliver pair for the blob.

Handling Metadata: During the write protocol W com-
putes vector commitments of all slivers and as a last step cre-
ates a commitment over the list of these sliver commitments,
which serves as a blob commitment. These commitments for
each sliver form the blob metadata. Using these, nodes can
later, when queried for a single symbol, prove that the symbol
they return is the symbol originally written. This allows
for partial reads of data when the systematic symbols are
available as well as for efficient recovery. However, these
proofs require the opening of the commitments for the
respective sliver as well as of the blob commitment w.r.t.
the respective sliver commitment.
A node that holds all of their slivers can easily recompute

the sliver commitment and its openings, but to open the
blob commitment, all sliver commitments from all nodes are
required. If we naively replicate this metadata to every single
storage node to enable secure self-healing, we create a large
overhead that is quadratic in the number of nodes, since each
node needs to store the sliver commitments of all nodes.
Especially for small blobs, this can make a large difference
in the relative overhead. For example, using 32B hashes in
a system of 1000 nodes would require storing an additional
64kB on each node, or 64MB in total.
To reduce the overhead, storage nodes maintain an en-

coded version of the metadata. Since all storage nodes need
to get the metadata in full when the write is in progress,
there is no need for the client to perform the encoding or to
do a 2D encoding. Instead, storage nodes can simply locally
encode the metadata with an 1D (f+1)-out-of-n encoding and



keep the shard assigned to them7. This reduces the overhead
to a constant per node, i.e., from quadratic to linear system-
wide overhead.

Read Protocol: The Read protocol is the same as for RS-
codes. In order to allow for asychronous challenges, nodes
only use their secondary sliver. If this is not necessary, we
can use the primary sliver and have a faster reconstruction
threshold of f + 1.

The Read process starts with R collecting the metadata,
i.e., the list of sliver commitments for the blob commitment.
To do so, R requests the 1D encoded metadata parts from its
peers along with the opening proofs.

After the metadata is decoded, R checks that the returned
set corresponds to the blob commitment. Then R requests
a read for the blob commitment from all nodes and they
respond with the secondary sliver they hold (this may happen
gradually to save bandwidth). Each response is checked
against the corresponding commitments in the commitment
set for the blob. When 2f + 1 correct secondary slivers are
collected R decodes B and then re-encodes it to recompute
the blob commitment and check that it matches the blob
commitment. If it is the same with the one W posted on
chain then R outputs B, otherwise it outputs ⊥.
Sliver Healing: The big advantage of Red Stuff compared

to the RS-code protocol is its self-healing property. This
comes into play when nodes that did not receive their slivers
directly from W try to recover them. Any storage node can
recover their secondary sliver by asking f +1 storage nodes
for the symbols that exist in their row, which should also
exist in the (expanded) column of the requesting node (fig. 3b
and fig. 3c). This means that eventually all 2f + 1 honest
nodes will have secondary slivers. At that point, any node
can also recover their primary sliver by asking the 2f + 1
honest nodes for the symbols in their column (Figure 3d)
that should also exist in the (expanded) row of the requesting
storage node. In each case, the responding node also sends
the opening for the requested symbol of the commitment of
the source sliver. This allows the receiving node to verify
that it received the symbol intended by the writer W , which
ensures correct decoding if W was honest.

Since the size of a symbol is O( |B|n2 ) each, and each storage
node will download O(n) total symbols, the cost per node
remains at O( |B|n ) and the total cost to recover the file is
O(|B|) which is equivalent to the cost of a Read and of a
Write. As a result by using Red Stuff, the communication
complexity of the protocol is (almost8) independent of n
making the protocol scalable.

D. Red Stuff is an ACDS

Section VI provides proofs that Red Stuff satisfies all
properties of a ACDS. Informally, Write Completeness is
ensured by the fact that a correct writer will confirm that at
least f+1 correct nodes received sliver pairs before stopping

7They should also compute a commitment and an opening of their sliver.
8Depends on the vector commitment scheme used.

re-transmissions. And the sliver recovery algorithm can en-
sure that the remaining honest nodes can efficiently recover
their slivers from these, until all honest nodes eventually hold
their respective sliver, or can prove that the encoding was
incorrect. Validity holds due to the fact that 2f + 1 correct
nodes wil eventually hold correct sliver pairs, and therefore
a reader that contacts all nodes will eventually get enough
slivers to recover the blob. Read Consistency holds since two
correct readers that decode a blob from potentially different
sets of slivers, re-encode it and check the correctness of the
encoding. Either both output the same blob if it was correctly
encoded or both output ⊥ if it was incorrectly encoded.

IV. The Walrus Decentralized Secure Blob Store

In the previous section we presented Red Stuff a neces-
sary component to build a truley permissionless decentralized
storage system that allows for cryptoeconomic players. How-
ever, it is not sufficient on its own. In this section, we present
Walrus which intergrates a blockchain as a control plane for
meta-data and governance, with an encoding and decoding
algorithm run by a separate committee of storage nodes
handling blob data contents and combined them through a
novel epoch-change algorithm that allows for permisionless
participation of 100s of storage nodes.
Our practical implementation of Walrus uses the

Red Stuff encoding/decoding algorithm described in sec-
tion III-C, Merkle trees [19] as vector commitments, and the
Sui blockchain [16] . Walrus can, however, be generalized
to any blockchains and encoding/decoding algorithm that
satisfies the minimal requirements described in Section II.
We first describe Walrus flows in a single epoch and

then we discuss how we allow for storage node dynamic
availability through reconfiguration. Finally, we look into go-
ing beyond honest-malicius and providing storage challenges.
During an epoch, the interactions of Walrus with the clients
is through (a) writing a blob and (b) reading a blob.

A. Writing a Blob

The process of writing a blob in Walrus can be seen in
Algorithm 3 and Figure 4.
The process begins with the writer (➊) encoding a blob

using Red Stuff as seen in Figure 2. This process yields
sliver pairs, a list of commitments to slivers, and a blob
commitment. The writer derives a blob id idB by hashing
the blob commitment with meta-data such as the length of
the file, and the type of the encoding.
Then, the writer (➋) submits a transaction on the

blockchain to acquire sufficient space for the blob to be stored
during a sequence of epochs, and to register the blob. The
size of the blob and blob commitment are sent, which can be
used to rederive idB . The blockchain smart contract needs to
secure sufficient space to store both the encoded slivers on
each node, as well as store all metadata associated with the
commitments for the blob. Some payment may be sent along
with the transaction to secure empty space, or empty space



S14

S31

S11

S21

S41

S32

S12

S33

S13

S23

S43

(a) Nodes 1 and 3 collectively hold two rows and two columns

S14

S31

S11

S21

S41

S32

S12

S33

S13

S23

S23

S34

(b) Each node sends the intersection of their row/column with the
column/row of Node 4 to Node 4 (Red). Node 3 needs to encode the row
for this.

S14

S24

S31

S11

S23

S41

S32

S12

S22

S42

S33

S13

S23

S43

S34

S44

Recover 
from f+1

(c) Node 4 uses the f + 1 symbols on its column to recover the full
secondary sliver (Green). It will then send any other recovering node the
recovered intersections of its column to their row.

S14

S24

S31

S11

S23

S41

S32

S12

S22

S42

S33

S13

S23

S43

S34

S44

Recover from 2f+1
(d) Node 4 uses the f +1 symbols on its row as well as all the recovered
secondary symbols send by other honest recovering nodes (Green) (which
should be at least 2f plus the 1 recovered in the previous step) to recover
its primary sliver (Dark Blue)

Fig. 3: Nodes 1 and 3 helping Node 4 recover its sliver pair
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Fig. 4: Walrus write flow. The user generates the blob id of the file they
wish to store; acquire storage space through the blockchain; submit the
encoded file to Walrus; collect 2f+1 acknowledgements; and submit them
as proof of availability to the blockchain.

over epochs can be a resource that is attached to this request
to be used. Our implementation allows for both options.

Once the register transaction commits (➌), the writer
informs the storage nodes of their obligation to store the
slivers of the blob identified by idB , sending them the trans-
action together with the commitments and the primary and
secondary slivers assigned to the respective storage nodes
along with proofs that the slivers are consistent with the
published idB . The storage node verifies the commitments
and responds with a signed acknowledgment over idB once
the commitments and the sliver pairs are stored.

Finally, the writer waits to collect 2f + 1 signed ac-
knowledgments (➍), which constitute a write certificate. This
certificate is then published on-chain (➎) which denotes the
Point of Availability (PoA) for the blob in Walrus. The PoA
signals the obligation for the storage nodes to maintain the
slivers available for reads for the specified epochs. At this
point, the writer can delete the blob from local storage, and
go offline. Additionally, this PoA can be used as proof of
availability of the blob by the writer to third-party users and

smart-contracts.
Nodes listen to the blockchain for events indicating that a

blob reached its PoA. If they do not hold sliver pairs for this
blobs they execute the recovery process to get commitments
and sliver pairs for all blobs past their PoA. This ensures that
eventually all correct nodes will hold sliver pairs for all blobs.

B. Reading a Blob

In the read path, a reader may ask any of the storage
nodes for the commitments and secondary sliver (1) for a
blob by idB . Once they collect 2f + 1 replies with valid
proofs against idB (2) they reconstruct the blob. Then (3)
the reader re-encodes the blob and re-computes a blob id
id′B . If idB = id′B it outputs the blob, otherwise the blob is
inconsistent and the reader outputs ⊥.
Reads happen consistently across all readers thanks to the

properties of Red Stuff. When no failures occur, reads only
require downloading sliver data slightly larger than the byte
length of the original blob in total.

C. Recovery of Slivers

One issue with writing blobs in asynchronous networks or
when nodes can crash-recover is that not every node can get
their sliver during the Write. This is not a problem as these
protocols can function without completeness. Nevertheless,
in Walrus we opted to use a two-dimensional encoding
scheme because it allows for completeness, i.e., the ability
for every honest storage node to recover and eventually hold
a sliver for every blob past PoA. This allows (1) better load
balancing of read requests all nodes can reply to readers,
(2) dynamic availability of storage nodes, which enables
reconfiguration without needing to reconstruct and rewrite
every blob, and (3) the first fully asynchronous protocol for
proving storage of parts (described in Section IV-F).
All these benefits rely on the ability for storage nodes to

recover their slivers efficiently. The protocol closely follows
the Red Stuff recovery protocols illustrated in Figure 3.



When a storage node sees a certificate of a blob for which
they did not receive slivers, it tries to recover its sliver pair
from the rest of the storage nodes. For this, it requests from
all storage nodes the symbols corresponding to the intersec-
tion of the recovering node’s primary/secondary sliver with
the signatory nodes’ secondary/primary slivers. Given that
2f + 1 nodes signed the certificate, at least f + 1 will be
honest and reply. This is sufficient for all 2f + 1 honest
nodes to eventually hold their secondary slivers. As a result,
when all honest nodes hold their secondary slivers, they can
share those symbols corresponding to the recovering nodes’
primary slivers, who will then get to the 2f + 1 threshold
and also recover their primary slivers.

D. Handling Inconsistent Encoding from Malicious Writers

One last challenge for Walrus is dealing with a malicious
client who uploads slivers that do not correspond to the cor-
rect encoding of a blob. In that case, a node may not be able
to recover a sliver that is consistent with the commitment
of the symbols that it received. Walrus does not require
certified blobs to be recoverable (which is the primary goal
of AVID [14]) as the writer can always encode recoverable
garbage data. Instead, it is guaranteed that unrecoverable
blobs will have a third party verifiable proof of inconsistency,
associated with idB , after a read fails.
The read process executed by a correct reader rejects

any inconsistently encoded blob by default, and as a result,
sharing this proof is not a necessity to ensure consistent
reads. However, agreeing on the inconsistency allows nodes
to delete this blobs’ data and exclude it from the challenge
protocol (section IV-F). To prove inconsistency, the storage
node shares the inconsistency proof—consisting of the sym-
bols that it received for recovery and their inclusion proofs—
with the other nodes, who can verify it by performing a
trial recovery themselves. After verifying this fraud proof, the
node attests on-chain that idB is invalid. After observing a
quorum of f+1 such attestations, all nodes will subsequently
respond with ⊥ to any request for the inconsistent blob’s
slivers, along with a pointer to the on-chain evidence for the
inconsistency.

E. Committee Reconfiguration

Walrus is a decentralized protocol, therefore it is natural
that the set of storage nodes will fluctuate between epochs.
When a new committee replaces the current committee
between epochs, reconfiguration takes place. The goal of the
reconfiguration protocol is to preserve the invariant that
all blobs past the Point of Availability (PoA) are available,
no matter if the set of storage nodes changes. Additionally,
Walrus must continue to perform reads and writes for blobs
to ensure no downtime even if the reconfiguration process
takes hours.9

9Unlike blockchain protocol where reconfiguration simply transfers re-
sponsibility of validation, in Walrus it transfers responsibility for data
storage in the order of PBs.

Core Design: At a high-level the reconfiguration protocol
of Walrus is similar to the reconfiguration protocols of
blockchain systems, since Walrus also operates in quorums
of storage nodes. However, the reconfiguration of Walrus
has its own challenges because the migration of state is
orders of magnitude more expensive than classic blockchain
systems. The most important challenge is the race between
writing blobs for epoch e and transferring slivers from
outgoing storage nodes to incoming storage nodes during the
reconfiguration event between e and e+1. More specifically,
if the amount of data written in epoch e is greater than the
ability of the departing storage node to transfer them over to
the incoming storage node, then the epoch will never finish.
This problem is exacerbated when some of the outgoing
storage nodes of e are unavailable, as this means that the
incoming storage nodes need to recover the slivers from the
committee.
To resolve this problem without shutting off the write

path, we take a different approach by requiring writes to
be directed to the committee of e + 1 the moment the
reconfiguration starts, while still directing reads to the old
committee, instead of having a single point at which both
reads and writes are handed over to the new committee. This
creates challenges when it comes to reading these fresh blobs,
as during the handover period it is unclear which nodes
store the data. We handle this by including in the metada
of every blob the epoch in which it was first written. If the
epoch is e + 1 then the client is asked to direct reads to
the new committee; otherwise, it can direct reads to the old
committee. This happens only during handover period (when
both committees need to be live and secure).
Once a member of the new committee has bootstrapped

their part of the state, i.e., they have gotten all slivers for
their shard, they signal that they are ready to take over. When
2f+1 members of the new committee have signaled this, the
reconfiguration process finishes and all reads are redirected
to the storage nodes of the new committee.

The importance of Red Stuff for Reconfiguration:: As
we mentioned above, a significant challenge during epoch
change is when some nodes are faulty. In prior work, a single
faulty node would require bandwidth equal to the size of
the file to be transferred over the network of storage nodes.
This makes epoch changes prohibitively expensive and is
the reason no prior decentralized system has one. The key
enabler to Walrus handling this gracefully is our Red Stuff
algorithm, as it allows for the bandwidth cost of the faulty
case to be the same as that of the fault-free case.

Security arguments:: In a nutshell, reconfiguration en-
sures all ACDS properties across epochs. The key invariant
is: the reconfiguration algorithm ensures that if a blob is
to be available across epochs, in each epoch f + 1 correct
storage nodes (potentially different ones) hold slivers. This is
the purpose of the explicit signaling that unlocks the epoch
change by 2f+1 nodes. Therefore, eventually all other honest
storage nodes can recover their sliver pairs, and in all cases,
f + 1 honest nodes in the next epoch are able to recover



correct sliver pairs as a condition to move epochs.

F. Storage Challenges

Walrus uses a challenge protocol to prevent cheating
nodes that trivially never store or serve data from receiving
rewards and to incentivize honest nodes. To the best of our
knowledge, we present here the first storage proof protocol to
make no assumptions about network synchrony. It leverages
the completeness property of Red Stuff and the ability to
reconstruct blobs with 2f + 1 threshold.

Fully Asynchronous Challenge Protocol: For the
lightweight challenge protocol, we require the storage nodes
to set up a random coin with a 2f + 1 reconstruction
threshold. This is possible using any kind of asynchronous
DKG [22], [23], [24] or randomness generation protocol [25],
[26].

Close to the end of the epoch, the storage nodes wit-
ness a “challenge start” event on-chain, such as a specific
block height. This event is automatically generated by the
blockchain/smart contract. At that point, the honest storage
nodes witnessing the event stop serving read and recovery
requests and post an acknowledgment on-chain, revealing
a randomness share as part of the acknowledgment. When
2f + 1 nodes have posted their acknowledgment a random
coin is revealed, which is used to seed a pseudo-random
function. The output is used to select a subset of the stored
blobs per storage node that are to be challenged. The subsets
need to be disjoint for the challenge to work. Any non-
challenged blob can now be read and recovered again. When
2f + 1 nodes have entered the challenge phase and their
acknowledgment is public, the challenges begin.

Every node broadcasts to all other nodes their primary
sliver for the challenged blobs. Only nodes that actually hold
the blob data will be able to produce this. The receiving nodes
check that the slivers match the commitment of the blob and
send a confirmation signature.

Each storage node finishes 2f + 1 pairwise interactions
of being challenger and challengee, leading to collecting
2f + 1 signatures that form a certificate of storage (CoS).
Then the storage node submits the CoS on-chain to prove
their honesty. The challenge period ends when 2f+1 storage
nodes have submitted their CoS at which point the reads and
recovery are re-enabled.

Since the threshold for starting a challenge is 2f + 1, at
least f + 1 honest will not reply to the adversary trying to
recover files in order to reply to the challenge. As a result,
even if the adversary has slowed down f honest nodes to not
see the challenge start message, it can only get f symbols
from their secondary slivers. These are not enough to recover
their primary sliver even if all other malicious node did not
delete their data and can also give f − 1 extra symbols as
f − 1 + f = 2f − 1 which is still not enough.
The proof for the asychronous challenge protocols can be

seen in Section VI-D.

V. Detailed Algorithms

This section supplements Section IV by providing detailed
algorithms for clients (Algorithm 1) and storage nodes oper-
ations (Algorithm 3).
In additional to the helper functions specified in Al-

gorithm 2, these algorithms also leverages the following
(intuitive) functions: ByteSize(B) to compute the size of a
blob B in bytes; MerkleTree(v) to compute a merkle tree
over a vector input v; Hash(·) to compute a cryptographic
hash; ErasureEncode(B), ErasureReconstruct(·), and
ErasureDecode(·), to respective erasure encode a blob
B, reconstruct a blocb from enough erasure coded parts,
and erasure decode a blob as described in Section III-C;
HandledShards(n) to get the shards handled by a node
n; and SplitIntoMatrix(·) to reshape a matrix into the
specified size.
Furthermore, the client and storage nodes use the

following functions to interact with the blockchain:
ReserveBlob(·) to reserve a blob id on the blockchain;
StoreCertificate(·) to store a proof of storage on the
blockchain; IsRegistered(id) to check if a blob id id is
registered on the blockchain; and ReadCertificate(id) to
read a proof of storage of blob id id from the blockchain.

Table II summarizes the main notations used in the algo-
rithms. Subscripts of matrices and vectors denote access to a
specific index.

E(i,j) Symbol at position (i, j) of an encoded blob
Sp The set of primary slivers
Ss The set of secondary slivers

S(p,n) The primary sliver held by storage node n
S(s,n) The secondary sliver held by storage node n

{S(p,∗)}f+1 Any set of f + 1 primary slivers
Mp Metadata associated with the primary slivers
Ms Metadata associated with the secondary slivers
Dn The set of shards handled by node n

TABLE II: Main notations

VI. Red Stuff and Walrus Proofs

This section completes Section III by showing that Red
Stuff satisfies all the properties of a ACDS. The casual reader
can skip it.

A. Write Completeness

We show that Red Stuff satisfies Write Completeness.
Informally, if an honest writer writes a blob B to the network,
every honest storage node eventually holds a primary and
secondary correctly encoded sliver of B. For this part we
assume the writer is honest and provides a correct vector
commitment M .

Lemma 1 (Primary Sliver Reconstruction). If a party holds

a set of (2f +1) symbols {E(i, ∗)}2f+1from a primary sliver

S(p,i)
, it can obtain the complete primary sliver S(p,i)

.



Algorithm 1 Walrus client operations
1: nodes ▷ the committee of storage nodes
2: shards ▷ see Section IV

// Store a blob on the network
3: procedure StoreBlob(B, expiry)
4: // Step 1: Pay and register the blob id on the blockchain
5: (Sp, Ss)← EncodeBlob(B)
6: M ← MakeMetadata(Sp, Ss)
7: id← MakeBlobId(M)
8: size← ByteSize(B) ▷ size in bytes
9: ReserveBlob(id, size, expiry) ▷ on blockchain
10:
11: // Step 2: Send the encoded slivers to the storage nodes
12: R← { } ▷ storage requests to send to nodes
13: for n ∈ nodes do

14: Dn ← HandledShards(n) ▷ shards handed by node n
15: S(p,n) ← [Sp

i : i ∈ Dn]

16: S(s,n) ← [Ss
i : i ∈ Dn]

17: StoreRqst← (id,M, S(p,n), S(s,n))
18: R← R ∪ {(n, StoreRqst)}
19: await2f+1 : {c← Send(n, r) : (n, r) ∈ R} ▷ wait for 2f + 1

confirmations
20:
21: // Step 3: Record the proof of storage on the blockchain
22: StoreCertificate({c}, id) ▷ on blockchain

// Read metadata from the network
23: procedure RetrieveMetadata(id)
24: MetadataRqst← (id)
25: D ←$ {0, shards}n ▷ request all shards
26: N ← {n ∈ nodes s.t. ∃s ∈ D ∩ HandledShards(n)}
27: await2f+1 : {M ← Send(n,MetadataRqst) : n ∈ N} ▷ wait for 2f + 1

responses
28: if ∃M ∈ {M} s.t. MakeBlobId(M) = id then return M

29: return ⊥

// Read a blob from the network
30: procedure ReadBlob(id)
31: M ← RetrieveMetadata(id)
32: SliversRqst← (id)
33: await2f+1 : {Ss,n) ← Send(n, SliversRqsts) s.t. n ∈ nodes :

VerifySliver(S(s,n),M)}
34: B ← DecodeBlob({S(s,∗)}2f+1,M)
35: return B

Proof. The proofs directly follows from the reconstruction
property of erasure codes with reconstruction threshold
(2f + 1).

Lemma 2 (Secondary Sliver Reconstruction). If a party holds

a set of (f +1) symbols {E(∗, i)}f+1 from a secondary sliver

S(s,i)
, it can obtain the complete secondary sliver S(s,i)

.

Proof. The proofs directly follows from the reconstruction
property of erasure codes with reconstruction threshold (f+
1).

Theorem 1. Red Stuff satisfies Write Completeness (Defini-

tion 1).

Proof. To write a blob B, an honest writer W sends at
least (2f + 1) correctly encoded slivers (parts) to different
storage nodes, along with a binding vector commitment M
over those slivers. For these nodes the property holds by
definition. Now let’s assume a node j that is not in the initial
2f + 1 recipients. The node will ask every node i for their
shared symbols in its primary (i.e., E(j, i)) and secondary
(i.e., E(i, j)) sliver. Given the binding vector commitment M
node i can either send the true symbols or not reply. Given

Algorithm 2 Helper functions
1: nodes ▷ the committee of storage nodes
2: shards ▷ see Section IV

3: procedure EncodeBlob(B)
4: E ← ErasureEncode(B) ▷ expand size:

[(f + 1)× (2f + 1)]→ [shards× shards]
5: Sp ← [E(i,∗) : i ∈ [0, shards]] ▷ encoded primary slivers:

[shards× 1]
6: Ss ← [E(∗,i) : i ∈ [0, shards]]⊤ ▷ encoded secondary slivers:

[1× shards]
7: return (Sp, Ss)

8: procedure MakeMetadata(Sp, Ss)
9: Mp ← [Hash(s) : s ∈ Sp] ▷ length: 2f + 1
10: Ms ← [Hash(s) : s ∈ Ss] ▷ length: f + 1
11: M ← (Mp,Ms)
12: return M

13: procedure MakeBlobId(M )
14: (Mp,Ms)←M
15: id← (MerkleTree(Mp),MerkleTree(Ms))
16: return id

17: procedure VerifySliver(S(∗,n),M )
18: (Mp,Ms)←M
19: return (Hash(s) = Mp

n : ∀s ∈ S(p,n)) ∨ (Hash(s) = Ms
n : ∀s ∈

S(s,n))

20: procedure DecodeBlob({S(p,∗)}f+1,M )
21: Sp ← ErasureReconstruct({S(p,∗)}f+1) ▷ reconstruct encoded slivers
22: E ← SplitIntoMatrix(Sp) ▷ size: shard× shard
23: Ss ← [E(∗,i) : i ∈ [0, shards]]⊤

24: M ′ ← MakeMetadata(Sp, Ss)
25: if M ̸= M ′

then return ⊥ ▷ verify encoding correctness, see Section IV-B
26: B ← ErasureDecode(E) ▷ matrix: (f + 1)× (2f + 1)
27: return B

that at least 2f + 1 nodes acknowledged M then j will get
f+1 correct symbols for its primary sliver {E(j, ∗)}f+1 and
f + 1 correct symbols for its secondary sliver {E(∗, j)}f+1.
From Lemma 2 this means that j will reconstruct its full
secondary sliver S(s,j) .
Since this reasoning applies to any generic node i, it holds

for all nodes. As a result, eventually all 2f +1 honest nodes
will reconstruct their secondary slivers S(s,∗). Every time a
node reconstructs their secondary sliver, they also reply to
node j with the shared symbol which is part of the primary
sliver of j(i.e., E(j, ∗)) . As a result, eventually j will go from
{E(j, ∗)}f+1 to {E(j, ∗)}2f+1 This allows node j to apply
Lemma 1 and reconstruct its primary sliver S(p,j).
Since this reasoning applies to any generic node i, it holds

for all nodes and concludes the proof that all honest nodes
will eventually hold both their primary and secondary sliver.

B. Read Consistency

We prove that Red Stuff satisfies Read Consistency. In-
formally, if two honest readers read a blob B written to
the network, they either both eventually obtain B or both
eventually fail and obtain ⊥.

Theorem 2. Red Stuff satisfies Read Consistency (Defini-

tion 1).

Proof. Notice that the encoding scheme is deterministic and
the last step of reading is to re-run the encoding and



Algorithm 3 Walrus store operations
1: n ▷ the identifier of the storage node
2: nodes ▷ the committee of storage nodes
3: shards ▷ see Section IV
4: dbm ▷ perists the metadata
5: dbb ▷ perists the slivers

// Store slivers
6: procedure StoreSlivers(StoreRqst)
7: (id,M, S(p,n), S(s,n))← StoreRqst
8:
9: // Check 1: Ensure the node is responsible for the shards
10: Dn ← HandledShards(n)
11: if ∃si ∈ Sp ∪ Ss s.t. i /∈ Dn

then return ⊥
12:
13: // Check 2: Verify the blob id is registered on chain
14: if ¬IsRegistered(id) then return ⊥

▷ read blockchain
15:
16: // Check 3: Verify the metadata is correctly formed
17: if ¬VerifySliver(S(p,n),M) then return ⊥
18: if ¬VerifySliver(S(s,n),M) then return ⊥
19: id′ ← MakeBlobId(M)
20: if id ̸= id′

then return ⊥
21:
22: dbm[id]←M ▷ persist the metadata
23: dbb[id]← (S(p,n), S(s,n)) ▷ persist the slivers
24: Send(ack) ▷ reply with an acknowledgment

// Server metadata
25: procedure ServeMetadata(MetadataRqst)
26: id← MetadataRqst
27: return dbm[id] ▷ return the metadata or ⊥ if not found
28: Reply(ack)

// Server slivers
29: procedure ServeSlivers(SliversRqst)
30: id← SliversRqst
31: if ¬ReadCertificate(id) then return ⊥ ▷ proof of storage on the

blockchain
32: (S(p,n), S(s,n))← dbb[id] ▷ return the slivers or ⊥ if not found
33: Reply(S(s,n))

// Recover slivers
34: procedure RecoverSlivers(id)
35: c← Client(nodes, shards) ▷ build a Walrus client (Algorithm 1)
36: B ← c.ReadBlob(id)
37: Dn ← HandledShards(n) ▷ shards handed by node n
38: S(p,n) ← [Sp

i : i ∈ Dn]

39: S(s,n) ← [Ss
i : i ∈ Dn]

40: dbm[id]←M ▷ persist the metadata
41: dbb[id]← (S(p,n), S(s,n)) ▷ persist the slivers

reconstruct M . As a result, a reader that accepts the read
as correct needs to output B.

The challenge with Read Consistency is if the writer can
convince different readers that collect different slivers to
output B and ⊥. Let’s assume that two honest readers R1

and R2 read a blob B from the network and R1 eventually
obtains B while R2 eventually fails and obtains ⊥.
There are two scenarios for R2 to output ⊥:

1) R2 gets 2f+1 replies matchingM and tries to reconstruct.
During reconstruction, the commitment does not much M

2) Some node failed to reconstruct their secondary sliver. By
the algorithm this nodes will hold a proof of inconsistency,
which it will send to R2

In either scenario R1 during their reconstruction should
have also detected the inconsistency and output ⊥ otherwise
the binding property of the vector commitment does not hold.
Hence a contradiction.

C. Validity

We prove that Red Stuff satisfies Validity. Informally, if
an honest writer writes a correctly encoded blob B to the
network, every honest reader eventually obtains B.

Theorem 3 (Validity). Red Stuff satisfies Validity (Defini-

tion 1).

Proof. To write a blob B, an honest writer W construct n
correct encoded slivers (parts) along with a binding vector
commitment M over those slivers. Since the writer is honest
from Theorem 1 all (at least 2f+1) honest storage nodes will
hold their respective slivers. Let’s note by nodes the entire
set of storage nodes. An honest reader queries each storage
node n ∈ nodes for their secondary sliver, verifies them
against M and when it holds 2f+1 uses them to reconstruct
the B. Since all honest storage nodes will eventually reply
to the reader and W was honest, the reader will eventually
obtain B.

D. Asychronous Challenges

We prove that an adversary that drops its slivers cannot
pass a storage challenge even if colluding with the other
f − 1 malicious storage nodes. Later we discuss probabilities
of passing a challenge if storing a subset of the slivers and
how we can tune it.

Theorem 4 (Secure Challenge Protocol). No malicious storage

node running Walrus that deletes its storage will succeed in a

challenge.

Proof. We assume there exists a storage node j that deletes
all slivers it is supposed to hold.
At challenge time of some random blob B it will need to

produce its primary sliver. To do this it needs to find 2f +1
symbols of this sliver. For this it can ask for f − 1 symbols
from the other malicious storage nodes who hopefully did not
also delete them. Contorolling the network it could also slow
down honest nodes to not see the challenge start message
posted on-chain and request a read for the sliver.
However, for the challenge to start and the randomness to

be revealed there needs to be 2f+1 acknowledgements. From
them f can be the malicious nodes but there is at least f +1
honest nodes who have seen the challenge start message and
will not reply to read/recovery requests. Hence it can only
collect another f symbols.
However f+f−1 = 2f−1. From lemma 1 the node need

2f +1 to reconstruct the primary sliver and get this symbol.
Hence it will fail to reply. As a result no honest node will
sign the Certificate of Storage and the storage node will fail
the challenge.

Reducing the Cost: Notice that no honest node will sign off,
not even the ones slowed down. Additionally, the adversary
can only recover symbols from the same slowed down nodes



from all blobs challenged. These two observations can reduce
the cost of challenging significantly. Namely:
1) The set of verifying nodes could be randomly assigned to

have k nodes such that at least k/2 + 1 sign. As long as
less than k/2+1 are malicious and at least one is honest
whp the proof above would hold

2) If n is large, we do not need to challenge the full sliver,
but only a random subset of symbols of each sliver. Given
that the adversary can only slow down f honest nodes,
the chances that all slivers from all blobs are held by the
same f nodes gets diminishingly small quickly.
Adversary Trade-offs: The proofs are done for an adversary

that deletes all blobs. However the adversary could decide to
hold a percentage of blobs, saving some constant factor in its
storage costs. For this we can tune the number of blobs to
make it unlikely. For example, if a storage node holds 90%
of the blobs, it has less than a 10−30 probability of success
in a 640 file challenge.
We believe this is unlikely to happen as it would mean that

the malicious storage nodes have minimal storage savings
(less than a constant factor) and probably no real reduction
in their resource costs. However, even if it does happen
Walrus is still secure as long as 2f+1 honest storage nodes
store their blobs and only slowed down during recovery and
epoch-change procedures.

VII. Evaluation
We implement a production-ready networked multi-core

Walrus storage node in Rust. All networking uses HTTPS
through axum [27], it uses fastcrypto [28] for cryptography,
rocksdb [29] for storage, and reed-solomon-simd [30] for
erasure coding. We opt to connect our implementation to
Sui [31] as an example of fast blockchain. We release the
codebase as open-source10.
We evaluate Walrus’s performance and scalability on the

real, publicly available, testnet. This is the most realistic eval-
uation setting, exposing the system to real-world conditions,
real users, and infrastructure outside our control. We observe
the Walrus testnet over a period of 60 days, ending the 22nd
of March.

Our evaluation aims at demonstrating the following claims:
1) C1 (low latency): Walrus achieves low latency, bounded

by network delay.
2) C2 (throughput): Walrus clients achieve high read and

write throughput.
3) C3 (scalability): Walrus’s total capacity scales with the

number of storage nodes.

A. Experimental Setup

The Walrus testbed is decentralized, comprising 105 in-
dependently operated storage nodes and 1,000 shards. All
reported measurements are based on data voluntarily shared
by node operators.

10https://github.com/mystenLabs/walrus

Shards are allocated based on each operator’s stake, re-
flecting the mainnet deployment model. Satisfying the f +1
quorum requires collaboration from at least 19 nodes; the
2f+1 quorum requires 38 nodes. No operator controls more
than 18 shards. Nodes span at least 17 countries, including
Lithuania, USA, France, Canada, Netherlands, Thailand, Ire-
land, Russia, and others. Eleven operators did not disclose
their location. Figure 5 details the shard distribution by
region. The “eu-west” region aggregates shards from at least
five countries. Roughly 220 shards are labeled “unknown” due
to missing regional data. Figure 6 shows shard distribution
by hosting providers. “Self-Hosted” nodes run on-premises,
while “Unknown” indicates missing provider information.
Most nodes run Ubuntu (22.04 or 24.04) with at least 16

CPU cores, 128 GB RAM, and 1 Gbps bandwidth. Hardware
varies across Intel and AMD CPUs and HDD, SSD, and NVMe
storage. Node storage ranges from 15 to 400 TB (median 56.9
TB, P90 69.98 TB).
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Fig. 5: Geo-distribution of shards.

B. System Performance

We evaluate performance from the client’s perspective,
deploying two clients on AWS m5d.8xlarge instances (10
Gbps bandwidth, 32 vCPUs, 128 GB RAM, Ubuntu 22.04). One
in US East (N. Virginia), the other in Canada Central.
Walrus Latency: Figure 7 illustrated the end-to-end la-

tency experienced by the client. We start measuring before
the client encodes the blob and finish when it observes a
proof-of-availability confirmation on the blockchain. Each
point represents the p50 over 5 minutes of runs; error bars
indicate p90.
The graph shows that read latency remains low, even for

large blobs. For small blobs (less than 20 MB), the latency
stays below 15 seconds. For large blobs (130 MB), the latency
increases to around 30 seconds.
Write latency is consistently higher than read latency. For

small blobs (less than 20 MB), write latency remains relatively
flat and stays under 25 seconds. This overhead is primarily
due to the blockchain interaction and the need to upload
metadata to all storage nodes, rather than the blob size itself.
For large blobs (greater than 40 MB), latency grows linearly
with the blob size as network transfer becomes the dominant
cost. Figure 8 and Figure 9 illustrate this behavior by breaking
down the latency for small blobs (1 KB) and large blobs
(130 MB), respectively. Each write operation consists of five
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Fig. 6: Distribution of shards by hosting providers.

key steps: encoding (time to erasure-code the blob), check
status (time to check the blob’s current state), get info (time
to fetch blob status and reserve space), store (time to upload
slivers to storage nodes), and publish PoA (time to commit
the proof of availability to the blockchain). For small blobs,
the fixed overhead from metadata handling and blockchain
publication dominates, adding roughly 6 seconds—about 50%
of the total write latency. For large blobs, the storage phase
dominates due to network transfer, while metadata opera-
tions and blockchain interaction remain relatively constant.

These results validate our claim C1: Walrus achieves low
latency and is bounded by network delays.
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Single Client Throughput: Figure 10 illustrates the through-

put that can be achieved by a single client in bytes per sec-
ond. As expected, read throughput scales linearly with blob
size as it is mostly network interactions. Write throughput
plateaus around 18 MB/s because of the need to interact
with the blockchain and the storage nodes multiple times.
This does not mean that a user cannot upload faster, as
Sui supports a much higher throughput in transactions per
second, but that a single blob cannot be uploaded faster. For
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Fig. 9: Latency breakdown for large blobs (130MB).
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much larger blobs, a user can deploy multiple clients, each
uploading a chunk of data in parallel, effectively creating a
fan-out pattern. These results validate C2: Walrus enables
clients to read and write at high throughput.

C. Scalability

Over 60 days, Walrus stores a median of 1.18 TB of slivers
(P90 1.08 TB) and 221.5 GB of blob metadata (P90 46.34 GB).
Each storage node contributes between 15 and 400 TB of
capacity. Yet, the system as a whole can store over 5 PB—a
key feature of Walrus. Figure 11 illustrates how Walrus’s
total storage capacity scales with the committee size. This
result supports our final claim C5: the system’s capacity
grows proportionally with the number of storage nodes.

VIII. Related Work
Censorship resistant storage and blob data dissemination

motivated much of the early peer-to-peer movement and the
need for decentralization. Within academia Anderson pro-
posed the Eternity service [32] in 1996, to ensure documents
cannot be suppressed. Within the commercial and open
source communities systems like Napster [33], Gnutella [34],
and Free Haven [35] and early Freenet [36] used nodes
in an unstructured topology to offer storage, routing and
distribution largely of media files. These systems operated
on the basis of centralized or flood fill algorithms for lookup
and search; and full replication of files, often on node used to
route responses. These provide best effort security and poor
performance.
Later research, in the early 2000s, proposed structured

peer-to-peer topologies in the form of distributed hash tables
(DHT), such as Chord [37], Pastry [38], Kademlia [39],
largely to improve lookup performance, as well as reduce
the replication factor for each file. DHTs remarkably do not
require consensus or full state machine replication to operate.
However, have been shown to be susceptible to a number of
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attacks: Sybil attacks [11] were named and identified within
the context of these systems first; and they are hard to defend
against routing attacks [40]. Many attacks affect current
systems that use them [41]. Bittorrent [42] eventually came
to dominate the file dissemination application space, in part
due to its simplicity and built-in incentives. It initially used a
full replication strategy for storage and centralized trackers
for node coordination. It later added decentralized trackers
based on Kademlia.

In contrast to these early system Walrus maintains a full
and consistent list of all nodes through using the Sui [16]
blockchain, as well as their latest meta-data. It assumes these
are infrastructure grade nodes and will not suffer great churn,
but rather operate to get incentives and payments, and come
in and out of the system based on a reconfiguration protocol.

In the blockchain era, IPFS [43] provides a decentralized
store for files, and is extensively being used by blockchain
systems and decentralized apps for their storage needs. It
provides content addressable storage for blocks, and uses a
distributed hash table (DHT) to maintain a link between file
replicas and nodes that store them. Publishers of files need
to pin files to storage nodes, to ensure files remain available,
usually against some payment. The underlying storage uses
full replication on a few nodes for each file.

Filecoin [3] extends IPFS, using a longest chain blockchain
and a cryptocurrency (FIL) used to incentivize storage nodes
to maintain file replicas. Publishers acquire storage contracts
with a few nodes, and payments are made in the cryptocur-
rency. Filecoin mitigates the risk that these nodes delete
the replicas by requiring storage nodes to hold differently
encoded copies of the file, and performing challenges against
each other for the encoded files. These copies are encoded
in such a way that it is slow to reproduce them from the
original copy, to avoid relay attacks. As a result, if the user
wants to access the original file, it needs to wait a long time
for the decoding of a copy, unless some storage node has a
hot copy. Since, there is no in-built incentive for storing hot
copies, this service usually costs extra.

Arweave [10] mitigates slow reads through a Proof-of-
Access algorithm that incentives storage nodes to have as
many files as possible locally to maximise rewards. This is
implemented in conjunction with a full replication strategy,
and results in replication levels almost equal to classic state
machine replication. Additionally, the system only allows file
to be stored ‘for ever’, through a mechanisms of pre-payment

- which lacks the flexibility to control lifetime and deletion,
and is capital inefficient since payment is upfront.
In contrast to Filecoin and Arweave, Walrus uses erasure

coding to maintain a very low overhead of 4.5x while
ensuring data survives up to 2/3 of any shards being lost,
and continues to operate by allowing writes even if up to
1/3 of shards are unresponsive. Furthemore, Walrus does
not implement its own separate blockchain to do node
management and provide incentives, but uses Sui instead.
Storj [17] represents another decentralized storage solution

that leverages encoding to achieve a low replication factor.
The system implements a Reed-Solomon based erasure coding
scheme with a 29/80 configuration, wherein a file is encoded
into 80 parts, with any 29 sufficient for reconstruction. This
approach results in a 2.75x replication factor, offering a sub-
stantial reduction in storage costs compared to prior systems.
However, a key limitation is its inability to efficiently heal lost
parts. The system relies on users to reconstruct the full file
and subsequently re-encode it to facilitate the recovery of lost
parts. In contrast Walrus’s use of Red Stuff incorporates
an efficient reconstruction mechanism which is critical for
the efficient healing of the erasure coding scheme, especially
due to churn which is naturally occuring in a permissionless
system. Red Stuff builds on the Twin-code framework [21],
which uses two linear encodings of data to enhance the
efficiency of sliver recovery. However, unlike the Twin-code
framework [44], Red Stuff encodes data across differently
sized dimensions and integrates authenticated data struc-
tures, achieving Completeness (as defined in Section II) and
ensuring Byzantine Fault Tolerance.
Modern blockchains provide some storage, but it is pro-

hibitively expensive to store larger blobs due to the costs
of full replication across all validators, as well as poten-
tially long retention times to allow verifiability. Within the
Ethereum eco-system specifically, the current scaling strategy
around L2s involves posting blobs of transactions on the
main chain, representing bundles of transactions to be exe-
cuted, and verified either via zero-knowledge or fraud proofs.
Specialised networks, such as Celestia based on availability
sampling [45], have emerged to fulfill this need off the main
Ethereum chain. In Celestia, two dimensional Reed-Solomon
codes are used to encode blobs, and code words distributed
to light nodes to support ‘trustless’ availability. However, all
blobs are fully replicated across the validators of the system,
for a limited time period of about month. Walrus instead
offers proofs of availability with arbitrarily long retention
periods and a reduced cost of storage per node which allows
the system to scale inpexpensively.
The most closely related work to ours is Semi-AVID [15]

which has also been explored as an alternative to provide
Data Availability for rollups. It is similar to the Strawman
II design meaning that although it can achieve the critical
property of verifiable data storage it cannot achieve write
completeness unless the full data is reconstructed. This makes
it prohibitively expensive for epoch-change and only suitable
for either fully permissioned systems with no churn or short-



lived data storage. This is the main challenge with AVID [14],
which is optimized to provide verifiability of data storage,
disallowing the output of ⊥. This is an overkill of our use
case, as a malicious writer can simply encode garbage data in-
stead of a failed encoding. Hence, the machinery to detect and
reject failed encodings that AVID provides is unnecessarily
constraining and expensive. Finally, AVID protocols are not
designed with storage challenges in mind, which separates
them from Walrus which uses the completeness property to
be able to support incentives.

IX. Conclusion
We introduce Walrus, a novel approach to decentralized

blob storage that leverages fast erasure codes and a modern
blockchain technology. By utilizing the Red Stuff encoding
algorithm and the Sui blockchain, Walrus achieves high
resilience and low storage overhead while ensuring efficient
data management and scalability. Our system operates in
epochs, with all operations sharded by blobid, enabling it
to handle large volumes of data effectively. The innovative
two-dimensional BFT encoding protocol of Red Stuff allows
for efficient data recovery, load balancing, and dynamic
availability of storage nodes, addressing key challenges faced
by existing decentralized storage systems.

Furthermore, Walrus introduces storage proofs that en-
sure data availability without relying on network synchrony
assumptions, and its committee reconfiguration protocol
guarantees uninterrupted data availability during network
evolution. By combining these features, Walrus offers a
scalable, and resilient decentralized storage, providing high
authenticity, integrity, auditability, and availability at a rea-
sonable cost. Our contributions include defining the problem
of Asynchronous Complete Data-Sharing, presenting the Red
Stuff protocol, and proposing an asynchronous challenge
protocol for efficient storage proofs, paving the way for
future advancements in decentralized storage technologies.
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