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Abstract—Artificial Intelligence (AI) is expected to be an
integral part of next-generation AI-native 6G networks. With the
prevalence of AI, researchers have identified numerous use cases
of AI in network security. However, there are almost nonexistent
studies that analyze the suitability of Large Language Models
(LLMs) in network security. To fill this gap, we examine the
suitability of LLMs in network security, particularly with the
case study of STRIDE threat modeling. We utilize four prompting
techniques with five LLMs to perform STRIDE classification
of 5G threats. From our evaluation results, we point out key
findings and detailed insights along with the explanation of the
possible underlying factors influencing the behavior of LLMs in
the modeling of certain threats. The numerical results and the
insights support the necessity for adjusting and fine-tuning LLMs
for network security use cases.

Index Terms—Large Language Model (LLM), STRIDE, threat
modeling, suitability of LLM

I. INTRODUCTION

Future networks, such as Sixth Generation (6G) networks,
are envisioned to integrate Artificial Intelligence (AI) into
their networks to be AI-Native networks [1] to improve per-
formance, efficiency, and scalability [2]. Ericsson’s report [3]
indicates that deploying AI in telecom networks will not only
reduce the Operational Expenditure (OPEX) of the network but
also provide a 5% to 10% return on investment. On the other
hand, with the increasing popularity of AI and Large Lan-
guage Models (LLMs), researchers are identifying potential
applications and use cases of AI and LLMs in networks [4]–
[6]. These potential use cases include, but are not limited
to, network optimization [4], automation of security [5], and
threat classification [6].

Upon examining the literature, we notice a significant gap
where there is a lack of work analyzing and investigating the
suitability of LLMs in the proposed network security use cases.
This motivated us to investigate the suitability of LLMs in
network security use cases. Due to the importance of threat
modeling as a starting point in any security exercise, we
focus on the “Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service, and Elevation of Privilege
(STRIDE)” threat model [7], [8].

We have extensive experience with Fifth Generation (5G)
threat modeling using STRIDE [9], [10]. Hence, in this work,

we select a case study of STRIDE threat modeling to perform
LLM-based classification of 5G threats. We perform the ex-
periments using four prompting techniques with five different
LLMs. This work is important as it provides insights on using
LLMs for threat classification in next-generation ‘AI-Native’
telecom networks.

The main contributions of this work are as follows:
1) We investigate the suitability of Large Language Models

(LLMs) in network security use cases. For this purpose,
we select the case study of STRIDE threat modeling of
5G threats and vulnerabilities. We perform experiments
by selecting six 5G threats and utilizing four different
prompting techniques with five LLMs.

2) We provide detailed insights based on the evaluation
results of LLM-based STRIDE classification. We pro-
vide detailed discussions on potential underlying factors
that influence the behavior of LLMs in modeling certain
threats, including: incorrect threat perspective, failure to
identify second-order threats, and insights on Few-Shot
(FS) prompting positively impacting performance.

3) We analyze the suitability of LLMs using numerical
testing and various performance metrics, including accu-
racy, precision, recall, and F1 score. Our results indicate
that the performance of the selected LLMs is compa-
rable, highlighting the need for enhancements in these
models for STRIDE threat modeling in 5G networks.

The paper is organized as follows: Section II provides the
motivation of our work in light of the examined related works.
Section III explains the evaluation methodology we use for the
STRIDE threat modeling case study. The detailed results and
insights of the evaluation are presented in Section IV. Finally,
Section V provides the discussion and conclusion of our study.

II. MOTIVATION AND EXAMINATION OF RELATED WORK

With the advent of LLMs, many researchers have identified
various potential use cases of LLMs in telecom networks and
cybersecurity. We present the most relevant papers in this
section.
LLM for Networking: The white paper by Shahid et al. [4]
presents the concept of “Large Telecom Model (LTM)” for
use cases of telecom networks. Some of the potential use
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cases they mention include the use of LTM at the network
edge, LTM for network optimization, using LTM for network
automation tasks, and performing intent-based management
using LTMs, etc. Similarly, Zhou et al. [5] identify four
different areas of telecom networks that may benefit from
LLMs. These areas include generation, optimization, classi-
fication, and prediction problems in telecom networks. Wu et
al. [11] present the NetLLM method to utilize LLMs for three
different networking problems, namely, “viewport prediction”,
“adaptive bitrate streaming”, and “cluster job scheduling”. The
authors extensively evaluate the performance of their proposed
framework within these problems.
LLM for Security: Ferrag et al. [6] propose multiple ap-
plications of LLMs in cybersecurity, including detection and
analysis of threats, incident response, automation of security
tasks, verification of security protocols, etc. The work by
Guthula et al. [12] proposes a foundation model for security
that takes into account the distinct nature of network traffic.
The aim of the authors is to consider the general applicability
of the model.

Sędkowski [13] studies the efficacy of LLMs in recognizing
potential threats in the network and recommending counter-
measures. Their methodology includes using Nmap reports
to classify threats using STRIDE threat modeling with three
different LLMs. The author concludes that the performance
of LLMs in threat detection is comparable to humans. The
scope of their work is focused on testing the application of
AI in threat modeling, as opposed to our aim of studying the
suitability of LLMs for network security.

Yang et al. [14] present “ThreatModeling-LLM”, which is
an LLM-based method to perform threat modeling of the
banking system using the STRIDE model. Their approach
includes various steps to improve the performance of the
LLMs. Their scope is limited to banking systems. The main
objective of their work is to improve and automate threat
modeling using LLMs, instead of investigating the suitability
of LLMs for network security.
Motivation: After examining the related works, we identify
that the suitability of the potential use cases of LLMs needs
to be investigated. However, to the best of our knowledge,
there are almost nonexistent or very scarce existing studies
that are actually testing the suitability of LLMs for these use
cases. This motivated us to study the suitability of the LLMs
in telecom network security using a case study of STRIDE
threat modeling.

III. EVALUATION METHODOLOGY FOR A CASE STUDY OF
STRIDE THREAT MODELING

The aim of this case study is to employ LLMs to categorize
the threats and vulnerabilities on 5G interfaces using the
STRIDE model. The main objective is to evaluate various
prompting and search techniques and investigate the suitability
of LLMs for telecommunication tasks.

Our evaluation methodology is shown in Figure 1. We
initially select multiple threats and vulnerabilities in the 5G
network along with their baseline STRIDE classifications from
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Fig. 1. Evaluation Methodology of STRIDE Modeling

the published literature and standards. Then, we use various
prompting techniques to perform the LLM-based STRIDE
classification of the selected threats. Finally, we compare the
STRIDE classification by LLMs to the baseline and evaluate
the results. We will explain each step in the following.

A. Selected 5G Threats and Vulnerabilities

To carry out the evaluation, we select six threats and vulner-
abilities on 5G interfaces from our previous research work [10]
along with their STRIDE classifications as a baseline; this
step is shown with a blue block in Figure 1. As we already
mentioned in our previous work [10], we want to clarify that
the baseline STRIDE classification of the threats may not be
unique. We randomly select these attacks from the published
literature and standards and ensure that the selected threats
cover the six STRIDE categories. Three of the selected threats
are on the N1 interface, because N1 is exposed to the Radio
Access Network (RAN) and it faces the largest number of
threats [10]. In our earlier work [10], we comprehensively
explored and identified the threats and vulnerabilities on the
critical 5G network interfaces and categorized them based on
the STRIDE threat model. The selected threats, along with
their description, are explained below. We use the same threat
names in the first row of Table I:

• Access and Mobility Function (AMF) Impersonation on
N1 interface: If a malicious actor is impersonating AMF,
it can access sensitive user information through the N1
interface [15], [16]. This is especially important when
users send their unique identifiers (e.g., Subscription
Permanent Identifier (SUPI)) to the AMF to join the 5G
network [10].

• 5G-Globally Unique Temporary Identity (GUTI) and In-
ternational Mobile Equipment Identity (IMEI) correlation
on N1 interface: If the attacker is able to correlate 5G-
GUTI and IMEI of a user, it can trace the present and
future mobility and position of the user [10], [17].

• Bidding down on Xn-handover: In this threat, insecure
algorithms are enforced by the malicious gNodeB (gNB)



You are a 5G network security expert.
Your task is to classify a given 5G threat or
vulnerability according to the STRIDE model:
1. Spoofing
2. Tampering
3. Repudiation
4. Information disclosure
5. Denial of service
6. Elevation of privilege
Each threat or vulnerability may belong to one or
more STRIDE categories. Your response should list
only the applicable category or categories without
any additional details or explanations.

Listing 1. LLM System Prompt. The text in Blue color defines the scope of
the LLM task. While the text in Cyan color refines the output of the LLM

in the 5G system, resulting in weakening the security of
the 5G system [10], [16].

• Eavesdropping on F1 interface: On the F1 interface,
eavesdropping of the control plane and data plane traffic
is a potential threat [10]. This eavesdropping will result
in information disclosure and can further lead to threats
that can allow spoofing and tampering as well [16], [18].

• False Single Network Slice Selection Assistance Informa-
tion (S-NSSAI) on N1 interface: Providing incorrect S-
NSSAI during the Network Slice-Specific Authentication
and Authorization (NSSAA) procedure threatens systems
resources and may result in escalation of privileges [15],
[16].

• Man-in-The-Middle (MiTM) attack on N3 interface: The
N3 interface between 5G RAN and User Plane Function
(UPF) is susceptible to MiTM attack [10].

B. Large-Language Models (LLMs)

We select the following Large Language Models (LLMs)
to perform this evaluation: Sonar by Perplexity [19], GPT-
4o by OpenAI [20], Claude 3.7 Sonnet by Anthropic [21],
Grok-2 by xAI [22], and Gemini 2.5 Pro by Google [23]. We
use these LLMs through the pro version of the Perplexity AI
platform that we have access to through our University [24].
We perform the STRIDE classification of the six selected
threats using these LLMs in order to evaluate the suitability
of the LLMs for network security. Figure 1 shows the LLM-
based STRIDE classification methodology with green blocks.

C. LLM Prompts

We use a combination of system and user prompts to
perform the LLM-based STRIDE classification.
System Prompt: The experiment is performed by providing
a system prompt to the LLM at the beginning, which is an
instruction to define the scope of the LLM task and control
the output of the LLM [25]. The system prompt we provide to
the LLMs is shown in Listing 1. We initially define the scope
of the LLM task and then outline the instructions to refine the
output of the LLM.
User Prompts: The user prompts are a set of prompts that we
run for each of the selected six threats. We use the following
two prompting approaches in our evaluation:

Classify the following threat/vulnerability:
[NAME_OF_THREAT]

Listing 2. User prompt for Zero-Shot (ZS) prompting

Classify the following threat/vulnerability:
[NAME_OF_THREAT]
The following are some examples of threat STRIDE
classification. Here, {X} represents that the
threat does not belong to this category, and {O}
means the threat belongs to this category:
1. NAS protocol-based attack on N1 interface:
S{X}, T{X}, R{X}, I{O}, D{O}, E{X}
2. A bidding down of Security features on N1
interface: S{X}, T{O}, R{X}, I{O}, D{O}, E{X}
3. Keystream reuse on Xn interface: S{X}, T{
X}, R{X}, I{O}, D{X}, E{X}
4. Flawed Validation of Client Credentials
Assertion on SBI interface: S{O}, T{X}, R{X}, I{O
}, D{O}, E{O}

Listing 3. User prompt for Few-Shot (FS) prompting

1) Zero-Shot (ZS) prompting: The Zero-Shot (ZS)
prompting approach only provides the LLM with a
description of the task without including any examples
in the prompt [26]. The ZS prompt we use in this case
study is shown in Listing 2.

2) Few-Shot (FS) prompting: This approach of prompting
the LLM includes a certain number of examples in
the prompt [26]. The FS prompt we use is shown in
Listing 3.

We replace the ‘[NAME_OF_THREAT]’ in these prompts
with the name of a specific threat and provide the prompt
to the LLM. Then, we record the STRIDE classification of a
threat provided by the LLM. We repeat this step for all the
six selected threats (see steps in green blocks in Figure 1).

We combine ZS and FS prompting approaches with ‘base’
LLM knowledge (no internet access) and with ‘internet’
search, to come up with four prompting techniques, ZS_Base,
ZS_Internet, FS_Base, and FS_Internet. Apart from Zero-shot
(ZS) and Few-shot (FS) promptings, another approach that
is generally used to redefine the scope of the LLMs is ‘fine-
tuning’ [26]. However, fine-tuning requires retraining the LLM
with a specific dataset in order to refine its output for a
particular use case. Since this approach is expensive (in terms
of time and resources), we do not consider LLM fine-tuning
for the evaluation in this work.

IV. RESULTS AND INSIGHTS

While we report some performance metrics on how the
LLMs performed in our experiments, we note that our main
goal is not to compare the LLMs but rather to study the
suitability of these models for network security tasks using
a case study of 5G STRIDE modeling. Most importantly, we
provide insights on their use in the modeling process.

A. LLM-based STRIDE Classification

In this section, we provide the results of evaluating the case
study of STRIDE threat modeling of 5G threats. The results



TABLE I
LARGE LANGUAGE MODEL (LLM)-BASED STRIDE CLASSIFICATION OF 5G THREATS

Prompting 
Techniques 

LLM Models 

AMF impersonation on 
N1 interface 

5G-GUTI and IMEI 
correlation on N1 interface 

Bidding down on 
Xn-handover 

Eavesdropping on 
F1 interface 

 
 

MiTM attack on 
N3 interface 

S T R I D E S T R I D E S T R I D E S T R I D E S     E S T R I D E 

Baseline    ⚫    ⚫  ⚫    ⚫  ⚫ ⚫  ⚫ ⚫  ⚫        ⚫ ⚫ ⚫ ⚫ ⚫   

ZS_Base 

Sonar ⚫ ⚫ ⚫      ⚫ ⚫    ⚫   ⚫ ⚫    ⚫   ⚫ ⚫ ⚫ ⚫   ⚫ ⚫ ⚫ ⚫ ⚫  

GPT-4o ⚫     ⚫    ⚫    ⚫    ⚫    ⚫   ⚫    ⚫  ⚫ ⚫  ⚫ ⚫  

Claude 3.7 Sonnet ⚫         ⚫    ⚫   ⚫     ⚫   ⚫      ⚫ ⚫  ⚫   

Grok-2 ⚫    ⚫  ⚫   ⚫    ⚫   ⚫     ⚫   ⚫ ⚫ ⚫    ⚫ ⚫   ⚫  

Gemini 2.5 Pro ⚫ ⚫  ⚫ ⚫ ⚫    ⚫    ⚫   ⚫ ⚫    ⚫   ⚫    ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ 

ZS_Internet 

Sonar ⚫ ⚫ ⚫ ⚫  ⚫   ⚫ ⚫  ⚫  ⚫  ⚫ ⚫ ⚫  ⚫ ⚫ ⚫   ⚫ ⚫ ⚫ ⚫ ⚫  ⚫ ⚫ ⚫ ⚫  ⚫ 

GPT-4o ⚫         ⚫    ⚫  ⚫ ⚫     ⚫   ⚫       ⚫  ⚫   

Claude 3.7 Sonnet ⚫         ⚫    ⚫        ⚫    ⚫  ⚫   ⚫   ⚫   

Grok-2 ⚫     ⚫ ⚫   ⚫    ⚫  ⚫ ⚫   ⚫  ⚫   ⚫   ⚫   ⚫ ⚫  ⚫   

Gemini 2.5 Pro ⚫ ⚫  ⚫ ⚫ ⚫    ⚫    ⚫  ⚫ ⚫     ⚫   ⚫ ⚫   ⚫ ⚫ ⚫ ⚫  ⚫ ⚫ ⚫ 

FS_Base 

Sonar ⚫   ⚫ ⚫ ⚫    ⚫    ⚫  ⚫ ⚫     ⚫   ⚫   ⚫ ⚫ ⚫ ⚫ ⚫  ⚫ ⚫ ⚫ 

GPT-4o ⚫   ⚫      ⚫    ⚫  ⚫ ⚫     ⚫   ⚫   ⚫   ⚫ ⚫  ⚫ ⚫  

Claude 3.7 Sonnet ⚫         ⚫    ⚫  ⚫ ⚫     ⚫   ⚫ ⚫   ⚫  ⚫ ⚫  ⚫ ⚫  

Grok-2 ⚫   ⚫     ⚫ ⚫    ⚫  ⚫ ⚫     ⚫   ⚫   ⚫   ⚫ ⚫  ⚫  ⚫ 

Gemini 2.5 Pro ⚫ ⚫ ⚫ ⚫ ⚫ ⚫    ⚫    ⚫  ⚫ ⚫     ⚫   ⚫ ⚫   ⚫ ⚫ ⚫ ⚫  ⚫ ⚫  

FS_Internet 

Sonar ⚫   ⚫ ⚫     ⚫    ⚫  ⚫ ⚫     ⚫   ⚫   ⚫ ⚫  ⚫ ⚫  ⚫ ⚫  

GPT-4o ⚫ ⚫  ⚫      ⚫    ⚫  ⚫ ⚫     ⚫   ⚫   ⚫   ⚫ ⚫  ⚫   

Claude 3.7 Sonnet ⚫ ⚫  ⚫ ⚫  ⚫   ⚫    ⚫  ⚫ ⚫     ⚫   ⚫   ⚫   ⚫ ⚫  ⚫   

Grok-2 ⚫         ⚫    ⚫   ⚫     ⚫   ⚫      ⚫ ⚫  ⚫   

Gemini 2.5 Pro ⚫ ⚫  ⚫ ⚫ ⚫    ⚫    ⚫  ⚫ ⚫     ⚫   ⚫ ⚫  ⚫ ⚫ ⚫ ⚫ ⚫  ⚫   

                                      

Legend: 

                                       

  
 ⚫  Positive value (baseline)       Negative value (baseline)     ⚫  True Positive value    

  
                                   

  
   True Negative value      ⚫  False Positive value        False Negative value    

                                       

False S-NSSAI on
  N1 interface

T  R  I  D

of LLM-based STRIDE classification of the six 5G threats
are shown in Table I. The first column of the table includes
the prompting techniques we employ in our evaluation, while
the second column shows the LLM models we select. The
rest of the columns in this table present the baseline STRIDE
classification along with the results of LLM-based STRIDE
classification of the 5G threats. In this table, the white cells
with a dot (•) represent a positive baseline value, while
an empty white cell represents a negative baseline value.
According to this baseline, we categorize the LLM-based
STRIDE classifications as True Positive (TP) (dark green cell
with a dot (•)), True Negative (TN) (empty green cell), False
Positive (FP) (yellow cell with a dot (•)), and False Negative
(FN) (empty red cell). The coloring scheme represents that the
greens (TP and TN) are correct classifications. Yellow (FP)
is an incorrect classification, but it is not the worst outcome
(over-predicting positive), and red (FN) is an incorrect clas-
sification and represents the worst outcome (under-predicting
positive). In the following, we present the main insights and
observations from these results.

B. Insights on the LLM-based STRIDE Classification

Incorrect Threat Perspective: Looking at the results of the
first threat, “AMF impersonation on N1 interface”, in Table I,
we observe that the LLMs did not consistently categorize this
threat as ‘information disclosure’, similar to the baseline clas-
sification (see red cells in column I). We note that this threat
is categorized as ‘spoofing’ by all LLMs with all prompting
techniques (yellow cells in column S). This could be attributed

to the LLMs classifying this threat from the perspective of the
AMF, while the baseline classification is from the perspective
of the user of the 5G network. Hence, according to the
baseline classification, this threat will only lead to ‘information
disclosure’ of the sensitive user information to the malicious
AMF, as described in Section III-A.

The classification results of the threat, “False S-NSSAI on
N1 interface”, demonstrate a degree of consistency across
all prompting techniques and LLMs. This threat is outlined
in 3GPP TR 33.926 [16] and the 3GPP specified ‘elevation
of privilege’ as the corresponding threat category. However,
no LLM correctly identified this threat in all prompting
techniques, except Google’s Gemini 2.5 Pro, which correctly
identified this threat in the ‘elevation of privilege’ category
with all prompting techniques (green box with a dot in column
E). Furthermore, in almost all cases, the LLMs incorrectly
identified this threat in a ‘spoofing’ category (yellow cells
in column S), which is incorrect compared to the 3GPP’s
categorization in [16]. Similar to the first threat, it is very
likely that LLMs consider an incorrect threat perspective
and categorize this threat as a ‘spoofing’ attack due to the
transmission of false S-NSSAI, instead of an ‘elevation of
privilege’ threat.
Failure to Identify Second-order Threats: One major obser-
vation we notice in Table I is that the fourth threat, “Eaves-
dropping on F1 interface”, is only categorized as ‘information
disclosure’ and not as ‘spoofing’ and ‘tampering’ in almost
all LLM-based STRIDE classifications. This could be because
LLMs are not considering the possible ‘second-order effect’ or



‘second-order threat’ of this attack. However, as specified by
3GPP [16], [18], due to the lack of confidentiality and integrity
measures, the eavesdropping threat may not only result in
‘information disclosure’ but may also result in ‘spoofing’ and
‘tampering’ threats as well. This shows that LLMs may not
always provide a comprehensive threat modeling, specifically
when multiple subsequent threats are also possible.

We further see similar behavior in the second selected threat,
“5G-GUTI and IMEI correlation on N1 interface”, where the
threat is identified correctly as ‘information disclosure’. This
‘information disclosure’ can further lead to ‘tampering’, but
it is not categorized as a ‘tampering’ threat by the LLMs. On
the positive side, the classification performance of the second
threat is very consistent across all prompting techniques and
LLMs, and it is slightly improved as we move from the
ZS_Base to FS_Internet prompting techniques.

For the “MiTM attack on the N3 interface” (sixth threat), the
LLMs mostly identified this threat correctly in the ‘spoofing’,
‘tampering’, and ‘information disclosure’ categories. However,
they predominantly failed to identify the MiTM threat in the
‘repudiation’ category. This is similar to the previous results
of the fourth threat, where the LLMs did not identify some
categories when multiple subsequent threats are also possible.
In the case of a MiTM attack, for example, it is possible
that an attacker may intercept and modify the content of a
packet in transit from the sender to the receiver, if appropriate
security measures are not provided. The sender will deny
the transmission of the modified content. Nonetheless, due to
the lack of security measures, it will be difficult to identify
the packet modification or the entity responsible for the
modification.
FS Prompting Improves Performance: We discover that
the classification performance of the third threat, “Bidding
down on Xn-handover”, is mostly accurate in all prompt-
ing techniques, except ZS_Base. For example, the FS_Base
prompting approach achieved an accuracy of 100% with all
LLMs. This can be due to the fact that the user prompt we
provide for FS prompting includes a similar example of a
‘bidding down of Security features on N1 interface’ with the
same STRIDE classification as this threat. We also notice that
the performance is increased in FS prompting compared to ZS
prompting, similar to the first and second threats.

Similarly, we notice from the first threat that the classifi-
cation performance is improved as we move from ZS_Base
to FS_Internet prompting technique (more green and less red
as we move down the ‘I’ column). This also suggests that
providing examples to the LLMs improves their performance.

C. Comparison of Prompting Techniques

We analyze and compare the performance of the prompting
techniques in terms of accuracy and F1 score. The results in
Figures 2 and 3 are averaged over the six selected threats
(36 cells in one row). Figure 2 shows the accuracy of LLMs
in 5G STRIDE threat modeling with four different prompting
techniques. We see from the figure that with ZS_Base prompt-
ing, the accuracy achieved is the lowest compared to other
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prompting techniques. As we go from ZS_Base prompting
to FS_Internet prompting, we observe that the performance
(accuracy) is increasing gradually. We plot the average ac-
curacy of each prompting technique and notice that as we
move from ZS_Base to FS_Internet, the average accuracy of
LLMs in 5G STRIDE threat modeling is increasing from 63%
to 71%. These results are in accordance with the evaluation
performed by Brown et al. [26] and their conclusion that
providing examples in the prompts improves the performance.

The F1 score of the LLMs with different prompting tech-
niques is shown in Figure 3. With the ZS_Base prompting, we
observe that the lowest average F1 score is recorded with 52%,
as compared to the other prompting techniques. We notice that
as we go from ZS_Base to FS_Internet prompting technique,
the F1 score of the LLMs increases slightly. This is evident
from the average line (shown in red), which shows a 10%
increase in the average. This slight increase indicates that the
FS prompting techniques improve the performance. On the
other hand, the performance of the LLMs relative to each other
is almost similar and shows no significant difference.

D. Performance of LLMs in STRIDE Classification

The results show that LLMs’ performance in our experi-
ments is mostly comparable. Figure 4 illustrates the perfor-
mance of the LLMs in terms of accuracy, precision, recall,
and F1 score using a heatmap chart. This result is averaged
across all threats and all prompting techniques for a specific
LLM. We observe that GPT-4o, Claude 3.7 Sonnet, and Grok-
2 show ‘relatively’ higher accuracy and precision but lower
recall compared to the other two LLMs. On the other hand,
Sonar and Gemini 2.5 Pro achieved lower precision and



Fig. 4. Heatmap showing the performance of LLMs in terms of accuracy,
precision, recall, and F1 score. Higher values (dark green color) are better.

higher recall in comparison. The F1 score indicates that the
performance of all the LLMs is comparable for this case study.
The maximum accuracy achieved is 72%, which highlights
that there are opportunities for improvement across all LLMs,
perhaps by fine-tuning for the specific application of STRIDE
threat modeling in 5G networks.

We note that several articles highlight the prominent chal-
lenges and issues with the LLMs [27], [28]. The most relevant
challenges to threat modeling include incorrect predictions
and LLM hallucinations, which may result in disregarding re-
quired countermeasures or implementing unnecessary security
measures. Secondly, the adaptability of LLMs for telecom-
specific threats and vulnerabilities. Thirdly, improving LLM
inference speed in networks to enable rapid threat modeling
of the detected threats.

V. DISCUSSION AND CONCLUSION

In this work, we explore and investigate the suitability of
LLMs for network threat modeling. To perform this analysis,
we select the case study of STRIDE threat modeling to
perform LLM-based classification of 5G threats according to
the STRIDE threat model. We observe from our evaluation
that providing examples to the LLMs using FS prompting
improves their performance. We further notice that LLMs may
not always consider the threat classifications as a result of the
second-order effect. This will limit the threat identification and
may eventually result in not identifying all the possible risks
associated with a threat. We hope these insights and results are
the starting points to encourage research into fine-tuning LLMs
on telecom-specific datasets and to enhance their performance
in network security tasks. This is particularly important for
future ‘AI-native’ networks, where AI needs to detect and
identify threats autonomously and with the highest accuracy.
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