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Abstract
The QUIC protocol is now widely adopted by major tech companies
and accounts for a significant fraction of today’s Internet traffic.
QUIC’s multiplexing capabilities, encrypted headers, dynamic IP
address changes, and encrypted parameter negotiations make the
protocol not only more efficient, secure, and censorship-resistant,
but also practically unmanageable by firewalls. This opens up doors
for attackers that may exploit certain traits of the QUIC protocol to
perform targeted attacks, such as data exfiltration attacks. Whereas
existing data exfiltration techniques, such as TLS and DNS-based
exfiltration, can be detected on a firewall level, QUIC-based data
exfiltration is more difficult to detect, since changes in IP addresses
and ports are inherent to the protocol’s normal behaviour.

To show the feasibility of a QUIC-based data exfiltration attack,
we first introduce a novel method which leverages the server pre-
ferred address feature of the QUIC protocol and, thus, allows an
attacker to exfiltrate sensitive data from an infected machine to a
malicious server, disguised as a server-side connection migration.
The attack is implemented in the form of a proof of concept tool in
Rust. We evaluated the performance of five anomaly detection clas-
sifiers — Random Forest, Multi-Layer Perceptron, Support Vector
Machine, Autoencoder, and Isolation Forest — trained on datasets
collected from three distinct network traffic scenarios. The classi-
fiers were trained on ∼ 700K benign and malicious QUIC packets
and 786 connection migration events, but were unable to effectively
detect the data exfiltration attempts. Furthermore, post-analysis of
the traffic captures did not reveal any identifiable fingerprint. As
part of our evaluation, we also interviewed five leading firewall
vendors and found that, as of today, no major firewall vendor im-
plements functionality capable of distinguishing between benign
and malicious QUIC connection migrations.
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1 Introduction
The QUIC protocol, originally developed by [39], is an IETF stan-
dardized, connection-oriented, UDP-based transport protocol that
serves as a replacement to TLS over TCP [24]. Its main benefits
include One Round Trip Time (1-RTT) handshakes, Zero Round
Trip Time (0-RTT) connection re-establishments when prior com-
munication has taken place, seamless network path migration, and
state-of-the-art security [19]. As of today, QUIC has been widely
deployed by major tech companies such as Google, Meta, Apple,
and Cloudflare. The popularity of QUIC has led to some application-
layer protocols adopting it as their main transport protocol, such
as DNS-over-QUIC [17] or HTTP/3 [4]. QUIC plays a fundamental
role within HTTP/3 [4], making it ubiquitous in today’s Internet
traffic. In 2023, HTTP/3 already accounted for around 30% of HTTP
requests, with adoption expected to continue growing as more web
servers and browsers integrate QUIC support [3].

QUIC packets are encapsulated in UDP datagrams. Each packet
has a QUIC header that contains details such as the flags indicating
a certain packet type and the Connection ID (CID). The CID is a
randomly generated, variable-length identifier that endpoints use
to demultiplex network traffic sent between them [19]. Since the
QUIC protocol encrypts the entire communication, including a sig-
nificant part of the handshake, it is inherently difficult to analyze
the underlying traffic. Although QUIC was primarily designed for
performance improvements, QUIC’s properties also enhance pri-
vacy and make it more resilient to network interference through
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features such as the frequent rotation of CIDs and the concurrent
transmission of packets over multiple streams [29].

While these features improve the security and privacy for end-
users, they pose challenges for firewall vendors. The general con-
sensus among firewall vendors and administrators appears to be
that QUIC-based traffic should be blocked because it renders Deep
Packet Inspection (DPI) and Intrusion Detection/Prevention Sys-
tems (IDS/IPS) useless (cf. Section 6). Typically, the communication
between client and server is then forced to fall back to TLS over TCP,
allowing enterprise firewalls to perform HTTPS DPI [6]. As of now,
firewall vendors do not provide any specifics on how enterprise-
level firewalls can filter QUIC traffic effectively.

Some inherent traits of the QUIC protocol, such as the connection
migration capability and the encrypted handshake, make QUIC-
based data exfiltration techniques arguably more devious than TLS
or DNS-based data exfiltration because middleboxes are not able
to differentiate between benign and spoofed connection migration
attempts. It is, therefore, crucial to understand how the underlying
properties of the QUIC protocol can impact the success of data
exfiltration attacks.

The goal of data exfiltration is to covertly extract sensitive data
from an infected host. There exist many methods to exfiltrate data —
depending on the underlying protocol used, some are more effective
than others. According to the MITRE ATT&CK framework [31],
data exfiltration attacks can be broadly divided into network-based
and physical exfiltration methods. The former leverages widely-
used network protocols, such as HTTP, HTTPS, or DNS, to send
data to a target device owned by a malicious actor. As part of the
latter, adversaries may use removable storage, such as external hard
drives or USB drives, to exfiltrate data. Effectiveness in this context
can be seen as a combination of data throughput and covertness
of the method. The severity of data exfiltration attacks becomes
apparent when considering the financial impact of data breaches.
The average cost of data breaches has been consistently rising over
the last years, with current estimations reaching a global all-time
high of 4.88 million USD per data breach. The top three industries
to experience the highest data breach costs are healthcare, financial,
and industrial [18].

In this paper, we specifically focus on QUIC’s server-side con-
nection migration feature. We show that an attack can be designed
that replicates the behavior of this feature to covertly exfiltrate data
to a target server. The attack can be leveraged by adversaries that
have already infected a host machine. From the perspective of a
middlebox, the exfiltration payload packets are not distinguishable
from packets that originate from a benign server-side connection
migration. While we initially explored classifiers as a potential de-
fense strategy to detect QUIC-based data exfiltration traffic, our
findings indicate that machine learning-based classifiers are inef-
fective in reliably distinguishing the attack from legitimate traffic.
To the best of our knowledge, this paper provides the first analysis
of QUIC-based data exfiltration attacks and potential mitigations.
The contributions of the paper can be summarized as follows:

✓ We develop a QUIC-based data exfiltration method that ex-
ploits the QUIC connection migration feature by mimicking
a server-side path migration procedure to exfiltrate sensitive
data from an infected host machine. The method does not

require any changes to the QUIC client or server applications
and is designed based on the version-independent properties
of IETF QUIC.

✓ We implement a PoC prototype in Rust, which comprises a
packet sniffer and a custom QUIC parser and mimics benign
packet features such as payload length, entropy, time differ-
ences between outgoing packets as well as the server-side
connection migration packets.

✓ We show that due to the limited number of visible features
available in QUIC traffic, it is difficult to differentiate between
benign and malicious QUIC traffic. Our custom detectors
— Random Forest, Multi-Layer Perceptron, Support Vector
Machine, Autoencoder, and Isolation Forest — were trained
on over 700K QUIC packets and 786 server-side connection
migration events, collected across three distinct network
traffic scenarios.

✓ In addition, we conducted unstructured interviews with five
leading firewall vendors to gain insights into the current
state of their QUIC traffic filtering capabilities.

First, we begin with the background (Section 2) and the prob-
lem statement (Section 3). Section 4 presents the data exfiltration
method and the threat model. Section 5 describes the PoC imple-
mentation written in Rust. Section 6 presents the experimental
setup, the anomaly detection results and the survey of leading
firewall vendors, followed by a brief discussion of additional mit-
igation strategies in Section 7, the related work in Section 8, and
the conclusion in Section 9.

2 Background
This section briefly introduces the main characteristics of the QUIC
protocol, focusing on its header structures and the connection mi-
gration features for both client-side and server-side migrations
since those are the most relevant aspects for the attack. The descrip-
tion of the packet headers mainly relies on the version-independent
properties of QUIC, defined in RFC 8999 [33], and connection mi-
grations are described based on RFC 9000 [19].

2.1 A QUIC Overview
QUIC packets generally come in two different forms: long header
and short header packets. Long header packets are sent as part of the
handshake messages before 1-RTT keys are established. Thereafter,
the QUIC endpoints switch to sending short header packets [19].
Long header packets include version-specific bits, the version num-
ber, CIDs for both source and destination as well as their respective
lengths, other version-dependent data, and the payload itself. In
comparison, short header packets only contain version-specific bits,
the Destination Connection ID (DCID), version-dependent data,
and the payload, meaning that the length of the CID cannot be
determined from a short header packet alone. Without observing
the initial long header packets, the necessary context for under-
standing short header packets, e.g., which connection they belong
to, cannot be established. All QUIC endpoints, therefore, need to
keep track of the CIDs in use [33].
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2.2 Connection Migration
Compared to traditional TCP and UDP connections, where each
connection is uniquely identifiable by its 5-tuple (source IP address,
destination IP address, source port, destination port, protocol), a
QUIC connection may change its underlying 5-tuple without es-
tablishing a new connection using a handshake. This is referred
to as connection migration or (network) path migration. The pri-
mary benefit of QUIC connection migrations lies in the reduction
of Round Trip Times (RTT) since it eliminates performing hand-
shakes repeatedly whenever an endpoint changes IP address. This
feature is particularly time-saving when a QUIC endpoint migrates
multiple times [25].

Client-side connection migration is a feature within the IETF
QUIC standard that allows clients to change their source IP address
while retaining an existing connection with a QUIC server. This
process is presented in Fig. 1. The CM Initiator (i.e., client) detects
a source IP address change and sends a PATH_CHALLENGE frame
to the CM Responder (i.e., server). The server responds with a
PATH_RESPONSE frame, confirming receipt of the challenge and
the viability of the new path. The number of probing packet round
trips is version-dependent. Once the PATH_RESPONSE is received
by the client, the client may use the new source IP address for
all further (non-probing) communication with the server. Client-
side connection migrations are beneficial in cases where a QUIC
endpoint moves from Wi-Fi to the cellular network or vice versa
[19].

Server-side connection migration, like client-side migration,
ensures that a QUIC connection can continue seamlessly when-
ever the server’s IP address changes mid-connection. The server
preferred_address transport parameter is a data structure within
the quic_transport_parameters extension, which defines a sec-
ondary (preferred) server address. It is sent from a QUIC server to a
client as part of the handshake. The parameter contains fields for an
IPv4 Address, IPv4 Port, IPv6 Address, IPv6 Port, CID Length, CID,
and the Stateless Reset Token (cf. Fig. 2). A server may specify a pre-
ferred IPv4 and/or IPv6 address during the initial handshake, that

Figure 1: Client-side QUIC Connection Migration [26]

the client can use to communicate with the server at any time after a
successful connection establishment to the primary server address.
To initiate a server-side connection migration, the client simply
sends a path validation packet, containing a PATH_CHALLENGE
frame to the secondary address and waits for the server’s acknowl-
edgment [19]. It is important to note that both client-side and
server-side connection migrations are initiated by the client. The
server-side connection migration can, for example, be used in mi-
croservice deployment at the network edge to seamlessly migrate
a container hosting a QUIC-based service from one server address
to a different one with minimum latency [35]. Another use case
for server-side connection migration is splitting network traffic
mid-session across different network paths to increase privacy.
Wang et al. [45] introduce Connection Migration Powered Splitting
(CoMPS), which helps to reduce the risk of traffic analysis attacks
by network-level adversaries.

RFC 9000 [19] recommends reducing the linkability of QUIC
connections by, inter alia, using a new CID and source port when
migrating to another IP address. Consequently, a middlebox is
unable to tell whether a client performed a connection migration,
or if a second client is starting to communicate [15].

The prevalence of QUIC connection migrations has been shown
by [5], who found that the top providers that support connection
migrations are Cloudflare, AWS, Hostinger, Akamai and Google.
However, connection migration is not yet supported by other major
providers.

3 Problem Statement
In this section, we describe how server-side connection migrations
can be mimicked to exfiltrate sensitive data from a device. We com-
pare this approach to existing client-side request forgery attacks
and highlight the shortcomings of current firewall technologies in
analyzing QUIC traffic.

3.1 Connection Migration
As specified in RFC 9000 [19], “the use of a connection ID allows
connections to survive changes to endpoint addresses (IP address and
port), such as those caused by an endpoint migrating to a new net-
work.” Consequently, both a client and a server can use different IP
addresses to communicate while retaining an existing connection
[25].

Further, a “server might receive a packet addressed to its preferred
IP address at any time after it accepts a connection” [19]. Concretely,
a client can choose to migrate the connection to a preferred server

Figure 2: Format of the Server Preferred Address Transport
Parameter [19]
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destination IP address and initiate the path migration by sending
a QUIC packet encapsulating a PATH_CHALLENGE frame to the
new (preferred) server IP address. This feature can be exploited by
an adversary who wants to mimic a QUIC server-side connection
migration by changing the destination IP address of an outgoing
QUIC packet and thus sending an illegitimate packet to the ad-
versary’s server. The payload of such a packet can be arbitrarily
modified so that it encapsulates sensitive data from the victim’s
machine. As specified in [19], the preferred server address is sent
from the server to the client as part of the encrypted handshake.
Hence, it remains unknown to a middlebox. Therefore, a middlebox
is unable to differentiate between legitimate preferred server ad-
dresses and malicious ones. It is important to note that migrating
to a new path does not require a dedicated handshake [25, 41]. The
path validation process is solely initiated by the client sending a
“PATH_CHALLENGE frame containing an unpredictable payload on
the path to be validated” [19].

Similarly to [12], who evaluated the effectiveness of client-side
ConnectionMigration Request Forgery (CMRF) attacks, our method
shows that the server-side connection migration feature can be
exploited to exfiltrate data from an infected client to a target server.
RFC 9000 [19] describes “Request Forgery with Spoofed Migration”
(i.e., CMRF) attacks, where clients can spoof the source address of
a QUIC packet as part of an apparent connection migration. This
tricks the server into sending datagrams to the spoofed address
[19]. However, [19] fails to mention that spoofing the destination
address using the preferred_address transport parameter of a
QUIC packet can be misused to covertly exfiltrate data from a
QUIC endpoint to a malicious server — disguised as a server-side
connection migration.

As per RFC 9000 [19], the preferred_address transport param-
eter may store a single secondary address for each address family
(IPv4 and IPv6). There are Internet draft specifications that aim
to increase the number of additional addresses that a server can
use, such as the Multipath Extension for QUIC by [25]. According
to [32], a QUIC frame can be specified which securely advertises
additional server IP addresses that a client may use to communicate
with the server. Such additional addresses are transmitted inside an
ADDITIONAL_ADDRESSES frame, which is also encrypted with the
rest of the handshake and thus remains invisible to a middlebox.
Therefore, a malicious exfiltration program may specify an exfiltra-
tion server IP address as the destination IP, and a middlebox has to
assume that this is a previously advertised server IP address.

3.2 Firewalls
It is inherent to the QUIC protocol that CID renegotiation happens
in an encrypted way — out of sight of potential path-based net-
work filtering devices such as firewalls. In order to keep track of a
QUIC connection, a stateful firewall would need to store the Source
Connection ID (SCID) during the handshake [11] and subsequently
match the DCID of an outgoing packet with the previously stored
SCID. However, changes in DCID are not visible to a middlebox,
as renegotiation of CIDs can occur post-handshake inside the en-
crypted “Protected Payload” packets. QUIC does not expose any
more unencrypted information on the connection migration pro-
cess. Since path validation packets are not preceded by a dedicated

handshake and the connection can be migrated to another endpoint
on both the client and the server-side at any time [19], firewalls
would need to treat QUIC packets without a prior handshake as
connection migration attempts, yielding UDP 5-tuple checks and
CID tracking unfeasible.

If no full decryption of the QUIC traffic is done, it is almost
impossible for a middlebox to differentiate between a legitimate
connection migration and a spoofed one by only analyzing un-
encrypted packet headers. Currently, firewalls simply filter QUIC
traffic based on the handshake packets, but may not be able to
perform further stateful inspection after the handshake. Therefore,
to further motivate this research, we have conducted unstructured
interviews with five leading firewall vendors, who support our
findings regarding the challenges of effectively analyzing QUIC
traffic. They emphasize the difficulty in distinguishing between
legitimate and spoofed connection migrations without decrypting
QUIC traffic.

In summary, connection migration — a feature that enhances
QUIC’s performance — can also be misused by the data exfiltration
method proposed in this paper. In the following section, we present
a methodology and the PoC implementation for demonstrating
how QUIC’s connection migration feature can be exploited and
we show that QUIC-based data exfiltration attacks are difficult to
differentiate from the normal protocol behavior.

4 Methodology
In the following, we provide a comprehensive description of the
proposed data exfiltration attack. After presenting an overview of
the threat model and the underlying assumptions, we introduce
the methodology, which comprises a sniffing phase, spoofed path
validation, and a continued exfiltration phase.

4.1 Threat Model & Assumptions
We consider a scenario in which an attacker has already infected a
victim’s machine and aims to covertly exfiltrate sensitive data to a
target server owned by the attacker. The attack is performed as per
the MITRE ATT&CK framework sub-technique “Exfiltration Over
Alternative Protocol: Exfiltration Over Symmetric Encrypted Non-
C2 Protocol” [31]. Circumventing on-device anomaly detection
systems is out of the scope of this paper, as we only consider on-
path middleboxes and additional on-path traffic analysis software
to be the main defenders.
The underlying assumptions can be summarized as follows:

(1) It is assumed that the adversary has successfully gained ac-
cess to a compromised machine within the internal network
of a victim. The compromised machine is firewalled, mean-
ing it is located behind a host-based and/or enterprise-level
network-based stateful firewall.

(2) The adversary is also capable of secretly deploying the data
exfiltration software onto the compromised machine and has
gained elevated privileges to successfully execute the attack.

(3) We assume that a defender (e.g., the firewall administrator)
does not enforce a strict packet inspection policy (i.e., full
decryption of traffic) and does not outright block UDP ports
80 and 443.
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(4) We further assume that the defender knows how to perform
(encrypted) traffic analysis, which encompasses the analysis
of packet lengths, time deltas between adjacent packets, pay-
load entropy, and the analysis of all the cleartext information
sent during the handshake.

4.2 Data Exfiltration Method
We base our method on the version-independent properties of the
IETF QUIC protocol [33] and the connection migration feature
described in RFC 9000 [19], in which a QUIC client has prior knowl-
edge of the alternative server addresses to which it can choose
to migrate its connections. During connection establishment, the
server notifies the client about its alternative addresses by populat-
ing the preferred_address transport parameter with one or more
alternative addresses. If a packet gets lost during the communica-
tion, the client can assume that the server has migrated to a new
address and the client can choose to validate the new network path
by sending a probing packet to the new server address [35]. Alter-
natively, the client may initiate a server-side connection migration
at any time by sending a path validation packet to the preferred
server address.

Fig. 3 presents the data exfiltration methodology, which is di-
vided into three distinct phases — a sniffing phase, a path validation
phase, and the main exfiltration phase. The involved entities are (i)
the client (victim), whose machine is infected with the exfiltration
tool, (ii) a middlebox, whose task is to detect and block suspicious
network traffic, (iii) a benign server, and (iv) the malicious exfiltra-
tion server, which accepts all incoming connections and sends the
respective response messages. During the initial sniffing phase, the
data exfiltration software collects all outgoing QUIC short header
packets and stores relevant information such as IP, UDP, and QUIC
headers, as well as timestamps and the QUIC payload lengths. This
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Spoofed QUIC Path Validation

Spoofed QUIC Path Validation
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Figure 3: Proposed Data Exfiltration Attack.

information is reused at a later stage to mimic the structure of
benign packets.

As part of the sniffing phase, the exfiltration tool waits for ex-
isting connections to retire their CID by continuously probing
whether the socket that binds the currently used source port can be
re-bound. Once the CID has been retired, the exfiltration tool can
immediately emulate a server-side connection migration, without
having to fear that benign traffic continues to be sent and causing
suspicious overlaps of benign and malicious traffic originating from
the same QUIC connection.

The first step of a connection migration is the path validation,
which is mimicked by sending a spoofed path validation request to
the malicious exfiltration server. The spoofed path validation packet
may already contain the first bytes of sensitive data since a benign
path validation packet is also sent via an encrypted channel and
is, therefore, not visible to a middlebox. As per [19], a benign path
validation request includes an 8-byte PATH_CHALLENGE frame,
which in turn expects an 8-byte PATH_RESPONSE frame. An end-
point must use datagram sizes of at least 1200 bytes to transmit
PATH_CHALLENGE and PATH_RESPONSE frames, as this ensures
that the path is able to handle datagrams of this size [19]. Therefore,
the spoofed path validation datagrams are also designed to have
a size of at least 1200 bytes. When the middlebox first encounters
the path validation packet, it must either assume that a QUIC con-
nection migration is occurring or that an arbitrary UDP packet is
sent to a destination address that has not been seen before. In both
cases, middleboxes generally allow connections initiated from the
inside (trusted) network to the outside.

Lastly, the main exfiltration phase begins by continuously send-
ing packets to the spoofed exfiltration server address and receiving
the appropriate spoofed responses from the exfiltration server, to
mimic a “healthy” connection between a QUIC client and a QUIC
server. Thereafter, the malicious connection may then be retired at
any time and a new suitable connection can be selected to mimic
another connection migration.

It is important to note that the method does not attempt to
transmit any handshake packets. Therefore, middleboxes and/or
fingerprinting software cannot detect nor block an illegitimate
connection establishment attempt based on a handshake packet (cf.
Section 6.3).

4.3 Increasing Stealthiness
In order to increase stealthiness, the data exfiltration tool can store
a range of exfiltration server destination IP addresses; it may only
use an address once to mimic a single connection migration and
discards the address afterwards.

Furthermore, to minimize the payload size variance between
benign and malicious traffic, the malicious payload lengths are
sampled from a distribution of benign payload lengths, making a
statistical analysis of packet lengths less feasible. Similarly, the time
deltas between QUIC packets, which can be considered a unique
fingerprint of the application, are also mimicked (cf. Section 6.2).
The exfiltration payloads are encrypted with an AES-256 key stored
in the data exfiltration executable. This key is not used to establish
secrecy, but rather to increase the entropy of the data exfiltration
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payloads, in order to resemble the entropy of benignQUIC protected
payload packets.

Data exfiltration is only attempted when a legitimate connection
is retired, i.e., when its DCID changes, or stops being used by the
QUIC endpoint. Additionally, our method’s exfiltration throughput
is dependent on the user’s activity, and only exfiltrates data while
the user is actively browsing the web.

4.4 Domain Registration Records
Detecting exfiltration traffic based on mismatches between domain
registration records of old and new destination IP addresses is
possible. However, as shown in [27], the WHOIS records may not
be publicly accessible under certain jurisdictions. The EU General
Data Protection Regulation (GDPR) requires certain WHOIS data to
be redacted, which could make this attack more difficult to detect.

Furthermore, an attacker could host an exfiltration server on
Amazon Web Services (AWS), resulting in domain registration
records in which the organization’s name appears identical to those
of legitimate Amazon.com traffic. Similarly, YouTube traffic IP ad-
dresses have WHOIS records pointing to Google LLC. Data exfiltra-
tion servers hosted on Google Cloud would have similar WHOIS
records, making it challenging to identify them as malicious based
only on WHOIS records.

Checking published IP address ranges specific to a cloud provider,
which can be obtained directly from a cloud provider’s documenta-
tion, is one way to identify exfiltration attempts. For instance, when
a QUIC connection to google.com migrates to a new destination
server hosted in a Google Cloud, with identical domain registration
records, it may be possible to cross-check against public IP address
ranges of Google Cloud services to identify spoofed connection
migration attempts. However, as of now, there is no indicator that
leading firewall vendors offer such functionality in their products

to identify connection migrations and differentiate between benign
and malicious ones (cf. Section 6.4).

5 Implementation
The PoC prototype was implemented in Rust as depicted in Fig.
4 and the client’s source code has been released1. It consists of a
client-side data exfiltration executable, which comprises a packet
sniffer, packet parser, custom QUIC parser, and exfiltration payload
builder module. The server-side executable consists of a UDP socket
listener, a custom QUIC parser and a data reconstruction module.

Every exfiltration task is performed in a new thread, meaning
that multiple malicious connection migrations can be performed in
parallel for different QUIC connections, while the outgoing benign
traffic is continuously monitored for suitable connections that can
be used to mimic new connection migrations. The outgoing QUIC
packets are sniffed using the Rust pcap library [9] (version 1.2.0)
and parsed using the Rust etherparse library [40] (version 0.14.2).
It is assumed that QUIC uses port 443 over UDP. Every outgoing
UDP packet’s payload is parsed as per the version-independent
properties of the QUIC protocol [33]. The header structure of short
header packets does not specify where the DCID ends nor does it
specify the length of the DCID. Hence, observing a short header
packet alone, does not give any indication to where the DCID bytes
end and where the payload bytes start. If the parser identifies a
QUIC long header packet as part of a handshake, it extracts its DCID,
stores it, and subsequently discards the packet. The DCID is then
used to map succeeding short header packets to their preceding
handshake. This is required to (i) replicate the exact length of the
original DCID in spoofed packets, as QUIC endpoints usually stick
to a certain CID length, and (ii) mimic the lengths of the original
payloads. Special cases, such as packets that contain a long and a
short header at the same time or packets that contain a zero-length
DCID, are discarded.

Monitoring all outgoing packets on the default network interface
can result in a loop, as the exfiltration client itself also transmits
packets over this interface. Sniffing and parsing those packets would
result in an unnecessary performance overhead and would dilute
the observed features of benign packets. To prevent this, the exfil-
tration client maintains a blacklist to ignore all malicious packets.
This blacklist contains the SHA-3-256 hashes of all previously sent
malicious packets, against which every outgoing packet is checked.

6 Evaluations
This section first introduces the experimental setup and the three
different user activity scenarios that were considered. Subsequently,
this section focuses on identifying unique features of QUIC connec-
tion migrations and training anomaly detection classifiers to try to
detect the proposed attack. The remainder of this section discusses
the feasibility of detecting the proposed attack using fingerprinting
tools, followed by the results of a survey of leading firewall vendors,
who were asked to assess the QUIC-filtering capabilities of their
firewall products as part of unstructured interviews.

1https://github.com/thomasgruebl/quic-exfil

https://github.com/thomasgruebl/quic-exfil
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Table 1: Network Traffic Generation and Device Roles in the Experimental Testbed.

Device Number

Traffic Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

QUIC Traffic

Benign Migration

Exfiltration

Non-QUIC Traffic

Table 2: Number of Benign and Malicious Connection Migra-
tions per Scenario.

Scenario Benign Malicious

Mixed 245 27

YouTube 371 34

Noise 98 11

Total 714 72

6.1 Experimental Setup
In our experimental setup, we simulate a small network of devices
to generate QUIC traffic, including benign and malicious server-
side connection migrations. The network consists of 16 Docker
containers running Ubuntu 18.04 LTS with the Xfce desktop envi-
ronment and VNC/noVNC servers to provide remote access [1]. Our
machine acting as a firewall is a virtual machine (VM) with 32 GB of
RAM, running Ubuntu 22.04 LTS. It uses iptables with the conntrack
module for stateful packet filtering and connection tracking. Packet
capturing is performed on the inward-facing interface of the firewall
(i.e., the Docker virtual Ethernet bridge adapter). As shown in Table
1, the network generates multiple types of traffic. Devices 1–8 gen-
erate QUIC traffic, including benign QUIC connection migrations
to simulate real-world user-initiated network traffic. Devices 9–16
represent other backend (non user-controlled) machines, which do
not generate QUIC traffic. Devices 7–10 are infected with the data
exfiltration software and generate malicious connection migrations
as well as QUIC-based data exfiltration traffic. All devices (1–16)
also generate other types of non-QUIC network traffic. To emu-
late QUIC server-side connection migrations, we used a modified
version of Cloudflare quiche v0.23.2 [7]. The quiche server is run-
ning on the firewall, the quiche clients are running on devices 1–8
and trigger QUIC connection migrations at random time intervals
every 0–30 minutes. This allows us to collect benign connection
migration fingerprints. The total number of generated connection
migrations, benign and malicious, are presented in Table 2. Every
single malicious connection migration in the dataset, that is fol-
lowed by at least one exfiltration payload packet, constitutes a data
exfiltration attempt.

As mentioned in Section 4.3, to increase the stealthiness of the
method, the exfiltration throughput depends on the network activ-
ity of the infected hosts. Therefore, the following evaluation does
not demonstrate that a certain throughput can be achieved. Instead,

it considers three different user scenarios in which the exfiltration
tool attempts to send data to a target server and evaluates the per-
formance of the anomaly detection classifiers. The following user
activity scenarios were considered:

(1) General Network Activity (24h ofMixed Traffic): A simulated
small company network consisting of 16 Docker containers,
each representing a host that collectively generates web traf-
fic over a 24-hour period. This includes browsing across var-
ious domains (e.g., youtube.com, google.com, facebook.com,
instagram.com, cloudflare.com, amazon.com, chatgpt.com)
and thus creating a number of different overlapping QUIC
connections.

(2) Isolated Streaming Scenario (24h of YouTube Traffic): The
same simulated network, but now restricted to generating
primarily YouTube video traffic over a 24-hour period. This
scenario serves as a controlled test case to contrast with the
more diverse traffic patterns of the general network activity.

(3) Background Noise Traffic (24h Idle Mode): A subset of de-
vices generating low-interaction background traffic for 24
hours, simulating idle devices with existing open QUIC con-
nections (e.g., open browser tabs, apps, etc.) but minimal
active user interaction.

Across all three scenarios, we gathered a total of 710,690 outgo-
ing QUIC short header packets, of which 690,101 are benign and
20,589 are spoofed. Scenario 1 (i.e., mixed traffic) generated 427,644
outgoing QUIC short header packets, 416,961 of which are benign
and 10,683 of which are spoofed. The total achieved exfiltration vol-
ume is 6.34 MB. Scenario 2 (i.e., YouTube traffic) generated 255,649
outgoing QUIC short header packets, 247,624 of which are benign
and 8,025 of which are spoofed, resulting in a total data exfiltration
volume of 2.97 MB. Scenario 3 (i.e., noise traffic) generated a total
of 27,397 packets, including 25,516 benign and 1,881 malicious ones
and achieved a total volume of 1.10 MB.

It is evident that the data exfiltration throughput is highly de-
pendent on the victim’s activity. In cases where the user browses
websites that do not require large amounts of data to be down-
loaded, only infrequent QUIC acknowledgment packets are being
sent back to the server. YouTube traffic generates many outgoing
QUIC acknowledgments with small payload sizes. Data uploads to a
cloud provider typically generate a high number of outgoing QUIC
packets using the maximum payload size. Mimicking a connection
migration in the latter case enables the attacker to exfiltrate large
amounts of sensitive data.
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Table 3: Anomaly Detection Features.

Category Feature Considered Justification

Handshake TLS Client Hello, Server Hello, etc. ✗ Both legitimate and spoofed connection migrations cannot be reliably mapped to a preceding
handshake.

Short Header Packets

Packet Length ✗ The length of the entire packet is dependent on features that may also differ across benign
packets (e.g., IP header structure).

SCID/DCID ✗ Both the length of the CIDs and the CIDs themselves have no informational content and can
vary across benign and malicious traffic.

QUIC Payload Length ✓ The payload length may be used as an indicator of irregular traffic patterns. Unusual payload
sizes can indicate data exfiltration attempts.

Connection Migration Payload Length ✓ The payload length of a connection migration packet (i.e., a packet containing a
PATH_CHALLENGE frame) can be used as an indicator of unusual connection migration
attempts.

Time Δ between two outgoing packets ✓ The data exfiltration tool may have different processing times compared to a benign QUIC
endpoint.

Time Δ between two ingoing packets ✗ This feature is similar to the previous one, since the exfiltration server’s QUIC endpoint would
be functioning identically to the QUIC endpoint running on the client, therefore only one of
the two features need to be considered.

Time Δ between a request-response pair ✗ The RTT latency can be arbitrary for both legitimate and spoofed addresses, depending on the
physical location of the destination server.

Payload Entropy ✗ The entropy of payloads can be imitated by encrypting the exfiltration payload using a crypto-
graphic key stored in the exfiltration software.

Latency Spin Bit ✗ The latency spin bit is used by on-path observers to measure the per-round-trip latency. For
every received packet from the server, the client simply flips the bit, which does not provide
enough informational content to differentiate benign from malicious traffic.

Fixed Bit ✗ As the name suggests, the fixed bit has a constant value and serves as a way to differentiate
QUIC traffic from other UDP-based traffic. It can simply be adopted by malicious packets.

Packet number ✗ In short header packets, the packet number, as well as its length, are cryptographically obfus-
cated and thus not visible to middleboxes.

Other QUIC-version dependent bits ✗ A spoofed packet can simply adopt these bits from a benign packet.

6.2 Anomaly Detection
In this evaluation section, we analyze the proposed data exfiltration
method by assessing the ability of machine learning-based anomaly
detectors to detect this kind of malicious network behaviour. Since
existing anomaly detection classifiers that detect network-based
exfiltration attempts are commonly trained on handshake metadata
[49], and QUIC connection migrations do not require handshakes, a
new feature set needs to be defined for QUIC-based data exfiltration
traffic.

Table 3 presents a range of different features that can be consid-
ered in the context of QUIC traffic analysis. Most features can be
easily imitated — only three features have been identified which
require some level of sophistication to imitate. Therefore, our ob-
jective was to mimic the following features with the help of our
PoC implementation: 1 The connection migration payload, 2
the “normal” QUIC packet payload length, and 3 the time delta
between two outgoing packets of the same QUIC flow.

Feature 1 is a binary feature that captures connection migra-
tion attempts in outgoing QUIC packets. More specifically, it ob-
serves the first packet of a connection migration and stores its
payload length. We classify every observed migration attempt ac-
cordingly, using this binary label as a potential discriminator be-
tween “normal” protected payload packets and packets containing
a PATH_CHALLENGE frame.

Feature 2 , payload length, can be imitated by first observing
benign traffic during the sniffing phase depicted in Fig. 3. After
a sufficiently sized dataset of benign QUIC payload lengths has
been collected, the data exfiltration tool randomly samples from
this dataset – essentially replicating the payload sizes of previously
seen traffic of the same QUIC flows. For instance, when mimicking

a connection migration of a YouTube server, the exfiltration tool
continues to use the same payload sizes as those observed in benign
acknowledgment packets sent from the client to the YouTube server.
We heuristically chose to gather a dataset of 1,000 packets per QUIC
connection prior to the first exfiltration attempt.

To replicate the payload sizes of benign QUIC flows, we define
D to be the entire dataset that is created over the course of an
exfiltration process. Since the dataset changes over time, we denote
the subset of the dataset at time 𝑡 by D𝑡 which is used to choose
the next QUIC payload size. We then randomly sample a value 𝑥
from the dataset D at time 𝑡 ,

𝑥𝑡 ∼ D𝑡

and use this value 𝑥𝑡 to set the length of the next malicious
payload.

Feature 3 , the time delta between two outgoing packets, is
computed as per Algorithm 1. The intervals in which the packets
are placed “on the wire” can be considered a unique fingerprint of an
application. From the attacker’s perspective, this is the most difficult
feature to mimic among the three, because it requires dynamic
adjustments of inter-arrival times on a per-flow basis. To mimic
feature 3 , Algorithm 2 was implemented.

Algorithm 1 monitors the time deltas of benign QUIC connec-
tions and stores them in a dictionary. During data exfiltration, Al-
gorithm 2 randomly samples from this distribution to determine
the appropriate sleep time before sending the next packet. The base
rate of exfiltration was determined by running a single thread of
the tool, measuring the time deltas, and averaging them. Since the
standard deviation is low, the average can be reliably used. The
base rate is typically very close to zero (median: 7 ms, average: 58
ms), meaning the required sleep times closely match the observed
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Algorithm 1 Compute Time Deltas per DCID
Require: Pre-filled hashmap 𝐻 ⊲ Key: DCID, Value: Sorted list of

timestamps
1: Initialize an empty hashmap Δ𝑇 ⊲ Stores time deltas for all

DCIDs
2: for each (𝐷𝐶𝐼𝐷 , 𝑇list) in 𝐻 do
3: if |𝑇list | > 1 then
4: for 𝑖 ← 1 to |𝑇list | − 1 do
5: Compute time delta:

Δ𝑇𝑖 = 𝑇list [𝑖 + 1] −𝑇list [𝑖]
6: Append Δ𝑇𝑖 to Δ𝑇 [𝐷𝐶𝐼𝐷]
7: end for
8: end if
9: end for
10: return Δ𝑇

Algorithm 2Mimic Observed Time Deltas

Require: Δ𝑇 = {𝐷𝐶𝐼𝐷1 : [𝑑𝑡1, 𝑑𝑡2, ...], 𝐷𝐶𝐼𝐷2 : [𝑑𝑡1, 𝑑𝑡2, ...]} ⊲

Observed time deltas
Require: 𝐵𝑅 ⊲ Base rate of packet sending
Require: 𝑛 ⊲ Number of packets to exfiltrate
Ensure: Adjusted sleep times for mimicking the observed rate
1: for 𝑖 ← 1 to 𝑛 do
2: Δ𝑇𝑖 = Get random sample from Δ𝑇 [𝐷𝐶𝐼𝐷]
3: Compute sleep time:

𝑆𝑖 = Δ𝑇𝑖 − 𝐵𝑅
4: if 𝑆𝑖 > 0 then
5: Sleep for 𝑆𝑖 milliseconds
6: else
7: No sleep needed
8: end if
9: Send packet
10: end for

time deltas. This low base rate can be traced back to the fact that
the exfiltration tool bypasses common rate-limiting mechanisms
such as flow control and congestion control, making it faster than
most other applications.

We do not consider time intervals between adjacent pairs of
requests and responses, because these are dependent on the loca-
tion of the destination server – which can also significantly differ
across benign servers performing connection migrations. Nor do
we consider the time deltas between two ingoing packets, since this
feature’s expressiveness is identical to 3 .

Given the inherent challenges of anomaly detection in realistic
highly imbalanced network traffic datasets where data exfiltration
attempts constitute a small fraction (∼3%) of the overall traffic, we
evaluated the performance of five distinct anomaly detection clas-
sifiers. These classifiers use both supervised methods — Random
Forest (RF), Multi-Layer Perceptron (MLP), and Support Vector Ma-
chine (SVM) — and unsupervised methods — Autoencoder (AE)
and Isolation Forest (IF). Supervised methods, such as RF, MLP,
and SVM, typically perform well in scenarios where clear decision

Table 4: Comparison of the Classification Performance
Across Three Scenarios

Classifier Metric
Scenario

Mixed Youtube Noise

RF

F1-Score 0.35 0.18 0.47
Recall 0.31 0.15 0.45

Precision 0.40 0.22 0.50
Accuracy 0.97 0.96 0.94

MLP

F1-Score 0.07 0.10 0.20
Recall 0.44 0.34 0.45

Precision 0.04 0.06 0.13
Accuracy 0.72 0.81 0.78

SVM

F1-Score 0.02 0.05 0.08
Recall 0.03 0.07 0.08

Precision 0.02 0.04 0.08
Accuracy 0.93 0.92 0.89

AE

F1-Score 0.00 0.01 0.00
Recall 0.01 0.01 0.00

Precision 0.00 0.01 0.01
Accuracy 0.92 0.92 0.93

IF

F1-Score 0.06 0.08 0.05
Recall 0.23 0.21 0.08

Precision 0.03 0.05 0.04
Accuracy 0.82 0.84 0.83

RF→ Random Forest, MLP→Multi-Layer Perceptron, SVM→ Support Vector

Machine, AE→ Autoencoder , IF→ Isolation Forest

boundaries can be learned from labeled examples [49]. Unsuper-
vised methods, like AE and IF, are designed to identify anomalies
without explicit labels, by learning the characteristics of normal
data and flagging deviations. We selected these classifiers to assess
the robustness of feature-based anomaly detection against the data
exfiltration technique designed to mimic benign traffic patterns.

We evaluated the detection performance across the three user
activity scenarios. Table 4 presents a comparative analysis of the
classifiers, which focuses on the following metrics: Precision, Recall,
and F1-Score for the anomaly class, and overall Accuracy. Due to
the class imbalance, accuracy alone is not a reliable indicator of per-
formance, as high accuracy can be trivially achieved by classifiers
that predominantly predict the majority class (i.e., benign traffic).

Across all scenarios, the results presented in Table 4 reveal that
all five classifiers are unable to effectively detect the data exfiltration
attempts. Despite achieving high accuracy scores in some scenar-
ios, these scores are misleading due to the imbalanced datasets.
The more important metrics for the anomaly class — F1-Score, Re-
call, and Precision — consistently show very low values across all
classifiers and scenarios.

In the YouTube scenario, for instance, the RF classifier achieves a
relatively high accuracy of 96%. However, its F1-Score for detecting
data exfiltration is 0.18, with a Recall of only 0.15 and a Precision of
0.22. This indicates that while RF correctly classifies the majority
of benign traffic, it fails to identify most actual data exfiltration
attempts and produces a high number of false negatives. Similar
poor performance is observed for the MLP and SVM classifiers
in the YouTube scenario, with even lower F1-Scores of 0.10 and
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(a) Random Forest Classifier. (b) Multi-Layer Perceptron Classifier.

Figure 5: Normalized Feature Importance Across Three Scenarios.

0.05 respectively. The AE yields a near-zero F1-Score (0.01) and IF
achieves a slightly higher but still very low F1-Score of 0.08.

In the Noise scenario, RF achieves a high accuracy of 96%, while
its F1-Score for anomaly detection remains low at 0.47. MLP per-
forms even worse with an F1-Score of 0.20 in this scenario. SVM
and AE again show very poor anomaly detection performance, with
near-zero F1-Scores. IF exhibits a slightly improved F1-Score of 0.05
compared to AE and SVM.

In the Mixed traffic scenario, the anomaly detection performance
of all classifiers is low. RF achieves the highest F1-Score among
the classifiers at 0.35, but still fails to differentiate benign from
exfiltration traffic. MLP, SVM, AE, and IF all exhibit very low F1-
Scores, ranging from 0.00 to 0.07.

We have also conducted a feature importance analysis for both
the RF and MLP detectors. We used the Gini importance metric
for RF, a measure of how much each feature contributes to the
homogeneity of nodes in decision trees. For the MLP detector, we
employed the Sharpley Additive Explanation (SHAP) method [28],
a game-theoretical approach that attributes the model output to
each feature based on their marginal contributions. Fig. 5a reveals
that feature 3 is the most important across all three scenarios.
Our analysis also indicates that for the MLP, the time delta feature
contributes 100% to its classification decisions (cf. Fig. 5b). However
due to the successful mimicking strategy of time delta feature 3 ,
it is still difficult to detect malicious attempts.

6.3 Fingerprinting Software
Network metadata fingerprinting tools collect information from
packet headers (e.g., IP addresses, port numbers, TLS-specific meta-
data) to create a “fingerprint” that uniquely identifies a network
packet flow. This fingerprint can be used not only for various pur-
poses, such as network performance optimization and device man-
agement, but also to make inferences about the underlying applica-
tion or website that is visited. The features used for fingerprinting
can be extracted by a passive eavesdropper, such as an on-path
observer [13]. Fingerprinting tools, such as the open-source tools
Cisco Mercury [30] or FATT [20], extract a fingerprint from a QUIC
handshake and try to map non-handshake packets to their preced-
ing handshakes. The mapping between the handshakes and the
corresponding payload packets is done using the 5-tuple. Packets

with modified 5-tuples and no preceding handshakes (i.e.,QUIC con-
nection migration packets) are therefore not mapped to a specific
fingerprint.

Wireshark [46] offers the ability to follow QUIC streams. When
encountering unknown QUIC packets that cannot be associated
with a handshake, the packets are labeled as “UnknownQUIC connec-
tion. Missing Initial Packet or migrated connection?”, if the protected
payload packet contains a CID that was not previously seen as part
of the handshake packets. In our current PoC implementations, we
reuse existing DCIDs. Even when new DCIDs are used, Wireshark’s
labeling process cannot distinguish between benign and malicious
connection migrations.

As part of the evaluation, a post-analysis of the captured PCAP
files has been performed using Cisco Mercury [30]. The preceding
handshake for both benign and malicious connection migrations
was detected by Cisco Mercury, however, the tool fails to map the
traffic after a migration (including the migration event itself) to the
original handshake. This means, that the tool is unable to correlate
the post-migration trafficwith the initial connection, hence, treating
it as an entirely new flow rather than a continuation of the original
session. As a result, since the new UDP flow lacks handshake data,
the malicious destination IP address of the exfiltration server cannot
be found in the Cisco Mercury fingerprinting results.

6.4 Survey of Leading Firewall Vendors
As part of this study, unstructured interviews with leading firewall
vendors were conducted. The qualitative approach of surveying
vendors was intended to replace a quantitative evaluation because
it directly addresses the core question: whether modern firewalls
even possess the necessary features to reliably detect QUIC con-
nection migrations. We contacted eight firewall vendors listed in
[10], five of which agreed to share their perspectives on the QUIC
protocol for research purposes. The interviewees’ roles included
“Systems Engineer”, “Cyber Security Specialist”, “Senior Sales Engi-
neer”, “Consulting Systems Engineer”, “Senior Solutions Engineer”
and “Systems EngineeringManager”. Themain questions asked, pre-
sented in Table 5, revolved around the capabilities offered by their
firewall products with regard to handling QUIC traffic. Specifically,
the survey sought to determine whether the vendors (i) recom-
mend blocking QUIC entirely, (ii) include information about the
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Table 5: Perspectives on the QUIC Protocol from Leading Firewall Vendors

Firewall vendor ... A B C D E

(i) recommends blocking QUIC entirely. ✓ ✓ ✓ ✓ ✗

(ii) builds a state table based on QUIC connection IDs. ✗ ✗ ✗ ✗ ✗

(iii) can differentiate QUIC traffic from other types of traffic. ✓ ✓ ✓ ✓ ✓
(iv) can perform basic filtering of QUIC traffic (allow / deny). ✓ ✓ ✓ ✓ ✓
(v) currently offers functionality to decrypt QUIC traffic on the firewall. ✗ ✗ ✓ ✓ ✓
(vi) has HTTP/3 Deep Packet Inspection (DPI) capabilities. ✗ ✗ ✓ ✓ ✓
(vii) can recognize QUIC connection migrations. ✗ ✗ ✗ ✗ ✗

(viii) plans on / is currently developing new QUIC-related firewall features. ✓ ✓ ✓ ∼ ✓
(ix) believes that the competitors struggle with identical challenges. ✓ ✓ ∼ ✓ ✓

∼→ Is unsure / cannot provide clear answer.

QUIC protocol into their firewall state tables, (iii) can differentiate
QUIC traffic from other types of traffic, and (iv) can perform basic
filtering of QUIC traffic. Additionally, it was assessed whether the
firewalls (v) currently offer functionality to decrypt QUIC traffic,
which is similar to HTTPS decryption on a technical level, and
(vi) can perform HTTP/3 DPI. Full decryption of QUIC traffic is a
pre-requisite for performing HTTP/3 DPI, which three out of five
vendors are currently offering as part of their product suite. DPI
refers to analyzing the contents of the packet after decrypting it,
although it is also sometimes referred to as header analysis of the
unencrypted QUIC handshake portions, such as the TLS Server
Name Indication (SNI) field. Full decryption means that the firewall
performs a man-in-the-middle inspection on QUIC traffic, mak-
ing all embedded contents (e.g., HTTP/3) readable to the firewall
and enabling fine-grained content filtering. No vendor mentioned
that their firewall solutions can reliably identify QUIC connection
migrations – neither client-side nor server-side (vii).

Almost all surveyed vendors are (viii) planning on developing
or currently actively developing new QUIC-related features. How-
ever, as of now, they still recommend that their clients block the
QUIC protocol entirely. Interestingly, all participants shared that
QUIC traffic analysis features are rarely requested by clients, which
suggests that there may be a lack of awareness or understanding
about the importance and benefits of QUIC traffic analysis. Addi-
tionally, the firewall vendors were asked for their perspective on
how their competitors are dealing with the increase in QUIC traffic.
The general consensus among four out of five participants was that
QUIC traffic analysis seems to be, as expected, an industry-wide
challenge (ix).

7 Discussion
As of today, modern firewalls are not tracking QUIC connections in
state tables, meaning that state tables have to treat every outgoing
UDP packet as a new connection attempt [11]. Firewalls generally
operate under the assumption that outgoing traffic is safe, as it
originates fromwithin the trusted network.When an outgoing UDP
packet arrives at the firewall, the firewall checks whether the state
table contains an existing entry corresponding to the packet’s 5-
tuple. If a matching entry is found, the packet is processed according
to the pre-established rules for that connection. If nomatching entry
exists, the firewall may create a new entry in the state table or take
other actions based on its configuration.

Although there are ways to perform stateful treatment of QUIC
traffic based on its few observable features, such stateful treat-
ment requires trade-offs with the confidentiality and censorship-
resistance of the protocol. RFC 9312 [22] discusses the manageabil-
ity of the protocol and analyzes ways to perform stateful treatment
of QUIC traffic. Apart from observing the cleartext parts of the
handshake and implementing custom QUIC extensions that un-
conceal more information, there are limited options available to
reliably track connections. Using the CID as a stateful identifier
is not possible, since the CIDs can be renegotiated at any time
within the encrypted channel. Stateful firewalls cannot even rely
on the detection of end-of-flow signals to terminate a connection,
as end-of-flow signals are not visible to an on-path observer [22].
Therefore, a QUIC-aware firewall would have to rely on timer-based
state removals.

In the context of the proposed data exfiltration method, this
means that, as of today, most enterprise-level network-based fire-
walls cannot detect a potential QUIC connection migration, nor can
they differentiate between migrations and request forgery attacks.

7.1 Mitigation Strategies
The risk of the proposed attack can be partly mitigated through the
following countermeasures:

• A client may disable QUIC transport parameters, like active
connectionmigration using the disable_active_migration
(0x0c) flag, or remove the server preferred_address field
from the QUIC implementation. Any connection migration
attempt can then be flagged as anomalous activity.
• A modification to QUIC’s implementation so that the
preferred_address transport parameter field is part of the
unencrypted QUIC handshake. As a result, custom middle-
box software can be developed that can recognize connec-
tion migration attempts by monitoring QUIC packets for
changes in their source or destination IP addresses and/or
ports. These changes can then be checked against the con-
tents of the preferred_address parameter and domain reg-
istration records of the new IP addresses to verify their le-
gitimacy.
• Another approach is full decryption of QUIC traffic on a
firewall level. Although not recommended for privacy rea-
sons, as it defeats the purpose of the QUIC protocol, it al-
lows for in-depth HTTP/3 inspection. Even in such a case,
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firewall vendors would still need to implement the afore-
mentioned custom detection mechanisms to verify that the
preferred_address address field contains a legitimate ad-
dress.

8 Related Work
8.1 QUIC Request Forgery Attacks
QUIC traffic is inherently difficult to differentiate from “normal”
UDP traffic. The encryption of QUIC headers and payloads obfus-
cates the traffic, which prevents easy inspection and classification.
Even advanced network sniffing tools such as Wireshark cannot
reliably detect QUIC if the handshake phase has not been observed.
In addition to obfuscation challenges, there are various attacks
targeting the QUIC protocol, for instance, request forgery attacks.

RFC 9000 [19] describes different types of request forgery attacks,
including “Request Forgery with Client Initial Packets”, “Request
Forgery with Preferred Addresses”, “Request Forgery with Spoofed
Migration”, and “Request Forgery with Version Negotiation”. Al-
though [19] mentions a request forgery attack on the DCID field
in packets sent to a preferred address, it fails to point out that a
packet’s destination IP may be spoofed to redirect traffic to a ma-
licious IP address. The RFC suggests no specific countermeasures
beyond generic security recommendations.

Gbur and Tschorsch [12] performed an analysis of the feasibil-
ity of client-side request forgery attacks. They focused on client-
side Server Initial Request Forgery (SIRF), Version Negotiation Re-
quest Forgery (VNRF), and Connection Migration Request Forgery
(CMRF). Their CMRF analysis only encompassed forging client-side
connection migration events, which aim to trick a legitimate QUIC
server into sending a QUIC packet to a spoofed address. It did not
cover the forging of server-side connection migration events.

One example of spoofing connection migration events with
benevolent intent is MIMIQ [15], a privacy-enhancing system that
aims to prevent traffic analysis by a middlebox. The system allows
clients to maintain anonymity by frequently rotating their source
IP address without disrupting connections. It prevents adversaries
from identifying the client or associating multiple flows with it.
Connections are broken into smaller flows and migration times are
strategically chosen, making it harder for adversaries to analyze
traffic and gather information about a particular client.

8.2 Data Exfiltration
The field of data exfiltration is vast, encompassing various attack
vectors such as exfiltration over web services, physical media, net-
work media, and alternative [network] protocols [31]. We therefore
limited the review to papers that developed attacks related to the
MITRE ATT&CK framework technique “Exfiltration over Alterna-
tive Protocol” [31], which includes all network protocols not being
used as the main C2 channel.

There have been efforts in QUIC-based data exfiltration, such as
the prototype presented in [48], which embeds data within a legiti-
mate QUIC connection. However, this approach does not attempt
to hide the exfiltration, leaves a noticeable fingerprint due to the
handshake, and does not adjust packet features like payload length.

Sudhan and Kulkarni [43] introduced a method to establish a
covert channel between two QUIC endpoints using the latency spin

bit. The spin bit is an optional QUIC protocol feature that allows for
passive on-path network latency monitoring. The proposed method
requires two QUIC endpoints to establish a legitimate connection,
making it less feasible for malicious data exfiltration attempts. Fur-
thermore, only one bit of data can be exchanged per QUIC packet,
which makes the method impractical for exfiltrating large amounts
of data.

Zhan et al. [49] proposed a method to detect DNS-over-HTTPS
(DoH) based data exfiltration by analyzing TLS-fingerprints and
training Boosted Decision Trees, Random Forest, and Logistic Re-
gression classifiers on flow-based features, achieving detection ac-
curacies of over 99%.

Vaccari et al. [44] exploit the Message Queue Telemetry Trans-
port (MQTT) protocol, commonly used within IoT networks, to
exfiltrate sensitive data from a private network. Their method suc-
cessfully exfiltrated payloads up to 3000 bytes over the MQTT
protocol, and simultaneously, they were able to achieve detection
accuracies of up to 99% using Random Forest classifiers.

Klein [21] introduced a data exfiltration method that exploits
stateful IPv4 IDs, TCP ISNs and IPv6 flow labels on popular server
operating systems. The study demonstrated the feasibility of ex-
filtrating data from firewalled networks using the global protocol
states to establish covert channels. In addition, it explored cross-
protocol attacks and measured exfiltration bandwidth, which was
sufficiently high to extract secret key material within a few hours.

9 Conclusion
This paper analyzes the feasibility of covert data exfiltration attacks
using the QUIC transport protocol. We find that adversaries can
make use of QUIC’s server-side connection migration feature to
exfiltrate data from a trusted network to a target server. We show
that, because of the inherent traits of the QUIC protocol, QUIC-
based data exfiltration techniques are difficult to differentiate from
normal protocol behaviour, and not even custom anomaly detection
classifiers are able to detect such data exfiltration attempts. Some
mitigation strategies include outright disabling server-side connec-
tion migration, sending the preferred_address parameter as part
of the unencrypted handshake, or implementing custom firewall
software that checks the preferred_address parameter against
domain registration entries. From the lack of QUIC traffic analysis
capabilities offered by leading firewall vendors, one can infer that,
as of today, firewalls cannot effectively handle the complexities of
QUIC. Our contribution lies not in demonstrating the success of
ML-based detection, but rather in revealing the limitations of cur-
rent ML methods against advanced mimicking attacks. Future work
may include developing heuristics-based QUIC traffic inspectors
that can be deployed on middleboxes.
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A Evaluation of Open-Source Implementations
Since the proposed attack relies on client-initiated server-side migrations, it
is vital to understand the actual adoption of this feature. Thus, this section
reviews several open-source client- and server-side implementations of the
QUIC protocol. Each solution (cf. Table 6) is statically analyzed to infer
whether it supports server-side connection migrations and/or Multipath
QUIC [25]. Furthermore, since libraries differ in terms of maturity and
adoption, a non-exhaustive set of dependents of each library (i.e., other
libraries, clients, or applications) is enumerated.

Currently, 8 out of the 11 reviewed libraries implement the feature,
whereas the remaining 3 only implement client-side connection migrations.
For example, quic-go is a widely-used library that does not actively support
server-side connection migration. aioquic parses the preferred_address
field, but does not support active migration. Similarly, Cloudflare quiche does
not support server-side connection migration. However, from the source
code, it can be inferred that it is planned to implement the feature. On the
other hand, several libraries already allow active server-side connection mi-
grations and/or QUIC Multipath connections. For example, picoquic, libquic,
quinn, aioquic_pisa,Google quiche, haproxy,Haskell quic, and Alibaba’s xquic
support the feature. These implementations are used by several operating
systems and user-space applications, including the Google Chrome browser.

Thus, based on these observations, it can be argued that server-side
connection migration is not a hypothetical feature of QUIC but instead
a relevant feature of the protocol. Therefore, the previously mentioned
attack is exploiting a well-established feature for several implementations.
However, it must be mentioned that there is no empirical evidence of the
feature’s prevalence in network traffic.
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Table 6: Overview of Statically Analyzed Implementations

Implementation Implemented Notable Dependents

quic-go [37] ✗ cloudflared, caddy, syncthing
libquic [8] ✓ goquic, chromium
Cloudflare quiche [7] ✗* Cloudflare, NGINX
picoquic [34] ✓ Picotls, RIOT OS
quinn [38] ✓ h3-quinn, nestri, EasyTier
aioquic [23] ✗ airbyte, mitmproxy, envoy
aioquic_pisa [36] ✓ –
Google quiche [14] ✓ Google, Chromium
haproxy [16] ✓ Instagram, Airbnb, pfSense
Haskell quic [47] ✓ hprox, warp-quic, http3
Alibaba xquic [2] ✓ Taobao Mobile
∗Implementation of Server-Side Migration Planned

B Wireshark Filters
The following Wireshark filters were used to extract the datasets for train-
ing the anomaly detectors:

1) Matching all outgoing QUIC Protected Payload packets in the testbed:

1 ip.src == 172.19.0.0/16 && quic && quic.
header_form == "short header" && quic.
header_form != "long header" && quic.dcid !=
""

Listing 1: Wireshark Filter Example 1

2) Matching all outgoing QUIC Protected Payload packets as well as all
benign connection migration attempts (triggered using Cloudflare quiche):

1 ip.src == 172.19.0.X && ((quic && quic.header_form
== "short header" && quic.header_form != "

long header" && quic.dcid != "") || (udp &&
udp.length == 1358))

Listing 2: Wireshark Filter Example 2

C Additional Considerations
C.1 Potential Drawbacks of Establishing New

QUIC Connections
One of the primary challenges in executing a covert data exfiltration attack
using the QUIC protocol arises from the transparency during the connection
establishment phase. Middleboxes and fingerprinting tools typically filter
connections based on the initial handshake packets. This initial packet
exchange, which includes the “Initial” QUIC packet or potentially the “0-
RTT” packet, serves as a clear indicator of new connection establishment.

These packets contain cleartext details, such as the TLS Client Hello and
TLS Server Hello messages, that can expose a certain fingerprint. Given the
amount of metadata within the handshake packets, any attempts to establish
a new connection to exfiltrate data would likely increase the visibility of the
attack. In particular, fingerprinting tools (cf. Section 6.3) filter exclusively
based on handshakes and therefore increase the risk of the attack being
identified and blocked at an early stage.

C.2 Comparison with TLS and DNS-based Data
Exfiltration

Defense systems specifically look for TLS Client Hello or TCP SYN packets
to identify connection establishments. TCP-based connections typically
require a new handshake to establish a valid connection when an underlying
IP address changes. Similarly to QUIC, which allows connection migrations
that change the underlying IP address without requiring a new handshake,
there are further exceptions, such as the Stream Control Transmission
Protocol (SCTP) [42], which can reconfigure IP addresses mid-connection
using the Set Primary instruction. However, SCTP packets in non-telecom
networks are not as prevalent as QUIC traffic, and, as a result, QUIC-based
data exfiltration that mimics legitimate connection migrations potentially
poses a greater security concern.

DNS-based data exfiltration may raise suspicion when multiple stan-
dalone DNS queries are produced, and not followed by a TCP and/or
TLS handshake after an IP address has been resolved. This makes high-
throughput DNS-based data exfiltration practically impossible without at-
tracting attention. QUIC, since it inherently anticipates changes in the
underlying IP header, may make data exfiltration appear less anomalous
compared to other types of data exfiltration. Additionally, due to the high
adoption of the QUIC protocol in popular web services [3], a QUIC-based
data exfiltration attack may achieve high throughput without raising suspi-
cion.

C.3 Additional Insights from Leading Firewall
Vendors

Firewall Vendor C mentioned that most requests regarding the QUIC proto-
col are coming from researchers, with only very little coming from industry.
This indicates a divergence between academic interest in the protocol’s
potential and the industry’s current level of adoption or need for it. Firewall
Vendor D argues that the small performance gain through a reduced RTT
does not justify the manageability challenges and potential security risks
it entails. The vendors also correctly point out that tracking QUIC con-
nections via a CID state table is not feasible, since the privacy-preserving
mechanisms in QUIC may change CIDs at any time to prevent middleboxes
from uniquely identifying a connection. A set of usable CIDs is negotiated
as part of the encrypted QUIC handshake, and thus remains hidden from
middleboxes.
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