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Abstract
With the widespread deployment of deep neural network (DNN)

models, dynamic watermarking techniques are being used to pro-

tect the intellectual property of model owners. However, recent

studies have shown that existing watermarking schemes are vul-

nerable to watermark removal and ambiguity attacks. Besides, the

vague criteria for determining watermark presence further increase

the likelihood of such attacks. In this paper, we propose a secure

DNN watermarking scheme named ChainMarks, which generates

secure and robust watermarks by introducing a cryptographic chain

into the trigger inputs and utilizes a two-phase Monte Carlo method

for determining watermark presence. First, ChainMarks generates

trigger inputs as a watermark dataset by repeatedly applying a hash

function over a secret key, where the target labels associated with

trigger inputs are generated from the digital signature of model

owner. Then, the watermarked model is produced by training a

DNN over both the original and watermark datasets. To verify wa-

termarks, we compare the predicted labels of trigger inputs with the

target labels and determine ownership with a more accurate deci-

sion threshold that considers the classification probability of specific

models. Experimental results show that ChainMarks exhibits higher

levels of robustness and security compared to state-of-the-art wa-

termarking schemes. With a better marginal utility, ChainMarks

provides a higher probability guarantee of watermark presence in

DNN models with the same level of watermark accuracy.
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1 Introduction
Deep learning has shown its potential in multiple intelligent sys-

tems such as autonomous transportation, automated manufacture,

and intelligent healthcare. However, the design and implementa-

tion of deep neural networks (DNNs) typically require significant

resources for data collection, training, validation, and testing [58].

Because developing and possessing DNN models can provide a

significant advantage, adversaries are highly motivated to steal

the models for unauthorized use or resale. Therefore, it is crucial

to protect the intellectual property (IP) of DNN models to avoid

potential infringement; otherwise, it could impede the widespread

deployment of these models.

Digital watermarking techniques are promising for safeguard-

ing the intellectual property of DNN models by embedding covert

information within the network for future verification. Similarly

to traditional watermarking schemes designed for multimedia con-

tent, static watermarking techniques have been proposed to embed

watermarks into the static parameters of DNN models (e.g., model

weights) that are not changed during operation [10, 45, 72, 77]. How-

ever, static DNNwatermark solutions imply a white-box model that

needs to access the model parameters during verification, which is

not practical to protect the intellectual property of DNNs.

To better protect the intellectual property of DNN models, re-

searchers develop dynamic DNN watermarking techniques by de-

liberately training a DNN model on both the original dataset and

a watermark dataset [1, 92]. By creating backdoors into the DNN

model, these solutions output specific labels for a set of crafted in-

puts (i.e., watermark triggers). The over-parameterization of DNN

models allows to plant the additional trigger inputs, i.e., water-

marks, without affecting the overall classification accuracy of the

DNN models. Trigger inputs can take the form of abstract images,

adversarial examples, or inputs unrelated to the original task.

However, existing dynamic DNN watermarking schemes still

face two challenges, namely, vulnerability to multiple watermark
attacks and vague criteria on watermark presence. First, they are

vulnerable to watermark removal attacks and watermark ambigu-

ity attacks. A recent study [53] reveals the existing watermarking

schemes are vulnerable to watermark removal attacks based on

input preprocessing, model modification, or model extraction. Even

worse, they are unable to resist watermark ambiguity attacks that

allow attackers to forge additional watermarks to claim false DNN

model ownership. One existing defense [21] attempts to defeat wa-

termark ambiguity attacks by adding a secret called digital passport
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as an extra input to the DNN watermarking scheme; however, at-

tackers may leverage adversarial learning to find out an alternative

qualified digital passport. Moreover, this method is vulnerable to

the watermark removal attacks that are based on input preprocess-

ing. Second, existing watermarking schemes suffer from the unclear

criteria for determining the presence of watermarks. The accuracy

of empirical estimation method for the watermark decision thresh-

old is limited in practice, as the threshold is dependent on various

practical factors such as model classification properties, types of wa-

termark patterns, and their probability distributions [53]. Also, the

existing estimation method is incapable of calculating the threshold

in certain scenarios, e.g., when the 𝑝-value is extremely small.

In this paper, we propose ChainMarks, a secure DNN water-

marking scheme that can generate secure and robust watermarks

by introducing one-way cryptographic chain relationships into the

watermark trigger inputs and utilizing a two-phase Monte Carlo esti-
mation method to determine the watermark presence. ChainMarks

can efficiently defeat both watermark removal attacks and water-

mark ambiguity attacks by designing trigger inputs as a crypto-

graphic chain. First, the noise-like/pseudo-random triggers perform

better than other forms. They are far away from the data distribu-

tion of regular tasks and are hence robust against removal attacks

via fine-tuning, model pruning, and input preprocessing. Second,

the one-way chain property can stop the back-propagation algo-

rithm of adversarial machine learning, which is used by watermark

ambiguity attacks where attackers generate fake watermarks by

satisfying multiple constraints (e.g., accuracy requirement). How-

ever, attackers cannot include hash functions in their optimization

constraints and hence can only perform guessing attacks. Third,

the accuracy of watermarks might not be 100% due to the model

post-processing; thus, unclear criteria for watermark presence may

increase the likelihood of attacks. To ensure detection accuracy, we

develop a two-phaseMonte Carlo method to enhance the estimation

of watermark presence, by considering the probability distributions

of both model classification and watermark generation.

ChainMarks consists of two main modules, namely, watermark

generation and watermark verification. To generate watermarks,

we first construct a watermark dataset that consists of trigger inputs

and their target labels. The trigger inputs are generated as a cryp-

tographically chained sequence by repeatedly applying a one-way

hash function over a secret key, which is a random seed selected

by the model owner. Then, the digital signature of model owner is

transformed into a number in base𝐶 (that is, the number of classes),

where each digit is assigned as the target label of a trigger input

according to sequential order. By applying our cryptographic mech-

anism, the trigger inputs and their target labels are interrelated

with the owner’s seed key and digital signature, respectively. There-

fore, an adversary is unable to apply optimization-based adversarial

attacks, since the acquired trigger inputs can only satisfy either the

consistency of predicted labels with target labels or the presence

of cryptographical chain in trigger inputs, but not both. To embed

the watermarks, we train a watermarked DNN model over both the

original and the watermark datasets.

To verify the watermarks, the model owner provides the seed

key to the verifier (e.g., a trusted third party) for regenerating the

cryptographically chained trigger inputs, which are then fed into

the DNN model to obtain the predicted labels. The verifier then

calculates the Hamming distance between the predicted labels and

the target labels extracted from the digital signature and determines

the presence of watermarks based on a decision threshold, which

is calculated via a two-phase Monte Carlo approach. In the first

phase, the classification probability distribution of a DNN model is

obtained by an empirical estimation method. In the second stage,

our aim is to determine the number of additional random inputs

required until the first hit occurs in the classes with the classifi-

cation probability of zero. Deriving this threshold is equivalent to

obtaining the probability distribution for the number of matching

labels. The proposed two-phase Monte Carlo method enables us to

obtain more accurate bounds on the distribution, since our method

uses the real output distribution of DNN models instead of directly

modeling the output classes with empirical probabilities. This ad-

vantage becomes more significant when the 𝑝-value is extremely

small, as existing methods derive an output probability of zero.

To evaluate the robustness and security of ChainMarks, we con-

duct extensive experiments on the watermarked models trained

on CIFAR-10 / CIFAR-100 datasets. Experiments show that our em-

bedded watermarks do not affect the test accuracy of the original

tasks. Compared with four state-of-the-art dynamic DNN water-

marking schemes, ChainMarks shows higher robustness against 16

watermark removal attacks. Moreover, due to the introduction of a

cryptographic chain, ChainMarks can resist the watermark ambigu-

ity attack, which can easily bypass other schemes. By investigating

the effects of 𝑝-values, our proposed threshold estimation method is

applicable to the scenarios with smaller 𝑝-values (i.e., higher level of

security). In addition, the marginal utility of ChainMarks is higher

than that of other existing schemes, providing a higher probability

guarantee of the watermark presence in the DNN models with the

same level of watermark accuracy.

In summary, we make the following contributions:

• We propose a secure DNN watermarking scheme, Chain-

Marks, which introduces a cryptographic chain into trigger

inputs to counter both watermark removal and watermark

ambiguity attacks.

• We propose a new two-phase Monte Carlo method to esti-

mate the decision threshold for watermark presence, provid-

ing a more accurate estimation and applying to the scenarios

with higher security level.

• We conduct extensive experiments to prove the robustness

and security of ChainMarks by comparing it with four state-

of-the-art watermarking schemes against 17 watermark at-

tacks over different models.

2 Background
2.1 Dynamic DNNWatermarking
DNN watermarking schemes are essential for protecting intel-

lectual property rights and ensuring the integrity of the model

by embedding watermarks into the model behaviors in response

to a crafted set of trigger inputs. During watermark verification,

model behaviors can be observed to verify the presence of water-

marks [1, 25, 37, 66, 70, 91, 92]. In Figure 1, dynamic watermarking

methods usually leverage DNN backdoors to generate trigger inputs,

which are usually kept secret as they act as keys in the watermark

embedding and verification processes.
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Figure 1: An example of dynamic deep neural network wa-
termarking scheme [1, 92].

The fundamental requirements of an effective watermarking

technique include fidelity, generality, efficiency, robustness, and

security [46]. Fidelity ensures that the embedded watermarks do

not significantly impact the model accuracy. Generality states that

a watermarking technique should be applicable to different DNN

architectures and datasets. The efficiency demands the overhead

of watermark embedding and verification should be reasonable.

Robustness demands that embedded watermarks should be accurate

even with model post-processing, e.g., fine-tuning [77] and network

pruning [95], which can be performed by an entity with access to

internal details of DNN models. The security requirement ensures

that a DNN watermarking scheme can withstand malicious attacks.

An adversary may construct a surrogate model from the source

model and then try to remove the embedded watermarks, replace

the old watermarks with new ones, or fabricate fake watermarks

to falsely claim ownership. A secure dynamic DNN watermarking

scheme should be able to defeat all forms of watermark attacks.

2.2 One-Way Key Chain
Aone-way key chain is constructed using a publicly known function

𝐻 that is easy to compute, but computationally hard to invert [35].

Typically, the function 𝐻 is selected as a cryptographic hash func-

tion, e.g., MD5 [65], SHA-1 [64], or SHA-256 [22]. A one-way key

chain of length 𝐿 + 1 is generated by iteratively applying 𝐻 to an

initial key 𝐾 for 𝐿 times, resulting in {𝐾,𝐻 (𝐾), 𝐻2 (𝐾), ..., 𝐻𝐿 (𝐾)},
where 𝐻 𝑖 (𝐾) denotes the hash value of 𝐻 (𝑖−1) (𝐾), 2 ≤ 𝑖 ≤ 𝐿. We

can compute𝐻 𝑖 (𝐾) from𝐻 (𝑖−1) (𝐾); however, inferring𝐻 (𝑖−1) (𝐾)
from 𝐻 𝑖 (𝐾) would be infeasible. The one-way key chain is widely

used in authentication [65] and wireless sensor networks [71].

3 Threat Model
We focus on protecting the intellectual property rights of DNN

models via a secure dynamic watermarking technique. We assume

that attackers have access to the model APIs to send queries and

collect the outputs; thus, they may derive a surrogate model that

approximates the watermarked model without knowledge of the

secret watermark trigger inputs or target labels. A surrogate model

with comparable accuracy to the source model effectively grants

attackers access to a "white-box" version of the original model,

including its parameters. Moreover, we assume that attackers have

access either to unlabeled data from the same distribution [15] or

to labeled data from any distribution. We further assume there

is a trusted third party, which serves as the verifier to ascertain

if the claimed watermarks are present in the given model. With

access to the surrogate model, attackers may launch deep learning

domain-specific attacks including watermark ambiguity attacks

and watermark removal attacks.

Watermark Ambiguity Attacks. If an adversary successfully

forges and embeds a second watermark into a watermarked model,

there will be significant ambiguity with respect to model ownership,

leading to false ownership claim. To compromise a watermarked

model trained on the original dataset and trigger inputs, attackers

can craft a new set of base trigger images with randomly assigned

target labels. They then generate fake trigger images by adding

trainable noise components, which have the same dimensions as the

input images, to the base triggers. The attackers optimize a cross-

entropy loss function between the target labels and the predicted

labels of the fake trigger images. Given that attackers may construct

surrogate models via transfer learning, existing DNNwatermarking

schemes remain vulnerable to watermark ambiguity attacks [21,

25, 36, 39]. In particular, backdoor-based watermarking methods

embed trigger inputs into the unused space of DNNs while sharing

the same classifier for the original task, exhibit inherent limitations

in resisting watermark ambiguity attack [21].

Watermark Removal Attacks. A watermark removal attack in-

volves using the source DNN model as input to generate a sur-

rogate model as output. The objective is to eliminate embedded

watermarks in the surrogate model while preserving a utility level

comparable to that of the original model. In other words, the water-

mark retention rate in the surrogate model should be sufficiently

low to prevent ownership claim with the source watermarks. There

are three types of removal attacks [53]. In input preprocessing

attacks, an attacker with white-box access intentionally modifies

data samples before passing them to the surrogate model during

watermark verification. In model modification attacks, an adver-

sary with white-box knowledge may alter the internal parameters

of the source model, typically through fine-tuning or pruning, to

create a surrogate model. Model fine-tuning is a transfer learning

technique that adjusts an already trained model to perform another

related task; however, the original model parameters are modified

during fine-tuning, thus disrupting the embedded watermarks [14].

Model pruning can set weights below a certain threshold to zero

while maintaining the required model’s accuracy; however, this

process impact the watermark presence due to structural changes

in the network. In model extraction attacks, an adversary trains a

surrogate model by collecting input-output pairs from the source

model, requiring only black-box access. The details of these three

attack types are further discussed in Section 6.3.

4 ChainMarks Design
4.1 System Overview
Figure 2 shows the overall design of ChainMarks. Given a DNN

model 𝑀0, the model owner first embeds watermarks into 𝑀0 to

obtain the watermarked model𝑀𝑤 . Due to the white-box assump-

tion, attackers can access both the architecture and weights of𝑀𝑤 .

To remove existing watermarks or embed new watermarks, a pirate

can perform watermark removal and watermark ambiguity attacks

to deploy a surrogate model 𝑀𝑠 . To protect intellectual property,
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Figure 2: The overview of our ChainMarks schema.

the model owner can present watermark keys (i.e., the seed key

to generate trigger inputs) to a trusted third party for verification

of the claimed watermarks in𝑀𝑠 . Then the verifier calculates the

watermark retention rate 𝑅 by evaluating if𝑚 out of 𝐿 triggers are

matched. If𝑅 exceeds a retention threshold of (1−𝜃 ), the watermark

is considered detected and ownership is successfully established;

otherwise, the ownership claim fails. The detection threshold (𝜃 ) de-

pends on both the surrogate model (𝑀𝑠 ) and the acceptable success

probability for a guessing attack (i.e., 𝑝-value).

In ChainMarks, we design watermarks based on a cryptographic

chain, motivated by three hypotheses. First, one-way chain input

can hinder the backpropagation algorithms used in adversarial

machine learning, which underlie watermark ambiguity attacks.

For example, watermarks (𝑥1, 𝑥2) have labels (𝑦1, 𝑦2). Attackers

can apply optimization (adversarial ML) to find alternative inputs

(𝑥 ′
1
, 𝑥 ′

2
) that produce the same labels to falsely claim ownership.

However, by introducing a chaining constraint, i.e., requiring 𝑥 ′
1
,

𝑥 ′
2
satisfy 𝑥 ′

1
= ℎ𝑎𝑠ℎ(𝑥 ′

2
), we dramatically increase the searching

difficulty since adding a one-way function into optimization con-

straints is computationally infeasible. Second, we observe that noise-

like/pseudo-random triggers are more effective than other formats.

This is because, in feature space, they are far from the distribution

of natural data and hence are robust against fine-tuning/retraining.

Third, the digital signature can be employed to verify that the trig-

gers are truly generated and owned by the original model creator.

4.2 Watermark Generation and Embedding
All known dynamic watermarking schemes are vulnerable to wa-

termark ambiguity attacks, due to the absence of a robust authen-

tication mechanism for the trigger inputs. To address this issue,

we introduce additional cryptographic requirements for both the

trigger inputs and the corresponding watermarked model. Using

our cryptographic chain, the feasibility of optimization-based am-

biguity attacks is effectively eliminated. In Figure 3, ChainMarks

establishes sequential cryptographic relationships for both the trig-

ger inputs and the target labels.

Trigger Inputs. The trigger inputs are generated as a cryptograph-
ically chained sequence by applying a cryptographic hash function

over a seed key. In this sequence, each trigger inputs is ordered

such that each input is derived from its predecessor by repeated

Watermarked
Model 

Seed Key

111100......011

......

Watermark

Train

Original
Dataset

Watermark
Dataset

Digital
Signature

Target Labels

Trigger Inputs

Figure 3: Embedding a watermark into a DNN model. The
model owner generates a chain by selecting a seed key 𝐾 and
repeatedly applying a one-way function 𝐹 for 𝐿 iterations.
The owner’s digital signature is converted into target labels
{𝑐𝑖 }, which are assigned to the triggers {𝐵𝑖 } in sequential order.

application of the same hash function. Only the watermark owner,

who possesses the secret key 𝐾 , can generate the trigger inputs

{𝐵𝑖 }𝐿𝑖=1, where 𝐵𝐿 = 𝐹 (𝐾) and 𝐵𝑖−1 = 𝐹 (𝐵𝑖 ), for 𝑖 ∈ {2, ..., 𝐿}.
Target Labels. The target labels, which correspond to the ordered

trigger inputs, are derived from the digital signature of the model

owner. The digital signature, such as the hash value of the model

owner’s name, is converted into a number in base of the output

dimension. For example, if the watermarked model has 8 classes,

the digital signature is transformed into an octal number. Each

digit of this number is then designated as the target label for a

corresponding trigger input in sequential order. Thus, the generated

sequence of target labels is denoted as {𝑐𝑖 }, where 𝑖 ∈ {1, 2, ..., 𝐿}.
By applying our cryptographic mechanism, the trigger inputs

and their corresponding target labels are cryptographically interre-

lated with the owner’s seed key and digital signature, respectively.

Therefore, an adversary is unable to apply optimization-based ad-

versarial attacks, e.g., watermark ambiguity attacks.

The seed key 𝐾 , serving as a secret key, is randomly selected

by the DNN model owner and provided to the hash function to

construct a one-way chain of trigger inputs. Note that the trigger

inputs generated in the chain are of the same size as the DNN

inputs, whereas the seed key size is not constrained. In Figure 3, 𝐹

is an instance of the cryptographic one-way function; the sequence

of watermark trigger inputs (or watermark keys) is generated by

applying 𝐹 , repeatedly. Once a chain of size 𝐿 + 1 is constructed,

the watermark keys can be disclosed and used in reverse order,

meaning the last generated key will be the first to be used in the

verification process. The number of disclosed keys is determined

by the model owner based on specific applications. Due to the one-

way property of 𝐹 , the security of the remaining undisclosed keys

is still intact, allowing them to be used in subsequent rounds of

watermark verification. Thus, our method introduces cryptographic

inter-constraints between the watermark trigger inputs, enabling

multi-stage watermark verification using only a single seed key.

In the watermark embedding process, the model owner’s digital

signature is partitioned into target labels. Let the digital signature,

denoted as 𝑆 , be represented as a binary number with |𝑆 | bits. Since
the number of classes supported by a DNN may not be a power of

2, the binary digital signature (in base 2) must first be converted



ChainMarks: Securing DNN Watermark with Cryptographic Chain ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

into a number in base 𝐶 , where 𝐶 represents the number of classes.

For example, 𝐶 = 10 for CIFAR-10 and 𝐶 = 100 for CIFAR-100. Let

𝑆𝐶 denote the digital signature represented in base 𝐶 . The number

of trigger input blocks is given by 𝐿 = ⌈log𝐶 𝑆𝐶 ⌉. Thus, the digital
signature 𝑆 can be viewed as a sequence of 𝐿 digits in base 𝐶 , e.g.,

𝑆 = (𝑐1𝑐2𝑐3 ...𝑐𝐿)𝐶 , where 0 ≤ 𝑐𝑖 < 𝐶 for 1 ≤ 𝑖 ≤ 𝐿. These 𝑐𝑖 values

are then used as the target labels for the watermark. Compared to

directly dividing the binary signature 𝑆 into segments of length

⌈log
2
𝐶⌉, our method allows for more trigger input blocks because

⌈log𝐶 𝑆𝐶 ⌉ ≥ ⌈log
2
𝑆2/⌈log2𝐶⌉⌉.

The watermark-embedded DNN is built by training a model

from scratch on both the original dataset and a watermark dataset.

The watermark dataset consists of the trigger inputs and their

corresponding target labels. In Section 7.1, we demonstrate that

with ChainMarks, the watermark embedding accuracy can achieve

100%, without compromising the validation accuracy. There are two

possible implementation approaches to obtain the watermarked

model. The first approach is to train the model on both the original

data and the watermark data. Another approach is to fine-tune a pre-

trained DNN model with the watermark dataset. We adopt the first

method based on a reasonable assumption that the model owner

can access both the original dataset and the watermark dataset.

4.3 Watermark Verification
Figure 4 illustrates the overview of watermark verification. In the

verification procedure, the model owner presents the seed key 𝐾

and uses it to re-generate the chain of 𝐿 trigger inputs, i.e., from 𝐵1
to 𝐵𝐿 . These trigger input blocks are then fed into the DNN model

to obtain the corresponding output labels, denoted as 𝑐′
1
, 𝑐′
2
, ..., 𝑐′

𝐿
.

These labels {𝑐′
𝑖
} can be concatenated to derive the digital signature.

𝑆 ′ := 𝑐′
1
| | 𝑐′

2
| | ... | | 𝑐′𝐿−1 | | 𝑐

′
𝐿, (1)

where 𝑐′
𝑖
∈ {0, 1, ...,𝐶 − 1} represents a number in base-𝐶 numeral

system. In addition, 𝑐′
𝑖
is a digit of 𝑆 ′ in base 𝐶 .

Then, the Hamming distance between 𝑆 ′ and 𝑆 , denoted as

𝑑 (𝑆 ′, 𝑆), is calculated as a measure of similarity between them.

Hamming distance is a metric used to compare two data sequences

of equal length, indicating the number of positions at which the

corresponding symbols differ. This metric is typically employed in

error detection and error correction, particularly in coding theory

and data communications over computer networks.

Another parameter in the proposed watermarking scheme is

the decision threshold 𝜃 for the Hamming distance. The verifier

determines that the claimed watermark exists in the tested model

only if 𝑑 (𝑆 ′, 𝑆) ≤ 𝜃 · 𝐿. For example, if 𝜃 = 0.3, the Hamming

distance must be less than or equal to 0.3 ·𝐿 for 𝑆 ′ to be considered a
match for 𝑆 , indicating at least 70% of the symbols must be identical.

Section 4.4 explains how to determine the threshold 𝜃 based on a

given probability threshold, which corresponds to the success rate

of simple watermark guessing attacks. This probability threshold

can serve as a representative metric for the security of a model.

4.4 Watermark Decision Threshold
Watermark presence detection with Hamming distance is closely

related to estimating the probability distribution of Hamming dis-

tances when a simple watermark guessing attack is performed. In

this scenario, an adversary can easily launch a simple guessing

Seed Key

......

Watermark

DNN
Model

class 7
=111

class 5 class 3
=101 =011

Digital
Signature

(S')

Owner's Digital
Signature (S)

Yes No

Watermark Watermark
Detected Not Detected

......

Figure 4: The overview of watermark verification with a cryp-
tographic side-classifier. 𝑑 (𝑆 ′, 𝑆) stands for the Hamming dis-
tance between two binary strings, 𝑆 ′ and 𝑆 .

attack by providing a random seed key along with target labels

derived from their digital signature, thereby attempting to claim the

watermark’s presence. By estimating the probability distribution of

Hamming distances in such cases, we can derive the likelihood (or

probability) of the watermark’s presence given a particular seed

key and target labels. This distribution is influenced by the DNN

model’s actual classification probabilities for random inputs. To

address this, we introduce a new dynamic Monte Carlo method

that enables the derivation of tight bounds on the distribution.

5 Two-Phase Monte Carlo Estimation
To derive the probability distribution of the number of matching

labels under watermark guessing attacks, we first need to obtain

the DNN classification probability distribution for random inputs.

Then, the upper bounds of the matching probabilities can be derived

by utilizing the classification probability distribution. However, due

to the complexity of obtaining an analytical solution directly from

a DNN model, we propose a dynamic Monte Carlo method that em-

ploys a two-phase sampling approach to approximate the matching

probability distribution. In this section, we present a quantitative

method for determining the detection threshold, addressing the

question: given particular watermarks, how many retrieved water-

marks are sufficient to assert ownership?

5.1 Classification Distribution Estimation
A significant challenge in estimating the classification probability

distribution lies in the skewness across different classes. To address

this, we conduct a simulation experiment and summarize the results

in Table 1. Our findings reveals that the probability distribution

exhibits a large standard deviation. Specifically, after feeding 10

million random inputs into a Resnet-18 model trained on CIFAR-10,

we observed that 5 out of 10 classes have a hit probability of 0.

Similarly, when 10 million random inputs are fed into the same

model trained on CIFAR-100, 49 out of 100 classes are never hit. To

derive an approximate classification probability distribution for a

DNN model, we define the following terms in this section:

• 𝑁 : the total number of random inputs created in simulation.
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• 𝐶: the number of classes (or possible outputs) of the neural

network. 𝐶 = 10 for CIFAR-10 and 𝐶=100 for CIFAR-100.

• Γ: the set of all class indices, {0, 1, 2, ...,𝐶 − 1}.
• 𝑛𝑖 : the number of inputs assigned to the class 𝑖 , 0 ≤ 𝑖 ≤ 𝐶−1.

• 𝑈 = {𝑖1, 𝑖2, ..., 𝑖𝑘 }: the set of 𝑘 class indices within [0,𝐶 − 1]
that are not hit by any of the 𝑁 inputs, with |𝑈 | = 𝑘 .

• 𝑝𝑖 : the classification probability that an input falls into class

𝑖 , calculated as 𝑛𝑖/𝑁 .

• 𝑝𝑈 : the 0-hit probability, defined as 𝑝𝑖1 + 𝑝𝑖2 + ... + 𝑝𝑖𝑘 .
In the experiment shown in Table 1, we obtain a set of class

indices 𝑈 , comprising 49 out of 100 indices for the DNN model

trained over CIFAR-100. However, the classification probabilities for

the classes in𝑈 cannot be directly estimated from the experiment

data as no input samples are classified into these classes.

To estimate the probability 𝑝𝑈 , we devise a new approximation

technique by modeling the experiment as a Bernoulli trial with

a success probability of 𝑝𝑈 and a failure probability of 1 − 𝑝𝑈 .

To estimate the probability 𝑝𝑈 of the set 𝑈 , we can calculate the

expected number of random inputs required to observe the first

successful classification into any class within 𝑈 . For example, in

Table 1, we define 𝑈 as the set of 49 class indices that receive no

hits among the 10 million random inputs in the first stage. That

means that the number of random inputs 𝑁 is selected as 10 million

to determine the initial sets 𝑈 and Γ − 𝑈 . In the second stage,

we generate additional random inputs until a class in 𝑈 is hit for

the first time. We perform 50 simulations and observe that on

average 11,531,629 additional inputs are required to achieve this

first hit. Given that the number of trials before the first success in a

Bernoulli process follows a geometric distribution, we can obtain

(1 − 𝑝𝑈 )/𝑝𝑈 = 11, 531, 629, which yields an estimated probability

of 𝑝𝑈 = 1/(11, 531, 629 + 1) = 8.672 × 10
−8
.

After deriving 𝑝𝑈 , the previous probabilities (calculated under

the assumption of 𝑝𝑈 = 0), i.e., 𝑝𝑖 = 𝑛𝑖/𝑁 for all 𝑖 in Γ −𝑈 , need
to be adjusted by applying a normalization technique. Specifically,

𝑝𝑖 = 𝑝
𝑜𝑙𝑑
𝑖

− 𝑝𝑈 · 𝑝𝑜𝑙𝑑
𝑖

= (1 − 𝑝𝑈 ) · 𝑝𝑜𝑙𝑑
𝑖

, for all 𝑖 in Γ −𝑈 .

We also need to determine the approximate values of 𝑝𝑖 for all

𝑖 in 𝑈 . Let 𝑖 𝑗 denote the 𝑗-th index in 𝑈 , for 1 ≤ 𝑗 ≤ 𝑘 . Then,

equation

∑𝑘
𝑗=1 𝑝𝑖 𝑗 = 𝑝𝑈 must hold for the definition of𝑈 .

5.2 Matching Probability Bound Estimation
Our objective is to assess the probability that a randomly generated

one-way input chain is erroneously accepted as a valid watermark

under a Hamming distance threshold 𝜃 . A valid watermark chain

should have at least ⌈𝐿 · (1− 𝜃 )⌉ preserved blocks, where the labels
produced by the DNN model match the digital signature of the

legitimate owner of the model. The number of distinct combinations

for selecting ⌈𝐿 · (1 − 𝜃 )⌉ preserved blocks out of L blocks is(
𝐿

⌈𝐿 · (1 − 𝜃 )⌉

)
=

(
𝐿

⌊𝐿 · 𝜃⌋

)
. (2)

Given a DNNmodel and a sequence of 𝐿 target labels correspond-

ing to the model owner’s digital signature, we aim to determine

the success probability of a random guessing attack. Let 𝑐1, 𝑐2, ..., 𝑐𝐿
(𝑐𝑖 ∈ [0,𝐶 − 1] for 1 ≤ 𝑖 ≤ 𝐿) denote the target classes (or labels)

that match the owner’s digital signature. A successful ownership

claim is defined as achieving at least𝑚 = ⌈𝐿 · (1 − 𝜃 )⌉ matching

Dataset

Avg.

Prob.

Min

Prob.

Max

Prob.

Prob.

Stdev

# of classes

never hit

CIFAR-10 0.1 0 0.9962 0.2987 5

CIFAR-100 0.01 0 0.9433 0.0399 49

Table 1: Skewed probability distribution across different
classes for DNN models trained on CIFAR-10/CIFAR-100.

labels between the attack inputs and the model owner’s digital

signature. The process can be modeled as counting the successful

matches in a sequence of 𝐿 independent yes/no experiments with

the success probabilities of 𝑝𝑐1 , 𝑝𝑐2 , ..., 𝑝𝑐𝐿 , where 𝑐𝑖 ∈ [0,𝐶 − 1].
Poisson binomial distribution is well suited to calculate the above

probabilities [27]. Let 𝑀 be a random variable that indicates the

number of matches. The probability of obtaining exactly𝑚 matches

out of 𝐿 chained random inputs can be expressed as

𝑃𝑟 (𝑀 =𝑚) =
∑︁

𝐴∈𝐹𝑚

∏
𝑖∈𝐴

𝑝𝑐𝑖

∏
𝑗∈𝐴𝑐

(1 − 𝑝𝑐 𝑗 ), (3)

where 𝐹𝑚 is the set of all subsets of𝑚 integers that can be selected

from {1, 2, ..., 𝐿}. For example, if 𝐿 = 3 and 𝑚 = 2, then 𝐹2 =

{{1, 2}, {1, 3}, {2, 3}}. For any subset𝐴 ∈ 𝐹𝑚 ,𝐴𝑐 is the complement

of 𝐴. For example, if 𝐴 = {1, 3} ∈ 𝐹2, then 𝐴𝑐 = {2}.
Obviously, 𝐹𝑚 will contain 𝐿!/((𝐿−𝑚)! ·𝑚!) elements; hence, the

Equation (3) is infeasible to compute in practice unless 𝐿 is small.

However, the following formula has been derived to approximate

𝑃𝑟 (𝑀 ≥ 𝑚) using simple calculations.

Claim 1. The probability of obtaining at least𝑚 matches out of 𝐿
candidates is

𝑃𝑟 (𝑀 ≥ 𝑚) ≈ Φ( 𝐿 + 0.5 − 𝜇
𝜎′

) − Φ(𝑚 − 0.5 − 𝜇
𝜎′

), (4)

where Φ is the cumulative distribution function (CDF) of the standard
normal distribution, where the mean 𝜇 = 𝐿/𝐶 and the standard
deviation 𝜎′ follows the equation:

𝜎′ =

√√√√ 𝐿∑︁
𝑖=1

𝑝𝑐𝑖 −
∑︁

𝑖∈ (Γ−𝑈 ),1≤𝑖≤𝐿
𝑝2𝑐𝑖 − (𝑝2

𝑈
/𝑘) . (5)

Proof. An approximation technique [27] can be employed to

obtain the estimated probability. Approximation methods are still

widely used due to their computational efficiency, especially when

𝐿 is large. We will utilize the normal approximation method, which

is based on the central limit theorem (CLT). If we define

𝜇 =

𝐿∑︁
𝑖=1

𝑝𝑐𝑖 , 𝜎 =

√√√
𝐿∑︁
𝑖=1

𝑝𝑐𝑖 (1 − 𝑝𝑐𝑖 ) . (6)

Then, we can approximate the probability mass function using the

normal approximation method with small errors for reasonably

large values of 𝐿(𝐿 ≥ 10) [18, 78].

𝑃𝑟 (𝑀 =𝑚) ≈ 𝜑 (𝑚 + 0.5 − 𝜇
𝜎

), (7)

where𝑀 denotes the number of matching labels (i.e., class indices)

to the digital signature, and 𝜑 stands for the probability distribution
function (PDF) of the standard normal distribution.

For example, with the threshold 𝜃 = 0.3, 𝐿 = 100 inputs, and

𝐶 = 100 classes, the attack success probability, i.e., the probability of
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a randomly generated chain of length 𝐿 yielding𝑚 = ⌈𝐿 · (1−𝜃 )⌉ =
70 or more matches, would be

𝑃𝑟 (𝑀 ≥ 70) = 1 − 𝑃𝑟 (𝑀 < 70)

= 1 −
69∑︁
𝑖=0

𝜑 ( 𝑖 + 0.5 − 𝜇
𝜎

)

=

𝐿∑︁
𝑖=70

𝜑 ( 𝑖 + 0.5 − 𝜇
𝜎

) .

(8)

Instead of using the PDF of 𝜑 (𝑥), 𝑃𝑟 (𝑀 ≥ 𝑚) may be obtained

from Φ(𝑥), which is the cumulative distribution function (CDF) of
the standard normal distribution.

𝑃𝑟 (𝑀 ≥ 𝑚) = Φ( 𝐿 + 0.5 − 𝜇
𝜎

) − Φ(𝑚 − 0.5 − 𝜇
𝜎

). (9)

In our problem setting, we aim to approximate the probabilities

𝑝 𝑗 for 𝑗 in𝑈 to obtain the values of 𝜇 and𝜎 , and then apply the above

approximation formula. Our goal is to find the upper bound on the

attack success probability, whose example is shown in Equation (8).

The following formula holds for reasonable values of 𝜃 :

𝜇 ≈ 𝐿

𝐶
≪ 𝐿 · 𝜃 (10)

From the last formula in Equation (8), we observe that an upper

bound for the attack success probability 𝑃 ′𝑟 can be derived by finding
a tight upper-bound 𝜎′ for 𝜎 . This is feasible because 𝜑 (𝑥) is a
decreasing function for 𝑥 > 0.

The value of 𝜎 can be rewritten as follows, noting that |𝑈 | = 𝑘 .

𝜎 =

√√√
𝐿∑︁
𝑖=1

(𝑝𝑐𝑖 − 𝑝2𝑐𝑖 ) =

√√√
𝐿∑︁
𝑖=1

𝑝𝑐𝑖 −
𝐿∑︁
𝑖=1

𝑝2𝑐𝑖

=

√√√√ 𝐿∑︁
𝑖=1

𝑝𝑐𝑖 −
∑︁

𝑖∈ (Γ−𝑈 ),1≤𝑖≤𝐿
𝑝2𝑐𝑖 −

∑︁
𝑖∈𝑈 ,1≤𝑖≤𝐿

𝑝2𝑐𝑖

≤

√√√√ 𝐿∑︁
𝑖=1

𝑝𝑐𝑖 −
∑︁

𝑖∈ (Γ−𝑈 ),1≤𝑖≤𝐿
𝑝2𝑐𝑖 −

∑︁
𝑖∈𝑈 ,1≤𝑖≤𝐿

( 𝑝𝑈
𝑘

)2

=

√√√√ 𝐿∑︁
𝑖=1

𝑝𝑐𝑖 −
∑︁

𝑖∈ (Γ−𝑈 ),1≤𝑖≤𝐿
𝑝2𝑐𝑖 −

𝑝2
𝑈

𝑘
= 𝜎′ .

(11)

Hence, the upper bound, 𝜎′, of 𝜎 is given in Equation (11). The

inequality in Equation (11) holds due to the following optimization.

𝑚𝑖𝑛
∑︁

𝑖∈𝑈 ,1≤𝑖≤𝐿
𝑝2𝑐𝑖 ,

𝑠 .𝑡 .,

∑︁
𝑖∈𝑈 ,1≤𝑖≤𝐿

𝑝𝑐𝑖 = 𝑝𝑈 ,

0 ≤ 𝑝𝑖 ≤ 1, 1 ≤ 𝑖 ≤ 𝐿.

(12)

In Equation (12), the item can achieve the minimum value only
if every 𝑝𝑐𝑖 = 𝑝𝑈 /𝑘 , where 𝑖 ∈ 𝑈 , 1 ≤ 𝑖 ≤ 𝐿. □

For instance, the margin of error (MOE) of the approximation

formula in Claim 1 is calculated to be less than 1.2% when compared

to the precise values derived from Equation (3), for relatively small

values (i.e., 𝐿 ≤ 20) using ResNet-18 models trained on CIFAR-10

and CIFAR-100 datasets.

𝑚 0-6 7-8 9 10 11

𝑃𝑟 (𝑀 ≥ 𝑚) 1.0 0.9999 0.9984 0.8382 0.1618

𝑚 12 13 14 15-100

𝑃𝑟 (𝑀 ≥ 𝑚) 0.0015 4.01e-7 2.45e-12 0.0

Table 2: The success probabilities over different match num-
bers for watermark guessing attacks against the ResNet-18
model trained on CIFAR-10 (𝐶 = 10, 𝐿 = 100).

5.3 Threshold Decision
The probability distribution in Table 2 shows the number of matches

obtained by a basic watermark guessing attack against a ResNet-18

model trained on the CIFAR-10 dataset. For the data in Table 2, the

probability distribution of regular data would not change much

even after watermark embedding, due to the small proportion of

watermark data (as Table 5 shows the accuracy only drops slightly).

With the probability distribution, we set a threshold of the suc-

cess probability for a simple watermark guessing attack. Then, the

success probability threshold can be mapped to the min match num-

ber, whereas we derive the decision threshold 𝜃 . For example, if the

success probability threshold is set to 10
−7

(i.e., the compromise

probability should be less than 10
−7
), the number of matches 𝑚

should be at least 14 based on the probability distribution in Table 2.

Then, we can derive the decision threshold of Hamming distance as

𝜃 = 1− (𝑚/𝐿) = 0.86. Thus, when the chain length is set to 𝐿 = 100,

the max tolerance error rate for a match achieves 86%, i.e., a 14%

match in trigger inputs is sufficient for ownership claim. In practice,

the match ratio is typically higher, e.g., a 90% match can undoubt-

edly establish model ownership. Therefore, the decision threshold

for determining a watermark presence is dependent on both the

watermarked model,𝑀𝑊 , and the success probability threshold, 𝑝 .

This threshold can be expressed as a function of 𝜃 (𝑀𝑊 , 𝑝).
Our proposed two-phase estimation method is more precise es-

pecially when the output probability distributions are skewed (i.e.,

small 𝑝-value), where the traditional one-phase estimation meth-

ods cannot work. It is because, for traditional estimation methods,

the CDF function cannot accumulate quickly to reach the target

probability sum (1 − 𝑝) due to the requirement of a large number

of empirical estimations. Therefore, the state-of-the-art estimation

method [32] only uses a moderate 𝑝-value with low confidence. Our

method is applicable to use smaller 𝑝-values, which correspond to

higher marginal utility and higher level of security (Section-7.3).

6 Experiments
All watermarking schemes and removal attacks are implemented

in PyTorch, on a server equipped with an NVIDIA GTX 1080 GPU.

6.1 Datasets and DNN Models.
Two image classification datasets, CIFAR-10 and CIFAR-100 [? ],
are used to build watermarked DNN models. In our experiments,

we use two model types, i.e., ResNet-18 [26] and ResNet 28x10 [88],

which are trained on CIFAR-10 and CIFAR-100 datasets. Model

extraction attacks generally require extensive data access; thus,

we assume adversaries have access to the full training dataset and

know the architecture of the source model.
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Scheme Category Verification Capacity

ChainMarks model dependent/independent black-box multi-bit

Adi model dependent/independent black-box multi-bit

Content model independent black-box zero-bit

Noise model independent black-box zero-bit

Unrelated model independent black-box zero-bit

Table 3: Black-box watermarking schemes in evaluation.

6.2 Other DNNWatermarking Schemes
We compare our scheme against four black-boxwatermarkingmeth-

ods [1, 92], summarized in Table 3. In Adi et al.’s approach [1], wa-

termark trigger inputs are abstract images paired with randomly

assigned labels from the full class space. They explore two em-

bedding strategies: training a model from scratch on a combined

dataset (original + watermark data) and fine-tuning a pre-trained

model. Their results show that training from scratch offers greater

robustness to model modification attacks. Accordingly, we adopt

this setting and reproduce their models using the combined dataset.

Three other watermarking methods are proposed based on dif-

ferent types of trigger images: Content, Noise, and Unrelated im-

ages [92]. In the content-based approach, trigger inputs are ran-

domly chosen from a single class and modified with a fixed secret

mask, such as a white square over a specific image region. The

noise-based method uses a mask generated from Gaussian noise,

while the unrelated-image approach selects trigger inputs from

a domain unrelated to that of the original DNN. The procedures

for generating target labels, embedding watermarks, and verifying

ownership are similar to those of the Adi scheme.

6.3 Watermark Removal Attacks
To compare the security and robustness of ChainMarks with four

other schemes, we evaluate them against three categories of water-

mark removal attacks [53]: input preprocessing, model modification,
and model extraction, as summarized in Table 4.

1) Watermark Removal via Input Preprocessing. These attacks

remove watermarks without retraining the model by modifying the

input images. For example, we can perform adaptive denoising [7]

(or add Gaussian noise [89]) to the entire image. The JPEG compres-

sion attack [20] reduces image quality using JPEG encoding, which

can eliminate watermarks. In the input quantization attack [48],

pixel values are mapped to 2𝑏 evenly spaced intervals and replaced

with the mean value of their interval. The input smoothing at-

tack [84] applies a mean, median, or Gaussian filter, resulting in a

blurred image that may suppress watermark features.

2) Watermark Removal via Model Modification. These attacks

alter the model itself to remove embedded watermarks. Adversarial

training [57] improves model robustness by injecting adversarial

examples, which are generated via Projected Gradient Descent [57],

into the training set and fine-tuning the model on them using

ground-truth labels. The fine-tuning attacks refer to a set of model

stealing attacks that apply a transformation to the model by fine-

tuning [77]. Fine-tuning attacks [77] modify the model by fine-

tuning to induce parameter changes. Four variants are considered:

Fine-Tune All Layers (FTAL) and Fine-Tune Last Layer (FTLL) (with
other layers frozen), both using ground-truth labels; and Retrain
All Layers (RTAL) and Retrain Last Layer (RTLL), which reinitialize

either all layers or just the last layer and fine-tune using the model’s

Attack Category Param. Access Data Access

Adaptive Denoising

Input

Preprocessing

White-box

NoneJPEG Compression

Input Quantization

Input Smoothing

Adversarial Training

Model

Modification

Domain

Fine-Tuning (RTLL, RTAL)

Weight Quantization

Weight Pruning

Regularization

Fine-Tuning (FTLL, FTAL) Labeled Subset

Transfer Learning

Model

Extraction
Black-box Domain

Retraining

Cross-Architecture Retraining

Adversarial Training (From Scratch)

Table 4: Watermark removal attacks in our evaluation.

predicted labels. Weight pruning [95] removes a random subset of

weights from the model until a target sparsity level 𝜌 is reached.

Weight quantization [28], unlike input quantization, reduces the

precision of model weights instead of input images. Regularization

attack [68] involves two phases: first, applying strong regulariza-

tion to shift the model to a new set of parameters (potentially far

from the original), which lowers test accuracy; second, recovering

accuracy through fine-tuning.

3) Watermark Removal via Model Extraction. Model extraction

can remove watermarks by training a surrogate model to repli-

cate the source model’s behavior while discarding embedded wa-

termarks [55]. In the retraining attack [75], a surrogate model is

trained from scratch using input-label pairs obtained via API access.

The cross-architecture retraining variant uses a different model

architecture to reduce watermark transfer. The transfer learning

attack [74] initializes the surrogate from a pre-trained model in

another domain. In adversarial training (from scratch) [57], the sur-

rogate is trained from scratch using adversarial examples, similar

to standard adversarial training.

7 Performance Analysis
7.1 Efficiency of Watermark Embedding
We conduct 20 independent experiments to evaluate the test accu-

racy (i.e., accuracy on the original test dataset) of source models

before and after watermark embedding, as well as the watermark

accuracy (i.e., accuracy on watermark dataset) before and after

watermark removal attacks.

Table 5 presents the average test/watermark accuracies under

watermark ambiguity and 16 watermark removal attacks. After

embedding the watermark using ChainMarks, the watermark ac-

curacy reaches 100%, while the test accuracy experiences only a

minor drop–0.8% for models trained on CIFAR-10 (92.3%→91.5%)

and CIFAR-100 (69.1%→68.3%). This indicates that the impact of

watermark embedding onmodel utility is negligible, typically under

1%. Table 5 further demonstrates that ChainMarks achieves higher

overall robustness than other methods while maintaining embed-

ding efficiency comparable to Adi. However, ChainMarks is more

secure and robust than Adi. First, Adi relies on multiple indepen-

dent backdoor samples and is therefore susceptible to watermark

ambiguity attacks when attackers generate adversarial alternatives

for each backdoor trigger. In contrast, ChainMarks can resist such

ambiguity attacks via cryptographic chain (see Table 6). Second, for
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Accuracy
Accuracies (CIFAR-10/CIFAR-100)

ChainMarks Adi Content Noise Unrelated

Test Accuracy

w/o WM embedding
0.923/0.691 0.921/0.692 0.915/0.684 0.913/0.685 0.914/0.682

Test Accuracy

w/ WM embedding
0.915/0.683 0.916/0.685 0.91/0.681 0.911/0.678 0.909/0.676

Test Accuracy

after Attack
0.78/0.68 0.77/0.69 0.56/0.52 0.81/0.73 0.53/0.51

WM Accuracy

after Embedding
1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0

WM Accuracy

after Attack
0.67/0.34 0.69/0.37 0.58/0.33 0.73/0.41 0.64/0.35

Table 5: Test and watermark (WM) accuracy before/after wa-
termark embedding and after watermark attacks.

the verification with small 𝑝-value, Adi does not provide effective
support, whereas ChainMarks remains robust (see Section 7.2).

After watermark removal/ambiguity attacks, the watermark ac-

curacy decreases from 100% to 67% (34%) on CIFAR-10 (CIFAR-100);

however, the number of remaining valid watermarks is sufficient

for ownership verification, based on the quantitative analysis in

Section 4.4. More analysis of watermark robustness under various

attacks is provided in Section 8.2. In addition, a notable decline

in test accuracy is observed when attackers perform watermark

removal/ambiguity attacks. This indicates that adversaries can-

not effectively reduce watermark accuracy in the surrogate model

without significantly compromising its utility on the original task.

Besides, traditional watermarkingmethods improve embedding per-

formance by injecting more watermark samples. However, Chain-

Marks employs a hash function to ensure each watermark sample

is cryptographically independent. Therefore, adding more trigger

samples (increasing chain length) does not lead to greater model

memorization of the watermark.

7.2 Effects of p-values
To investigate the relationships between the required watermark

accuracy (1 − 𝜃 ) and the threshold probability 𝑝 , we apply a two-

phase Monte Carlo estimation method to analyze the ChainMarks

scheme. For comparison, we adopt the empirical estimation ap-

proach proposed in [53] to evaluate four existing watermarking

schemes. For a range of threshold probabilities (i.e., 𝑝-values), we

conduct 20 independent experiments to determine the average wa-

termark accuracy necessary to successfully verify ownership. The

results are presented in Figure 5 for both CIFAR-10 and CIFAR-100.

As shown in Figure 5, one notable observation is that, for small

𝑝-values, certain schemes encounter erroneous conditions where

the cumulative distribution function (CDF) fails to reach the tar-

get probability mass. This limitation arises from the insufficient

number of models used in the empirical estimation of decision

thresholds [53], suggesting that the empirical method may not be

reliable for the settings of small 𝑝-values. Such issues are observed

in the Noise- and Content-based schemes on CIFAR-10, and in all

schemes except ChainMarks on CIFAR-100. Also, the Noise-based
scheme consistently exhibits high watermark accuracy require-

ments and may become impractical when the probability threshold

𝑝 is set below 0.01.

In Figure 5(a), for models trained on CIFAR-10, ChainMarks ex-

hibits the lowest required watermark accuracy among all evaluated
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Figure 5: Required watermark accuracy (1 − 𝜃 ) vs. threshold
probability 𝑝, for different watermarking schemes.

schemes. This is attributed to ChainMarks’s high level of security,

which enables a greater tolerance for errors, i.e., a higher allowable

Hamming distance threshold 𝜃 . In Figure 5(b), for models trained

on CIFAR-100, the required watermark accuracy of ChainMarks is

comparable to that of the Adi and Unrelated image-based schemes,

while decision thresholds cannot be computed for the Noise- and
Content-based schemes in most cases. Besides, as the 𝑝-value in-

creases, the required watermark accuracy decreases, since a higher

𝑝-value indicates a higher probability of compromise and hence

requires fewer matched watermarks to verify ownership. Thus,

ChainMarks is able to meet higher security requirements.

7.3 Watermark Marginal Utility
Comparing the required watermark accuracies across different

schemes is inherently challenging due to the different decision

thresholds. Therefore, relying only on the required watermark ac-

curacy (or retention rate) is insufficient to evaluate the robustness

of a watermarking scheme or the effectiveness of an attack.

An effective metric is needed to be derived to quantify the con-

tribution of retained watermarks (i.e., watermark accuracy in a

surrogate model) in terms of probabilistic guarantees on the suc-

cess probability of random guessing attacks. Therefore, we define

this metric as watermark marginal utility, which represents the

average reduction factor in the attack success probability per unit

increase in watermark accuracy (or decision threshold) within the

surrogate model. In other words, the metric indicates the degree

of reduction that can be achieved in the threshold probability 𝑝

by increasing the watermark accuracy (or decreasing the decision

threshold 𝜃 ) in a surrogate model.

The watermark marginal utility is illustrated in Figure 5 by divid-

ing the ratio of 𝑝-values by the difference in watermark accuracy

for two consecutive 𝑝-values on the x-axis. If the 𝑝-value is reduced

from 𝑝1 to 𝑝2 and the corresponding required watermark accuracy

increases from 𝜏1 to 𝜏2, the watermark marginal utility can be calcu-

lated as (𝑝1/𝑝2)/(𝜏2 − 𝜏1). For example, if the 𝑝-value reduces from

0.05 to 0.005 and the corresponding watermark accuracy increases

from 0.1123 to 0.1204, the estimated watermark marginal utility is

computed as (0.05/0.005)/(0.1204 - 0.1123) = 1234.56.

Figure 6 presents the computed watermark marginal utilities

for CIFAR10 and CIFAR100 models across different watermarking

schemes. The results show that ChainMarks provides a higher wa-

termark marginal utility compared to other schemes. The marginal

utility values for CIFAR-100 models are not provided for the Adi,
Content, Noise, and Unrelated-based schemes due to the limitations

in computing small 𝑝-values with empirical estimation method [53].
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Figure 6: Watermark marginal utility for various schemes.

7.4 Overhead
Training the model on CIFAR-10 for 200 epochs takes 2 hours, with

a RAM usage of 2.5 GB and a GPU memory usage of 2.4 GB. Train-

ing the model on CIFAR-100 for 200 epochs takes 7 hours, with a

RAM usage of 3.7 GB and a GPU memory usage of 6.6 GB. When

watermark images are applied in the training set, the computa-

tional overhead remains negligible and does not significantly affect

training time or memory usage.

8 Security Analysis
8.1 Defeating Watermark Ambiguity Attacks
The two cryptographic constraints introduced in ChainMarks for

trigger inputs and target labels render any optimization-based at-

tacks, such as watermark ambiguity attacks [21, 25, 36, 39], infea-

sible. In ambiguity attacks, attackers find adversarial watermarks

by optimizing with the “perturbed input - expected output” pairs.

When trigger inputs are independent (see Figure 1), such objec-

tives are easily optimized since the added items are independent.

However, with cryptographic chaining, each trigger depends on a

one-way hash function, which lacks gradients and thus obstructs

backpropagation. As illustrated in Figure 7, even when attackers

inject trainable noise into fake triggers and optimize noise to match

the output with digital signature, the optimized inputs break the

required cryptographic chain, invalidating the watermark structure.

An adversary may also launch a guessing attack with trial and

error. It can first choose a random seed key to create a one-way

trigger input chain. Then, the adversary simply applies the original

DNN model in a feedforward manner to check if the output labels

match the claimed digital signature. Attackers can repeatedly at-

tempt with different seed keys until a match is obtained. However,

according to our analysis in Section 4.4, the success rate of random

guessing is extremely low and can be determined by the selected

threshold. Therefore, this approach will require an exponential

number of trials, rendering it computationally infeasible.

8.2 Countering Watermark Removal Attacks
Because trigger inputs are derived from hash values, they can be

regarded as random noise. Compared to the data distribution of pri-

mary task (e.g., image object recognition), these noise-like triggers

are out-of-distribution with respect to both training and fine-tuning

datasets. Thus, these triggers are robust against removal attacks,

since fine-tuning typically alters model behavior within the task-

specific feature space, leaving the trigger space unaffected.

Evaluating the success of an attack requires careful considera-

tion of both test accuracy loss and watermark accuracy degradation
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Figure 7: Attackers can use optimization to generate adver-
sarial trigger inputs with associated invalid signature labels,
but the resulting inputs are no longer cryptographic chained.

in surrogate models. To assess watermark robustness, we deploy

five watermarking schemes, including ChainMarks, to construct

watermarked models trained on the CIFAR-10/CIFAR-100 datasets.

As listed in Table 6, we then apply 17 distinct attacks to the wa-

termarked (source) models. Let 𝑀𝑠 denote the surrogate model

obtained by an attacker, and let 𝑝 represent the threshold proba-

bility used to derive the decision threshold 𝜃 . For an attack to be

considered successful, it must meet both of the following criteria.

Test Accuracy Criteria. To satisfy the accuracy drop threshold of

0.1, the test accuracy of the surrogate model should be at least 90%

of that of the watermarked model.

Watermark Accuracy Criteria. The watermark accuracy in𝑀𝑠

should be less than the original decision threshold 𝜃 (𝑀𝑊 , 𝑝), where
the threshold probability 𝑝 = 0.01.

We obtain the decision threshold 𝜃 (𝑀𝑊 , 𝑝) for each watermark-

ing scheme. For ChainMarks, the threshold is derived using a two-

phase Monte Carlo estimation method, as described in Section 4.4.

For the other four watermarking schemes, no precise method ex-

ists for computing 𝜃 ; therefore, we adopt the empirical estimation

technique proposed in [53]. This approach estimates the water-

mark accuracy of an unmarked model with two random variables.

Specifically, we estimate the cumulative probability that a randomly

generated watermark key (image and label) yields a watermark ac-

curacy exceeding a specified threshold on an unmarked model.

Under the independence assumption, we generate 100 random

watermarking keys and evaluate their label-matching accuracy on

a set of 30 unmarked models. The distribution of matching counts

is approximated using a cumulative normal distribution, and the

decision threshold is selected to correspond to a 𝑝-value of 0.05.

However, this technique provides only a rough estimate due to

two limitations: each model has a unique classification probability

distribution, even with the same architecture, owing to variations

in training data and hyper-parameters; and (ii) the distribution of

matching probabilities for random watermark keys is not explicitly

modeled. Section 7.2 has demonstrated the limitations in calculating

the cumulative probability functions for small 𝑝-values.

After evaluating each watermarking scheme against 17 distinct

attack types, we present their robustness in Table 6. The results

show that ChainMarks is resistant to the watermark ambiguity at-

tack, whereas all four baseline schemes are vulnerable. Also, against

the remaining 16 attacks, ChainMarks,Adi, andNoise-based scheme
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Attack Types
Robust (-) or Vulnerable (V) for CIFAR-10 / CIFAR-100

ChainMarks Adi Content Noise Unrelated

WM Ambiguity Attack -/- V/V V/V V/V V/V

Adaptive Denoising -/- -/- -/- -/- -/-

JPEG Compression -/- -/- -/- -/- -/-

Input Quantization -/- -/- -/- -/- -/-

Input Smoothing -/- -/- -/- -/- -/-

Adversarial Training -/- -/- -/- -/- -/-

Fine-Tuning (RTAL) -/- -/- -/- -/- -/-

Fine-Tuning (RTLL) -/- -/- -/- -/- -/-

Fine-Tuning (FTAL) -/- -/- V/V -/- V/V

Fine-Tuning (FTLL) -/- -/- -/- -/- -/-

Weight Quantization -/- -/- -/- -/- -/-

Weight Pruning -/- -/- -/- -/- -/-

Regularization -/- V/- V/- -/- V/-

Retraining -/- -/- V/V V/- V/V

Transfer Learning V/V V/V V/V V/V V/V

Cross-Architecture

Retraining
-/- -/- V/- -/- V/-

Adversarial Training -/- -/- -/- -/- -/-

Table 6: Robustness of different watermarking schemes
against 17 attack types (threshold probability 𝑝 = 0.01).

exhibit relatively higher robustness. However, compared to Chain-

Marks, Adi is vulnerable to regularization attacks, and Noise-based
scheme is vulnerable to retraining attacks. With the exception

of transfer learning where the 𝑝-value is 0.012/0.035 on CIFAR-

10/CIFAR-100, ChainMarks consistently achieves 𝑝-values between

6 × 10
−3

and 1 × 10
−8

across all other watermark removal attacks.

Thus, ChainMarks is the most robust scheme that is able to resist

multiple watermark removal attacks.

9 Discussion
9.1 Usability
The ChainMarks scheme can be adopted by model owners (whether

commercial vendors or individual developers) to protect their in-

tellectual property. Based on dynamic watermarking, ChainMarks

does not interfere with the model’s primary functionality, since

the triggers are out-of-distribution inputs that resemble random

noise and do not affect regular inference. We tried various hash

functions (e.g., MD5, SHA1, SHA128) and observed the selection

does not affect the final results. Block cipher in counter mode could

be an alternative; however, hashing is faster and the hard-bound is

not an issue. Moreover, ChainMarks introduces negligible training

overhead since the number of triggers is not comparable to the size

of original training dataset. Besides, cryptographic chains can be

extended to watermark RNNs and LLMs, but in different formats.

ChainMarks provides a higher security guarantee due to its

higher marginal utility. Specifically, for the ResNet-18 model trained

on CIFAR-10, 14 matches out of 100 triggers are sufficient to support

a successful ownership claim. For models trained on CIFAR-100,

even fewer matches are required, as the threshold is dependent

on the output dimension. A larger output space corresponds to a

lower random guessing probability, thereby allowing amore relaxed

matching requirement. Besides, the watermarks can be embedded

through fine-tuning, using initial weights and learning rates that

differ from those used in “training-from-scratch".

In practical watermark verification, it is not necessary to disclose

the entire key chain. For example, for a model trained on CIFAR-10,

ownership can be verified by presenting only the first 20 trigger

inputs (𝐵1 to 𝐵20). If at least 14 of 20 triggers match, the ownership

claim is considered valid. The remaining triggers can be reserved

for further verification rounds. Also, due to the one-way property,

any unused triggers in key chain remain secure and undisclosed.

9.2 Scalability
To extend ChainMarks to larger and more complex datasets (e.g.,

ImageNet), several adjustments are required to the watermark con-

figuration. Although the increased class number reduces the like-

lihood of a single successful guess, the probability of accidentally

achieving the minimum match threshold may not decrease propor-

tionally and can even increase. Thus, the chain length 𝐿 should be

increased accordingly, but kept sufficiently short to preserve the na-

ture of out-of-distribution. In addition, the digital signature should

be encoded in a higher-base numeral system to match the class

number. Due to the higher dimension of ImageNet data, hash-like

triggers are more likely to be memorized, as they reside in sparser

regions of the data manifold, far from natural image distributions.

Hyperparameters should be selected carefully to balance water-

mark security, robustness, and efficiency. We recommend setting

𝐿 ≥
√
𝐶 , where 𝐶 is the output class number, to ensure sufficient

watermark entropy. The 𝑝-value, which determines the Hamming

distance threshold, should range between 10
−2

and 10
−6

, depending

on the desired security level. While the specific hash function has

limited impact on cryptographic strength, we recommend strong

cryptographic hashes (e.g., SHA-256) for high-security applications.

9.3 Limitations and Future Work
The main contribution of ChainMarks is to defeat watermark am-

biguity attacks, which are emerging threats against all existing

DNNmodel watermarking methods. ChainMarks cannot effectively

defeat removal attacks via transfer learning and knowledge distil-

lation. In fact, none of the existing watermarking techniques is

robust against these two methods. Besides, ChainMarks focuses

on watermarking the classification models with the inputs of im-

ages. However, our idea of watermarking with a key chain can be

extended to other input formats or other modeling tasks. For text

data, it is feasible to convert a hash value into a word (i.e., word

ID) [41] or a pseudorandom string [80]. For graph-based input, we

can transform a binary hash value into an adjacency matrix to

generate graph-structured data. We leave this topic to future work.

10 Related Work
10.1 Backdoor Poisoning Attacks
Backdoor poisoning attack is a special case of targeted poisoning

attacks that maintain overall performance and induce misbehav-

iors in triggers [67]. Data manipulation is the main technique for

backdoor poisoning attacks [73]. Adversaries introduce either vis-

ible [24, 38] or invisible [44, 52, 62, 63] patterns into poisoning

samples. Also, triggers for poisoned samples can be generated by

optimization to achieve better performance [42, 51, 94]. Seman-

tic backdoor attacks leverage the semantic part of the samples as

trigger patterns, so it is unnecessary to modify the input at infer-

ence time [3, 4]. Similarly, a hidden backdoor can be activated by

combining certain objects in images [49]. It is possible to conceal



ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Brian Choi, Shu Wang, Isabelle Choi, and Kun Sun

triggers using image scaling attacks [83]. However, almost all back-

door attacks are sample-agnostic and therefore can be defeated

by trigger-synthesis-based defenses [79] and saliency-based de-

fenses [19]. Hence, sample-specific backdoor attacks are proposed

to contain different trigger patterns for different poisoned sam-

ples [44, 60]. Backdoor attacks can also be launched in the physical

world using a pair of glasses [12] or a post-it note [24]. In addition,

backdoor attacks can be applied in different fields, e.g., computer

vision [31, 61, 87], natural language processing [13], speech recog-

nition [90], software code [86], and graph learning [82, 93].

10.2 DNNWatermarking Schemes
White-box/Black-box/Box-free Watermarking. Based on the

information accessible during watermark verification, watermark-

ing schemes can be classified as white-box, black-box, and box-

free [43]. A white-box watermarking scheme grants users or ad-

versaries access to the internal information of DNNs, e.g., model

structures, model weights, and hyperparameters [34, 54, 77]. How-

ever, due to the strong assumption, white-box watermarking has a

larger capacity but limited applicability [11]. Black-box watermark-

ing schemes only allow users to access the final outputs of DNN

models by feeding a set of inputs [1, 37], allowing IP protection

for Machine Learning as a Service (MLaaS) [32]. Box-free water-

marking is similar to the black-box one; however, this mechanism

is only applied to DNNs with high-dimensional outputs, i.e., image

processing models, since watermarks can be embedded into the

outputs for any inputs by a high output entropy [81, 91].

Static vs. Dynamic Watermarking. Watermarking schemes can

be classified as static or dynamic based on watermarking meth-

ods [6]. Static methods embed watermarks in the static DNN pa-

rameters that are not changed during the operation. For example,

watermarks can be embedded as the probability distribution of

weights [10] or model weights [72, 77]. However, most static meth-

ods imply white-box watermarking, since the model parameters

need to be accessible during verification. Dynamic methods asso-

ciate watermarks with the network behaviors in correspondence

to some specific inputs [1, 25, 37, 66, 70, 91, 92]. A set of secret in-

puts/patterns with target labels (i.e., triggers) are carefully crafted

as the watermarks to be ingrained into the DNN in the training

process along with the original data set. In watermark verification,

model behaviors will be tested to verify the presence of the wa-

termark. Dynamic watermarking usually generates trigger input

by leveraging DNN backdoor poisoning attacks [47]. However, dy-

namic watermarking does not imply black-box watermarking, as it

can also be used as white-box watermarking. For example, Rouhani

et al. use activation maps to embed and verify watermarks [66].

Zero-bit vs.Multi-bitWatermarking. Based on the type of water-
mark contents disclosed in the verification, watermarking schemes

can be classified as zero-bit and multi-bit [40]. In zero-bit water-

marking, only the watermark presence is detected [1, 37, 92]; while

in multi-bit watermarking, both the watermark and its presence

should be present in the verification process [11]. A multi-bit wa-

termarking scheme can be converted to a zero-bit one.

10.3 Attacks/Defenses on DNNWatermarks
DNN watermark attacks include model modification attacks, eva-

sion attacks, and active attacks [85].

Model Modification Attacks. Model weights are often modi-

fied by the pirate. Model modification attacks include model fine-

tuning [14, 15, 77], model pruning or parameter pruning [66], model

weight compression [77], and model retraining [8, 59].

Evasion Attacks. Evasion attacks are more complicated. Shafieine-

jad et al. investigate the removal of backdoor-based watermarks

with white-box, black-box, and inference attacks [68]. Also, DNN

laundering is shown to reset backdoor watermarks [2]. Attackers

can manipulate a model to remove the owner’s signature if water-

mark presence is known in advance [25]. Reverse engineering can

be used if the original training dataset is obtained [21]. Liu et al.

propose a data augmentation scheme to mimic the backdoor trigger

behaviors [50]. Gong et al. dynamically adjust the learning rate

to purify backdoors [23]. Attackers can leverage resource-efficient

attacks [29, 69, 76] to find black-box adversarial examples. By com-

bining hybrid attacks with seed prioritization, adversarial examples

can be obtained using only a few queries. The two main optimiza-

tion techniques used in attacks are AutoZOOM [76] and NES [29].

Active Attacks. Ambiguity attack tends to forge an additional

watermark on the DNN model to doubt the ownership verifica-

tion [16, 21]. Also, several methods are proposed to detect water-

marks for further attacks [17, 56, 84]. Attackers can overwrite the

watermarks if they know the watermarking method [10, 11, 66]. In

addition, it is possible to prevent the copyright owner from veri-

fying the ownership by using a watermark collusion attack [10].

Similarly, attackers can also detect and modify the watermark query

to prevent watermark verification [59].

Countermeasures. Entangled watermarks increase the similar-

ity between watermarks and task features, improving resistance

to trigger detection [30]; however, ChainMarks prevents attack-

ers from adding new ambiguous watermarks. DynaMarks defeats

model extraction attacks by dynamically changing the responses of

the model’s prediction API during the inference phase [9]. Bansal

et al. propose randomized smoothing to improve the difficulty of

watermark removal attacks [5]. To defeat watermark ambiguity at-

tack, Fan et al. propose a passport layer so that model performance

deteriorates due to forged signatures [21].

11 Conclusion
We propose a new DNN watermarking scheme, ChainMarks, which

is resistant to watermark ambiguity attacks by introducing cryp-

tographic constraints among watermark triggers and target labels,

along with the model owner’s digital signature. Experiments show

that ChainMarks exhibits higher or comparable levels of resistance

compared to other watermark schemes against various watermark

attacks, including input processing, model modification, and model

extraction attacks. To determine watermark decision threshold, the

proposed two-phase Monte Carlo method shows its accuracy and

applicability across a range of watermarked DNN models. The mar-

ginal utility of ChainMarks is higher than that of the other schemes,

providing a higher probability guarantee of the watermark presence

in the DNN models with the same level of watermark accuracy.
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