
MTL-UE: Learning to Learn Nothing for Multi-Task Learning

Yi Yu 1 2 Song Xia 2 Siyuan Yang 2 Chenqi Kong 2 Wenhan Yang † 3 Shijian Lu 4 Yap-Peng Tan 2 Alex C. Kot 2

Abstract

Most existing unlearnable strategies focus on pre-
venting unauthorized users from training single-
task learning (STL) models with personal data.
Nevertheless, the paradigm has recently shifted
towards multi-task data and multi-task learning
(MTL), targeting generalist and foundation mod-
els that can handle multiple tasks simultaneously.
Despite their growing importance, MTL data and
models have been largely neglected while pursu-
ing unlearnable strategies. This paper presents
MTL-UE, the first unified framework for generat-
ing unlearnable examples for multi-task data and
MTL models. Instead of optimizing perturbations
for each sample, we design a generator-based
structure that introduces label priors and class-
wise feature embeddings which leads to much bet-
ter attacking performance. In addition, MTL-UE
incorporates intra-task and inter-task embedding
regularization to increase inter-class separation
and suppress intra-class variance which enhances
the attack robustness greatly. Furthermore, MTL-
UE is versatile with good supports for dense pre-
diction tasks in MTL. It is also plug-and-play
allowing integrating existing surrogate-dependent
unlearnable methods with little adaptation. Exten-
sive experiments show that MTL-UE achieves su-
perior attacking performance consistently across
4 MTL datasets, 3 base UE methods, 5 model
backbones, and 5 MTL task-weighting strategies.

†Corresponding author 1Rapid-Rich Object Search Lab, Inter-
disciplinary Graduate Programme, Nanyang Technological Uni-
versity, Singapore 2School of Electrical and Electronic Engineer-
ing, Nanyang Technological University, Singapore 3PengCheng
Laboratory, Shenzhen, China 4School of Computer Science and
Engineering, Nanyang Technological University, Singapore. Cor-
respondence to: Yi Yu <yuyi0010@e.ntu.edu.sg>, Wenhan Yang
<yangwh@pcl.ac.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

5 O'clock Shadow
Arched Eyebrows

Young
⋮

Clean MTL Dataset

5 O'clock Shadow
Arched Eyebrows

Young
⋮

Protected MTL Dataset

⋯

⋯

M
T

L
M

od
el

s
M

T
L

M
od

el
s

Train

Train

Test

Test

Task 1: 93.3%
Task 2: 82.4%

Task 40: 86.9%
⋮

⋯

High Performance
Clean Test Data

Task 1: 50.4%
Task 2: 42.1%

Task 40: 24.4%
⋮

⋯

Clean Test Data

Low Performance

MTL-UE

Perturbation

M
T

L
M

od
el

s
M

T
L

M
od

el
s

Figure 1. Illustration of MTL-UE to prevent unauthorized training
of MTL models on datasets like CelebA (Liu et al., 2015), having
40 binary attribute classifications. MTL-UE adds invisible, sample-
specific perturbations to transform a clean dataset into a protected
one, leading to poor test performance of trained MTL models.

1. Introduction
Multi-task learning (MTL) (Caruana, 1993; Guo et al., 2020)
is a branch of machine learning that tackles multiple tasks
simultaneously, making it a more practical approach than
single-task learning (STL). For instance, autonomous ve-
hicles (Achituve et al., 2024) need to detect objects, track
vehicles, monitor lanes, and estimate free space in real time.
MTL trains a single model to handle multiple tasks, reduc-
ing the need for separate models. By leveraging shared
data across tasks, MTL lowers computational costs and im-
proves generalization (Baxter, 2000), making it essential
in fields like vision (Liu et al., 2019a; Misra et al., 2016),
NLP (Chen et al., 2021; Fontana et al., 2024), autonomous
driving (Chowdhuri et al., 2019; Chen et al., 2018), and
recommendation systems (Hadash et al., 2018).

Deep neural networks have achieved impressive success
across machine learning tasks (Hu et al., 2024; Yang et al.,
2024; Jin et al., 2025a;b), but also raised growing AI se-
curity concerns (Gao et al., 2019; 2022; Yu et al., 2021;
2023a; 2022b; 2023b; 2024b; 2025; Wang et al., 2024a;
2025b; Zheng et al., 2024; Xia et al., 2024b;a; 2025; Liu
et al., 2025a;b). As large-scale models become more preva-
lent, massive data is likely to be scraped from the web

1

ar
X

iv
:2

50
5.

05
27

9v
1

 [
cs

.L
G

]
 8

 M
ay

 2
02

5

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

and incorporated into training datasets, naturally raising
concerns about the unauthorized use of personal informa-
tion for training DNNs (Burt, 2020; Vincent, 2019). This
has led to efforts to develop defenses that prevent DNNs
from exploiting private data. In STL, privacy protection
methods (Feng et al., 2019; Sun et al., 2024) have been
widely explored. These methods apply carefully crafted
perturbations to images to compromise the generalization
of models, commonly referred to as unlearnable examples
(UE) (Huang et al., 2021; Yu et al., 2024a;c), and are also
known as perturbative availability (Liu et al., 2023) or in-
discriminate poisoning attacks (He et al., 2023). Models
trained on these UE often capture spurious features, which
are patterns added to the data that are irrelevant to the ac-
tual task. While UE have been extensively studied for STL,
their use in complex MTL scenarios as well as the related
datasets, e.g., NYUv2 (Nathan Silberman & Fergus, 2012)
with semantic segmentation, depth estimation, and normal
estimation tasks, remains a challenge. These include man-
aging the heightened complexity of perturbations designed
to introduce spurious features across a greater number of
tasks simultaneously, and dealing with more complex tasks
that extend beyond classification.

In this work, we propose MTL-UE, a framework for gen-
erating effective UE for MTL, with the goal of degrading
the performance of all tasks in both MTL and STL mod-
els, as shown in Fig. 1. We first conduct a straightforward
empirical benchmark analysis of existing methods to re-
veal our motivations. We implement several baseline UE
methods, including surrogate-free methods using predefined
shortcut patterns as class-wise perturbations, and surrogate-
dependent methods relying on surrogate models to optimize
sample-wise perturbations. Our initial findings suggest that
surrogate-dependent methods underperform for both MTL
and STL models, due to poor control over intra-class vari-
ance caused by independent optimization for each sample.
Patch-based AR (Sandoval-Segura et al., 2022), as shown
in Sec. 4.2, using class-wise perturbations in task-specific
patches, performs better with lower intra-class variance but
loses effectiveness as tasks increase, likely due to smaller
patch sizes and limited representation capacity.

Building on these insights, we propose a plug-and-play
framework to address these challenges by generating UE
through class-wise feature embedding injections. By incor-
porating task label priors via embeddings, we narrow the
perturbation searching space from ∥δ∥∞ ≤ 8

255
to the de-

coder’s output space, resulting in lower intra-class variance.
This approach effectively combines spurious features from
multiple tasks into a unified perturbation. In addition to the
generator’s structural design, we introduce intra-task and
inter-task embedding regularization (Intra-ER & Inter-ER)
to improve inter-class distance and minimize feature space
redundancy, further improving the attack’s effectiveness. In

summary, our contributions are outlined below:

• To the best of our knowledge, we propose MTL-UE, the
first plug-and-play framework for generating UE on MTL
datasets, effective against both MTL and STL models, and
compatible with any surrogate-dependent UE methods.

• MTL-UE comprises an encoder-decoder network paired
with learnable class-wise feature embeddings, which lower
the intra-class variance of spurious features for each task.
The addition of intra-task and inter-task embedding regular-
ization further enhances performance.

• MTL-UE can extend beyond MTL classifications to multi-
ple dense prediction tasks by using task-specific embedding
modules to map task labels to embeddings.

• Experiments on 4 MTL datasets, 3 base UE methods, 5
backbones, and 5 MTL task-weighting strategies show con-
sistent improvements of MTL-UE in attacking performance.
Moreover, MTL-UE supports partial protection, making
some tasks unlearnable while keeping others learnable.

2. Related Work
Data Poisoning. Data poisoning attacks (Barreno et al.,
2010; Goldblum et al., 2022) manipulate training data to
disrupt the test-time performance of models, and are cat-
egorized into integrity attacks and availability attacks. In-
tegrity attacks, such as backdoor attacks (Gu et al., 2017;
Schwarzschild et al., 2021), trigger malicious behavior with
specific inputs, while availability attacks degrade model per-
formance on test sets (Biggio et al., 2012; Xiao et al., 2015).
Typically, they inject poisoned data into the clean training
set, where a small portion of the samples, with unrestricted
changes, are added (Koh & Liang, 2017; Zhao & Lao, 2022;
Lu et al., 2023). Though malicious, these samples are often
detectable and have a limited overall impact.

Unlearnable Examples (UE). UE (Huang et al., 2021;
Zhang et al., 2023; Zhu et al., 2024a;b; Liu et al., 2024a;b;
Chen et al., 2024; Qin et al., 2023b; 2024; 2023a; Meng
et al., 2024; Lin et al., 2024; Wang et al., 2024b; 2025a)
is an emerging approach, where subtle modifications, such
as bounded perturbations ∥δ∥∞ ≤ 8

255
, are applied across

the entire training dataset without altering the correct labels.
This method shows potential for data protection, resulting
in models performing close to random guessing on clean
test data. EM (Huang et al., 2021) applies error-minimizing
noise, while NTGA (Yuan & Wu, 2021) generates noise
via neural tangent kernels. TAP (Fowl et al., 2021) uses
targeted adversarial examples as UE, and REM (Fu et al.,
2022) targets adversarial training (AT) (Madry et al., 2018).
LSP (Yu et al., 2022a) and AR (Sandoval-Segura et al.,
2022) are surrogate-free UE. OPS (Wu et al., 2023) uses
one-pixel shortcuts to improve robustness against AT and

2

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

strong augmentations.

Multi-task Learning (MTL). MTL focuses on learning
multiple tasks in a joint manner, typically using a shared
encoder with task-specific heads for each task (Ruder, 2017;
Zhang & Yang, 2021; Sener & Koltun, 2018; Standley et al.,
2020; Fifty et al., 2021; Navon et al., 2022). A major
focus in MTL research is the optimization process. The
usual method uses linear scalarization (LS) along with a
grid or random search to find the best weight vectors (Lin
et al., 2019). To address task balancing and conflict resolu-
tion, strategies fall into loss-based and gradient-based (Dai
et al., 2023). Loss-based methods assign task weights based
on factors like task difficulty (Guo et al., 2018), random
weights (Lin et al., 2022), geometric mean of losses (Yun &
Cho, 2023), or uncertainty (Kendall et al., 2018). Gradient-
based approaches adjust gradients directly, e.g., PCGrad (Yu
et al., 2020) projects gradients to prevent conflicts, Aligned-
MTL (Senushkin et al., 2023) aligns gradient components,
and FairGrad (Ban & Ji, 2024) adopts utility maximization.

3. Preliminaries
UE (Huang et al., 2021; Fowl et al., 2021; Wang et al.,
2024b) leverage clean-label data poisoning to trick DNNs
into learning minimal useful knowledge from the data,
thereby achieving the objective of data protection. Let T
and D denote the clean training and test datasets, respec-
tively. A model F (·; θ) trained on T typically performs well
on D. UE aims to transform T into an unlearnable dataset
P , causing F (·; θ) trained on P to perform poorly on D.

In a C-class image classification, T = {(xi, yi)}Ni=1 con-
tains N samples, where xi ∈ Rd are inputs, and yi ∈
{1, . . . , C} are labels. P is crafted by adding perturbations
δi to each xi, such that P = {(xi + δi, yi)}Ni=1. Perturba-
tions δ ∈ S are constrained to maintain visual imperceptibil-
ity, where S denotes the feasible region, e.g., ∥δ∥∞≤ 8

255 .
The attacker’s success is measured by the accuracy of F
trained on P when evaluated on D. UE methods can be
classified into two categories based on whether a surrogate
model is required for optimizing the perturbations.

Surrogate-free methods (Yu et al., 2022a) do not rely on a
surrogate model, and instead utilize predefined shortcut pat-
terns as class-wise perturbations. δi added to each sample
xi depend solely on its label yi, i.e., δi=δ(yi).

Surrogate-dependent methods optimize sample-wise per-
turbations δi for each data (xi, yi) using surrogate models.
Most follow variations of error-minimizing (EM) (Huang
et al., 2021) or error-maximizing (AP) (Fowl et al., 2021).
EM constructs δi by solving the bi-level optimizations:

min
θ

∑
(xi,yi)∈T

[
min
δi

L(F ′(xi + δi; θ), yi)
]
, s.t. ∥δi∥p ≤ ϵ, (1)

where F ′ is the surrogate model. Typically, the inner min-
imization employs the first-order optimization approach
PGD (Madry et al., 2018), and the outer one optimizes the
parameters using optimizers such as SGD. In contrast, AP
constructs δi to maximize the loss of the pretrained F ′ on
clean dataset T , i.e. generating adversarial examples:

max
δi

∑
(xi,yi)∈T

[
L(F ′(xi + δi; θ

∗), yi)
]
, s.t. ∥δi∥p ≤ ϵ. (2)

Multi-task learning (MTL) enhances the performance
of several related tasks by training them simultaneously.
The training samples are typically tuples consisting of a
shared input for all tasks and the labels for K tasks, i.e.,
TMTL ={(xi, {yk

i }Kk=1)}Ni=1, where N is the number of train-
ing samples. Our focus is on the scenario where the input
are consistent across tasks. When the input varies for each
task, it is often referred to as multi-domain learning (Royer
et al., 2023). In such cases, UE for each domain dataset can
usually be constructed independently. Common architec-
tures for MTL (Achituve et al., 2024) have a shared encoder
f(·; θf) and task-specific linear heads gk(·; θgk). A MTL
problem involves a set of K tasks with a loss vector:

min
{θf ,{θ

gk
}K
k=1

}
L = (L1(θf , θg1), · · · ,LK(θf , θgK))

⊤, (3)

where Lk(θf , θgk) is the loss of the k-th task. An MTL
algorithm seeks to optimize all tasks simultaneously by
leveraging the shared structure and information across them.

4. Methodology
4.1. Problem Formulation

Previous UE (Feng et al., 2019; Huang et al., 2021) mainly
target STL with K = 1 task. However, practical scenarios
often involve multi-task datasets. This work aims to develop
UE for these datasets, ensuring better data protection against
both MTL and STL models, with the following goals1:

• Effectiveness against MTL models: For a MTL model
FMTL = {f, {gk}Kk=1} trained on the poisoned multi-task
dataset PMTL = {(xi+δi, {yk

i }Kk=1)}Ni=1, the objective is to
maximize the loss on clean test data for all tasks, i.e., maxi-
mizing

∑K
k=1Lk(x, y

k; θf , θgk).

• Effectiveness against STL models: For any k-th task
and a STL model F k

STL = {f, gk} trained on the poisoned
dataset Pk

MTL ={(xi+δi, y
k
i)}Ni=1 (the k-th attribute of PMTL),

the objective is to maximize the loss Lk(x, y
k; θf , θgk).

4.2. Baseline methods for UE against MTL

This section presents several MTL-specific baseline UE
methods, starting with surrogate-dependent methods that

1We will omit “MTL” in TMTL and PMTL in later sections.

3

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

Figure 2. Performance of UE (Accuracy ↓) Vs. the number of tasks on the CelebA (Liu et al., 2015) for both MTL and STL models.

Table 1. Intra-class std of the features for various UE methods. (P)
and (A) are the patch and averaging based. All 40 tasks are used.
UEs→ Clean EM TAP SEP LSP (P) AR (P) LSP (A) AR (A)

Average 5.357 2.191 3.656 6.719 1.828 1.733 5.264 5.180
Maximum 91.97 82.13 103.12 96.24 34.84 20.59 93.50 103.41

typically use the MTL model itself as the surrogate model.

Next, we consider surrogate-free methods and class-wise
perturbations. Treating each combination {yk}Kk=1 as a dis-
tinct class, where yk∈{1, . . . , Ck}, yields a total of

∏K
k=1Ck

class-wise perturbations, which grows exponentially with
K. This reduces the average number of data points per per-
turbation to N∏K

k=1
Ck

, complicating the creation of spurious
relationships between perturbations and target combinations.
To address this, we propose generating separate sets of per-
turbations for each task, {{δk

yk}Ck

yk=1
}Kk=1, and then combining

them into a final perturbation. We explore two strategies
for this combination: (1) Averaging-based: using the mean
of {δk

yk}Kk=1 as δ; and (2) Patch-based: adding {δk
yk}Kk=1 to

task-specific non-overlapping patches of x.

We assess UE effectiveness across varying task numbers on
CelebA (Liu et al., 2015), a facial dataset with 40 binary
classifications. We evaluate 5 UE methods: EM (Huang
et al., 2021), TAP (Fowl et al., 2021), and SEP (Chen et al.,
2023) are surrogate-dependent using surrogate MTL models
with uniform task-weighting, while LSP (Yu et al., 2022a)
and AR (Sandoval-Segura et al., 2022) are surrogate-free.

Effectiveness of UE Vs. the number of tasks. To examine
the impact of task quantity on the effectiveness of baseline
UE, we select the first k tasks, generate the corresponding
UE, and train MTL and STL models. The experimental
results as shown in Fig. 2 highlight several key findings:

1. STL models are more robust to UE than MTL models.

2. As k increases, the performance of most UE initially
increases on MTL and STL models, then declines, with near
total failure on STL when all tasks are included.

3. Patch-based AR excels in both MTL and STL models.

The first observation arises from MTL models sharing rep-
resentations across tasks, allowing them to more effectively
capture similar shortcut patterns in UE and enhancing their

focus on spurious features over benign ones. The following
explanations address the remaining two points.

As discussed in (Yu et al., 2024a), spurious features with
lower intra-class variance and greater inter-class distance
are more effective for attacks. We denote the encoder’s
features in MTL models as z = [z1, z2, . . . , zD] ∈ RD.
For each zd, we compute the average relative intra-class
std (standard deviation) across all classes and tasks as

1∑
k Ck

∑
k

∑
yk

[
Std[zd|yk]

E[zd|yk]

]
. The average and maximum val-

ues across the D dimensions are in Tab. 1. Note that features
are from the MTL models using the poisoned dataset.

Our results show that patch-based AR has the lowest intra-
class variance, with another patch-based approach that ranks
second. This may be due to class-wise perturbations being
applied to distinct, task-specific patches, thereby minimizing
intra-class variance across locations. These lower intra-class
variances likely contribute to the effectiveness. However, as
k increases, the reduction in patch size constrains the pertur-
bations’ ability as effective shortcuts, ultimately leading to
a performance decline. In contrast, averaging-based AR and
LSP have higher intra-class variance and perform worse than
patch-based methods, as aggregating perturbations across
tasks can introduce conflicts, leading to suboptimal results.

Surrogate-dependent methods like EM, TAP, and SEP op-
timize perturbations individually for each sample, which
limits control over intra-class variance. This limitation can
reduce performance, particularly as k increases, since per-
turbations must serve as shortcuts across multiple tasks,
complicating the optimization. As shown in Tab. 1 and
Fig. 2, most UE methods have higher intra-class variance
and lower performance compared to patch-based AR and
LSP, although EM achieves the second-best attack perfor-
mance among MTL models and the lowest intra-class vari-
ance among surrogate-dependent methods. Overall, we see
that LSP (A), AR (A), TAP, and SEP achieve intra-class vari-
ance comparable to that of clean data, resulting in limited
effectiveness in attacking both MTL and STL models.

4.3. MTL-UE: a plug-and-play UE method for MTL

What is missing in existing UE methods? Based on our ob-
servations in Sec. 4.2, we identify: (1) Surrogate-dependent

4

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

𝑧

𝑒𝑦1
1

Encoder
𝐸(∙; 𝜙𝐸)

Decoder
𝐷(∙; 𝜙𝐷)

𝒙

𝑒𝑦2
2 𝑒𝑦𝐾−1

𝐾−1 𝑒𝑦𝐾
𝐾⋯

𝑦1

𝑦2
⋮

𝑦𝐾−1

𝑦𝐾
↑
𝒚

1
0
⋮
0
1

0
1
⋮
0
1

1
1
⋮
0
1

0
0
⋮
0
1

𝜹

𝒙 + 𝜹

Intra-task Embedding Regularization Inter-task Embedding Regularization

Clip

Figure 3. Visual depiction of MTL-UE, concatenating the task-specific class-wise embeddings with latents to generate UE for MTL data.

Algorithm 1 Optimization of the UE Generator in MTL-UE
Input: Surrogate model F ′

MTL = {f, {gk}Kk=1}, encoder
E(·;ϕE), decoder D(·;ϕD), embeddings

{
{eki }

Ck
i=1

}K

k=1
,

clean multi-task dataset T = {(xi, {yk
i }Kk=1)}Ni=1, epochs R,

Adam optimizer, weights λ1 & λ2, Train-surrogate, iterations I ,
bound ϵ, loss function of the base UE method Lb

Output: Optimized E(·;ϕE), D(·;ϕD),
{
{eki }

Ck
i=1

}K

k=1
Initialize surrogate model if no training is needed in the Alg.
if not Train-surrogate then

Initialize F ′
MTL with pretrained weights on T

end if
for epoch← 1 to R do

Optimize the perturbation generator
for image batch (x,y = {yk}Kk=1) ∈ T do
z=E(x;ϕE), δ=Clip(D([z, e1y1 , . . . , e

K
yK];ϕD),−ϵ, ϵ)

L = Lb(F
′
MTL,x+ δ,y) + λ1 · LIntra + λ2 · LInter

Minimize L with Adam to update ϕE , ϕD , and eki
end for
if Train-surrogate then

Optimize F ′
MTL if training is needed

for epoch← 1 to I do
Sample image batch (x,y = {yk}Kk=1) ∈ T
δ=Clip(D([E(x;ϕE), e

1
y1 , . . . , e

K
yK];ϕD),−ϵ, ϵ)

Train F ′
MTL with Adam on (x+ δ,y)

end for
end if

end for

UE perform poorly due to uncontrolled intra-class variance
caused by individual sample optimization, and the pixel-
level search space which is hard to control; (2) Surrogate-
free UEs face challenges primarily due to the imperfect
fusion of class-wise perturbations from different tasks.

This raises the question: Can we reduce the pixel-level
searching space to learn task-specific class-wise spurious
features and use an integration network to merge them into
a unified perturbation?

To address these, we propose MTL-UE, which generates
UEs by injecting class-wise features to manage intra-class

variance and combining spurious features from multiple
tasks into a unified perturbation. The framework is shown in
Fig. 3. For any input x, the encoder E(·;ϕE) maps it to a la-
tent representation z. Based on its labels {yk}Kk=1, the corre-
sponding learnable class-wise feature embeddings {ekyk}Kk=1

are selected. The embeddings and z are concatenated, and
fed into a decoder D(·;ϕD) to generate the final perturba-
tions for x. To regulate the amplitude of the perturbations,
a clip operation is applied following the decoder. By shift-
ing from direct perturbation searching to spurious features
and integration network learning, MTL-UE can seamlessly
integrate with any surrogate-dependent method.

Besides MTL-UE’s structural design, we introduce embed-
ding regularizations to further improve attack performance:

• Intra-task ER (Intra-ER). This term minimizes the co-
sine similarity between embeddings within each task, ensur-
ing diversity among the embeddings:

LIntra =
2∑K

k=1 Ck(Ck − 1)

K∑
k=1

Ck−1∑
m=1

Ck∑
n=m+1

cos(e
k
m, e

k
n). (4)

• Inter-task ER (Inter-ER). This term promotes geometric
independence between embeddings across different tasks:

LInter =
1∑K−1

k=1

∑K
l=k+1CkCl

K−1∑
k=1

K∑
l=k+1

Ck∑
m=1

Cl∑
n=1

|cos(ekm, e
l
n)|. (5)

For Intra-ER, as discussed in (Yu et al., 2024a), greater
inter-class distance of spurious features enhances attack per-
formance. This distance can be expressed as∥ekm−ekn∥22 =
∥ekm∥22 + ∥ekn∥22 − 2∥ekm∥2∥ekn∥2 ·cos(ekm, ekn). To ensure the
model effectively learns the introduced features, it is impor-
tant to enlarge the inter-class distance for each task. How-
ever, simply increasing the norm of ekm doesn’t suffice, as
the decoder D(·;ϕD) can rescale the weights. Thus, mini-
mizing cosine similarity between embeddings is better.

For Inter-ER, geometric independence offers several ben-
efits: (1) Minimized Redundancy: It helps minimize re-
dundancy in the features, and the decoder can exploit the

5

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

𝑧Encoder Decoder

𝒙 𝜹

𝒚𝟏 𝒚𝟐 𝒚𝟑

𝐸(∙; 𝜙𝐸) 𝐷(∙; 𝜙𝐷)

Embedder
ℰ1(∙; 𝜙ℰ1)

Embedder
ℰ2(∙; 𝜙ℰ2)

Embedder
ℰ3(∙; 𝜙ℰ3)

Clip

Figure 4. MTL-UE applied to dense prediction tasks, e.g., NYUv2.

unique information carried by each feature. (2) Reduced
Coupling: It helps reduce coupling, and the decoder can fo-
cus on each feature independently, leading to more accurate
perturbations. (3) Improved Interpretability: Geometric in-
dependence facilitates understanding of the role each feature
plays in generating spurious features.

Optimization of MTL-UE. The generator optimization in
Alg. 1 can be applied to surrogate-dependent UE methods.
After optimization, we transform clean T to unlearnable P .

Advantages. MTL-UE offers key advantages over baselines.
First, by incorporating task label priors through embeddings,
we reduce the perturbation search space from ∥δ∥∞ ≤ 8

255

to the decoder’s output space, leading to lower intra-class
variance. Second, since the generator is trained across the
entire dataset, it captures global features more effectively,
supporting the effective learning of spurious features. Ad-
ditionally, both Intra-ER and Inter-ER are introduced to
further improve attack performance.

4.4. Application to Dense Prediction Tasks

In this section, we demonstrate the effective application of
MTL-UE to multi-task datasets for dense prediction tasks,
using the NYUv2 dataset (Nathan Silberman & Fergus,
2012) as an example. As shown in Fig. 4, instead of using
class-wise embeddings for each task, we apply the embed-
ding module Ek(·;ϕEk) to map the corresponding dense la-
bel yk to spurious features. Since MTL-UE on such dataset
requires manipulating dense prediction results, where redun-
dancy in spurious features is minimal, we do not employ
embedding regularizations here.

5. Experiments
5.1. Experimental Setup

Datasets. We choose 4 popular multi-task vision datasets:
CelebA (Liu et al., 2015), ChestX-ray14 (Wang et al., 2017),
UTKFace (Zhang et al., 2017), and NYUv2 (Nathan Silber-

Figure 5. Performance Vs. the number of tasks on the CelebA.

man & Fergus, 2012). CelebA has 202,599 face images
with 40 binary attribute classifications. We use 162,770
images for training and 19,962 for testing, resizing all to
70×70. ChestX-ray14 has 112,000 chest X-ray images with
14 binary classes for thoracic diseases. The official splits are
used, with images resized to 256×256. UTKFace has 23,705
images annotated for age, gender, and race. We follow
Karkkainen & Joo (2021) to treat age as a nine-class task,
gender as binary, and race as five-class, splitting 80% for
training and 20% for testing, with images resized to 140×140.
NYUv2 is an indoor scene dataset, with 795 training and
654 testing images for tasks like 13-class semantic segmen-
tation, depth estimation, and surface normal prediction. We
follow Liu et al. (2019b) to resize images to 288×384.

Models. We use ResNet-18 (He et al., 2016) as the shared
encoder for both surrogate and target models. To eval-
uate transferability, we also include various backbones
like ResNet-50, VGG16 (Simonyan & Zisserman, 2015),
DenseNet-121 (Huang et al., 2017), and ViT-B (Dosovitskiy
et al., 2021) for the target models. For MTL models, we em-
ploy the HPS (Caruana, 1993) architecture, which includes
a shared feature extractor and task-specific heads.

Task-weighting for MTL. We adopt LS with a uniform
weight. To assess transferability, we include Random Loss
Weighting (RLW) (Lin et al., 2022), Uncertainty Weighting
(UW) (Kendall et al., 2018), Aligned-MTL (Senushkin et al.,
2023), and FairGrad (Ban & Ji, 2024).

Unlearnable examples. We include baseline methods
EM (Huang et al., 2021), TAP (Fowl et al., 2021), and
SEP (Chen et al., 2023) with an ℓ∞ = 8

255
bound, and

LSP (Yu et al., 2022a) and AR (Sandoval-Segura et al.,
2022) with an ℓ2 = 1 bound, following default settings.
Adaptations for MTL are detailed in Sec. 4.2. MTL-UE
is compatible with EM, TAP, and SEP, resulting in MTL-
UE-EM, MTL-UE-TAP, and MTL-UE-SEP, all using the
same ℓ∞= 8

255
bounds. More details of the baselines are in

6

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

Table 2. Results on classification datasets: We report average accuracy (%) for CelebA and UTKFace, and AUC-ROC for ChestX-ray14.
For UTKFace, accuracy for age, race, and gender is also shown. All models use ResNet-18, and MTL models use LS for task weighting.
Dataset→ CelebA (Liu et al., 2015) ChestX-ray14 (Wang et al., 2017) UTKFace (Zhang et al., 2017)
Model→ MTL STL MTL STL MTL STL
Tasks→ Avg.↓ Avg.↓ Avg.↓ Avg.↓ Age↓ Race↓ Gender↓ Avg.↓ Age↓ Race↓ Gender↓ Avg.↓
Clean 91.11 90.35 0.7577 0.6493 60.32 84.07 92.51 78.97 60.46 84.45 91.86 78.92
LSP (Patch) (Yu et al., 2022a) 78.12 84.80 0.6467 0.6543 18.40 17.51 49.83 28.58 19.62 15.04 62.62 32.43
AR (Patch) (Sandoval-Segura et al., 2022) 73.12 84.41 0.5306 0.6118 9.70 19.66 52.87 27.41 19.16 13.92 47.17 26.75
LSP (Average) (Yu et al., 2022a) 91.07 90.35 0.7218 0.6452 12.59 19.72 52.17 28.16 23.21 44.20 70.34 45.91
AR (Average) (Sandoval-Segura et al., 2022) 91.14 90.37 0.7259 0.6400 13.92 41.03 55.42 36.79 14.26 42.89 52.85 36.67
EM (Huang et al., 2021) 75.66 89.91 0.4976 0.5548 19.24 17.43 58.57 31.74 25.74 37.36 89.54 50.88
TAP (Fowl et al., 2021) 85.24 87.00 0.5478 0.6005 25.86 39.28 52.74 39.29 32.15 59.35 86.58 59.36
SEP (Chen et al., 2023) 84.25 89.91 0.5462 0.5926 25.42 44.03 52.64 40.70 33.73 60.59 88.04 60.78

MTL-UE-EM 74.38 74.26 0.4813 0.5302 10.00 12.78 54.73 25.84 9.66 12.47 56.81 26.32
MTL-UE-TAP 59.51 68.65 0.5341 0.6091 9.49 18.23 31.81 19.84 15.97 19.03 41.75 25.59
MTL-UE-SEP 58.73 76.39 0.4929 0.6068 7.28 16.20 40.08 21.19 7.26 21.84 55.61 28.24

EM TAP SEP LSP (Patch) AR (Patch) LSP (Avg.) AR (Avg.) MTL-UE-EM MTL-UE-TAP MTL-UE-SEPClean

C
el
eb
A

N
Y
U
v2

EM TAP SEP MTL-UE-EM MTL-UE-TAP MTL-UE-SEPClean

Figure 6. Visual results: Odd rows show perturbations (independently normalized to [0,1]), and even rows show poisoned images.

Table 3. Intra-class std of the features for competing UE methods.
UEs→ EM TAP SEP LSP (P)AR (P)MTL-UE-EMMTL-UE-TAPMTL-UE-SEP

Avg. 2.191 3.656 6.719 1.828 1.733 1.715 2.130 2.387
Max. 82.13103.1296.24 34.84 20.59 18.04 47.93 64.57

Sec. A.1.

Model and MTL-UE training. Details for training the
MTL/STL models and MTL-UE are given in Sec. A.2.

Metrics. We use accuracy for CelebA and UTKFace, and
AUC-ROC for ChestX-ray14 (Lin et al., 2022; Achituve
et al., 2024). For NYUv2, we use mean Intersection over
Union (mIoU) and pixel accuracy (PAcc) for segmentation,
absolute errors (AErr) and relative errors (RErr) for depth
estimation, and mean absolute error (Mean) and median ab-
solute error (MED) for normal estimation (Liu et al., 2019b).

5.2. Experimental Results

We first evaluate MTL-UE on CelebA and ChestX-ray14 for
binary classifications. We then demonstrate its effectiveness

on UTKFace with more than two categories, and finally,
show its generalization to the NYUv2, which includes dense
predictions for both classification and regression tasks.

Results on the CelebA. As shown in Tab. 2, MTL-UE
consistently improves surrogate-dependent UE methods like
EM, TAP, and SEP. Notably, for STL models, MTL-UE-TAP
achieves around 68% accuracy, much better than the base-
line, while for MTL models, MTL-UE-TAP and MTL-UE-
SEP achieve accuracies below 60%. While MTL-UE-EM
has minimal impact on MTL models, it significantly boosts
performance on STL models. Fig.5 shows UE performance
as a function of task number, highlighting the effectiveness
of MTL-UE across varying task counts. MTL-UE shows
consistent results for MTL models when the task number
exceeds 10. For STL models, it performs well with around
15 tasks, while performance under more tasks remains an
area for future exploration. Tab. 3 demonstrates that MTL-
UE significantly reduces the intra-class standard deviation
of the features, resulting in improved attack performance.

Results on the ChestX-ray14. As shown in Tab. 2, MTL-

7

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

Table 4. Quantitative results on the NYUv2 dataset. ResNet-18 is used as the encoder, with LS for task weighting in MTL models.
Model→ MTL STL
Task→ Segmentation Depth Normal Segmentation Depth Normal
Metric→ mIoU↓ PAcc↓ AErr↑ RErr↑ Mean↑ MED↑ mIoU↓ PAcc↓ AErr↑ RErr↑ Mean↑ MED↑
Clean 53.05 75.01 0.3920 0.1665 23.72 17.29 53.16 75.30 39.80 16.50 22.53 16.00
EM 26.45 46.22 0.6109 0.2352 30.32 24.46 27.03 44.66 0.6280 0.2426 29.09 22.53
TAP 21.96 36.40 0.6412 0.2561 33.79 27.87 14.51 26.32 0.6340 0.2389 30.75 23.25
SEP 11.41 23.49 0.7113 0.2884 37.11 31.52 9.76 24.16 0.7517 0.2774 33.01 26.14

MTL-UE-EM 2.37 16.04 0.9249 0.3013 38.04 33.65 1.65 15.64 0.9109 0.2978 33.98 27.49
MTL-UE-TAP 16.88 30.37 0.9459 0.3161 39.69 34.61 17.14 30.01 1.1182 0.3607 41.56 35.08
MTL-UE-SEP 17.76 33.13 0.8260 0.2850 41.78 36.47 15.35 33.44 0.9570 0.3188 40.24 33.08

Table 5. Results of Transferability: performance on CelebA when transferring to MTL and STL models with different backbones or to
MTL models with various weighting strategies. Note that RN denotes the ResNet, and DN denotes the DenseNet.

Transfer to MTL and STL models with various backbones Transfer to MTL models with various task-weighting

Model→ MTL (LS as the task-weighting) STL MTL(ResNet-18 as the backbone
Backbone/Weighting→ RN-18 RN-50 VGG-16 DN-121 ViT-B Avg. RN-18 RN-50 VGG-16 DN-121 ViT-B Avg. LS UW RLW Align FairGrad Avg.

Clean 91.11 91.20 91.33 91.37 89.39 90.88 90.35 90.13 90.40 89.61 87.25 89.55 91.11 90.82 91.00 91.08 90.75 90.95
LSP (Patch) 78.12 76.37 77.96 77.07 81.96 78.70 84.80 84.26 82.08 84.70 86.96 84.56 78.12 77.48 72.95 77.43 73.80 75.56
AR (Patch) 73.12 73.07 72.23 75.49 85.73 75.53 84.41 85.40 75.77 78.19 87.03 82.16 73.12 71.87 74.59 72.59 67.76 71.99
LSP (Average) 91.07 91.15 91.31 91.32 89.16 90.60 90.35 90.08 90.56 89.77 87.01 89.55 91.07 90.73 90.98 90.89 90.62 90.86
AR (Average) 91.14 91.20 64.78 67.09 89.35 80.31 90.37 90.12 89.47 88.15 87.16 89.05 91.14 90.80 91.01 90.93 90.69 90.91
EM 75.66 74.26 72.29 76.20 83.76 76.83 89.91 89.50 75.87 86.93 86.93 85.03 75.66 75.30 75.32 75.34 74.54 75.23
TAP 85.24 85.44 87.34 87.65 88.58 86.45 87.00 86.74 85.38 84.57 86.83 86.10 85.24 85.27 85.52 85.23 84.94 85.24
SEP 84.25 81.27 83.10 82.81 89.31 84.55 89.91 89.68 84.93 86.52 86.33 87.47 84.25 89.54 87.33 87.28 87.78 87.24

MTL-UE-EM 74.38 72.81 69.81 70.31 71.12 71.69 74.26 74.52 78.78 76.68 79.03 76.25 74.38 70.84 72.71 71.78 73.25 72.59
MTL-UE-TAP 59.51 64.76 60.50 60.36 76.69 64.76 68.65 70.73 68.27 75.14 83.22 73.20 59.51 58.66 62.95 63.60 56.61 60.27
MTL-UE-SEP 58.73 60.06 64.61 63.71 80.14 65.85 76.39 79.87 70.17 75.25 84.78 77.69 58.73 53.54 58.24 60.54 53.60 56.53

UE-EM excels, and MTL-UE-TAP and MTL-UE-SEP im-
prove upon TAP and SEP. As TAP and SEP use adversarial
examples, the low performance of clean surrogate models
lowers the results, explaining why MTL-UE-EM is better.

Results on the UTKFace. The results in Tab. 2 show that
with 3 tasks, MTL-UE consistently outperforms the base-
lines on both MTL and STL models, despite the increased
class numbers. Notably, on STL models, MTL-UE reduces
average accuracies by over 30% compared to the base UEs.
Sec. B.1 presents UE performance vs. task numbers.

Results on the NYUv2. We show the results on the NYUv2
involving dense classification and regression tasks. From
Tab. 4, MTL-UE consistently enhances the performance of
all baseline UE across all tasks. Each variant—MTL-UE-
EM, MTL-UE-TAP, and MTL-UE-SEP—exhibits different
trade-offs across the three tasks: MTL-UE-EM performs
best in segmentation, MTL-UE-TAP excels in depth esti-
mation, and MTL-UE-SEP outperforms others in surface
normal estimation. As AR and LSP cannot be applied to
dense tasks, they are not included for comparison.

Visual results. We offer visual results in Fig. 6. We can
see that compared to baselines, our perturbations are more
structured. For instance, MTL-UE-TAP displays clearer
semantic information than TAP, with more distinct contours
and sketch lines. The more structured perturbations tend
to have lower intra-class variance, leading to the improved
performance. Among the baselines, AR adopts ℓ2-norm, and
appears sparser, though the overall perturbation magnitudes

Table 6. Results of MTL-UE with smaller bounds on CelebA.
Bound→ ℓ∞ = 8/255 ℓ∞ = 6/255 ℓ∞ = 4/255 ℓ∞ = 2/255
Model→ MTL STL MTL STL MTL STL MTL STL

MTL-UE-EM 74.38 74.26 74.38 75.11 75.56 76.25 78.81 79.24
MTL-UE-TAP 59.51 68.65 63.69 72.58 63.91 80.01 69.61 85.19
MTL-UE-SEP 58.73 76.39 60.98 80.45 61.82 83.58 81.35 86.82

Table 7. Ablation study of the MTL-UE design on CelebA.
Model→ MTL STL
Base UE→ EM TAP SEP EM TAP SEP

①: the baseline UE 75.66 85.24 84.25 89.91 87.00 89.91
②: w/o the feature embeddings 90.75 88.08 86.73 89.95 88.81 87.78
③: w/o the E(·;ϕE) and z 74.47 62.37 68.63 78.82 71.06 78.45
④: w/o the Intra-ER 77.87 63.07 63.41 79.82 69.52 79.25
⑤: w/o the Inter-ER 75.81 64.95 63.69 78.42 76.05 75.40

MTL-UE 74.38 59.51 58.73 74.26 68.65 76.39

are similar across all methods. More results are in Sec. B.5.

5.3. Discussion

Smaller perturbations. We evaluate smaller bounds ℓ∞=
2

255
, 4
255

, 6
255

alongside ℓ∞= 8
255

. Tab. 6 shows MTL-UE are
effective, outperforming baselines even with larger bounds.
MTL-UE-EM excels on STL models, while the other two
perform better on MTL models under small bounds.

Transferability. We assess UE transferability to MTL and
STL models with varying encoder backbones and MTL
weighting strategies. Results on CelebA are shown in Tab. 5.
Our methods, particularly MTL-UE-TAP and MTL-UE-

8

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

Table 8. Results of partial task protection on on the UTKFace.
Model→ MTL STL

Protected task ↓ Age Race Gender Age Race Gender

None 60.32 84.07 92.51 60.46 84.45 91.86
Age, Race 12.68 20.53 88.52 10.25 19.64 90.95
Age, Gender 10.72 78.82 43.90 10.70 82.68 46.41
Race, Gender 52.64 35.49 56.79 57.11 16.52 52.97
All 7.28 16.20 40.08 7.26 21.84 55.61

Table 9. Results of partial data protection on the NYUv2.

r → 0% 20% 40% 60% 80% 100%
T1 P0.2+T0.8 T0.8 P0.4+T0.6 T0.6 P0.6+T0.4 T0.4 P0.8+T0.2 T0.2 P1

PAcc 75.0 74.0 74.5 72.3 71.1 69.9 67.4 63.5 60.8 33.1
RErr 0.167 0.167 0.169 0.173 0.180 0.183 0.199 0.194 0.237 0.285
Mean 23.7 24.2 24.3 24.7 25.6 25.3 27.4 29.0 32.8 41.8

SEP, generalize well across CNNs, while MTL-UE-EM
performs better on ViT-B. This may be because SEP and
TAP rely on adversarial examples, limiting transferability
from CNNs to ViT, as ResNet-18 was used as the surrogate
backbone. Our methods also generalize well to MTL models
with different weighting strategies, with MTL-UE-SEP ex-
celling in several cases. Additional results on NYUv2, along
with MTL architecture transfer, are provided in Sec. B.4.

Ablation study (design & λ1, λ2). We do an ablation study
of the MTL-UE design, with results in Tab. 7. Compared
to ①, ② introduces an auto-encoder for perturbation gener-
ation, but shows little impact, even reducing performance
on MTL models. ③, which relies solely on learnable class-
wise feature embeddings, shows a significant performance
improvement over ①, emphasizing the role of embedding
priors in reducing intra-class variance. Additionally, build-
ing on ③, ours incorporates latents z from the input x,
and further enhances performance, likely due to improved
optimization by leveraging additional information from x.
Finally, ④ excludes intra-task and ⑤ excludes inter-task
embedding regularization, both showing that embedding
regularization enhances performance. We also provide an
ablation study of hyperparameters λ1 and λ2 in Sec. B.2,
showing that MTL-UE is not sensitive to them.

Partial task protection. We explore the scenario, where
only selected tasks are unlearnable, using MTL-UE-SEP.
After optimizing the generator, we generate UE by using the
mean of {eki }

Ck

i=1 for learnable tasks instead of ekyk . Results
in Tab. 8 show that for STL models, unprotected tasks match
clean data accuracy, while protected tasks perform like those
trained to protect all tasks. In contrast, MTL models show
degraded performance for all tasks, likely due to shared
encoder learning both benign and spurious features.

Partial data protection. Following Huang et al. (2021), we
convert a portion r of clean T into unlearnable Pr , leaving
the rest as T1−r . We experiment on the NYUv2 using MTL-
UE-SEP. Table 9 shows results for models trained on Pr

mixed with T1−r and only on T1−r . The effectiveness drops

(a) Ours (w/ Intra-ER & Inter-ER) (b) Ours (w/o Intra-ER & Inter-ER)

Figure 7. T-SNE results of the learned class-wise embeddings.

(a) MTL models trained on clean data (b) MTL models trained on unlearnable data

Age Race Gender Age Race Gender

Figure 8. GradCAM of models trained on clean/unlearnable data.

quickly when the data is not fully unlearnable, a limitation
also noted in Huang et al. (2021). Models trained on the
mixture or only partial clean data show similar results, indi-
cating that Pr is ineffective and unlearnable during training.

Computational cost & Parameter count. Sec. A.3 shows
MTL-UE’s efficiency is close to EM and much lower than
TAP and SEP, and LSP and AR are faster due to predefined
patterns. Sec. A.4 shows MTL-UE needs fewer parameters
than EM, TAP, and SEP, but slightly more than AR and LSP.

Resistance to defenses. Sec. B.3 shows MTL-UE is much
more robust to SOTA defenses than baseline UE, likely due
to its clearer semantic patterns, distinct contours, and sketch
lines, which better withstand ISS-induced corruptions.

Feature visualization on UTKFace with MTL-UE-TAP.
Fig.7 shows t-SNE results of the learned class-wise embed-
dings for each task, where Inter-ER improves task separa-
tion and Intra-ER disperses embeddings within tasks. Fig. 8
shows GradCAM results for MTL models on their training
samples, revealing that MTL-UE introduces spurious fea-
tures, shifting focus to irrelevant areas like facial contours
instead of key regions like eyes and noses.

6. Conclusion
This paper presents MTL-UE, the first framework for gen-
erating UE on multi-task datasets for both MTL and STL
models, featuring a plug-and-play design that seamlessly in-
tegrates with existing surrogate-dependent methods. Instead
of optimizing perturbations for each sample, we utilize an
encoder-decoder network with additional sets of class-wise
embeddings. By incorporating task label priors through em-
beddings, MTL-UE reduces the intra-class variance of spu-
rious features for each task. Additionally, the intra-task and
inter-task embedding regularization improve the inter-class
separation of spurious features and minimize redundancy,
further enhancing performance. MTL-UE is also versatile,
supporting dense prediction tasks in MTL. Extensive exper-
iments demonstrate the effectiveness of MTL-UE.

9

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

Acknowledgements
This work was carried out at the Rapid-Rich Object Search
(ROSE) Lab, Nanyang Technological University (NTU),
Singapore. This research is supported by the National Re-
search Foundation, Singapore and Infocomm Media Devel-
opment Authority under its Trust Tech Funding Initiative,
the Basic and Frontier Research Project of PCL, the Major
Key Project of PCL, and Guangdong Basic and Applied
Basic Research Foundation under Grant 2024A1515010454.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do
not reflect the views of National Research Foundation, Sin-
gapore and Infocomm Media Development Authority.

Impact Statement
In summary, our paper introduces MTL-UE, a novel frame-
work for generating unlearnable examples (UEs) that pro-
tects multi-task learning (MTL) data and tasks from unau-
thorized exploitation. As MTL models become increasingly
important for handling a wide range of tasks simultane-
ously, safeguarding such models is critical to ensure privacy
and prevent the misuse of sensitive data. Our approach ad-
dresses the growing need to protect personal or proprietary
data from unauthorized use while reducing the risks of data
theft in critical sectors like healthcare, finance, and security.
Furthermore, it fosters ethical AI development by encour-
aging responsible data use, promoting trust between data
providers and model developers, and contributing to broader
conversations on data protection and privacy regulations.

References
Achituve, I., Diamant, I., Netzer, A., Chechik, G., and Fe-

taya, E. Bayesian uncertainty for gradient aggregation in
multi-task learning. In Proc. Int’l Conf. Machine Learn-
ing, 2024.

Ban, H. and Ji, K. Fair resource allocation in multi-task
learning. In Proc. Int’l Conf. Machine Learning, 2024.

Barreno, M., Nelson, B., Joseph, A. D., and Tygar, J. D.
The security of machine learning. Machine Learning, 81:
121–148, 2010.

Baxter, J. A model of inductive bias learning. J. Artif. Intell.
Res., 12:149–198, 2000.

Biggio, B., Nelson, B., and Laskov, P. Poisoning attacks
against support vector machines. In Proc. Int’l Conf. Ma-
chine Learning, pp. 1467–1474, 2012.

Burt, C. Facial biometrics training dataset leads to bipa
lawsuits against amazon, alphabet and microsoft, jul 2020.
URL https://reurl. cc/dV4rD8, 2020.

Caruana, R. Multitask learning: A knowledge-based source
of inductive bias. In Utgoff, P. E. (ed.), Proc. Int’l
Conf. Machine Learning, pp. 41–48. Morgan Kaufmann,
1993.

Chen, C., Zhang, J., Li, Y., and Han, Z. One for all: A
universal generator for concept unlearnability via multi-
modal alignment. In Proc. Int’l Conf. Machine Learning,
2024.

Chen, S., Zhang, Y., and Yang, Q. Multi-task learning in nat-
ural language processing: An overview. ACM Computing
Surveys, abs/2109.09138, 2021.

Chen, S., Yuan, G., Cheng, X., Gong, Y., Qin, M., Wang, Y.,
and Huang, X. Self-ensemble protection: Training check-
points are good data protectors. In Proc. Int’l Conf. Learn-
ing Representations, 2023.

Chen, Y., Zhao, D., Lv, L., and Zhang, Q. Multi-task learn-
ing for dangerous object detection in autonomous driving.
Inf. Sci., 432:559–571, 2018.

Chowdhuri, S., Pankaj, T., and Zipser, K. Multinet: Multi-
modal multi-task learning for autonomous driving. In
IEEE Winter Conference on Applications of Computer
Vision, WACV 2019, Waikoloa Village, HI, USA, January
7-11, 2019, pp. 1496–1504. IEEE, 2019.

Dai, Y., Fei, N., and Lu, Z. Improvable gap balancing for
multi-task learning. In Uncertainty in Artificial Intelli-
gence, pp. 496–506. PMLR, 2023.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In Proc. Int’l Conf. Learning
Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Feng, J., Cai, Q.-Z., and Zhou, Z.-H. Learning to con-
fuse: generating training time adversarial data with auto-
encoder. Proc. Annual Conf. Neural Information Process-
ing Systems, 32, 2019.

Fifty, C., Amid, E., Zhao, Z., Yu, T., Anil, R., and Finn,
C. Efficiently identifying task groupings for multi-task
learning. In Proc. Annual Conf. Neural Information Pro-
cessing Systems, volume 34, pp. 27503–27516, 2021.

Fontana, M., Spratling, M. W., and Shi, M. When multitask
learning meets partial supervision: A computer vision
review. Proc. IEEE, 112(6):516–543, 2024.

Fowl, L., Goldblum, M., Chiang, P.-y., Geiping, J., Czaja,
W., and Goldstein, T. Adversarial examples make strong
poisons. Proc. Annual Conf. Neural Information Process-
ing Systems, 34:30339–30351, 2021.

10

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

Fu, S., He, F., Liu, Y., Shen, L., and Tao, D. Robust unlearn-
able examples: Protecting data privacy against adversarial
learning. In Proc. Int’l Conf. Learning Representations,
2022.

Gao, X., Zhao, Y., Dudziak, Ł., Mullins, R., and Xu, C.-z.
Dynamic channel pruning: Feature boosting and sup-
pression. In Proc. Int’l Conf. Learning Representations,
2019.

Gao, X., Xu, C.-Z., et al. Mora: Improving ensemble ro-
bustness evaluation with model reweighing attack. In
Proc. Annual Conf. Neural Information Processing Sys-
tems, pp. 26955–26965, 2022.

Goldblum, M., Tsipras, D., Xie, C., Chen, X.,
Schwarzschild, A., Song, D., Madry, A., Li, B., and Gold-
stein, T. Dataset security for machine learning: Data poi-
soning, backdoor attacks, and defenses. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 45(2):1563–
1580, 2022.

Gu, T., Dolan-Gavitt, B., and Garg, S. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017.

Guo, M., Haque, A., Huang, D.-A., Yeung, S., and Fei-Fei,
L. Dynamic task prioritization for multitask learning. In
Proc. IEEE European Conf. Computer Vision, pp. 270–
287, 2018.

Guo, P., Lee, C.-Y., and Ulbricht, D. Learning to branch
for multi-task learning. In Proc. Int’l Conf. Machine
Learning, pp. 3854–3863. PMLR, 2020.

Hadash, G., Shalom, O. S., and Osadchy, R. Rank and
rate: multi-task learning for recommender systems. In
Pera, S., Ekstrand, M. D., Amatriain, X., and O’Donovan,
J. (eds.), Proceedings of the 12th ACM Conference on
Recommender Systems, pp. 451–454. ACM, 2018.

He, H., Zha, K., and Katabi, D. Indiscriminate poisoning at-
tacks on unsupervised contrastive learning. In Proc. Int’l
Conf. Learning Representations. OpenReview.net, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proc. IEEE Int’l Conf. Com-
puter Vision and Pattern Recognition, pp. 770–778, 2016.

Hu, Z., Li, X., Tang, S., Liu, J., Hu, Y., and Duan, L.-Y.
Lead: Exploring logit space evolution for model selec-
tion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 28664–
28673, 2024.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition, pp. 4700–4708, 2017.

Huang, H., Ma, X., Erfani, S. M., Bailey, J., and Wang,
Y. Unlearnable examples: Making personal data unex-
ploitable. In Proc. Int’l Conf. Learning Representations,
2021.

Jin, C., Li, Y., Zhao, M., Zhao, S., Wang, Z., He, X., Han,
L., Che, T., and Metaxas, D. N. Lor-VP: Low-rank vi-
sual prompting for efficient vision model adaptation. In
Proc. Int’l Conf. Learning Representations, 2025a.

Jin, C., Peng, H., Zhang, Q., Tang, Y., Metaxas, D. N., and
Che, T. Two heads are better than one: Test-time scaling
of multi-agent collaborative reasoning. arXiv preprint
arXiv:2504.09772, 2025b.

Karkkainen, K. and Joo, J. Fairface: Face attribute dataset
for balanced race, gender, and age for bias measurement
and mitigation. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pp. 1548–
1558, 2021.

Kendall, A., Gal, Y., and Cipolla, R. Multi-task learning
using uncertainty to weigh losses for scene geometry and
semantics. In Proc. IEEE Int’l Conf. Computer Vision
and Pattern Recognition, pp. 7482–7491, 2018.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In Proc. Int’l Conf. Machine
Learning, pp. 1885–1894. PMLR, 2017.

Lin, B., Ye, F., Zhang, Y., and Tsang, I. Reasonable effec-
tiveness of random weighting: A litmus test for multi-task
learning. Transactions on Machine Learning Research,
2022.

Lin, X., Zhen, H.-L., Li, Z., Zhang, Q.-F., and Kwong, S.
Pareto multi-task learning. In Proc. Annual Conf. Neural
Information Processing Systems, volume 32, 2019.

Lin, X., Yu, Y., Xia, S., Jiang, J., Wang, H., Yu, Z., Liu, Y.,
Fu, Y., Wang, S., Tang, W., et al. Safeguarding medical
image segmentation datasets against unauthorized train-
ing via contour-and texture-aware perturbations. arXiv
preprint arXiv:2403.14250, 2024.

Liu, S., Johns, E., and Davison, A. J. End-to-end multi-task
learning with attention. In Proc. IEEE Int’l Conf. Com-
puter Vision and Pattern Recognition, pp. 1871–1880.
Computer Vision Foundation / IEEE, 2019a.

Liu, S., Johns, E., and Davison, A. J. End-to-end multi-task
learning with attention. In Proc. IEEE Int’l Conf. Com-
puter Vision and Pattern Recognition, pp. 1871–1880,
2019b.

Liu, S., Wang, Y., and Gao, X.-S. Game-theoretic unlearn-
able example generator. In Proc. AAAI Conf. on Artificial
Intelligence, volume 38, pp. 21349–21358, 2024a.

11

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

Liu, W., Deng, Z., Niu, Z., Wang, J., Wang, H., Zeng, Z.,
and Li, R. Breaking free from MMI: A new frontier in
rationalization by probing input utilization. In Proc. Int’l
Conf. Learning Representations, 2025a.

Liu, W., Niu, Z., Gao, L., Deng, Z., Wang, J., Wang, H.,
and Li, R. Adversarial cooperative rationalization: The
risk of spurious correlations in even clean datasets. In
Proc. Int’l Conf. Machine Learning, 2025b.

Liu, X., Jia, X., Xun, Y., Liang, S., and Cao, X. Mul-
timodal unlearnable examples: Protecting data against
multimodal contrastive learning. In Proceedings of the
32nd ACM International Conference on Multimedia, pp.
8024–8033, 2024b.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proc. IEEE Int’l Conf. Computer
Vision, pp. 3730–3738, 2015.

Liu, Z., Zhao, Z., and Larson, M. Image shortcut squeez-
ing: Countering perturbative availability poisons with
compression. Proc. Int’l Conf. Machine Learning, 2023.

Lu, Y., Kamath, G., and Yu, Y. Exploring the limits of
model-targeted indiscriminate data poisoning attacks. In
Proc. Int’l Conf. Machine Learning, 2023.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In Proc. Int’l Conf. Learning Repre-
sentations, 2018.

Meng, R., Yi, C., Yu, Y., Yang, S., Shen, B., and Kot, A. C.
Semantic deep hiding for robust unlearnable examples.
IEEE Transactions on Information Forensics and Security,
2024.

Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. Cross-
stitch networks for multi-task learning. In Proc. IEEE
Int’l Conf. Computer Vision and Pattern Recognition, pp.
3994–4003. IEEE Computer Society, 2016.

Nathan Silberman, Derek Hoiem, P. K. and Fergus, R. In-
door segmentation and support inference from rgbd im-
ages. In Proc. IEEE European Conf. Computer Vision,
2012.

Navon, A., Shamsian, A., Achituve, I., Maron, H.,
Kawaguchi, K., Chechik, G., and Fetaya, E. Multi-task
learning as a bargaining game. In Proc. Int’l Conf. Ma-
chine Learning, pp. 16428–16446. PMLR, 2022.

Qin, T., Gao, X., Zhao, J., and Ye, K. Destruction-
restoration suppresses data protection perturbations
against diffusion models. In 2023 IEEE 35th Interna-
tional Conference on Tools with Artificial Intelligence
(ICTAI), pp. 586–594. IEEE, 2023a.

Qin, T., Gao, X., Zhao, J., Ye, K., and Xu, C.-Z. Learn-
ing the unlearnable: Adversarial augmentations sup-
press unlearnable example attacks. arXiv preprint
arXiv:2303.15127, 2023b.

Qin, T., Gao, X., Zhao, J., Ye, K., and Xu, C.-z. Ap-
bench: A unified availability poisoning attack and de-
fenses benchmark. Transactions on Machine Learning
Research, 2024.

Royer, A., Blankevoort, T., and Ehteshami Bejnordi, B.
Scalarization for multi-task and multi-domain learning at
scale. In Proc. Annual Conf. Neural Information Process-
ing Systems, volume 36, 2023.

Ruder, S. An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098, 2017.

Sandoval-Segura, P., Singla, V., Geiping, J., Goldblum, M.,
Goldstein, T., and Jacobs, D. Autoregressive perturba-
tions for data poisoning. Proc. Annual Conf. Neural
Information Processing Systems, 35:27374–27386, 2022.

Schwarzschild, A., Goldblum, M., Gupta, A., Dickerson,
J. P., and Goldstein, T. Just how toxic is data poisoning?
a unified benchmark for backdoor and data poisoning
attacks. In Proc. Int’l Conf. Machine Learning, pp. 9389–
9398. PMLR, 2021.

Sener, O. and Koltun, V. Multi-task learning as multi-
objective optimization. In Proc. Annual Conf. Neural
Information Processing Systems, volume 31, 2018.

Senushkin, D., Patakin, N., Kuznetsov, A., and Konushin, A.
Independent component alignment for multi-task learning.
In Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition, pp. 20083–20093, 2023.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Bengio, Y.
and LeCun, Y. (eds.), Proc. Int’l Conf. Learning Repre-
sentations, 2015.

Standley, T., Zamir, A., Chen, D., Guibas, L., Malik, J.,
and Savarese, S. Which tasks should be learned together
in multi-task learning? In Proc. Int’l Conf. Machine
Learning. PMLR, 2020.

Sun, Y., Zhang, H., Zhang, T., Ma, X., and Jiang, Y.-G.
Unseg: One universal unlearnable example generator is
enough against all image segmentation. arXiv preprint
arXiv:2410.09909, 2024.

Vincent, J. Google accused of inappropriate access to medi-
cal data in potential class-action lawsuit, jun 2019. URL
https://reurl. cc/bzK69v, 2019.

12

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

Wang, C., Yu, Y., Guo, L., and Wen, B. Benchmarking
adversarial robustness of image shadow removal with
shadow-adaptive attacks. In Proc. IEEE Int’l Conf. Acous-
tics, Speech, and Signal Processing, pp. 13126–13130.
IEEE, 2024a.

Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., and Sum-
mers, R. M. Chestx-ray8: Hospital-scale chest x-ray
database and benchmarks on weakly-supervised clas-
sification and localization of common thorax diseases.
In Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition, pp. 2097–2106, 2017.

Wang, X., Li, M., Liu, W., Zhang, H., Hu, S., Zhang,
Y., Zhou, Z., and Jin, H. Unlearnable 3d point clouds:
Class-wise transformation is all you need. arXiv preprint
arXiv:2410.03644, 2024b.

Wang, X., Gao, X., Liao, D., Qin, T., Lu, Y., and Xu, C.-
Z. A3: Few-shot prompt learning of unlearnable ex-
amples with cross-modal adversarial feature alignment.
In Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition, 2025a.

Wang, X., Liang, S., Liao, D., Fang, H., Liu, A., Cao, X.,
Lu, Y.-l., Chang, E.-C., and Gao, X. Lie detector: Uni-
fied backdoor detection via cross-examination framework.
arXiv preprint arXiv:2503.16872, 2025b.

Wu, S., Chen, S., Xie, C., and Huang, X. One-pixel shortcut:
On the learning preference of deep neural networks. In
Proc. Int’l Conf. Learning Representations, 2023.

Xia, S., Yang, W., Yu, Y., Lin, X., Ding, H., DUAN, L., and
Jiang, X. Transferable adversarial attacks on sam and
its downstream models. In Proc. Annual Conf. Neural
Information Processing Systems, 2024a.

Xia, S., Yi, Y., Jiang, X., and Ding, H. Mitigating the
curse of dimensionality for certified robustness via dual
randomized smoothing. In Proc. Int’l Conf. Learning
Representations, 2024b.

Xia, S., Yu, Y., Yang, W., Ding, M., Chen, Z., Duan, L.,
Kot, A. C., and Jiang, X. Theoretical insights in model
inversion robustness and conditional entropy maximiza-
tion for collaborative inference systems. arXiv preprint
arXiv:2503.00383, 2025.

Xiao, H., Biggio, B., Brown, G., Fumera, G., Eckert, C.,
and Roli, F. Is feature selection secure against training
data poisoning? In Proc. Int’l Conf. Machine Learning,
pp. 1689–1698. PMLR, 2015.

Yang, W., Hu, Z., Lin, L., Liu, J., and Duan, L.-Y. Coding
for intelligence from the perspective of category. arXiv
preprint arXiv:2407.01017, 2024.

Yu, D., Zhang, H., Chen, W., Yin, J., and Liu, T.-Y. Avail-
ability attacks create shortcuts. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 2367–2376, 2022a.

Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., and
Finn, C. Gradient surgery for multi-task learning. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Proc. Annual Conf. Neural Information
Processing Systems, 2020.

Yu, Y., Gao, X., and Xu, C.-Z. Lafeat: Piercing through
adversarial defenses with latent features. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 5735–5745, 2021.

Yu, Y., Yang, W., Tan, Y.-P., and Kot, A. C. Towards robust
rain removal against adversarial attacks: A comprehen-
sive benchmark analysis and beyond. In Proc. IEEE
Int’l Conf. Computer Vision and Pattern Recognition, pp.
6013–6022, 2022b.

Yu, Y., Gao, X., and Xu, C.-Z. Lafit: Efficient and reliable
evaluation of adversarial defenses with latent features.
IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 46(1):354–369, 2023a.

Yu, Y., Wang, Y., Yang, W., Lu, S., Tan, Y.-P., and Kot, A. C.
Backdoor attacks against deep image compression via
adaptive frequency trigger. In Proc. IEEE Int’l Conf. Com-
puter Vision and Pattern Recognition, pp. 12250–12259,
2023b.

Yu, Y., Wang, Y., Xia, S., Yang, W., Lu, S., Tan, Y.-P.,
and Kot, A. C. Purify unlearnable examples via rate-
constrained variational autoencoders. In International
Conference on Machine Learning, ICML 2024, 2024a.

Yu, Y., Wang, Y., Yang, W., Guo, L., Lu, S., Duan, L.-
Y., Tan, Y.-P., and Kot, A. C. Robust and transferable
backdoor attacks against deep image compression with se-
lective frequency prior. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 2024b.

Yu, Y., Zheng, Q., Yang, S., Yang, W., Liu, J., Lu, S., Tan,
Y.-P., Lam, K.-Y., and Kot, A. Unlearnable examples de-
tection via iterative filtering. In International Conference
on Artificial Neural Networks, pp. 241–256. Springer,
2024c.

Yu, Y., Xia, S., Lin, X., Yang, W., Lu, S., Tan, Y.-P., and Kot,
A. Backdoor attacks against no-reference image quality
assessment models via a scalable trigger. In Proc. AAAI
Conf. on Artificial Intelligence, volume 39, pp. 9698–
9706, 2025.

Yuan, C.-H. and Wu, S.-H. Neural tangent generalization
attacks. In Proc. Int’l Conf. Machine Learning, pp. 12230–
12240. PMLR, 2021.

13

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

Yun, H. and Cho, H. Achievement-based training progress
balancing for multi-task learning. In Proc. IEEE Int’l
Conf. Computer Vision, pp. 16935–16944, 2023.

Zhang, J., Ma, X., Yi, Q., Sang, J., Jiang, Y.-G., Wang, Y.,
and Xu, C. Unlearnable clusters: Towards label-agnostic
unlearnable examples. In Proc. IEEE Int’l Conf. Com-
puter Vision and Pattern Recognition, pp. 3984–3993,
2023.

Zhang, Y. and Yang, Q. A survey on multi-task learning.
IEEE transactions on knowledge and data engineering,
34(12):5586–5609, 2021.

Zhang, Z., Song, Y., and Qi, H. Age progression/regression
by conditional adversarial autoencoder. In Proc. IEEE
Int’l Conf. Computer Vision and Pattern Recognition.
IEEE, 2017.

Zhao, B. and Lao, Y. Clpa: Clean-label poisoning avail-
ability attacks using generative adversarial nets. In
Proc. AAAI Conf. on Artificial Intelligence, volume 36,
pp. 9162–9170, 2022.

Zheng, Q., Yu, Y., Yang, S., Liu, J., Lam, K.-Y., and Kot,
A. Towards physical world backdoor attacks against
skeleton action recognition. In Proc. IEEE European
Conf. Computer Vision, pp. 215–233. Springer, 2024.

Zhu, Y., Miao, Y., Dong, Y., and Gao, X.-S. Toward
availability attacks in 3d point clouds. arXiv preprint
arXiv:2407.11011, 2024a.

Zhu, Y., Yu, L., and Gao, X.-S. Detection and defense of
unlearnable examples. In Proc. AAAI Conf. on Artificial
Intelligence, volume 38, pp. 17211–17219, 2024b.

14

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

A. More experimental details
A.1. Details of the baseline UE methods

For experiments on classification datasets, we follow specific setups for both surrogate-dependent and surrogate-free
methods:

• Surrogate-dependent Methods:

– For EM (Huang et al., 2021), TAP (Fowl et al., 2021), and SEP (Chen et al., 2023), we use MTL models with
Linear Scalarization (LS) as the surrogate model.

– For TAP and SEP, following their default settings, we employ PGD (Madry et al., 2018) with 250 steps and a step
size of 0.064

255 to generate adversarial perturbations via targeted attacks. The target class for the k-th task is set as
(yk + Ck//2)%Ck, where yk is the original label and Ck represents the total number of classes for the k-th task.

– For SEP, we use an ensemble of 15 checkpoints to enhance attack effectiveness.
– For EM, perturbations are optimized using PGD with 20 steps and a step size of 0.8

255 . Surrogate models are trained
for 10 iterations after each loop of perturbation optimization. The stopping criterion, as per the default setting,
requires the overall training set accuracy to reach 99%.

• Surrogate-free Methods:

– For LSP (Yu et al., 2022a) and AR (Sandoval-Segura et al., 2022), we evaluate two fusion strategies:

* Averaging-based Fusion: For each k-th task, Ck class-wise perturbations with the same shape as the input are
generated. These are then fused using the averaging-based approach.

* Patch-based Fusion: We divide the input into N × N patches, where N = 2⌈log2(⌈K
0.5⌉)⌉. For an input

shape of 3×H ×W , the patch size becomes 3×H//N ×W//N . Perturbations for the K tasks are placed
in corresponding patches (the first K patches) based on their labels yk. These perturbations are generated
separately for Ck classes in each patch for each k-th task, and then the whole perturbations are interpolated
from shape 3×N ∗ (H//N)×N ∗ (W//N) to match the input shape 3×H ×W .

– It is worth noting that for both LSP and AR, the perturbation bound is set to ℓ2 = 1 regarding the inputs with
a shape of 32× 32, as per their default settings. However, for larger input sizes, such as H ×W , the bound is
adjusted to ℓ2 = 1× H

32 × W
32 to ensure comparability with other methods.

For experiments on the NYUv2 dataset, we include only surrogate-dependent methods:

• For EM (Huang et al., 2021), TAP (Fowl et al., 2021), and SEP (Chen et al., 2023), we use MTL models with Linear
Scalarization (LS) as the surrogate model.

• For TAP and SEP, following their default settings, PGD (Madry et al., 2018) is employed to generate adversarial
perturbations via targeted attacks. For the semantic segmentation task, the target class is defined as (yk + 13//2)%13,
given there are 13 semantic classes in total. For the depth estimation and surface normal estimation tasks, where
defining a target is challenging, untargeted attacks are used, aiming to maximize the loss between the attacked prediction
and the ground truth labels.

• For SEP, an ensemble of 10 checkpoints is used to enhance attack effectiveness.

• For EM, perturbations are optimized using PGD, while surrogate models are trained for 10 iterations after each loop of
perturbation optimization. The stopping criterion is reached when the loop of perturbation optimization completes
10 iterations, resulting in a total of 200 iterations for each perturbation optimization (as each PGD step runs for 20
iterations).

15

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

A.2. Details of the models and the training

Design of MTL-UE generator. Assume the input shape is set to 3×H ×W or 1×H ×W for Grayscale images such as
the ChestX-ray-14 dataset, and there are K tasks. For the design of MTL-UE’s generator, we use 9 convolutional layers
and ×0.5 downsampling as E(·;ϕE), resulting in z with shape 128 × H

2 × W
2 . For the set

{
{eki }

Ck
i=1

}K

k=1
, each ekyk is

designed to match the length and width of z, giving it the shape 16× H
2 × W

2 . For D(·;ϕD), we use 4 ConvTranspose2d
layers and one ×2 upsampling. The input to D(·;ϕD) is the concatenation of z and {ekyk}Kk=1, resulting in a shape of
(128 + 16×K)× H

2 × W
2 , and the output is the same shape as the input to E(·;ϕE).

Specifically, for the NYUv2 dataset, we use the embedder Ek(·;ϕEk) instead of ekyk . The structure of the embedder is
identical to that of the corresponding E(·;ϕE), with the input shape for segmentation labels and depth being 1×H ×W ,
and the input for normal labels being 3×H ×W .

MTL and STL model training. For the CelebA, ChestX-ray14, and UTKFace datasets, we train the models for 60 epochs
using the Adam optimizer, starting with a learning rate of 1e-3. We apply the MultiStepLR scheduler, with milestones at
epochs 36 and 48, and a gamma of 0.1 to adjust the learning rate. The batch size is set to 512 for CelebA and UTKFace,
and 128 for ChestX-ray14. Data augmentation techniques include RandomCrop and RandomHorizontalFlip to improve the
model’s generalization. For the NYUv2 dataset, we train the models for 200 epochs, starting with a learning rate of 1e-4,
and use a StepLR scheduler with a step size of 100 and a gamma of 0.1 to reduce the learning rate during training. We set
the batch size to 8 for this dataset due to the larger image dimensions and the computational load involved.

MTL-UE generator training. The batch sized, training epochs, learning rates, optimizers, and learning rate schedulers
for the generator are configured identically to those used for training the MTL models on the respective datasets. For the
hyperparameters in Alg. 1, ϵ is set to match the baseline methods, with the default value ϵ = 8

255 for all datasets. The weight
λ1 is set to 20, and λ2 is set to 100 across all datasets. For MTL-UE-EM, where the ”Train-surrogate” is set to True, we use
10 iterations, consistent with the baseline EM methods. For MTL-UE-TAP and MTL-UE-SEP, where ”Train-surrogate” is
set to False, we pretrain the MTL models on the respective datasets using the default training settings as described earlier.
For the remaining configurations, we follow the same setup as the corresponding baseline methods: EM, TAP, and SEP.

A.3. Computational Complexity

We also analyze the computational complexity of MTL-UE and the baseline methods. For both EM and MTL-UE-EM,
the computational complexity is nearly identical since they share the same stopping criterion. For TAP and SEP, each
perturbation requires 250 optimization steps on each surrogate model. In contrast, for MTL-UE-TAP and MTL-UE-SEP,
perturbations are optimized once per epoch, with a total of 60 epochs for classification datasets and 200 epochs for the
NYUv2 dataset, which means 60 optimization steps on each sample for classification dataset, and 200 optimization steps on
each sample for NYUv2 dataset. This makes our methods more efficient compared to the baseline TAP and SEP. For AR
and LSP, the perturbations are predefined and hand-crafted, making these methods the most computationally efficient.

A.4. Parameter Quantity

We provide the parameter counts for all competing methods:

• For EM, TAP, and SEP, the parameters correspond to the perturbations. For example, on the CelebA dataset, the
perturbation parameters have a shape of 162770× 3× 70× 70 = 2, 392, 719, 000.

• For our method, the parameters are derived from the MTL-UE generator, which consists of 3,086,147 parameters for
the CelebA dataset.

• For AR and LSP, the parameter count for the averaging-based fusion method is 2× 40× 3× 70× 70 = 1, 176, 000,
while for the patch-based fusion method, it is 2× 40× 3× 8× 8 = 15, 360.

Overall, our method is efficient, requiring only slightly more parameters than the patch-based AR and LSP methods.

16

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

Table 10. Quantitative results on the UTKFace with different number of tasks: We report the average accuracy (%) across the selected
tasks. Both MTL and STL models adopt ResNet-18 as the encoder. The MTL models employ LS as the task-weighting.

Selected tasks → Age Age, Race Age, Race, Gender

Model → MTL/STL MTL STL MTL STL
Metric → Avg.↓ Avg.↓ Avg.↓ Avg.↓ Avg.↓
Clean 57.51 70.79 70.45 78.97 78.92
LSP (Yu et al., 2022a) (Patch) 10.65 13.11 18.27 28.58 32.43
AR (Sandoval-Segura et al., 2022) (Patch) 9.47 14.60 14.61 27.41 26.75
LSP (Yu et al., 2022a) (Average) 10.65 18.23 30.73 28.16 45.91
AR (Sandoval-Segura et al., 2022) (Average) 9.47 12.34 14.07 36.79 36.67
EM (Huang et al., 2021) 10.89 19.16 19.26 31.74 50.88
TAP (Fowl et al., 2021) 25.82 31.57 49.10 39.29 59.36
SEP (Chen et al., 2023) 22.74 32.63 48.86 40.70 60.78

MTL-UE-EM 18.82 10.60 8.82 25.84 26.32
MTL-UE-TAP 9.18 9.74 11.92 19.84 25.59
MTL-UE-SEP 5.49 11.78 12.61 21.19 28.24

Table 11. Ablation study of the hyperparameters of MTL-UE on CelebA.
Model → MTL STL

Base UE → EM TAP SEP EM TAP SEP

⑥: λ1 = 2, λ2 = 100 75.04 60.53 59.39 73.88 69.67 75.43
⑦: λ1 = 200, λ2 = 100 74.27 59.60 59.06 75.13 67.49 76.02
⑧: λ1 = 20, λ2 = 10 73.85 58.86 58.81 73.29 67.84 77.08
⑨: λ1 = 20, λ2 = 1000 74.23 60.02 58.09 74.95 68.98 75.82

MTL-UE (λ1 = 20, λ2 = 100) 74.38 59.51 58.73 74.26 68.65 76.39

Table 12. Results under state-of-the-art defenses. We select the UTKFace dataset and train the MTL models.
Defense→ None ISS-JPEG (Liu et al., 2023) ISS-Grayscale (Liu et al., 2023) ISS-BDR (Liu et al., 2023)
Tasks→ Age↓ Race↓ Gender↓ Avg.↓ Age↓ Race↓ Gender↓ Avg.↓ Age↓ Race↓ Gender↓ Avg.↓ Age↓ Race↓ Gender↓ Avg.↓
Clean 60.32 84.07 92.51 78.97 59.26 83.92 92.24 78.47 59.45 83.19 91.77 78.14 58.69 82.45 92.32 77.82
LSP (Patch) 18.40 17.51 49.83 28.58 44.51 68.48 87.78 66.93 15.80 22.26 53.00 30.35 34.56 41.84 78.92 51.77
AR (Patch) 9.70 19.66 52.87 27.41 47.07 82.55 90.99 73.54 27.41 41.35 52.72 40.49 14.64 26.24 52.78 31.22
LSP (Average) 12.59 19.72 52.17 28.16 49.81 80.76 90.86 73.81 16.98 54.81 56.50 42.76 32.41 65.70 78.23 58.78
AR (Average) 13.92 41.03 55.42 36.79 57.87 83.40 92.07 77.78 6.46 19.28 52.83 26.19 24.54 48.06 81.16 51.25
EM 19.24 17.43 58.57 31.74 58.38 82.49 91.86 77.57 19.81 24.81 58.84 34.49 19.81 24.81 58.84 34.49
TAP 25.86 39.28 52.74 39.29 46.69 78.27 89.18 71.38 24.20 56.54 69.37 50.04 24.20 56.54 69.37 50.04
SEP 25.42 44.03 52.64 40.70 47.09 78.69 89.51 71.77 23.06 49.03 57.97 43.35 23.06 49.03 57.97 43.35

MTL-UE-EM 10.00 12.78 54.73 25.84 6.75 14.05 57.78 26.20 7.72 16.31 57.62 27.22 12.93 22.51 63.35 32.93
MTL-UE-TAP 9.49 18.23 31.81 19.84 15.82 26.27 26.39 22.83 10.68 16.73 40.27 10.68 15.02 24.73 26.39 22.05
MTL-UE-SEP 7.28 16.20 40.08 21.19 15.23 39.83 43.27 32.78 5.86 28.78 45.04 26.56 18.02 34.14 42.93 31.69

B. Additional Results
B.1. More quantitative results
Performance of UE Vs. the number of tasks. Additional results on the UTKFace dataset with varying numbers of tasks
are presented in Tab. 10. Even with a limited number of tasks, MTL-UE consistently outperforms the baseline approaches.

B.2. More ablation study
We do additional ablation studies on MTL-UE, focusing on the hyperparameters λ1 and λ2 in Alg. 1. Specifically,
experiments are conducted on the CelebA dataset. The results in Tab. 11 indicate that MTL-UE is relatively insensitive to
these hyperparameters. This may be because LIntra and LInter are easier to optimize within the combined loss framework in
Alg. 1. As long as λ1 and λ2 are not set too small, these hyperparameters have minimal impact on the optimization process
of MTL-UE.

B.3. Results to defenses
We evaluate MTL-UE and competing methods against existing UE defenses applicable to MTL models. Experiments
are conducted on the UTKFace dataset using MTL models. We select the SOTA defense, Image Shortcut Squeezing
(ISS) (Liu et al., 2023), which includes three preprocessing-based techniques: JPEG compression (quality set to 10),
grayscale conversion, and bit-depth reduction (BDR, depth set to 2), follwoing their default settings. Results in Tab. 12
show that MTL-UE remains significantly more robust and consistent than baseline UE methods. Notably, under JPEG
compression, all baseline methods fail, whereas MTL-UE maintains strong performance. This robustness is likely due to
MTL-UE’s clearer semantic patterns, distinct contours, and sketch lines, which better withstand ISS-induced corruptions.

17

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

Table 13. Backbone transfer: Performance on the NYUv2 (Nathan Silberman & Fergus, 2012) when transfering to MTL and STL models
with various backbone. The MTL models employ HPS (Caruana, 1993) as architecture and linear scalarization as the task-weighting
strategy.

Backbone→ ResNet-101 ResNet-152 WideResNet-50

Task→ Segmentation Depth Normal Segmentation Depth Normal Segmentation Depth Normal
Metric→ mIoU↓ PAcc↓ AErr↑ RErr↑ Mean↑ MED↑ mIoU↓ PAcc↓ AErr↑ RErr↑ Mean↑ MED↑ mIoU↓ PAcc↓ AErr↑ RErr↑ Mean↑ MED↑
Clean 54.38 76.00 0.3802 0.1582 23.16 16.79 54.88 76.29 0.3690 0.1502 22.71 16.33 52.42 74.55 0.4044 0.1746 24.14 17.80
EM 31.78 50.72 0.5634 0.2076 28.25 22.41 32.51 50.03 0.5395 0.1990 28.09 22.09 29.08 45.71 0.6352 0.2246 30.71 25.84
TAP 37.73 56.71 0.4905 0.1908 27.59 21.25 32.96 50.58 0.5176 0.1922 28.22 21.97 37.98 57.13 0.5051 0.2016 29.41 23.26
SEP 27.85 40.81 0.5457 0.2151 30.61 24.97 29.78 43.91 0.5789 0.2061 30.11 24.18 30.73 45.99 0.5425 0.2175 29.81 23.61

MTL-UE-EM 2.38 16.03 0.8887 0.2903 38.23 33.47 1.75 15.82 0.9638 0.3062 34.91 29.19 2.34 16.16 0.8448 0.2812 36.71 31.71
MTL-UE-TAP 23.25 37.00 0.9739 0.3203 37.56 31.66 24.10 35.71 0.8993 0.2942 36.66 30.25 23.59 36.66 0.8403 0.2853 38.72 32.87
MTL-UE-SEP 18.55 29.78 0.9043 0.3046 42.07 36.44 19.31 25.59 0.8499 0.2835 37.64 31.72 17.38 29.48 0.8095 0.2836 41.15 35.84

Table 14. Weighting strategies transfer: Performance on the NYUv2 (Nathan Silberman & Fergus, 2012) when transfering to MTL and
STL models with various task-weighting strategies. The MTL models employ HPS (Caruana, 1993) as architecture and ResNet-18 (He
et al., 2016) as encoder’s backbone.
Weighting→ UW RLW Align FairGrad

Task→ Segmentation Depth Normal Segmentation Depth Normal Segmentation Depth Normal Segmentation Depth Normal
Metric→ mIoU↓ PAcc↓ AErr↑ RErr↑ Mean↑ MED↑ mIoU↓ PAcc↓ AErr↑ RErr↑ Mean↑ MED↑ mIoU↓ PAcc↓ AErr↑ RErr↑ Mean↑ MED↑ mIoU↓ PAcc↓ AErr↑ RErr↑ Mean↑ MED↑
Clean 52.99 74.77 0.3941 0.1696 23.76 17.33 52.70 74.90 0.3906 0.1622 23.43 16.92 52.50 74.24 0.3966 0.1707 22.96 16.37 52.21 74.32 0.3927 0.1694 22.85 16.34
EM 25.70 43.96 0.6124 0.2312 30.23 24.30 28.64 50.19 0.6407 0.2391 30.57 24.94 26.01 44.12 0.5997 0.2281 29.53 23.15 28.03 48.94 0.6367 0.2314 30.02 23.72
TAP 21.02 35.33 0.6273 33.76 27.86 0.2532 19.79 34.79 0.6449 0.2485 34.22 27.78 18.88 31.75 0.6261 0.2441 33.06 26.68 21.12 36.06 0.6314 0.2382 32.95 26.29
SEP 12.20 24.40 0.6996 0.2823 36.77 31.19 11.40 23.67 0.7048 0.2899 35.88 30.20 12.36 24.72 0.6882 0.2813 35.98 29.73 13.47 25.78 0.6812 0.2766 35.16 29.59

MTL-UE-EM 2.33 15.96 0.9515 0.3110 38.33 34.14 2.05 15.79 1.0405 0.3344 37.03 32.16 1.78 15.74 1.0002 0.3265 37.34 31.58 2.07 15.82 0.9987 0.3240 35.84 29.91
MTL-UE-TAP 17.08 28.98 0.9620 0.3177 40.03 34.48 16.85 29.16 1.0631 0.3489 40.96 35.68 18.31 29.53 1.0100 0.3310 38.17 31.78 17.93 30.83 0.9513 0.3169 38.78 32.89
MTL-UE-SEP 13.96 21.71 0.8600 0.2936 41.19 35.85 15.64 28.85 0.9047 0.3057 42.49 37.15 16.50 26.67 0.8981 0.3024 41.85 35.67 16.58 26.36 0.9020 0.3017 40.59 34.87

Table 15. Architecture transfer: Performance on the NYUv2 (Nathan Silberman & Fergus, 2012) when transfering to MTL and STL
models with various architecture. The MTL models employ ResNet-18 (He et al., 2016) as encoder’s backbone and linear scalarization as
the task-weighting strategy.

Backbone→ Cross-stitch MTAN LTB

Task→ Segmentation Depth Normal Segmentation Depth Normal Segmentation Depth Normal
Metric→ mIoU↓ PAcc↓ AErr↑ RErr↑ Mean↑ MED↑ mIoU↓ PAcc↓ AErr↑ RErr↑ Mean↑ MED↑ mIoU↓ PAcc↓ AErr↑ RErr↑ Mean↑ MED↑
Clean 52.48 74.74 0.3874 0.1621 23.34 16.52 53.99 75.44 0.3806 0.1619 23.34 16.67 51.53 74.30 0.3819 0.1585 23.44 16.54
EM 24.03 42.11 0.6582 0.2377 30.29 23.96 27.04 45.61 0.6241 0.2334 30.32 24.03 28.55 50.00 0.6357 0.2334 30.04 23.65
TAP 21.05 38.89 0.6622 0.2455 33.99 27.18 19.72 30.56 0.6468 0.2484 34.06 27.94 18.24 32.63 0.6527 0.2472 33.57 26.86
SEP 9.80 21.18 0.7687 0.2814 36.03 29.83 10.53 21.45 0.7049 0.2854 36.06 30.25 10.53 21.98 0.7679 0.2793 36.46 30.47

MTL-UE-EM 1.78 15.77 1.0116 0.3249 35.18 29.46 1.54 15.66 0.9962 0.3211 36.00 30.29 1.52 15.67 1.0654 0.3408 36.16 30.67
MTL-UE-TAP 17.34 30.07 1.0652 0.3457 39.06 32.83 14.85 25.33 1.1076 0.3587 42.24 36.80 20.44 36.43 1.0231 0.3309 38.96 32.33
MTL-UE-SEP 15.78 30.89 0.9215 0.3099 42.77 36.85 14.94 26.49 0.8888 0.3015 43.73 38.62 17.87 30.27 0.9095 0.3036 40.71 34.88

B.4. More transferability results for NYUv2 dataset

Transferability results for the NYUv2 dataset are shown in Tab. 13, Tab. 14, and Tab. 15. In addition to backbone and
weighting strategy transfer on the CelebA dataset, we also evaluate architecture transfer for NYUv2. For backbone transfer,
we use ResNet-101, ResNet-152, and WideResNet-50 as backbones for victim models. For weighting strategy transfer,
we adopt the same strategies as in the CelebA experiments. For architecture transfer, Cross-stitch (Misra et al., 2016),
MTAN (Liu et al., 2019b), and LTB (Guo et al., 2020) are included for evaluation. As observed, MTL-UE consistently
protects against unauthorized model training on the NYUv2 dataset across various model backbones, weighting strategies,
and MTL architectures.

18

MTL-UE: Learning to Learn Nothing for Multi-Task Learning

EM TAP SEP LSP (P) AR (P) LSP (A) AR (A) Ours-EM Ours-TAP Ours-SEPClean

C
el
eb
A

U
T
K
Fa
ce

N
Y
U
v2

EM TAP SEP Ours-EM Ours-TAP Ours-SEPClean

C
he
st
X
ra
y-
14

Figure 9. Visual results: the odd/even rows show the perturbations/images, respectively. Perturbations are in dependently normalized to
[0,1] for clarity.

B.5. More visual results

We provide additional visual examples of perturbations and poisoned images from the CelebA (Liu et al., 2015), ChestX-
ray14 (Wang et al., 2017), UTKFace (Zhang et al., 2017), and NYUv2 (Nathan Silberman & Fergus, 2012) datasets, as
shown in Fig. 9. We observe across all datasets that our methods offer more interpretable cues, guiding the model to learn
the added perturbations rather than the benign features of the clean data. In particular, MTL-UE-TAP and MTL-UE-SEP
display distinct outlines or contour lines.

19

