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Abstract

Despite Federated Learning (FL) employing gradient aggregation

at the server for distributed training to prevent the privacy leakage

of raw data, private information can still be divulged through the

analysis of uploaded gradients from clients. Substantial efforts have

been made to integrate local differential privacy (LDP) into the

system to achieve a strict privacy guarantee. However, existing

methods fail to take practical issues into account by merely perturb-

ing each sample with the same mechanism while each client may

have their own privacy preferences on privacy-sensitive informa-

tion (PSI), which is not uniformly distributed across the raw data. In

such a case, excessive privacy protection from private-insensitive

information can additionally introduce unnecessary noise, which

may degrade the model performance. In this work, we study the PSI

within data and develop FedRE, that can simultaneously achieve

robustness and effectiveness benefits with LDP protection. More

specifically, we first define PSI with regard to the privacy prefer-

ences of each client. Then, we optimize the LDP by allocating less

privacy budget to gradients with higher PSI in a layer-wise manner,

thus providing a stricter privacy guarantee for PSI. Furthermore, to
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mitigate the performance degradation caused by LDP, we design a

parameter aggregation mechanism based on the distribution of the

perturbed information.We conducted experiments with text tamper

detection on T-SROIE and DocTamper datasets, and FedRE achieves

competitive performance compared to state-of-the-art methods.
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1 Introduction

Federated Learning (FL) has emerged as a basic paradigm that

enables multiple parties to jointly train a model through the aggre-

gation of parameters without sharing their private dataset [19, 23].

Due to the benefits of preserving privacy and communication effi-

ciency, FL has been widely deployed in various applications, such

as smart healthcare [1, 27] and finance analysis [4, 21, 38].

However, FL is not always impervious to security threats. A

notable threat namely gradient leakage attack, aims to infer sensitive

information from the shared model updates (gradients) [18]. Then,
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Client A

Client B

Figure 1: This illustration depicts the varied privacy prefer-

ences of different clients. Client A pays close attention to

iconographic elements within the data, such as stamps, bar

codes, and QR codes, and highlights these privacy-sensitive

regions with a yellow border. In contrast, Client B is more

concerned with textual content, including numerical val-

ues and phone numbers, marking these sections with a blue

frame.

Figure 2: Different derivatives of different layer networks

on input images (left : original image, middle and right :

derivatives on different layers).

the malicious participant can exploit this information to reconstruct

the private data or infer properties about it, leading to the violation

of local privacy [8, 48].

To address this issue, several defense methods have been pro-

posed to mitigate the risk of gradient leakage attacks in FL [10, 32].

LDP-Fed [30] is proposed to optimize LDP for the FL system which

ensures a lightweight and quantifiable measure for privacy preser-

vation. The authors in [5] aim to solve performance degradation in

FL with user-level DP and employ regularization and sparsification

techniques to local updates. FedDPA is proposed in [40] to study

the differential privacy in the personalized FL with dynamic fisher

personalization and adaptive constraint. PrivateRec [20] focuses on

federated recommendation scenarios and is devoted to achieving

better utility in online serving under a DP guarantee.

While these approaches have achieved great success, they are

generally designed for the scenario where the same privacy protec-

tion mechanism is applied to all samples, overlooking two critical

realities: First, clients are likely to have distinct privacy preferences,

meaning varied privacy-sensitive information (PSI) for protection.

The complexity of this issue arises from the attributes of privacy

preference, which are not always explicitly observed in the data. PSI

of privacy preferences may not be as overt as specific pixel regions

within an image or particular words within a text. Rather, they may

hinge on the overarching structure of the data, encompassing se-

mantic information. Second, PSI is not uniformly distributed across

data. Implementing a sample and indiscriminate privacy protection

approach across all data samples can lead to the introduction of

unnecessary noise, which can adversely affect model performance.

Considering that we are the first to propose and explore the

protection of privacy preferences of clients in FL, in this paper, we

seek to explore a foundational privacy protection scenario, namely

privacy-sensitive regions in images. We illustrate this concept in Fig.

1. To explore this scenario, we have devised a robust and effective

strategy for the preservation of PSI in regions. Local Differential

Privacy [2, 6] have demonstrated great success against gradient

leakage attacks by perturbing samples with the privacy budget.

A direct idea to solve the problem is to apply these LDP-based

methods to perturb the designated privacy-sensitive regions with a

lower privacy budget, which provides a stricter privacy guarantee.

Despite the simplicity of such an approach, applying direct pixel-

level perturbation results in the loss of critical feature information,

which in turn compromisesmodel performance [46]. This presents a

challenge in striking the optimal balance between the robustness of

the privacy protection and the effectiveness of the model accuracy.

To tackle this challenge, we propose FedRE - which can ensure

both robustness and effectiveness benefits in the FL system. Figure 2

shows the derivatives calculated by different network layers on the

same input image. We observe that if the sensitive regions selected

by the client are different (yellow or blue boxes), the derivative

values accumulated by different regions in different layers of the

network are different. Inspired by [32], we study the layer-wise

information leakage from the gradients, using the sensitivity of

gradient changes regarding the PSI region to quantify the leakage

risk. Then, we allocate different privacy budgets to perturb the

gradients of each layer guided by the sensitivity. To mitigate the

adverse effects that local gradient perturbation may have on the

performance of the global model, we introduce a new aggregation

mechanism. Upon receiving gradients from local clients, the server

employs a publicly available dataset to evaluate the sensitivity of

these gradients. The global model will favor aggregating less sensi-

tive local gradients, which can reduce the infusion of noise from

the local perturbed gradients, thereby preserving the effectiveness

of the global model.

To verify the effectiveness of our method, we first manually

annotate the PSI region of two real-world datasets: T-SROIE and

DocTamper. Based on these datasets, extensive experiments have

been done and show that the proposed FedRE enables more accurate

and robust models relative to state-of-the-art baselines. The major

contributions of this paper are summarized as follows:

• We propose and formally define the concept of privacy pref-

erences in the context of federated learning, highlighting

the need to protect privacy-sensitive information (PSI) in

privacy-sensitive regions. Our definition accounts for the

diverse and unique privacy concerns of different clients, ac-

knowledging that PSI can vary significantly between data

and clients.

• We introduce FedRE, a novel method that integrates local

differential privacy (LDP) in a layer-wise manner to provide

tailored privacy protection for PSI. Our approach judiciously

allocates the privacy budget across layers based on the sen-

sitivity of the gradients to PSI, allowing for a more nuanced
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and effective privacy guarantee without substantially com-

promising on the model’s performance.

• We conduct extensive experiments on the annotated PSI re-

gions of the T-SROIE and DocTamper datasets to validate

the effectiveness of our proposed method. Our empirical re-

sults demonstrate that FedRE achieves superior performance

in terms of robustness and accuracy compared to existing

state-of-the-art methods, thereby confirming the practical

utility of our approach in real-world FL scenarios.

2 Related Work

Federated Learning. Federated Learning is a distributed machine

learning approach that enables multiple entities to collaboratively

train a model without directly sharing raw data, thereby preserving

data privacy and security [12, 16]. Key research directions in this

field encompass algorithm optimization for efficient learning [31,

36], security and privacy enhancements [26, 41], system and archi-

tectural design for scalability [25], graph learning [9, 24],continual

learning [17, 22], and incentive mechanisms to encourage and select

participation [29, 37].

Large corporations have shown significant interest in federated

learning for various applications. For instance, in the financial sec-

tor, banks can leverage federated learning for enhanced fraud detec-

tion [39, 47], allowing them to share insights from their models with-

out revealing sensitive transaction data. Other applications include

personalized recommendations in e-commerce and news [20, 41],

medical research in healthcare [27, 28], and device optimization

in manufacturing [7, 14]. This approach enables the collective en-

hancement of various capabilities while maintaining strict data

privacy.

Gradient leakage attack. Federated learning is susceptible to

malicious attacks, including gradient leakage [35], model inver-

sion [15], and membership inference [44] attacks. Gradient leakage

is particularly harmful as it can reveal extensive information from

the victim’s training data. This attack method involves initializing

pseudo training data and labels, and optimizing them to mirror real

gradients. As the pseudo and real gradients converge, the pseudo

data begins to reflect the properties of the actual private data.

The method proposed in [48] can effectively attack not only

computer vision tasks but also natural language processing tasks.

Subsequent work has improved in areas such as initialization with

prior knowledge [11], ground-truth label extraction [45], faster

optimizer [8], and regularization terms [8, 42]. These improvements

enable more effective gradient leakage attacks on larger batch sizes,

higher resolutions, and more complex models (such as ViT) [42].

Therefore, understanding and mitigating gradient leakage attacks

is crucial due to their potential to cause significant harm.

Privacy Protection. Privacy protection in machine learning en-

compasses various techniques aimed at safeguarding sensitive in-

formation. Differential privacy is a technique that introduces noise

to the gradients before they are shared, thereby limiting the amount

of information that can be inferred from them [30, 34]. This method

provides a mathematical guarantee of privacy but at the cost of

model accuracy. Secure aggregation is another technique where the

gradients are encrypted in a way that allows the server to compute

their sum without being able to decrypt individual gradients [3].

This method provides robust security guarantees but requires more

computational resources. Homomorphic encryption is a crypto-

graphic technique that allows computations to be performed on

encrypted data without decrypting it, providing another layer of

security [43].

However, a uniform privacy protection mechanism based on

these techniques is deployed across all samples, ignoring the PSI

distribution within data and the privacy preference.

3 Methodology

We first formulate privacy preference scenarios and propose the

robust and effective FedRE. Then, we present a scalable algorithm

and provide rigorous analytical results to show the efficiency of the

proposed method.

3.1 Problem Formulation

FL Procedures. Our work is developed based on the paradigm of

Federated Averaging (FedAvg) algorithm. FedAvg, introduced by

Google in 2016 [23], is a seminal work in the domain of federated

learning. Initially designed for privacy-preservingmachine learning

on mobile devices, FedAvg transcends mobile applications to enable

collaborative model training across multiple institutions. In such

federated settings, institutions maintain the privacy of their local

datawhile collectively training a globalmodel through the exchange

of model updates, not raw data.

Based on FedAvg, we aim to collaboratively train a global model

for 𝐾 total clients in FL. We consider each client 𝑘 can only access

to his local private dataset 𝐷𝑘 := {𝑥𝑖 , 𝑦𝑖 }, where 𝑥𝑖 is the 𝑖-th input

data sample and 𝑦𝑖 ∈ {1, 2, · · · ,𝐶} is the corresponding label of 𝑥𝑖
with 𝐶 classes. The global dataset is considered as the composition

of all local datasets 𝐷 =
∑𝐾
𝑘=1

𝐷𝑘 . The objective of the FL learn-

ing system is to learn a global model 𝑤 that minimizes the total

empirical loss over the entire dataset 𝐷 :

min

𝑤
L(𝑤) :=

𝐾∑︁
𝑘=1

|𝐷𝑘 |
|𝐷 | L𝑘 (𝑤),

where L𝑘 (𝑤) = 1

|𝐷𝑘 |

|𝐷𝑘 |∑︁
𝑖=1

L𝐶𝐸 (𝑤 ;𝑥𝑖 , 𝑦𝑖 ), (1)

where L𝑘 (𝑤) is the local loss in the 𝑘-th client and L𝐶𝐸 is the

cross-entropy loss function that measures the difference between

the prediction and the ground truth labels.

Local Differential privacy. In the context of FL, clients collaborate

to train a global model under the constraint that each client’s data

remains local. While this protects the raw data, the gradients shared

during training can still leak sensitive information. Traditional DP

requires a central trusted party which is often not realistic. To

remove that limitation, local differential privacy (LDP) has been

proposed. The definition of (𝜖, 𝛿)-LDP is given as below:

Definition 3.1. A perturbation algorithm𝑀 satisfies (𝜖, 𝛿)-Local
Differential Privacy ((𝜖, 𝛿)-LDP) if, for any pair of adjacent datasets
𝐷 and 𝐷′

, and for all possible output subsets 𝑆 , the following in-

equality holds:

𝑃𝑟 [M(𝐷) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [M(𝐷′) ∈ 𝑆] + 𝛿 (2)
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Figure 3: The overall architecture of FedRE.When clients want to train amodel cooperatively, each of them first trains locally on

the last round’s global model to get the original gradient. Then based on annotated PSI, we can measure the risk of PSI leakage

at each layer by calculating their PSI scores, and the privacy budget 𝜖 will be rationally allocated to each layer accordingly.

The original gradient will then be perturbed according to the privacy budget of each layer correspondingly and uploaded to

the server for aggregation. Finally, in order to reduce the degradation caused by perturbation, the server aggregates all the

gradients based on the possible distribution of the perturbation information known using the public dataset and distributes

the updated model to all clients for the training of the next round.

where 𝜖 is the privacy budget of 𝑀 , which quantifies the privacy

protection level, and 𝛿 is the probability of the privacy guarantee

being violated. A smaller value for 𝜖 indicates a smaller gap between

two probabilities and thus a stronger privacy.

Threat Models.We assume that in the entire federated learning

environment, local clients only upload their trained gradients. The

central server is intrusted and may initiate a gradient inversion

attack while aggregating gradients. This attack maliciously infers

the client’s private training data by comparing the model broadcast

in the previous roundwith the gradient uploaded by the client in the

current round, attempting to restore as much detailed information

in 𝐷𝑖 as possible. If an eavesdropper in the communication channel

intercepts the interaction information between the client and the

central server, it also can launch the same attack.

3.2 FedRE: Protection of Privacy Preference

The key idea of FedRE is to employ a layer-wise local differential pri-

vacy mechanism tailored to local privacy preferences, ensuring pre-

cise protection of Privacy-Sensitive Information. More specifically,

we first compute the sensitivity of the PSI in the privacy-sensitive

region. Then we allocate privacy budgets based on the sensitivity of

gradients at different network layers to PSI, reducing the noise from

the perturbation of privacy-insensitive information. Moreover, with

a novel aggregation mechanism on the server side, FedRE gives

priority to the gradients with less sensitive information, minimiz-

ing the impact of perturbation on global model performance. The

workflow of the proposed framework is shown in Algorithm 1 and

Fig. 3 illustrates the FedRE approach.

3.2.1 Measure of Sensitive Private Information. To quantify the

sensitivity of private information of privacy preference, we can

re-frame the privacy leakage as an issue of the model gradient’s

sensitivity to input data. When the model calculates gradients,

some parameters may be particularly responsive to changes in the

private-sensitive regions. The variability in these parameters could

be greater, suggesting that they hold more information from those

regions, which could increase the risk of privacy breaches during

gradient inversion attacks. Inspired by this insight, we employ the

Jacobian matrix of the gradient concerning the input as a tool to

gauge the sensitivity of different gradient segments to the input

data:

𝐽𝑙 (𝑥) =
𝜕𝑔𝑙 (𝑥)
𝜕𝑥

=
𝜕

𝜕𝑥

[
𝜕𝑙 (𝑥,𝑦;𝑤)

𝜕𝑤𝑙

]
(3)

where 𝑔𝑙 () is equivalent to the partial derivative of the loss function
𝑙 () with respect to the parameters𝑤 in the 𝑙-th layer.

Then, we extract the privacy-sensitive regions from the data,

and for each pixel within the region, we align the values across

different pixel channels with the frobenius-norm since Jacobians are

compared across layers with different sizes and frobenius-norm will

consider all dimensions of the data. Assuming the dimensions of

the privacy-sensitive region are (𝑤 × ℎ × 𝑐), where 𝑐 is the number

of channels and𝑤 × ℎ represents the region size, we can calculate
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Algorithm 1: FedRE

Input :𝑇 : communication round; 𝐾 : client number; 𝜂:

learning rate; {𝐷𝑡 }𝐾𝑡=1: distributed dataset with 𝐾

clients; 𝑤 : parameter of the model; 𝜖𝑙 : privacy

budget for 𝑙-th layer in model;

∑{𝜖𝑡 }𝑙𝑡=1: total
privacy budget; D: the public dataset.

1 Initialize the parameter𝑤 ;

2 for 𝑡 = 1 to 𝑇 do

3 Server randomly selects device subset 𝑆𝑡 and send𝑤

4 for each selected client 𝑘 ∈ 𝑆𝑡 in parallel do

5 for each layer 𝑙 in the local model𝑤 do

6

Measure of Sensitive Private Information
Compute the Jacobian matrix 𝐽𝑙 (𝑥) of the

gradient as the sensitivity with (3);

Align the sensitivity of privacy-sensitive region

𝐽𝑅
𝑙
(𝑥) from different channels with (4);

Compute the averaged PSI score 𝑆𝑙 for each

sample with (5);

7 end

8

Local Differential Privacy with PSI Score
Clip each gradient 𝑔 to 𝑔𝑐 with (7); Perturb each

gradient 𝑔𝑐 with (8) and (9).

9 Send the model𝑤𝑘 back to the server.

10 end

11 At server side

12

Parameter Aggregation Mechanism
Normalize the weight 𝛼 for the aggregation with

the public dataset with (10); Aggregate the local

gradients with the weight to obtain the global

model𝑤 with (11).

13 end

the aligned sensitivity of privacy-sensitive region 𝐽𝑅
𝑙
(𝑥):

𝐽𝑅
𝑙
(𝑥) =


𝐽𝑙 (𝑥)[𝑎,𝑏,:]𝐹 · · ·

𝐽𝑙 (𝑥)[𝑎,𝑏+ℎ,:]𝐹
.
.
.

. . .
.
.
.𝐽𝑙 (𝑥)[𝑎+𝑤,𝑏,:]𝐹 · · ·

𝐽𝑙 (𝑥)[𝑎+𝑤,𝑏+ℎ,:]𝐹
 (4)

Given the client 𝑘 , we compute the average of the aligned sensitivity

of the privacy-sensitive region as the PSI score in the 𝑙-th layer of

gradients:

𝑆𝑙 =
1

𝑤 ∗ ℎ

𝑤∑︁
𝑖=1

ℎ∑︁
𝑗=1

𝐽𝑅
𝑙
(𝑥)[𝑖, 𝑗 ] (5)

3.2.2 Local Differential Privacy with PSI Score. Acquiring both the

gradient 𝑔 and PSI score 𝑆 , the client starts figuring out the right

amount of noise for differential privacy in a layer-wise manner.

While a smaller privacy budget represents a stricter protection

mechanism, we allocate the privacy budget for each layer accord-

ing to the PSI score 𝑆𝑙 , thereby ensuring a balance between the

effectiveness of model performance and privacy protection.

𝜖𝑙 =
𝜖 × 1

𝑆𝑙∑𝐿
𝑡=1

1

𝑆𝑡

(6)

Where 𝜖 is the total privacy budget set by the client. To implement

a differential privacy perturbation mechanism that complies with

the privacy budget 𝜖 for gradients, we adopt the clipping and noise

addition to ensure that the global model update is indistinguishable

whether a particular sample is included in the learning process.

𝑔𝑐
𝑙
= min

(
1,

𝐶𝑙

∥𝑔𝑙 ∥

)
× 𝑔𝑙 (7)

Where 𝐶𝑙 is the clipping threshold of 𝑙-th layer that controls the

maximum contribution of a training sample to global update, 𝑔𝑐
𝑙
is

the gradient after clipping. Besides, to make it potential attackers to

infer specific information of any sample, noise adding is performed

to satisfy the randomness requirement of DP. We take the Gaussian

mechanism for gradient noise adding to ensure LDP. It adopts 𝐿2
norm sensitivity, and adds zero-mean noise with variance 𝐶𝑙

2𝜎𝑙
2
I:

M(𝑔) = 𝑔𝑐
𝑙
+ N(0,𝐶𝑙 2𝜎𝑙 2I) (8)

Where I is an identity matrix and has the same size with 𝑔𝑐
𝑙
. 𝜎𝑙 is a

noise multiplier computed by a privacy accountant and composition

mechanism [33] for privacy budget 𝜖𝑙 , failure probability 𝛿𝑙 and

communication rounds 𝑇 .

𝜎𝑙 =

√︁
2𝑇 ln(1/𝛿𝑙 )

𝜖𝑙
(9)

Theorem 1 (Simple Composition) Here we introduce Theorem

1 proposed by [13]. If M𝑖 is an (𝜀𝑖 , 𝛿𝑖 )-differentially private (DP)

mechanism, then the composition (M1,M2, . . . ,M𝑘 ) satisfies
(∑𝑘𝑖=1 𝜀𝑖 ,∑𝑘𝑖=1 𝛿𝑖 )-DP.
Corollary 1 (DP Composition in FedRE) Denote the gradient

of the network𝑤 with 𝑙-layers𝐺 = [𝑔1, 𝑔2, . . . , 𝑔𝑙 ] , privacy budget

for each layer 𝜖 = [𝜖1, 𝜖2, . . . , 𝜖𝑙 ],
∑𝑙
𝑖=1 𝜖𝑖 = 𝜖 , and probability of

being violated for each layer 𝛿 = [𝛿1, 𝛿2, . . . , 𝛿𝑙 ],
∑𝑙
𝑖=1 𝛿𝑖 = 𝛿 . Given

any gradient of the 𝑙 − 𝑡ℎ layer, the proposed mechanism𝑀𝑙 in (8)

satisfies (𝜖𝑙 , 𝛿𝑙 )-LDP. Then, the gradient of the 𝑤 satisfies (𝜖, 𝛿)-
LDP.

3.2.3 Parameter Aggregation Mechanism. Considering that the lo-
cal perturbed gradient will introduce noise to the aggregated global

model, which may degrade the model performance, we develop

a new Perturbation Distribution Aware Parameter Aggregation

Mechanism (PDA-PAM) that can be aware of the distribution of

client’s parameter perturbation, enabling the server to aggregate

the clean gradients (with less perturbation during the model train-

ing) from local clients. Assuming that the server has access to the

category of local data, then the server employs a public dataset and

computes the PSI score of each layer (defined in 3.2.1) of each local

model𝑤𝑘 with the public dataset D and then normalizes it into the

weight:

𝛼𝑡
𝑙
=

𝑒𝑆𝑙 (𝑤
𝑡
𝑙
;D)∑𝐾

𝑡=1 𝑒
𝑆𝑙 (𝑤𝑡

𝑙
;D) (10)
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which guarantees that

∑𝐾
𝑡=1 𝛼

𝑡 = 1. Finally, the server aggregates

the local gradients with the PSI score on the public dataset to obtain

the global model𝑤 for the next communication round:

𝑤𝑙 = �̃�𝑙 −
𝜂

𝐾

𝐾∑︁
𝑡=1

𝑔𝑡
𝑙

𝛼𝑡
𝑙

(11)

where �̃�𝑙 denotes the 𝑙-th layer of the global model in the last

communication round. Here the server prefers to aggregate the

gradients with less sensitivity thus the global model can gain more

effective information.

3.3 Experimental Results

Training performance.We analyze the utility of different meth-

ods on two datasets. As shown in Table 1, the complexity and diver-

sity of the DocTamper dataset could pose additional challenges for

maintaining high accuracy, especially when the privacy constraint

is strict (𝜖 = 10). Nonetheless, FedRE consistently performs on

par or outperforms other methods across all metrics and datasets,

indicating its robustness and adaptability.

Comparing the results across different 𝜖 values, we observe that

an increase in the privacy budget (i.e., larger 𝜖) leads to improved

performance for all methods. This is expected, as a larger 𝜖 allows

for less noise to be injected during the federated learning process,

thus facilitating better model convergence.

The performance gains for FedRE are more notable on the more
complex DocTamper dataset when the privacy budget is tight (𝜖 = 10).
This underscores the effectiveness of FedRE’s PDA-PAM aggrega-

tion strategies, which are able to effectively handle the diverse and

potentially conflicting perturbations present in the client models’

updates. By dynamically adjusting the aggregation based on the

specific perturbations, FedRE is able to extract useful information

even from heavily distorted updates, demonstrating its resilience

in challenging conditions.

Defense performance.After we prove that FedRE can provide sim-

ilar or even superior learning results compared to state-of-the-art

DP-based FL mechanisms, we study if the sensitivity computation

improves defense ability. In our experimental evaluation, FedRE’s

sensitivity-driven privacy budget allocation strategy has demon-

strated remarkable effectiveness in enhancing the defense capabil-

ities against adversarial attacks in real-world privacy-preserving

applications. Specifically, by identifying and prioritizing sensitive

personally identifiable information within the data, FedRE is able to

allocate more privacy budget to these critical regions. Fig. 4 shows

an example of a real-life privacy-preserving application of FedRE,

e.g., for the same privacy budget, by labeling the last three digits

of the social security number as the PSI that need to be protected,

FedRE can allocate more privacy budget to the areas that need it,

thus successfully blurring the PSI recovered from the attack, and

decreasing the likelihood of compromising the privacy information.

Quantitative results presented in Table 2 consistently show that

FedRE outperforms other state-of-the-art DP-based FL mechanisms

across various metrics and datasets. This superior performance can

be attributed to FedRE’s budget allocation strategy, which focuses

on protecting sensitive areas more rigorously. Consequently, the

similarity between the recovered PSI and the original information

is substantially reduced.

Figure 4: Images recovered from gradient after gradient leak-

age attack without FedRE and with FedRE under the same

privacy budget. Assuming that the last three characters of

an image containing a social security number are PSI, the

left image is the original image, the center image is attacked

without FedRE, and the right image is the effect of privacy

budget reallocation using FedRE.
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Figure 5: Comparison of the effects of no noise, adding noise

to the gradient and adding noise to the raw data on the Doc-

tamper and T-Sroie datasets for training, with the iou metric

on the left and the f-score metric on the right.

The advantage of FedRE is even more pronounced when the privacy
budget (𝜖) is set to a lower value, such as 10. This is because a stricter
privacy budget encourages FedRE to allocate more noise to gradients
that contain information related to PSI, thereby strengthening the
defense.

The disparity in defense metrics between the T-Sroie and Doc-

Tamper datasets highlights FedRE’s adaptability to diverse data

types. Given that all images in the T-Sroie dataset are grayscale

invoices, while Doctamper contains more diverse and colorful im-

ages, the defense metrics on the Doctamper dataset exhibit a more

pronounced numerical advantage. Nevertheless, FedRE maintains

its superior performance, indicating its robustness across different

data landscapes.

The Necessity of Gradient Perturbation for PSI Protection. To

underscore the advantages of perturbing gradients for safeguard-

ing private and sensitive information (PSI), as opposed to directly

perturbing raw data at the pixel level, we delve deeper into the

utility trade-offs between these two methods. Our initial approach

involves directly infusing Gaussian noise into the privacy-sensitive

regions of each image, while the alternative approach strategically

introduces noise to the gradients during the training process. For a

fair comparison, we meticulously adjust the noise intensities to en-

sure that after 2000 iterations of DLG attack, both methods exhibit

comparable defense capabilities, as measured by similarity metrics.

As evident in Fig 5, while gradient perturbation introduces a

modest performance decrement, pixel-level perturbation to raw

data leads to a drastic deterioration in utility. This disparity stems

from the nuanced requirements of tasks such as tamper detection,
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Table 1: Comparison of Training Performance on Different Datasets.

𝜖 Methods

T-SROIE DocTamper

IoU Precision Recall F-Score IoU Precision Recall F-Score

∞ Central 0.721±0.018 0.771±0.008 0.917±0.020 0.838±0.014 0.575±0.012 0.778±0.006 0.688±0.012 0.729±0.010
Localset 0.408±0.017 0.607±0.018 0.564±0.016 0.585±0.015 0.345±0.015 0.677±0.019 0.599±0.014 0.635±0.016

50

LDP-Fed 0.523±0.019 0.654±0.017 0.681±0.018 0.667±0.018 0.498±0.018 0.716±0.018 0.652±0.017 0.682±0.019
BLUR+LUS 0.577±0.020 0.689±0.019 0.639±0.019 0.663±0.019 0.514±0.019 0.707±0.020 0.626±0.018 0.664±0.020
FedRE 0.601±0.018 0.697±0.016 0.651±0.017 0.673±0.017 0.524±0.017 0.727±0.017 0.643±0.016 0.683±0.018

10

LDP-Fed 0.430±0.016 0.592±0.021 0.594±0.015 0.593±0.017 0.424±0.014 0.647±0.022 0.574±0.013 0.608±0.018
BLUR+LUS 0.439±0.017 0.611±0.023 0.606±0.016 0.609±0.018 0.432±0.015 0.657±0.024 0.583±0.014 0.618±0.019
FedRE 0.448±0.015 0.630±0.020 0.618±0.014 0.624±0.016 0.457±0.013 0.686±0.021 0.609±0.012 0.645±0.017

Table 2: Comparison of Defense Performance on Different Datasets.

𝜖 Methods

T-SROIE DocTamper

MSE ↑ SSIM ↓ PSNR ↓ LPIPS ↑ MSE ↑ SSIM ↓ PSNR ↓ LPIPS ↑

50

LDP-Fed 0.022 ± 0.003 0.937 ± 0.005 48.976 ± 0.611 0.279 ± 0.014 0.027 ± 0.004 0.897 ± 0.008 46.375 ± 0.693 0.288 ± 0.017

BLUR+LUS 0.020 ± 0.002 0.894 ± 0.005 49.978 ± 0.520 0.269 ± 0.013 0.025 ± 0.003 0.904 ± 0.007 47.877 ± 0.587 0.282 ± 0.016

FedRE 0.025 ± 0.004 0.808 ± 0.008 47.463 ± 0.727 0.294 ± 0.018 0.030 ± 0.004 0.888 ± 0.008 45.462 ± 0.813 0.303 ± 0.019

10

LDP-Fed 0.327 ± 0.016 0.792 ± 0.010 45.985 ± 1.211 0.391 ± 0.022 0.422 ± 0.019 0.768 ± 0.011 42.986 ± 1.324 0.303 ± 0.023

BLUR+LUS 0.375 ± 0.017 0.739 ± 0.009 45.987 ± 1.120 0.383 ± 0.021 0.390 ± 0.011 0.776 ± 0.010 43.984 ± 1.235 0.296 ± 0.022

FedRE 0.383 ± 0.014 0.676 ± 0.008 43.772 ± 1.313 0.412 ± 0.024 0.438 ± 0.020 0.653 ± 0.014 40.367 ± 1.421 0.324 ± 0.023

which heavily rely on intricate noise patterns and accurate color

perception in the raw data. Notably, privacy-sensitive regions often

coincide with areas that have undergone tampering, thus, applying

noise to these overlapping zones disrupts the model’s ability to ex-

tract meaningful and effective knowledge from them. Consequently,

the model’s capacity to accurately detect and classify tampering

instances is significantly hindered.

The result also shows a dataset-specific trend. The T-SROIE

dataset, being relatively smaller in size, appears to be more sus-

ceptible to the detrimental effects of noise-augmented training.

Specifically, the introduction of noise during training leads to a far

more pronounced reduction in IoU and F-score compared to the

DocTamper dataset. This observation underscores the importance

of tailoring privacy-preserving techniques to the unique character-

istics of individual datasets, particularly their size and complexity,

to ensure a balanced approach that safeguards privacy without

compromising too much on utility.

The gradient perturbation approach offers a more flexible and

targeted means of defense. By perturbing gradients rather than the
raw data, we can maintain a higher level of fidelity in the input
images, allowing the model to better capture relevant features for
downstream tasks. This targeted intervention not only reduces the

overall performance impact but also ensures that the model’s ability

to detect tampering remains robust, even in the presence of privacy-

preserving measures.

Parameter Aggregation Mechanism Gain. Fig. 6 presents a

comparison between IoU results when parameters are aggregated

with and without the implementation of PDA-PAM in FedRE. The

figure elucidates the impact of varying the privacy budget 𝜖 on the

performance of the system, particularly under conditions where

this budget is constrained.

As the privacy budget 𝜖 diminishes, the aggregation of parame-

ters utilizing PDA-PAM from a larger number of clients is observed

to compensate more effectively for the noise introduced by the dif-

ferential privacy constraints. This phenomenon can be attributed to

the diversity of Privacy-Sensitive Information (PSI) across different

clients. Since the privacy budget 𝜖𝑙 for the same layer may vary

among clients, those with a larger 𝜖𝑙 can offer better compensation

for clients with a smaller 𝜖𝑙 , especially when the collective client

count is high. When 𝜖𝑙 is lower, the compensation effect will be

more obvious. However, due to the limitation of the fixed size of

the data set we use for the experiment, this trend may become less

pronounced once the number of clients reaches a certain level. This

may be because the amount of information that may be provided

by each additional client gradually decreases, which can be miti-

gated if the data set grows with the number of clients in real-world

scenarios.

When the privacy budget is less stringent and the system com-

prises only a single client, the IoU values surpass those of central-

ized training without applying differential privacy. This outcome

may be accredited to the clipping operation under a lower noise

regime, which could potentially enhance gradient regularization.

This observation implies that in real life, the addition of differential

privacy does not always result in a worse performance.
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Figure 6: Iou gain of aggregation using PDA-PAM under the

different number of clients and privacy overhead settings.

Clipping threshold. Table 3 and 4 are experiment results with

repect to thresholds 𝐶𝑙 in (7) on DocTamper and T-SROIE dataset.

All experiments are conducted under the setting of 𝜖 = 50, lr = 0.005,

and clients number = 10. We can see that a suitable large threshold

will not affect the training performance too much, and may even

slightly improve performance, acting as a way of regularization.

However, too small a threshold will lead to too little information

contained in the gradient, resulting in the model being unable to

learn during training.

Table 3: DocTamper Dataset Results for Threshold 𝐶𝑙 .

𝐶𝑙 IOU PRECISION RECALL F-SCORE

0.20 0.535±0.021 0.701±0.016 0.707±0.017 0.702±0.022

0.15 0.524±0.017 0.727±0.017 0.643±0.016 0.683±0.018

0.07 0.283±0.020 0.534±0.016 0.344±0.017 0.428±0.023

0.05 0.260±0.013 0.313±0.014 0.501±0.015 0.384±0.017

0.03 0.000 0.000 0.000 0.000

Table 4: T-SROIE Dataset Results for Threshold 𝐶𝑙 .

𝐶𝑙 IOU PRECISION RECALL F-SCORE

0.25 0.593±0.020 0.687±0.020 0.649±0.018 0.671±0.021

0.20 0.601±0.018 0.697±0.016 0.651±0.017 0.673±0.017

0.15 0.322±0.017 0.378±0.018 0.623±0.015 0.465±0.015

0.14 0.311±0.018 0.336±0.018 0.601±0.016 0.435±0.014

0.13 0.000 0.000 0.000 0.000

Computational Overhead Analysis. The process of calculating

the PSI score involves three processes, corresponding to (3), (4), and

(5) in the paper.

Equation (3) corresponds to the process of evaluating the Ja-

cobian matrix, which involves two sub steps; the first step is to

obtain the gradient by calculate derivative of the loss function with

respect to the model weights, and the second step is to obtain the

Jacobian matrix by taking the derivative of gradient with respect

to the input data of the model. The time complexity of the first

step is 𝑂 (𝐹 ), 𝐹 represents the total number of floating-point com-

putations performed by the model, and the space complexity is

𝑂 (𝑁 ), 𝑁 represents the number of parameters of the model. This

step is the same as the original gradient computation process in

model training task, and thus can utilize the intermediate results

generated during training without incurring any additional time

and space overheads. The time complexity of the second step is

𝑂 (𝐹𝐷), where 𝐷 is the number of features in the input data and the

space complexity is 𝑂 (𝐷𝑁 ). Equation (4) corresponds to aligning

the sensitivity of the privacy-sensitive region, assuming that the

total number of pixel points in the privacy-sensitive region is 𝑝 , the

time complexity is𝑂 (𝑝) and the space complexity is𝑂 (𝑝). Equation
(5) corresponds to the calculation of the average PSI score within

the privacy-sensitive region, with a time complexity of 𝑂 (𝑝) and a

space complexity of 𝑂 (𝑝).
𝑝 is generally much smaller than 𝐹𝐷 and 𝐷𝑁 , so in summary the

time complexity of the algorithm is 𝑂 (𝐹𝐷) and the space complexity
is 𝑂 (𝐷𝑁 ).

While the calculation of PSI scores has some overhead, in prac-
tice it is not necessary to calculate PSI scores for every training data,
but only when dealing with data with different content formats. Fi-
nancial data generally have several fixed formats, such as contract,

invoice, normal page, receipt, etc.. There are large differences in

the data formats between different image layouts, and therefore,

the PSI scores vary widely. Data in the same format have similar

PSI scores due to the same image layout, similar privacy protection

preferences, and tampering locations. In practice, the average of

the PSI scores calculated by sampling 10 data in the same format is

used instead of the PSI of all the training data.

4 Conclusion and Future Work

In this paper, we propose a federated mechanism called FedRE that

can simultaneously achieve robustness and effectiveness benefits

with LDP protection. It considers different privacy preferences on

privacy-sensitive information of clients, perturbs the parameters

adaptively, and aggregates parameters based on the distribution of

perturbed information. It not only achieves better privacy protec-

tion, decreasing the similarity between the reconstructed images

and raw images in sensitive regions, but also reduces the noise

when aggregating and improves the performance of the model.

While FedRE presents a robust framework for federated learning

with privacy preservation, there are areas that merit further ex-

ploration and improvement. In future research, PSI computational

efficiency can be further enhanced by employing optimizationmeth-

ods like utilizing the sparsity of the Jacobian matrix and leveraging

approximate computation methods. Additionally, the exploration

of optimizing the sampling computation of PSI scores to approx-

imate the overall distribution effectively, especially in scenarios

characterized by high data heterogeneity and imbalance, is also a

noteworthy area of investigation.
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