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Abstract. Large Language Models (LLMs) have emerged as promis-
ing tools in software development, enabling automated code generation
and analysis. However, their knowledge is limited to a fixed cutoff date,
making them prone to generating code vulnerable to newly disclosed
CVEs. Frequent fine-tuning with new CVE sets is costly, and existing
LLM-based approaches focus on oversimplified CWE examples and re-
quire providing explicit bug locations to LLMs, limiting their ability to
patch complex real-world vulnerabilities. To address these limitations, we
propose AutoPatch, a multi-agent framework designed to patch vulnera-
ble LLM-generated code, particularly those introduced after the LLMs’
knowledge cutoff. AutoPatch integrates Retrieval-Augmented Genera-
tion (RAG) with a structured database of recently disclosed vulnerabil-
ities, comprising 525 code snippets derived from 75 high-severity CVEs
across real-world systems such as the Linux kernel, Chrome, and others.
AutoPatch combines semantic and taint analysis to identify the most rel-
evant CVE and leverages enhanced Chain-of-Thought (CoT) reasoning
to construct enriched prompts for verification and patching. Our unified
similarity model, which selects the most relevant vulnerabilities, achieves
90.4% accuracy in CVE matching. AutoPatch attains 89.5% F1-score for
vulnerability verification and 95.0% accuracy in patching, while being
over 50× more cost-efficient than traditional fine-tuning approaches.

Keywords: LLM · Multi-Agent · RAG · Vulnerability Detection · Real-World
CVE · Software Patching

1 Introduction
Large Language Models (LLMs) have become integral tools in software devel-
opment, demonstrating remarkable capabilities in automated code generation,
analysis, and debugging. Prominent examples include ChatGPT [1], Codex [2],
CodeLlama [3], StarCoder2 [4], and DeepSeek [5]. These models are widely
adopted by developers; Over one million programmers have actively adopted
GitHub Copilot by 2024 [6]. Such adoption shows the profound impact of LLM-
assisted coding by accelerating the software development cycle.
⋆ Minjae Seo and Wonwoo Choi contributed equally to this work.
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Fig. 1: The overall workflow of AutoPatch.

While LLMs accelerate software development, the prevalence of software vul-
nerabilities has surged rapidly. In 2024 alone, over 40,000 publicly disclosed vul-
nerabilities were reported [7], and in just the first two months of 2025, 1,148
Linux kernel vulnerabilities and 39 critical Chrome flaws were disclosed [8]. De-
spite this trend, LLMs do not automatically learn about vulnerabilities discov-
ered after their training cutoff. Consequently, they may unwittingly suggest code
that contains known security vulnerabilities because those issues were not part of
their training data. Existing studies have shown that even state-of-the-art LLMs
have a notable propensity to generate insecure code; in one analysis, roughly
30% of the code suggestions from LLMs contained known vulnerabilities [6].
This limitation implies that, without proper secure coding guidelines, naive use
of LLMs can introduce outdated or insecure coding patterns, potentially result-
ing in severe risks such as financial loss, service disruption, or data breaches.

To address these concerns, frequent fine-tuning with new vulnerability data
(e.g., newly disclosed vulnerabilities and patch code) is one solution. However,
this approach is prohibitively time-consuming, resource-intensive [9,10,11]. In-
stead, recent research has turned to prompt engineering techniques, such as
Chain-of-Thought (CoT) prompting, which structures reasoning to improve vul-
nerability analysis [12,9,13,14]. However, they often i) rely on a limited set of
simplified examples covering only a narrow range of CWE vulnerability patterns
within a few-shot learning setup, primarily focusing on general code snippets
rather than LLM-generated code containing real-world vulnerabilities [12,9], ii)
provide explicit bug locations to the LLM instead of enabling autonomous de-
tection [9,14], and iii) place the burden of vulnerability identification entirely on
the model, limiting applicability to complex, real-world security scenarios [15,16].
Consequently, these approaches predominantly reflect a bug tester’s viewpoint,
overlooking the software developer’s perspective.

To overcome these limitations, we propose AutoPatch, a multi-agent-based
system designed to patch LLM-generated code relevant to real-world vulnerabil-
ities, particularly those introduced after an LLM’s training cutoff. As illustrated
in Figure 1, AutoPatch is structured as a security plugin for LLM-integrated
IDEs and consists of three specialized LLM agents: the Similarity Analyzer,
the Vulnerability Verifier, and the Code Patcher. When developers provide a
functional requirement, an LLM generates initial code. To proactively detect
vulnerabilities, the Similarity Analyzer agent extracts key terms and contex-
tual descriptions from the LLM-generated code and performs semantic analysis
against the semantic representations of recently disclosed vulnerabilities stored
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in a RAG database (RAG DB), calculating a semantic similarity score. In paral-
lel, the agent conducts taint analysis on the LLM-generated code, summarizing
the flow of variables and function calls into symbolic representations that omit
explicit naming, and calculates a taint similarity score by matching against the
database. The semantic and taint similarity scores are then combined into a
unified similarity score. To optimize this process, we train a machine-learning
model (unified model) which learns optimal weights via pairwise ranking loss,
ensuring that relevant CVEs are consistently ranked above irrelevant ones.

Upon identifying a match, the Vulnerability Verifier retrieves the correspond-
ing entry from the RAG DB and constructs a one-shot verification example to
explain how the matched vulnerability manifests and its root cause, enriching
the LLM query for more accurate assessment. If the generated code is deemed
vulnerable, the Code Patcher constructs a corresponding one-shot patching ex-
ample and queries the LLM to generate a secure revision. The revised code is
then re-evaluated by the Vulnerability Verifier, and this cycle repeats until the
code is verified to be free of vulnerabilities.

We implement a full prototype of the AutoPatch. The unified similarity
model is trained using the Adam optimizer, and multi-agent coordination with
RAG-enhanced retrieval is achieved using LangChain and a PostgreSQL vector
database. We evaluate with GPT-4o, Code Llama, DeepSeek, and o3-mini, gener-
ating a total of 525 code snippets across 75 recent high-severity CVEs (including
Linux kernel, Chrome, and others). GPT-4o achieves 89.3% fidelity in recreating
vulnerabilities; our similarity model achieves 90.4% accuracy in matching CVEs.
During verification, AutoPatch with GPT-4o reaches F1-scores of 89.5% for vul-
nerability detection. For patching, AutoPatch with GPT-4o successfully patches
the vulnerable code with 95.0% accuracy. Notably, fine-tuning at an interval of
5 CVEs across the entire set incurs a cost that is 5,230% higher, demonstrating
the efficiency gains provided by our plugin-based approach.
Contributions. We make the following contributions:
– We propose AutoPatch, a cost-efficient multi-agent framework that elimi-

nates the need for fine-tuning of LLMs to handle newly disclosed CVEs.
– We enhance vulnerability detection and patching accuracy by leveraging a

high-severity CVE RAG database with semantic and taint analysis to iden-
tify relevant vulnerabilities, and applying advanced reasoning for verification
and patch generation.

– We implement a full prototype of AutoPatch using LangChain and a Post-
greSQL vector database, and evaluate it on high-severity CVEs collected
from real-world codebases.

2 Background and Motivation
2.1 Code Generation Model

Code generation models, a specialized subset of large language models (LLMs),
translate natural language prompts into executable code. Trained on large-scale
datasets from diverse programming languages, they capture both syntactic and
semantic patterns to generate code snippets, functions, or full programs. By 2024,
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Table 1: Comparison of Knowledge Cutoff for Code Generation Models
Model Model Variant Knowledge Cutoff

ChatGPT [1] GPT-4o and o3-mini Oct 2023
Llama 3 [17] Llama-3-70B Dec 2023
DeepSeek [18] DeepSeek-Coder-V2 Nov 2023

over one million developers had adopted GitHub Copilot [6], reflecting their
adoption in contemporary programming practices. Prominent models include
OpenAI’s ChatGPT [1] and Codex [2], Meta’s LLaMA [17], DeepSeek [18], and
Hugging Face’s StarCoder [4]. These models significantly accelerate software
development, supporting tasks such as prototyping and debugging.

2.2 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) [19] offers a compelling alternative to
the resource-intensive retraining and fine-tuning tasks by enhancing pre-trained
models with external, domain-specific data. Instead of modifying the model’s
internal parameters, RAG integrates a retrieval mechanism that accesses up-
to-date and relevant information from external sources, thereby enriching the
model’s responses for specialized tasks. This approach not only minimizes com-
putational demands but also ensures that the model remains adaptive and
context-aware, making it an attractive solution for applications requiring con-
tinuous updates and precision in domain-specific outputs.

2.3 Motivation

Knowledge Cutoff of LLMs. LLMs are inherently constrained by a knowledge
cutoff, meaning that they can only access information available up to a specific
date. As shown in Table 1, The GPT-4o and o3-mini models have knowledge
cutoffs in October 2023 [1]. Copilot’s Codex model [2], which currently adopts
GPT-4o, shares the same cutoff. Meta’s Llama-3-70B model has a cutoff in De-
cember 2023 [17], while the recent DeepSeek-Coder-V2 model’s cutoff is Novem-
ber 2023 [18]. Thus, even the most recent iterations of LLMs are constrained
by knowledge cutoff dates. This limitation implies that any modifications or up-
dates made to the target software after the cutoff are not recognized by these
models. In contrast, open-source platforms such as Chrome or Linux undergo
frequent source code changes. For instance, in 2024 alone, the Linux Git reposi-
tory recorded 75,314 commits, with over 3.6 million lines added and nearly 1.5
million removed [20]. Additionally, a total of 8,093 Linux kernel-related CVEs
have been reported [21]. Despite this continuous code revision and security is-
sues, LLMs remain unaware of these updates, as their knowledge remains static
beyond their training cutoff.
Vulnerable Code Generation. This discrepancy between dynamic code repos-
itories and static knowledge of LLMs can introduce serious vulnerabilities. When
developers prompt models with context from recently updated source code,

4



System: You are a software engineer. Implement the function 
as described below:

Supplementary Code:
struct zram 
{ 
...
};

Code Description:
1. Compute the number of pages from disksize.
2. Allocate zram_table_entry array; return false on failure.
3. Create a memory pool using zram->disk ; free table and 

return false on failure.
4. Initialize huge_class_size if unset.
5. Initialize a spinlock for each entry.
6. Return true on success.

Function Prototype:
static bool zram_meta_alloc(struct zram *zram, u64 disksize)

static bool zram_meta_alloc(struct zram *zram, u64 disksize){
size_t num_pages, index;

num_pages = disksize >> PAGE_SHIFT;
zram->table = vzalloc(array_size(num_pages,
sizeof(*zram->table)));
if (!zram->table)

return false;

zram->mem_pool = zs_create_pool(zram->disk->disk_name);
if (!zram->mem_pool) {

vfree(zram->table);
return false;

}

    if (!huge_class_size)
huge_class_size = zs_huge_class_size(zram->mem_pool);

    for (index = 0; index < num_pages; index++)
        spin_lock_init(&zram->table[index].lock);
    return true;
}

Dangling pointer issue

LLM-Generated Code with VulnerabilityDeveloper Requirement

Fig. 2: GPT-4o-2024-11-20 generated vulnerable code for CVE-2025-21671, ex-
posing a dangling pointer that may cause a use-after-free vulnerability.

the generated output may inadvertently include security flaws. For example,
as shown in Figure 2, developers may request a function to initialize metadata
and memory structures for a zram device, a compressed RAM-based block stor-
age system in the Linux kernel, by providing a prompt with supplementary
code snippets referencing existing code snippets. However, the code generated
by the gpt-4o-2024-11-20 model contained a vulnerability, specifically a dangling
pointer issue due to failure to set the pointer to null, which can potentially lead
to a use-after-free vulnerability. These observations emphasize the urgent need
for a systematic approach to regularly identify and mitigate high-severity bugs
in real-world code. Such a system would not only improve the security of the
LLM-generated code but also bridge the gap between the evolving nature of
open-source projects and the static knowledge embedded within LLMs.

3 AutoPatch Design

Our approach with AutoPatch is to identify and patch vulnerabilities discovered
after the knowledge cutoff of code generation models at the point where devel-
opers request code. As shown in Figure 3, AutoPatch is built on a multi-agent
framework comprising three core LLM agents: the Similarity Analyzer, Vulnera-
bility Verifier, and Code Patcher. In this section, we introduce these agents and
their roles in the system.

3.1 AutoPatch Deployment Scenario

We assume a typical development scenario in which developers use LLM-
integrated IDEs (e.g., Copilot) to generate code through inline comments, with
AutoPatch operating as a security plugin within the IDEs. Given the LLM’s
inherent knowledge cutoff, it may produce vulnerable code lacking awareness
of recently disclosed CVEs. Therefore, our approach focuses on identifying
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“Patch the {Vulnerable Code} 
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“Patch the LLM-Generated Code” 
User:

Patch CoT 
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Symbolic Descriptions

“Write a function of . . .”

Patched Code

Patch-Verification
Feedback Loop

Data Retrieval
Output of Each Agent
Agent
Unified Model

Fig. 3: The overall architecture of AutoPatch.

vulnerabilities in LLM-generated code that exhibit similar patterns to pre-
viously disclosed vulnerabilities. Furthermore, to ensure seamless integration
with the LLM and real-time usability, we avoid relying on static analysis
tools, which typically require code to be fully parsable and at least partially
compilable [22,23]. Instead, we propose a lightweight plugin capable of real-time
patch generation. In alignment with realistic development settings, we do not
disclose vulnerable code locations to the LLM.

3.2 Similarity Analyzer

The Similarity Analyzer agent has two key abilities: (i) semantic analysis and
(ii) taint analysis. These abilities work in combination to address two key chal-
lenges: detecting code that exhibits similar structures to known vulnerabilities,
and identifying different code structures that nonetheless share similar vul-
nerability patterns. Semantic analysis compares keywords and description con-
texts from LLM-generated code against known CVEs in our RAG DB, while
taint analysis abstracts variables and functions into symbolic representations
for pattern-based matching. To unify these different types of similarity features,
we propose a Unified Similarity Model that learns optimal weights over multi-
ple similarity metrics—including keyword, context, variable, and function-level
comparisons—to rank the most relevant CVE.

3.2.1 Semantic Analysis
With semantic analysis ability, the agent calculates a semantic similarity score
using two principal strategies: keyword comparison and context comparison.
Keyword Comparison. In this strategy, keywords are extracted from the
developer-provided code description using the top 10,000 most frequently used
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tags from Stack Overflow [24], and compared against keywords stored in the
RAG DB, which are derived from CVE code descriptions using the same tag set.
To calculate similarity between two keywords, the Jaccard similarity score is typ-
ically utilized. However, exact keyword matching may miss semantically similar
terms with lexical variation. To address this, we incorporate rapidfuzz [25], a
fuzzy string matching library, and treat two keywords as equivalent if their simi-
larity ratio exceeds 80%. We modify the traditional Jaccard formulation by using
fuzzy set operations, where ∩rf and ∪rf represent rapidfuzz-based intersection
and union, respectively. The final similarity score is computed as Jkw =

|A∩rfB|
|A∪rfB| .

Context Comparison. While keyword comparison focuses on matching dis-
crete terms, context comparison captures the broader semantic meaning of the
code description. In this strategy, the developer-provided code description is
encoded into a high-dimensional vector and compared against vulnerable code
descriptions in the RAG DB using cosine similarity. This approach enables align-
ment based on functional intent, even when exact terminology differs. Let d and
v denote the vector representations of the developer’s and CVE descriptions,
respectively. The similarity score is computed as Cdesc =

d·v
∥d∥∥v∥ .

3.2.2 Taint Analysis
With taint analysis ability, the agent calculates a taint similarity score by per-
forming two principal strategies: variable comparison and function compari-
son. First, the agent extracts variables and functions from the LLM-generated
code and abstracts them into symbolic descriptions by removing specific nam-
ing details, thereby focusing on their inherent roles rather than literal identi-
fiers, similar to the ones shown in Figure 7: [Vulnerability-Related Variables]
and [Vulnerability-Related Functions]. Once these symbolic descriptions are ob-
tained, the Similarity Analyzer compares them with the corresponding represen-
tations stored in our RAG DB. To quantify the similarity between the symbolic
descriptions of variables and functions, we adopt cosine similarity. Let d denote
the vector corresponding to the symbolic description extracted from the LLM-
generated code, and v denote the vector from the RAG DB. The cosine similarity
for variable comparison and function comparison are computed as Cvar =

d·v
∥d∥∥v∥

and Cfunc = d·v
∥d∥∥v∥ , respectively. In addition to obtaining similarity scores, the

most probable mappings from symbolic descriptions to variables and functions
are utilized during vulnerability verification and code patching (Section 3.3).

3.2.3 Unified Similarity Model
Unified Similarity Score. We define a unified similarity score S as a weighted
linear combination of the four metrics described above. Let Jkw be the Jaccard
similarity on keywords (as defined earlier), and let C̃desc, C̃var, and C̃func be
the normalized cosine similarities for the descriptions, variables, and functions
respectively. The cosine similarity C is normalized using C̃ = C+1

2 , which maps
−1 7→ 0 and 1 7→ 1 (and 0 to 0.5) The score S for a given generated code snippet
and a particular candidate CVE code is computed as:

S = w1 · Jkw + w2 · C̃desc + w3 · C̃var + w4 · C̃func (1)
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where w1, w2, w3, w4 are trainable weights that determine the contribution of
each similarity metric. These weights are real-valued parameters that will be
learned from training data. A higher unified score S should indicate a greater
likelihood that the candidate CVE corresponds to the same vulnerability or issue
present in the LLM-generated code.
Pairwise Ranking Loss To learn the optimal weights w = [w1, w2, w3, w4], we
employ a pairwise ranking loss on training examples. For each generated code
snippet in the training set, we have one known positive CVE (the correct vulner-
ability that matches the code) and rest of negative CVE candidates (irrelevant
or incorrect vulnerabilities for that code). Let S+ denote the unified similar-
ity score for the positive (correct) CVE and let S− be the score for a negative
(incorrect) candidate. We define the pairwise ranking loss for this example as:

Lpair = max
(
0,m−

(
S+ − S−)) (2)

where m is a margin hyperparameter that specifies how much higher the positive
score needs to be compared to a negative score for the pair to be considered
correctly ranked. This pairwise loss formulation encourages the model to assign
a higher unified score to the true CVE than to any incorrect CVE, with a safety
margin. It directly penalizes cases where an irrelevant CVE is ranked too close
or higher than the correct one.
Weight Optimization and Final Outcome. The weight vector w is trained
to minimize the total pairwise ranking loss across all training examples. We
employ gradient-based optimization (i.e., Adam) to adjust the weights in the
direction that reduces Lpair. The final system takes an LLM-generated code
and computes Jkw, Cdesc, Cvar, and Cfunc against each CVE candidate in the
database and then calculates the unified score S using Equation 1. Then, the
CVE with the highest S is returned as the most likely relevant vulnerability.

3.3 Vulnerability Verifier and Code Patcher

Given the most related CVE ID along with the mapping from symbolic descrip-
tions to variables and functions provided by the Similarity Agent, the remaining
tasks are to verify whether the LLM-generated code is vulnerable to a pattern
similar to the identified CVE and to patch it if necessary. These tasks are handled
by the Vulnerability Verifier agent and the Code Patcher agent, respectively. In
this section, we present the operational design and functionality of the Vulner-
ability Verifier agent and the Code Patcher agent.

Each agent’s primary task is to construct a prompt tailored to achieve its
respective objective—vulnerability verification and code patching for the CVE
specified by Similarity Agent (Section 3.2). Figure 4 illustrates the final prompts
generated by the agents. These prompts follow a typical role-based structure,
consisting of three components: System, One-Shot Example, and User. The Sys-
tem component, shown at the top-left, defines the overall task and provides sym-
bolic descriptions of the variables and functions that play critical roles in trigger-
ing the CVE. Notably, the names of variables and functions are abstracted (e.g.,
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Vulnerability Verifier / Code Patcher Prompt

User:

[Target Code]
LLM-Generated Code

[Variable Mapping]
Symbolic Description-Local Variable 
mapping for LLM-generated code

[Function Mapping]
Symbolic Description-Calling Function 

mapping for LLM-generated code

[Supplementary Code]
Referenced Structure and Calling Function 

derived from Developer Requirement

“Result”: True or false
“Root Cause”: The vulnerability arises…

[Vulnerability Verifier Result]

Outcome

LLM:

System: [Vulnerability-Related Variables]
"variable": Symbolic Description

[Vulnerability-Related Functions]
"function": Symbolic Description 

[Reasoning Steps for Verification] [Reasoning Steps for Patching]

Based on the [Vulnerability-Related Variables & Functions],

1. Check [Target Code].
2. Identify the root cause of the vulnerability.
3. Provide the results:
{“Result”: boolean, “Root Cause”: string}.

1. Design a patching strategy 
    caused by [Root Cause].
2. Generate patched code.
3. Provide the results:
{“Patched Code”: string} 

User:

[Variable Mapping]
"variable": Local Variable

[Function Mapping]
"function": Calling Function 

[Supplementary Code]
Referenced Structure and Calling Function

[Target Code]
Vulnerable Code

[Root Cause]
Root Cause Description

Verify if [Target Code] 
has a vulnerability of…

Describe how to patch [Target Code] 
to fix the vulnerability of…

[Step-by-Step Instructions]

Let’s think step-by-step

“Result”: True
“Root Cause”: The vulnerability arises…

“Result”: Patched Code 

[Root Cause]
Root Cause Description

One-Shot Example

“Result”: Patched Code

[Code Patcher Result]

:  Shared Components

:  Vulnerability Verifier Components

:  Code Patcher Components

One-Shot Example

Fig. 4: Verification and Patch prompt for LLM-generated code.

"variable_1" and "function_1") to enable generalized vulnerability verification
and patching. The one-shot example, located at the bottom-left of the figure,
serves as an in-context demonstration of correct reasoning, illustrating how each
mapped variable and function should be processed to complete the agent’s task.
It includes CVE data along with mapping information linking the symbolic de-
scriptions to their corresponding code elements in the CVE. Finally, the User
component appears on the top-right of the figure and is structured similarly to
the user part of the one-shot example, but instead encodes the LLM-generated
code that requires vulnerability verification and patching.

3.3.1 Vulnerability Verifier
The Vulnerability Verifier agent constructs a verification prompt to assess

whether the LLM-generated code exhibits a vulnerability similar to the CVE
identified by the Similarity Analyzer agent. The agent’s core abilities are (i)
constructing a one-shot example from retrieved CVE metadata and (ii) gener-
ating the final verification prompt.
One-Shot Example. The one-shot example is dynamically generated from a
retrieved CVE entry. Its user part includes the vulnerable code associated with
the CVE, supplementary code (e.g., structure definitions and one-hop calling
functions), and the actual mapping from the symbolic descriptions to variables
and functions. The LLM response demonstrates how to reason over the symbolic
mappings, identify the root cause, and deliver a boolean verdict accompanied by
an explanatory rationale.
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Verification Prompt. The agent constructs the final verification prompt by
concatenating three components. The System component serves as a fixed pream-
ble, instructing the LLM to analyze the provided code for vulnerabilities and
identify their root cause. It introduces symbolic descriptions of vulnerability-
related variables and functions from the RAG DB and outlines a structured
reasoning process for vulnerability verification. The one-shot example, inserted
immediately after the System prompt, serves as an in-context demonstration
aligned with these symbolic descriptions. Finally, the User component mirrors
the structure of the one-shot User input, including relevant structure definitions,
one-hop calling functions, symbolic mappings derived from taint analysis, and
the LLM-generated code to be verified. This complete prompt enables the LLM
to determine whether a vulnerability exists and explain its root cause. We include
a real CVE example, CVE-2025-21671, in the Appendix B (see Figure 7), which
corresponds to the same case presented in the motivating example (Figure 2).

3.3.2 Code Patcher
Once a vulnerability and its root cause are identified, the Code Patcher agent
formulates a prompt to guide the LLM in generating a patch. While maintain-
ing the same role-based structure described in Section 3.3, its focus shifts from
verification to patch generation. The agent’s core abilities are (i) constructing a
one-shot example based on CVE patch data, (ii) generating the patching prompt,
and (iii) providing patch feedback to the Vulnerability Verifier agent.
Patching Prompt. The construction of the one-shot example and patching
prompt follows the same structure as in the Vulnerability Verifier (Section 3.3.1)
but is adapted to guide patch generation. The user exchange within the one-
shot example additionally includes the root cause identified by the Vulnerability
Verifier to help the model determine which variables and functions contribute
to the vulnerability. The LLM response of the one-shot example demonstrates a
reasoning path that leads to a patching strategy and the synthesis of a patched
version of the code, rather than a vulnerability verdict. The System prompt is
updated to instruct the LLM to generate a secure patch for the given code.
As a result, the full prompt enables the generation of a patched variant of the
vulnerable LLM-generated code (see Appendix B, Figure 7).
Patch-Verification Feedback Loop. After the Code Patcher agent generates
a patched version of the code, vulnerabilities may remain. To ensure the relia-
bility and security of the final output, the system employs a patch-verification
feedback loop, executed for a developer-specified number of iterations. In this
loop, the code generated by the Code Patcher agent is returned to the Vulner-
ability Verifier agent, where it performs the same verification process using the
previously constructed one-shot example. This cycle continues until either no
vulnerability is detected or the maximum number of iterations is reached. Upon
completion of the loop, the system outputs the final version of the code, which
is considered to be secure by the Vulnerability Verifier agent.

4 Implementation
We implement a full prototype of AutoPatch. To rank the most related vulner-
abilities, we design a unified model trained with a pairwise loss function using

10



Table 2: Comparison of Code Reimplementation Accuracy among LLMs
Model Vuln. Rate Details

Code Llama 68.0% 51 19 5 /75

DeepSeek Coder 80.0% 60 10 5 /75

DeepSeek-R1 85.3% 64 6 5 /75

GPT-4o 89.3% 67 3 5 /75

o3-mini 86.7% 65 2 8 /75

the Adam optimizer. For seamless multi-agent coordination and RAG-enhanced
DB retrieval, we utilize LangChain [26], and adopt PostgreSQL [27] with vec-
tor search for entry retrieval, such as variable/function symbolic descriptions,
verification/patch reasoning paths, and other details.
Dataset Collection and Augmentation. We develop a custom crawler
to continuously collect high-severity CVEs from the GitHub Advisory
Database [28], Openwall [29], and the Chromium issue tracker [30]. From these
sources, we collected 75 high-severity CVEs disclosed in late 2024 and 2025,
including 57 from the Linux Kernel and 10 from the Chromium project. Each
CVE is reimplemented by extracting the developer’s intent from the vulnerable
code and converting it into a natural-language prompt. This prompt is used to
guide five LLMs—Code Llama, DeepSeek Coder, DeepSeek-R1, GPT-4o, and
OpenAI o3-mini—in generating both vulnerable and patched implementations.
In total, this yields 375 code snippets, enabling us to assess LLMs’ ability to
reproduce vulnerable patterns and capture structural diversity. Among the
models, DeepSeek-R1, GPT-4o, and o3-mini are further used for verification
and patch generation due to their reasoning capabilities.

To further increase variability, we apply targeted augmentation strategies for
each CVE type, generating an additional 75 vulnerable and 75 patched code
snippets. These strategies include renaming local and function parameters using
terms typical of other CWE types (e.g., query, freedPtr), aligning parameter
names with renamed variables, injecting unreachable code blocks containing po-
tentially vulnerable variable names (e.g., malloc), embedding CWE-style com-
ments, and adding non-functional whitespace and newline variations.

Our implementations are publicly available at https://github.com/
ai-llm-research/autopatch.

5 Evaluation

We conduct a comprehensive evaluation of AutoPatch including unified model
performance, vulnerability verification, and code patching effectiveness. Also, we
analyze the verification and patching performance in relation to CWE types and
compare its operational cost against traditional fine-tuning approaches.
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Table 3: Comparison of AutoPatch Plugin Performance During the Verification.

Task Details Metric
AutoPatch with Reasoning Models Existing Techniques

DeepSeek-R1 GPT-4o o3-mini VSP [12] Baseline

CoT Reasoning ✓

Vulnerability ✓

Accuracy 75.74% 87.13% 76.73% 28.22% 28.22%
F1-score 81.78% 89.52% 80.33% 20.77% 27.86%

Patched ✓ Accuracy 85.59% 95.04% 91.30% 55.56% 46.38%

True Positive (TP): Predicted a vulnerability, and a vulnerability existed; CoT was correct.
False Positive (FP): Predicted a vulnerability, but no vulnerability existed or CoT was incorrect.
False Negative (FN): Predicted no vulnerability, but a vulnerability existed or CoT was incorrect.
True Negative (TN): Predicted no vulnerability, and there was no vulnerability; CoT was correct.

5.1 Unified Model and Code Reimplementation Performance

Table 2 shows a comparative analysis of code reimplementation accuracy among
various LLMs, based on their vulnerability rates. To assess correctness, we man-
ually verify whether each LLM-generated snippet reproduces real-world CVE
vulnerabilities. These annotations serve as the ground truth for training our
unified model to identify the most closely matching CVE ID.

The Code Llama model exhibits a 68.0% vulnerable code generation rate,
likely due to higher hallucination and reduced fidelity to the original logic.
DeepSeek Coder and DeepSeek-R1 demonstrate higher vulnerability rates of
80.0% and 85.3%, respectively, indicating improved structural alignment with
ground truth code. Notably, GPT-4o and o3-mini show the highest vulnerability
rates, 89.3% and 86.7%, respectively, which suggests minimal hallucination and
high fidelity in replicating real-world vulnerable patterns.

We train the unified model on the annotated dataset described in Section 4,
using the Adam optimizer with a pairwise loss function. The data is split into
training, validation, and test sets with a ratio of 70:15:15. Training is performed
over 500 epochs with a batch size of 12 and a learning rate of 0.005. On the test
set, the unified model achieves 90.41% accuracy in mapping each code snippet
to its corresponding CVE ID.

5.2 AutoPatch Vulnerability Verifier Performance
In this section, we evaluate the Vulnerability Verifier agent, which assesses
whether LLM-generated code contains a vulnerability and generates a corre-
sponding CoT explanation. Since the collected code snippets exhibit a significant
class imbalance, with non-vulnerable examples being relatively sparse, we apply
random sampling for each CVE to maintain a 2:1 ratio of vulnerable to non-
vulnerable snippets. A prediction is considered correct only if both vulnerability
detection and CoT reasoning are accurate. To contextualize the performance of
AutoPatch, we also compare it against two baselines: compare it against two al-
ternative approaches: VSP [12], which uses a one-shot prompt constructed from
a simple CWE-style example relevant to the vulnerability type, and a reasoning-
only model, which employs a capable LLM without any in-context examples.

The top portion of Table 3 presents a comparative evaluation of the Au-
toPatch plugin’s performance during the verification phase. AutoPatch with

12



GPT-4o achieves the highest performance—87.13% accuracy and 89.52% F1-
score—followed by DeepSeek-R1 and o3-mini, both outperforming traditional
methods. The results highlight its strength in both identifying vulnerabilities
and generating accurate reasoning paths. In contrast, VSP achieves only 28.22%
accuracy and 20.77% F1-score, underscoring its inability to handle the step-by-
step reasoning required for real-world vulnerabilities.

Overall, AutoPatch, particularly when paired with GPT-4o, demonstrates
strong capability for accurate and interpretable verification. Existing techniques,
such as VSP and the baseline model, perform significantly worse across both
vulnerability detection and reasoning tasks. These results underscore the impor-
tance of context-aware verification, as conventional methods often struggle to
capture the semantic complexity of vulnerable code.

5.3 AutoPatch Code Patcher Performance

Among the code snippets identified as vulnerable by the verifier, we employ
the Code Patcher agent to generate secure versions of the code. The bottom
portion of Table 3 provides a comparative evaluation of the AutoPatch plu-
gin’s patching performance, measuring the success rate in remediating identified
vulnerabilities. The results clearly demonstrate that AutoPatch substantially
outperforms existing techniques. GPT-4o achieves the highest patching accu-
racy at 95.04%, followed by o3-mini at 91.30% and DeepSeek-R1 at 85.59%,
showcasing the strength of advanced language models in capturing and acting
upon vulnerability semantics. In contrast, VSP and the baseline model achieve
significantly lower accuracies of 55.56% and 46.38%, respectively, underscoring
their limitations in handling complex, real-world vulnerability scenarios.

These findings highlight the effectiveness of our context-aware patching strat-
egy, which provides models with rich, semantically grounded information about
the vulnerable code. Rather than relying on isolated or oversimplified patterns,
our approach allows reasoning-capable models to better interpret the structural
and functional context of the code, ultimately guiding the generation of more
accurate and secure patches.

5.4 Performance Comparison Based on CWE Type

To further understand the AutoPatch’s performance, we analyze vulnerability
verification and patching results across four representative CWE categories: C1
(Arithmetic & Type Errors), C2 (Concurrency Issues), C3 (Memory Safety), and
C4 (Validation, Logic, and Resource Handling).

As shown in the first sub-table of Table 4, AutoPatch with GPT-4o con-
sistently outperforms all other models, demonstrating strong robustness in de-
tecting diverse types of vulnerabilities. It achieves the highest F1-scores in all
four categories, including 96.2% in C2 (Concurrency Issues) and 92.1% in C4
(Validation, Logic, and Resource Handling)—highlighting its ability to capture
both syntactic and semantic vulnerability patterns. DeepSeek-R1 and o3-mini
also perform well in C4, achieving F1-scores of 82.5% and 90.6%, respectively.
These results suggest that our context-aware verification and patching approach
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Table 4: Comparison of Performance Based on CWE Type.
D.S.: DeepSeek-R1 4o: GPT-4o o3-m: o3-mini VSP: VSP Base: Baseline

CoT Reasoning ✓ & Vulnerability ✓

CWE Metric D.S. 4o o3-m VSP Base

C1 Acc 68.2% 80.0% 78.8% 45.9% 47.1%
F1 75.7% 83.8% 82.0% 39.5% 47.1%

C2 Acc 80.0% 95.0% 73.8% 20.0% 23.8%
F1 85.7% 96.2% 78.8% 13.5% 22.8%

C3 Acc 63.2% 75.9% 63.7% 24.1% 25.5%
F1 70.6% 79.1% 67.5% 13.5% 21.2%

C4 Acc 80.0% 90.9% 89.1% 38.2% 21.8%
F1 82.5% 92.1% 90.6% 39.3% 29.5%

Patched ✓

CWE Metric D.S. 4o o3-m VSP Base

C1 Acc 90.9% 95.8% 95.7% 68.4% 73.7%

C2 Acc 84.6% 96.2% 90.9% 25.0% 38.5%

C3 Acc 83.9% 92.7% 87.0% 50.0% 33.3%

C4 Acc 85.7% 93.8% 93.7% 45.5% 40.0%

C1: Arithmetic & Type Errors, C2: Concurrency Issues, C3: Memory Safety,
C4: Validation, Logic, and Resource Handling

is particularly effective at surfacing semantic inconsistencies, especially in vali-
dation and logic-related vulnerabilities. In contrast, VSP and the baseline model
show significantly lower performance across all CWE types. Their F1-scores drop
markedly in C2 and C3, with VSP achieving only 13.5%, and the baseline model
scoring 22.8% and 21.2%, respectively. This suggests that the approaches lacking
in-context examples struggle to capture the complex interactions and semantic
context present in real-world vulnerabilities.

The second sub-table of Table 4 presents patching accuracy across CWE
categories. GPT-4o achieves the highest performance, peaking at 96.2% in C2.
DeepSeek-R1 and o3-mini also perform well, maintaining over 83% accuracy
across all categories, which reflects their robustness in addressing a wide range
of vulnerability patterns. In contrast, VSP and the baseline model show limited
effectiveness, particularly in more complex categories such as C2 and C3, where
their patching accuracy drops to 25.0% and 33.3%, respectively. These results
emphasize the critical role of contextual understanding in generating trustworthy
and effective vulnerability patches.

5.5 Cost Comparison: AutoPatch vs Fine-Tuning

Figure 5 compares the cost of patching CVEs between AutoPatch and traditional
fine-tuning strategies. We use GPT-4o as the base model, as it achieved the
highest performance in our prior evaluations.

Figures 5a and 5b illustrate the cost trends under two common fine-tuning
paradigms. In the incremental fine-tuning setting, the model is updated sequen-
tially as new CVEs are introduced. While this avoids retraining from scratch,
it still incurs repeated training overhead, resulting in linearly increasing costs.
Following standard practices in prior work [31,32], using 5 or 10 epochs leads
to a cost of $37.3 and $74.6, respectively, when patching 75 CVEs. In contrast,
the non-incremental fine-tuning setting retrains the model from scratch using
all CVE data seen so far, leading to quadratically increasing costs. For instance,

14



0 10 20 30 40 50 60 70
Number of CVEs

0

25

50

75

C
os

ts
 (

$)

FineTuning (Epoch 5)
FineTuning (Epoch 10)
AutoPatch

(a) Incremental fine-tuning

0 10 20 30 40 50 60 70
Number of CVEs

0

100

200

300

C
os

ts
 (

$)

FineTuning (5)
FineTuning (10)
FineTuning (15)
FineTuning (20)
AutoPatch

(b) Non-incremental fine-tuning

Fig. 5: Cost comparison for AutoPatch and fine-tuning.

fine-tuning every 20 CVEs costs $99.1, while fine-tuning every 5 CVEs drives
the cost up to $303.8 by the time 75 CVEs are processed.

AutoPatch, on the other hand, avoids model updates entirely. Instead, it per-
forms lightweight RAG database entry updates when new high-severity CVEs
are disclosed. This results in a nearly constant cost, peaking at just $5.7, regard-
less of CVE count. Compared to AutoPatch, incremental fine-tuning with 10
epochs is approximately 1,209% more expensive, non-incremental fine-tuning at
a 20-CVE interval is 1,639% more expensive, and non-incremental fine-tuning at
a 5-CVE interval is 5,230% more expensive. These results highlight AutoPatch’s
exceptional cost-efficiency and scalability, making it a practical and sustainable
alternative to fine-tuning-based approaches for real-world vulnerability patching.

6 Discussion and Limitations
AutoPatch leverages a retrieval-augmented generation (RAG) framework over a
CVE-based knowledge base to automatically verify and patch vulnerable code.
While its design allows for generalization beyond the original application context,
as shown in Appendix A, AutoPatch is fundamentally limited to known vulner-
abilities. Specifically, it relies on prior examples of CVEs and their associated
patches to reason about and fix new code snippets. As a result, it cannot detect
or repair vulnerabilities that have no precedent in the knowledge base, such as
zero-day vulnerabilities or novel exploit patterns. While leveraging LLM assis-
tance to discover unknown vulnerabilities is an interesting research direction, it
is out of scope for this work.

An additional limitation in our framework is the relatively small number of
Chrome-related CVEs. This is primarily because Chrome vulnerabilities, partic-
ularly those classified as high-severity, are not made publicly available immedi-
ately. These vulnerabilities often undergo a delayed disclosure process to allow
time for patch deployment. Nevertheless, by regularly crawling Chrome’s issue
tracker, we were able to identify and include 10 CVEs in our dataset.

7 Related Work
Alongside our approach, several attempts have explored using LLMs for auto-
mated software patching. For example, Nong et al. introduced a vulnerability-
semantics-guided CoT approach (VSP) [12], which improved the detection of
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vulnerabilities (both a given type and unknown types) and the generation of
correct patches, outperforming several baselines. While VSP enhances prompt-
ing through semantic guidance, it lacks a deep reasoning process for vulnerability
analysis. Instead, it primarily optimizes prompt engineering based on semantic
information from a given code snippet. In contrast, AutoPatch combines seman-
tic analysis and taint analysis with prior CVE data to guide LLMs toward more
context-aware vulnerability analysis.

APPATCH proposed an LLM-based automated patching framework [9]. It
applies the prompting techniques from VSP for patching and engages an LLM in
adaptive reasoning steps to fix code. However, APPATCH has practical usability
constraints, particularly in its reliance on precisely identifying the vulnerable
line of code as an input to the model. While this assumption may be feasible for
code snippets with known vulnerabilities with predefined locations (e.g., those
found through static analysis or CVE reports), it is impractical for detecting and
patching unknown or newly emerging security flaws. AutoPatch is not limited to
code snippets with known vulnerable lines, as it allows LLMs to actively utilize
patterns learned from previous CVEs.

ThinkRepair is a framework that leverages LLMs with CoT prompting to gen-
erate bug fixes with reasoning [13]. It operates in two phases: first, it constructs
a knowledge base of buggy and fixed code annotated with reasoning steps; then,
it uses this pool for few-shot prompting to repair new code. While ThinkRepair
is the most closely related work to AutoPatch, our approach further enhances
LLM guidance by incorporating variable and function mappings to strengthen
the connection between the generated code and the knowledge base.

8 Conclusion
We present AutoPatch plugin, a multi-agent framework that secures LLM-
generated code through retrieval-augmented vulnerability detection and
patching. We reimplement 525 code snippets based on 75 high-severity,
real-world CVEs using five popular LLMs to evaluate our system. Among
them, GPT-4o shows the best performance, achieving an F1-score of 89.52%
in vulnerability verification and 95.04% in patching, particularly excelling in
concurrency-related issues. Compared to traditional fine-tuning approaches,
AutoPatch is significantly more efficient. Compared to traditional fine-tuning
approaches, AutoPatch demonstrates significantly greater efficiency. Specifically,
incremental fine-tuning with 10 epochs incurs approximately a 1,209% higher
cost, while non-incremental fine-tuning at 5-CVE intervals results in a 5,230%
increase. These results show that AutoPatch provides an effective and scalable
solution for adapting LLMs to newly disclosed vulnerabilities.

Appendix
A AutoPatch Demonstration
To demonstrate how AutoPatch verifies and patches vulnerable code, we im-
plemented a simple Image-Processing Daemon that accepts RGB/RGBA image
buffers from local clients, processes them through a configurable pipeline of dy-
namically loaded filter plug-ins (shared objects), and returns the transformed
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image. Figure 6 illustrates the moment AutoPatch intervenes as a developer
leverages an LLM to implement the load_plugin function—responsible for load-
ing plug-in files. The LLM-generated load_plugin is vulnerable to a Use-After-
Free, closely resembling CVE-2024-27530, a vulnerability in the WebAssembly
interpreter (wasm3) where a module is freed without being properly unregistered
from the global module list managed within runtime.

Through semantic analysis and taint analysis, AutoPatch queries its RAG-
backed database and identifies load_plugin as being semantically similar to
the vulnerable function in CVE-2024-27530. Taint analysis further maps key
variables and functions to aid verification. In this case, the mappings are:
– Variables: plg → module, g_plugins → runtime
– Functions: plugin_register → m3_LoadModule, free → m3_FreeModule

Along with these mappings, AutoPatch retrieves both the verification CoT and
patch CoT from the database entry for CVE-2024-27530. It then proceeds to
verify and patch the Use-After-Free vulnerability in load_plugin by ensuring
that the global list (g_plugins) is cleared when the plugin (plg) is freed.
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int load_plugin(const char *path, FilterAPI *api)
{

Plugin *plg = calloc(1, sizeof(*plg));
if (!plg) return -1;

plg->handle = dlopen(path, RTLD_NOW);
if (!plg->handle) { free(plg); return -1; }

if (plugin_register (g_plugins, &g_plugin_count, plg) < 0){    
dlclose(plg->handle);
free(plg);
return -1;

}

int (*init)(FilterAPI*) = dlsym(plg->handle, "plugin_init");
plg->run                = dlsym(plg->handle, "plugin_run");
plg->fini = dlsym(plg->handle, "plugin_fini");

if (!init || !plg->run || !plg->fini) {
fprintf(stderr, "missing symbol(s)\n");
dlclose(plg->handle);
free(plg);
return -1;

}

if (init(api) != 0) {
fprintf(stderr, "plugin_init failed\n");
plg->fini();
dlclose(plg->handle);
free (plg);
return -1;

}

plg->name = path;
return 0;

}

M3Result repl_load (const char* fn)
{

M3Result result = m3Err_none;
IM3Module module = NULL;

u8* wasm = NULL;
u32 fsize = 0;

FILE* f = fopen(fn, "rb");
if (!f) {

return "cannot open file";
}
fseek(f, 0, SEEK_END);
fsize = ftell(f);
fseek(f, 0, SEEK_SET);

if (fsize < 8) {
result = "file is too small";
goto on_error;

} else if (fsize > 256*1024*1024) {
result = "file is too big";
goto on_error;

}

wasm = (u8*) malloc(fsize);
if (!wasm) {

result = "cannot allocate memory for wasm binary";
goto on_error;

}

if (fread (wasm, 1, fsize, f) != fsize) {
result = "cannot read file";
goto on_error;

}
fclose(f);
f = NULL;

result = m3_ParseModule(env, &module, wasm, fsize);
if (result) goto on_error;

result = m3_LoadModule (runtime, module);
if (result) goto on_error;

m3_SetModuleName(module, modname_from_fn(fn));

result = link_all(module);
if (result) goto on_error;

if (wasm_bins_qty < MAX_MODULES) {
wasm_bins[wasm_bins_qty++] = wasm;

}

return result;

on_error:
m3_FreeModule(module);
if (wasm) free(wasm);
if (f) fclose(f);

return result;
}

CVE-2024-27530
CVE-2024-27350 

in Image-Processing Daemon

@@ -6,7 +6,8 @@
- if (plugin_register(g_plugins, &g_plugin_count, plg) < 0) {
+    int index = plugin_register(g_plugins, &g_plugin_count, plg);
+    if (index < 0) {

dlclose(plg->handle);
free(plg);
return -1;

@@ -19,6 +20,7 @@
if (!init || !plg->run || !plg->fini) {

fprintf(stderr, "missing required symbol(s)\n");
dlclose(plg->handle);

+        g_plugins[index] = NULL;  /* remove from registry */
free(plg);
return -1;

}
@@ -27,6 +29,7 @@

fprintf(stderr, "plugin_init failed\n");
plg->fini();
dlclose(plg->handle);

+        g_plugins[index] = NULL;  /* remove from registry */
free(plg);
return -1;

}

Image-Processing Daemon Patch

AutoPatch

Fig. 6: AutoPatch with load_plugin function of Image-Processing Daemon.
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System:

Perform the following reasoning steps, starting with “Let's think step-by-step”.
1. Using [Variable Mapping] and [Function Mapping], verify if Use After Free exists in [Target Code].
2. Based on the analysis in Step 1, identify the root cause of Use After Free within [Target Code].
3. Provide the results in {“Result”: boolean, “Root_Cause”: string} format.

You are an expert software security engineer. 

[Vulnerability-Related Functions]
"function_1": "Allocates a contiguous memory region of requested size and initializes it to zero.",
"function_2": "Creates a dynamically managed memory structure for storage, configuring size classes and caches based on predefined allocation strategies.",
"function_3": "Deallocates a memory region that was previously allocated.

[Vulnerability-Related Variables]
"variable_1": "A memory region is allocated to store multiple structured elements, each containing a synchronization primitive.
Each primitive is individually initialized after allocation."

LLM:

Now, I will analyze the user-provided [Target Code] to verify if a vulnerability of Use After Free, similar to CVE-2025-21671, exists. 
I will follow the steps below and explain the reasoning at each step.

Let's think step-by-step.
Step 1. Verify if [Target Code] has Use After Free.
  “The vulnerability occurs due to a use-after-free condition in the zram_meta_alloc function. 
   When zs_create_pool fails, the code correctly frees zram->table using vfree(), but it does not set zram->table to NULL. 
   As a result, any future access to zram->table after this failure can lead to use-after-free vulnerabilities, potentially causing crashes or security issues. 
   This is especially dangerous if the freed memory is later reallocated and modified before being accessed again.”
Step 2. Identify the root cause of Use After Free wihtin [Target Code].
  “The vulnerability arises because after freeing memory for zram->table, the pointer is not set to NULL, 
   leaving a dangling pointer that can be subsequently used, which results in a use-after-free condition.”

[Step-by-Step Instructions]
1. Using [Variable Mapping] and [Function Mapping], verify if Use After Free exists in [Target Code].
2. Based on the analysis in Step 1, identify the root cause of Use After Free within [Target Code].
3. Provide the results in {“Result”: boolean, “Root Cause”: string} format.

User:

[Supplementary Code]
struct zram { … }
#define vzalloc ( ... )
struct zs_pool *zs_create_pool(const char *name) { … }
extern void vfree(const void *addr);

[Variable Mapping]
“variable_1” : “zram->table”

[Target Code]
static bool zram_meta_alloc(struct zram *zram, u64 disksize)
{
    …
    if (!zram->mem_pool) {
        vfree(zram->table);
        return false;
    …

[Function Mapping]
"function_1": "vzalloc"
"function_2": "zs_create_pool"
"function_3": "vfree"

Analyze the user-provided [Target Code] to determine if it contains a vulnerability of type Use After Free, similar to CVE-2025-21671.
Focus on variables and functions with roles relevant to this vulnerability in [Target Code].

Patch the [Target Code] having a vulnerability of Use After Free, similar to CVE-2025-21671.
Focus on the given mappings of each symbolic variables functions provided by user with [Variable Mapping] and [Function Mapping].

Perform the following reasoning steps, starting with “Let's think step-by-step”.
1. Based on [Variable Mapping] and [Function Mapping], describe how to patch the [Target Code] for fixing Use After Free similar to CVE-2025-21671.
2. Use the patch description from Step 1 to generate a patched code.
3. Provide the results in {“Patched Code”: string} format.

[Root Cause]
The vulnerability arises because after freeing memory 
for zram->table, the pointer is not set to NULL.

Step 3. Provide the result.
  “Result”: True,
  “Root Cause”: “The vulnerability arises because 
   after freeing memory for zram->table, the pointer is not set to NULL, 
   leaving a dangling pointer that can be subsequently used, 
   which results in a use-after-free condition.”

Now, I will patch the user-provided [Target Code] having a vulnerability of Use After Free, similar to CVE-2025-21671. 

 Let's think step-by-step.
Step 1. Describe how to patch [Target Code] to fix Use After Free similar to CVE-2025-21671.
  “The vulnerability is caused by a use-after-free condition because after freeing zram->table using vfree(), the pointer is not reset to NULL. 
   This leaves zram->table dangling and may lead to subsequent invalid memory accesses. The patch addresses the issue by adding a line that sets
   zram->table to NULL immediately after freeing it, ensuring that any later check or use will recognize that the table is no longer valid.” 
Step 2. Generate a patched code based on Step 1.

Step 3. Provide the result.
  “Patched Code”: 
   static bool zram_meta_alloc(struct zram *zram, u64 disksize)
   {
      …
      if(!zram->mem_pool){
         vfree(zram->table);
         zram->table = NULL;
         return false;
      }
      …
   }

: Vulnerability Verifier Components

: Code Patcher Components

: Shared Components

Fig. 7: Example verification and patch prompt for CVE-2025-21671.
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