
1

Data-Driven Falsification of Cyber-Physical Systems
Atanu Kundu, Sauvik Gon, Rajarshi Ray

Abstract—Cyber-Physical Systems (CPS) are abundant in
safety-critical domains such as healthcare, avionics, and au-
tonomous vehicles. Formal verification of their operational safety
is, therefore, of utmost importance. In this paper, we address
the falsification problem, where the focus is on searching for
an unsafe execution in the system instead of proving their
absence. The contribution of this paper is a framework that
(a) connects the falsification of CPS with the falsification of
deep neural networks (DNNs) and (b) leverages the inherent
interpretability of Decision Trees for faster falsification of CPS.
This is achieved by: (1) building a surrogate model of the
CPS under test, either as a DNN model or a Decision Tree,
(2) application of various DNN falsification tools to falsify
CPS, and (3) a novel falsification algorithm guided by the
explanations of safety violations of the CPS model extracted from
its Decision Tree surrogate. The proposed framework has the
potential to exploit a repertoire of adversarial attack algorithms
designed to falsify robustness properties of DNNs, as well as
state-of-the-art falsification algorithms for DNNs. Although the
presented methodology is applicable to systems that can be
executed/simulated in general, we demonstrate its effectiveness,
particularly in CPS. We show that our framework implemented
as a tool FLEXIFAL can detect hard-to-find counterexamples in
CPS that have linear and non-linear dynamics. Decision tree-
guided falsification shows promising results in efficiently finding
multiple counterexamples in the ARCH-COMP 2024 falsification
benchmarks [22].

Index Terms—Falsification, CPS, feedforward neural network,
Decision Tree, Signal Temporal Logic.

I. INTRODUCTION

The traditional simulation and testing techniques can be
effective for debugging the early stages of Cyber-Physical-
Systems (CPS) design. However, as the design becomes pris-
tine by passing through multiple phases of testing, finding
the lurking bugs becomes computationally expensive and
challenging by means of simulation and testing alone. Formal
verification techniques such as model-checking come in handy
here by either proving the absence of bugs in such designs or
by providing a counterexample behavior that violates the spec-
ification. A complementary approach is falsification, where
the focus is solely on discovering a system behavior that is
a counterexample to a given specification. In this work, we
address the falsification of safety specifications expressed in
signal temporal logic [27] for CPS given as an executable.

Our Contribution The contribution of this paper is a falsifi-
cation framework that employs two strategies. First, it connects
the falsification of reachability specifications of CPS with
the falsification of reachability specifications of deep neural
networks (DNNs). Second, it leverages on the inherent inter-
pretability of Decision Trees for faster fastification of signal

A. Kundu and S. Gon are students of the Indian Association for the Cultiva-
tion of Science (IACS), India. Email: { mcsak2346, ugsg2584}@iacs.res.in.
Dr. R. Ray is an Associate Professor at IACS, India. Email: ra-
jarshi.ray@iacs.res.in

temporal logic (STL) specifications of CPS. This is achieved
by: (1) building a surrogate model of the CPS under test, either
as a DNN model or a Decision Tree, (2) application of various
DNN falsification tools to falsify CPS, and (3) a falsification
algorithm guided by the interpretations of safety violation of
a CPS model extracted from its Decision Tree surrogate. The
proposed framework has the potential to exploit a repertoire
of adversarial attack algorithms designed to falsify the robust-
ness properties of DNNs as well as state-of-the-art falsification
algorithms designed for DNNs. A reachability specification
of a CPS directly maps to a reachability specification of a
DNN when the latter approximates the former. Furthermore,
a recent work has shown that a reachability specification of
a DNN can be reduced to an equivalid set of robustness
specifications [33]. A robustness specification conveys that
the network’s output on an ϵ-perturbed input matches with
its output on the unperturbed version [8], [35], [40]. This
reduction allows the use of adversarial attack algorithms in
the literature of DNN [15], [25], [29], [26], which are targeted
to falsify robustness specification, for falsification of CPS.
Our framework provides an interface to several tools that can
falsify the safety properties of DNNs as well as an interface
to a variety of adversarial attack algorithms that are aimed
towards the falsification of robustness specification of DNNs.
These tools and algorithms have complementary strengths. As
a result, there is a high likelihood of success in a falsification
task when trying the various falsification tools and algorithms
through the interface. A limitation of DNN-based falsification
is the considerable computational resources it consumes to
build a surrogate model from data and consequently to find
a counterexample. To address this limitation, our framework
integrates a falsification strategy based on building a decision
tree as a surrogate model. A decision tree, in contrast to
a DNN, is comparatively cheaper to build and its inherent
explainability provides a mechanism for efficiently searching
multiple counterexamples which we shall discuss in detail later
in the paper. The primary challenge of this framework is to
construct a faithful surrogate model of the CPS, which we
carry out by generating traces from the CPS executable and
learning (supervised) from the traces. For complex CPS such
as highly autonomous vehicles, designing a faithful model
such as a hybrid automaton [1] may not be practical due to
complex dynamics. Furthermore, models combining explicit
hybrid automaton and black-box executable may be relevant
and practical for real-world CPS [12]. The proposed frame-
work can be beneficial for falsifying these types of system,
since it relies only on CPS trajectory data. Although the
proposed falsification framework applies to executable systems
in general, this work is focused on exploring its effectiveness
in CPS in particular, and we report our findings. In summary,
the main contributions of the paper are as follows.

ar
X

iv
:2

50
5.

03
86

3v
1 

 [
cs

.C
R

] 
 6

 M
ay

 2
02

5



2

• A data-driven framework for falsification of CPS safety
specifications given as an executable (black-box). A tool
FLEXIFAL implementing the framework.

• A labeled dataset representing a number of CPS obtained
from their executed/simulated trajectories. The dataset
can be beneficial for building machine learning models
for CPS analysis and is publicly available. 1

• Neural network surrogates of representative hybrid au-
tomata and Simulink models of CPS are made publicly
available in onnx format. 2

II. PRELIMINARIES

In this work, we use a fully connected feed-forward neu-
ral network with the rectified linear unit (ReLU) activation
function, and a decision tree as the machine learning models
to approximate a CPS. A neural network can be seen as
computing a function N : Rn1 → Rn2 , where n1 and n2
denotes the number of inputs and outputs of the network
respectively. A decision tree is a supervised machine learning
model for classification and regression tasks. In this work, we
employ CART (Classification and Regression Tasks) among
the several decision tree construction algorithms [6]. Safety
requirements are often represented using reachability specifi-
cation. A reachability specification comprises a set of initial
configurations (I) and a set of unsafe configurations (U) of
the system and specifies that for all inputs x ∈ I, the output
of the system does not belong to U . The falsification problem
of a reachability specification of a network is given as:

Definition 1 (Falsification of Reachability Specification):
Given a deep neural network that computes the function
N : Rn1 → Rn2 and a reachability specification (I, U) such
that I ⊆ Rn1 and U ⊆ Rn2 , the falsification problem is to
find x ∈ I such that N(x) ∈ U .
The robustness specification when applied to classification
models refers to the network’s ability to keep its classification
unchanged when its input is perturbed within an ϵ neighbor-
hood. We formally define a local robustness specification of
DNN as follows:

Definition 2 (Local Robustness Specification): Given a deep
neural network that computes the function N : Rn1 → Rn2

and an input x ∈ Rn1 , the network is said to be locally robust
with respect to the input x if N(x) = N(x′) for all x′ in the ϵ
neighbourhood of input x.
The robustness of a network can be refuted by showing the
presence of an ϵ-perturbed input for the given input x such
that the network’s outcome on x and the perturbed version do
not match.
In the text, we depict an n-dimensional deterministic CPS by
a function M : P × C(R) × R → Rn, where P ⊆ Rn is
the set of initial system configurations, C(R) is the space of
continuous functions u : R→ Rm representing a time-varying
m-dimensional input signal to the CPS. An input signal is a
function that maps a time instant t, to an input u(t) ∈ Rm

to the CPS. The function M(x0, u, t) represents the state that
the CPS reaches, starting from the initial system configuration

1Data sets of the CPS under test.
2Neural-network models of the corresponding CPS.

x0, under the influence of the input signal u and running for t
time units. In this work, we restrict ourselves to deterministic
CPS. A CPS trajectory depicts how the variables in the system
change over time. It can be formally defined as follows.

Definition 3: A trajectory of a CPS M : P ×C(R)×R→
Rn, starting from an initial system configuration x0 ∈ P , with
an input signal u ∈ C(R) over a time horizon T is given by
a function Γ : [0, T ] → Rn such that for any t1, t2 ∈ [0, T ]
where t1 < t2, Γ(t2) =M(Γ(t1), u, t2 − t1).
We now state a CPS’s falsification problem, which we address
in Section III of the paper. A general falsification problem of
STL specification is defined and addressed in Section IV.

Problem Statement 1: Given a CPS M : P ×C(R)×R→
Rn and a reachability specification (I, U) where I ⊆ P ×
C(R) × R and U ⊆ Rn, find a tuple C = (xc, uc, tc), an
element of I with an initial system configuration xc , an input
signal uc and a time tc such that M(x0, uc, tc) ∩ U ̸= ∅.
Such a tuple is called a counterexample. In this work, we
are limited to finding a counterexample having a piecewise-
constant input signal, with equally spaced control points over
time. Bounded ranges for each dimension of the input are
assumed to be known.

III. FRAMEWORK FOR CPS FALSIFICATION

We now present our falsification framework FLEXIFAL, which
consists of mainly two procedures, DNN-based falsification
and falsification using a Decision Tree. This section focuses
on describing the DNN-based falsification NNFAL, while
the decision tree-based falsification procedure is described
in the subsequent section. The foremost step is building a
DNN model from the CPS (given as an executable) that we
intend to falsify against a given reachability specification.
This construction reduces the falsification problem of the
CPS to the falsification of the constructed DNN. The next
step is to search for a counterexample of the reachability
specification in the constructed DNN either by using one of
the DNN falsification tools or by using one of the adversarial
attack algorithms to falsify local robustness specification. The
relation between the falsification of a reachability specification
and the falsification of the local robustness specification of
DNN is shown in [33]. The last step of our algorithm is to
validate whether the generated counterexample is spurious or
real by execution on the actual CPS. If the execution lends
the counterexample as spurious, we modify the reachability
specification by adding necessary constraint(s) in order to
exclude the spurious counterexample from the search space.
The falsification tool is invoked with the modified specification
of the DNN. The modified specification forbids the tool from
repeatedly generating spurious counterexamples. The steps of
invocation, validation, and specification modification of the
falsification tool are repeated. The algorithm terminates on two
conditions. The first condition is when a valid counterexample
is found, declaring that the DNN, and thus the CPS is falsified.
The other termination condition is due to a timeout before
finding a valid counterexample, in which case, the algorithm
terminates by declaring failure. Figure 1 depicts an overview
of our proposed framework, and the block diagram of NNFAL
is shown on the right. We now discuss the details of NNFAL.

https://drive.google.com/drive/u/3/folders/12PzBA6dGymynYH4_Ycn_91vIqpQrogsc
https://gitlab.com/Atanukundu/NNFal/-/tree/main/network


3

CPS
simulator

NN learner

Approximating        with 
surrogate model        

Dataset
Hyperparameters

Architecture

CPS

DT learner

DNNV

DNNF
Reduction to

robustness instancesNN verifier

Adversarial attack
algorithms

Is 
counterexample

    found ?

Unsafe

Add constraint
to exclude

Yes

No

Failure

No

Yes

Is
spurious ?

Call falsification   routine for DNN

Finding true counterexample

L = 
leafExtractor(       )

leaf =
findFalsifiedLeaf(L)

Is
leaf.empty()

?
leaf =

findNearestLeaf(L)
Yes

    = genExplanation(leaf)

ce, traj_data = Simulator(    ,    )

ce >=
 min_ce

Unsafe with
ce counterexamples

Yes

No

Is budget
exceeded?

Failure

Generating
explanations

Finding ce
counterexamples

Yes

No

DTFal NNFal

CPS
simulator, Dataset

CPS

traj_data

No

Fig. 1: The flowchart of the falsification framework FLEX-
IFAL. The framework incorporates two distinct falsification
strategies, DTFAL (left) and NNFAL (right).

A. CPS design to Neural Networks

1) Dataset Generation from CPS: The primary step in
constructing a neural network model from the CPS is building
a labeled dataset. Since trajectories of a CPS represent its
behavior, a machine learning model ought to be learned
from trajectories. In this work, we consider models of CPS
(Simulink/Hybrid automata) and then use model simulators
(Matlab Simulink model simulator/ XSpeed hybrid automata
simulator) to generate a dataset D from a CPS M. In this
work, we use a model solely to generate simulated trajectories.
The simulators use numerical ode solvers such as CVODE
[32] to simulate continuous behaviors of the CPS. To formally
describe the dataset, we use some notations as follows. We
represent a time discretization of a trajectory of the CPS at
∆t time-steps as Γ(j∆t) =M(x0, u, j∆t). To represent the
time-varying input signal u(t) in the dataset, we consider k
partitions of the time horizon and consider a fixed input in
each interval. This scheme discretizes the time-varying input
into a piece-wise constant input, which can be represented as
an element of Rk×m. The larger the partitions k, the closer the
data representation becomes to the actual time-varying input.
However, increased partitions increase the parameters in the
dataset and hence the data size. In this work, we determinize
the may transition semantics and the mode-switching updates.
To determinize the may transition semantics, we generate our
data with urgent transition semantics in the CPS simulator,
which means a transition is taken as soon as its guard is
enabled. To address the uncertainty in the state updates,
we remove non-deterministic choices in the CPS across all
simulations. Algorithm 1 depicts the generation of the dataset
D for N simulated trajectories. The algorithm accepts as inputs

the CPSM : P×C(R)×R→ Rn, set of initial configuration
⊆ P , input space given by the lower and upper bound on
each input, the input discretization constant k, time-horizon
T , trajectory discretization time-step ∆t, and the number of
trajectories N to be generated. Each trajectory is generated
for a randomly selected initial configuration x0 ∈ I (Line 8)
and a randomly created input signal (lines 2 - 7). For creating
k equally spaced piecewise constant input signal, the loop in
line 2 iterates over k, and the inner loop (lines 3 - 5) generates
a random input (uj) using the ranges of each input. Line 6
depicts the construction of a constant input signal uj in the
time interval [j.Tk , (j+1).Tk ]. The for loop in line 9 is iterated
over the trajectory discretization time points (⌈T/∆t⌉many) to
compute Γ(j∆t). Line 11 makes a datapoint by concatenating
x0, u, j∆t, and Γ(j∆t) and storing in the dataset D. The
input to the CPS, x0, u, and t are the input features, and
the corresponding output Γ(j∆t) = M(x0, u, t) is stored as
labeled output in the dataset D shown in Table I. This dataset
is used to learn the CPS behavior in a feed-forward deep neural
network model that approximates the function M(x0, u, t).

Algorithm 1 Dataset generation from CPS.
Input: The CPS M : P × C(R) × R → Rn, the set of initial system

configurations ⊆ P , the input space given as a hyper-rectangle [ulw
1 ,

uup
1 ] × [ulw

2 , uup
2 ] × . . .× [ulw

p , uup
p ], the input discretization k, the

time-horizon T ∈ R, the time-step ∆t, and the number of trajectories to
be generated N .

Output: Dataset D stores the time discretization of N trajectories.
Initialization: Γ(k)← ∅, D ← ∅.
1: for i = 1 to N do ▷ Generate N trajectories.
2: for j = 0 to k − 1 do ▷ Generate a piecewise constant input signal

with k equally spaced inputs.
3: for r = 1 to p do ▷ Select a random input.
4: uj [r] = random([ulw

r , uup
r ])

5: end for
6: u([j.T

k
, (j + 1).T

k
]) = uj ▷ Construct constant input signal for

the intervals [0,T
k

],. . . ,[(k − 1).T
k

, k.T
k

].
7: end for
8: Pick an initial configuration x0 ∈ I
9: for j = 0 to ⌈T/∆t⌉ do

10: Γ(j∆t) =M(x0, u, j∆t)
11: Datapoint = ⟨x0, [u0, u1, . . . , uk−1], j∆t,Γ(j∆t)⟩
12: D.append(Datapoint)
13: end for
14: end for
15: return D

TABLE I: The dataset D of N trajectories. Each row is treated
as labeled data for DNN construction by supervised learning.

Initial Input signal Time Output
⟨x1

0 ⟩ ⟨u1
0, . . . , u

1
k−1⟩ 0 ⟨M(x1

0, u
1, 0)⟩

⟨x1
0⟩ ⟨u1

0, . . . , u
1
k−1⟩ ∆t ⟨M(x1

0, u
1,∆t)⟩

. . . . . . . . .
⟨x1

0⟩ ⟨u1
0, . . . , u

1
k−1⟩ j∆t ⟨M(x1

0, u
1, j∆t)⟩

. . . . . . . . .

. . . . . . . . .
⟨xN

0 ⟩ ⟨uN
0 , . . . , uN

k−1⟩ 0 ⟨M(xN
0 , uN , 0)⟩

. . . . . . . . .
⟨xN

0 ⟩ ⟨uN
0 , . . . , uN

k−1⟩ j∆t ⟨M(xN
0 , uN , j∆t)⟩

2) Data Pre-processing: Feature scaling is a technique used
in machine learning to normalize the range of input features in
a dataset. It is necessary for the machine learning algorithms to
interpret all the features on the same scale. If the input features



4

have largely varying ranges, it can lead to some features
dominating the learning process, causing other features to be
ignored. We apply MinMax scaling, which scales the input
features in a range of 0 to 1 as follows: x̂l,m =

xl,m−minm

maxm−minm
,

where xl,m denotes the value of feature m of record l and
x̂l,m is the corresponding normalized value. Here, minm and
maxm denote the minimum and maximum values of the mth
input feature, respectively.

3) Neural Network Training: The design choice of the
approximating neural network has been made following the
principle of Ockham’s razor. We learn a fully connected feed-
forward neural network. For simplifying the design space
exploration, the choices in the hyperparameter settings have
been kept fixed, whereas the choices in the network graph
structure have been explored on a trial-and-error basis.
Hyperparameter setting: The networks have been trained
with ReLU activation function, using the Adam optimizer with
a learning rate of λ = 0.0001, and on the mean squared error
(MSE) loss function.
Network Graph Structure We start with a simple structure
having a few hidden layers and a few nodes per layer. We
gradually increase the architecture complexity by trial and
error until the obtained network’s performance is satisfactory.
A network’s performance is assessed against a fixed set of
falsification instances according to our methodology using
falsification rate as the metric.

Given a falsification instance, the falsification rate of a
network is the number of times our framework successfully
finds a counterexample out of a given number of runs using
the network. A higher falsification rate suggests a greater
likelihood of finding a counterexample using the network.
Training with Cross-Validation: We use the early-stopping
algorithm that monitors the validation loss in order to stop the
training before the model overfits. A patience value of 5 has
been used. The early-stopping algorithm stops the learning
iterations when the validation loss does not improve over
the last patience many epochs. The network with the lowest
validation loss over the epochs is saved. For some of the CPS
(Navigation, Two-tanks, AT, and SB1), we did not use early
stopping and instead trained for a fixed number of epochs,
monitoring the training loss and saving the model with the
lowest training loss instead. The architecture of the chosen
neural network for each CPS and the hyperparameter settings
used in the training process are detailed in Table II.

B. Generating a Counterexample

Once a network M′ is built using the dataset D, the next
step of our algorithm is to generate a counterexample to
the given reachability specification. Our framework provides
an interface to many adversarial attack algorithms and DNN
verification tools which can be invoked to falsify the given
reachability specification on the network M′. In particular, it
uses deep neural network falsifier (DNNF) [33], a falsification
framework that reduces a reachability specification to a set
of equivalent local robustness specifications. This reduction
opens up the applicability of a rich class of adversarial
attack algorithms such as the Fast Gradient Sign Method

(fgsm), Basic Iterative Method (bim), DeepFool, and Projected
Gradient Descent (pgd) for falsification. In addition, our
framework provides an interface to DNN verification tools via
deep neural network verifier (DNNV) [34]. DNNV supports
verification tools such as Reluplex, Neurify, and Nnenum and
automatically translates the given network and property to the
input format of the invoked verifier.

C. Eliminating Spurious Counterexamples

We determine whether the counterexample given by a DNN
falsifier is spurious or real by simulating it in the actual
CPS model. We use the simulation engine in XSPEED for
CPS given as hybrid automata, and we use MATLAB for
simulating CPS given as Simulink models. The simulation
engine computes a trajectory from the counterexample C =
(xc, uc, tc) and checks whether the trajectory intersects with
the set of unsafe configurations U . If the trajectory does not
intersect with U , we mark the counterexample as spurious.
Each spurious counterexample is stored in a set ψ ← ψ ∪ C.
We remove ψ from the subsequent falsification problem by
modifying the property as (I ′,U), where I ′ = I − ψ. The
updated property is evaluated on the falsifier again to find
a counterexample, and this process is continued until a true
counterexample is found within the time and memory limit.

IV. A FALSIFICATION PROCEDURE USING DECISION-TREE

Training networks can be expensive. As an alternative, we
propose a falsification procedure guided by a decision tree
surrogate model of the CPS. Unlike NNFAL which is re-
stricted to falsify reachability specification, this procedure can
falsify generic Signal Temporal Logic (STL) specifications.
We briefly present STL, a specification language to express
the properties of CPS [27]. The syntax of an STL formula φ
over a finite set of real valued variables V is defined by the
following grammar:

φ ::= v ∼ d | ¬φ | φ1 ∧ φ2 | φ1 UI φ2

where v ∈ V , ∼∈ {<,≤}, d ∈ Q is a Rational, and I ⊆ R+

is an interval. The semantics of STL is given with respect to
a signal, which in the context of CPS is a trajectory Γ. Γv

denotes the projection of Γ on v ∈ V .
Definition 4 (STL Semantics [27]): We denote (Γ, t) |= φ

to mean that a finite trajectory Γ : [0, T ] → Rn satisfies the
STL property φ at the time point t ∈ [0, T ]. The rules of
satisfaction are as follows:

(Γ, t) |= v ∼ d ⇔ Γv(t) ∼ d (1)
(Γ, t) |= ¬φ ⇔ (Γ, t) ̸|= φ (2)
(Γ, t) |= φ1 ∧ φ2 ⇔ (Γ, t) |= φ1 and (Γ, t) |= φ2 (3)
(Γ, t) |= φ1 UI φ2 ⇔ ∃t′ ∈ (t+ I) ∩ T : (Γ, t′) |= φ2

and ∀t′′ ∈ (t, t′), (Γ, t′′) |= φ1

(4)

The temporal operators always (□I ) and eventually (♢I ) are
defined using the until operator as:

□Iφ = ¬(⊤UI ¬φ), ♢Iφ = ⊤UI φ.



5

TABLE II: The table shows the details of neural networks learned from the CPS trajectories. #Network Layers is the number of
hidden layers in the neural network. Architecture shows the number of neurons in each hidden layer. Hyperparameters show-
the epochs and the batch size. Dataset Size shows the number of data entries (in Millions) in the dataset. Learning Time shows
the time taken to train the network. Dataset Generation Time is the time to produce the dataset from the CPS.

CPS #Network Layers Architecture Hyperparameters Dataset Size Learning Time Dataset Generation
Epochs Batch-Size (Millions) (Hours) Time (Secs)

Oscillator 6 512 × 256 × 128 × 64 × 32 × 16 16 256 6.1 0.3 79
Two tanks 5 512 × 256 × 128 × 64 × 32 200 256 8.2 4.3 71
Navigation 6 512 × 256 × 128 × 64 × 32 × 16 200 256 11.8 3.6 318

Bouncing ball 7 512 × 256 × 256 × 128 × 128 × 64 × 32 21 256 7.2 0.7 36
ACC 5 512 × 256 × 128 × 64 × 32 19 256 6.5 0.5 98

AGCAS 5 512 × 256 × 128 × 64 × 32 54 128 3.5 1.4 1622
CC 5 512 × 256 × 128 × 64 × 32 7 256 33.3 0.7 743
AT 5 512 × 256 × 128 × 64 × 32 150 256 10 4 1251

AFC 5 512 × 256 × 128 × 64 × 32 30 256 33.6 2.3 3022
SB1 5 512 × 256 × 128 × 64 × 32 200 16 0.05 0.1 151.74

Informally, □(a,b)φ is true if φ holds at all times within the
interval (a, b), whereas ♢(a,b)φ is true if φ holds at some time
within (a, b).

A. Robustness of a Trajectory

The notion of robustness [10] of a trajectory to a given STL
specification evaluates how ”closely” the trajectory satisfies
a specification. Mathematically, it is a real-valued function
ρ(φ; Γ, t) ∈ R, which measures the degree of satisfaction
of φ by Γ at time point t. The notion of satisfaction of a
specification is lifted from a yes/no answer to a quantitative
measure. We utilize the notion of robustness of CPS trajec-
tories to classify them using a decision tree based on their
”closeness” to violating a given STL safety specification. A
formal description of robustness is given as follows.

(Γ, t) |= φ ⇐⇒ ρ(φ; Γ, t) ≥ 0,

(Γ, t) ̸|= φ ⇐⇒ ρ(φ; Γ, t) < 0.

For atomic predicates v ∼ d, the robustness is defined as:

ρ(v ∼ d; Γ, t) = d− Γv(t).

The robustness of complex STL formulas is defined as:

ρ(¬φ; Γ, t) = −ρ(φ; Γ, t), (5)
ρ(φ1 ∧ φ2; Γ, t) = min (ρ(φ1; Γ, t), ρ(φ2; Γ, t)) , (6)

ρ(φ1 UI φ2; Γ, t) = max
t′∈(t+I)∩[0,T ]

(
min

(
ρ(φ2; Γ, t

′),

inf
t′′∈[t,t′)

ρ(φ1; Γ, t
′′)
))
. (7)

The robustness of derived operators are defined as follows:

ρ(♢Iφ; Γ, t) = max
t′∈(t+I)∩[0,T ]

ρ(φ; Γ, t′),

ρ(□Iφ; Γ, t) = min
t′∈(t+I)∩[0,T ]

ρ(φ; Γ, t′).

We mention ρ(φ; Γ) to mention the robustness of the trajectory
at time t = 0, that is ρ(φ; Γ, 0). We now state the CPS
falsification problem addressed in this section.

Problem Statement 2: Given a CPS M : P ×C(R)×R→
Rn, an initial set of configurations I ⊆ P × C(R) × R and
a STL safety specification φ, find a tuple C = (xc, uc, tc), an

element of I such that the trajectory Γ : [0, tc] → Rn of M
starting from an initial configuration xc, with an input signal
uc over a time horizon tc has robustness ρ(φ; Γ) < 0.
The first step is to construct the dataset using a CPS simulator
in a similar way we generated the dataset for building a
DNN, but now using the robustness of CPS trajectories as
the output feature. A decision tree (M′) is learned from
the generated data set. The decision tree is then traversed
to find the leaf nodes that classify trajectories violating the
given safety specification, that is with robustness less than
0. If there is no such leaf node, then our algorithm finds
the leaf node that characterizes the trajectories closest to
violating the safety specification. An explanation for violating
the safety specification is then extracted by backtracking the
path from the identified leaf node to the root and conjoining
the respective branching conditions. This is the learned insight
that a decision tree provides on the input-space, by telling us
that trajectories initiating from this space is likely to violate the
specification. Consequently, using the explanation condition,
a specified number of random simulations are computed. The
last step of the algorithm is to check whether the simulations
provide us with the required number of counterexamples. If so,
the algorithm terminates by outputting the counterexamples.
Otherwise, we append the dataset with the generated simu-
lation traces and retrain and refine the decision tree model
again. The steps of generating explanations and computing
random simulations are repeated. The proposed algorithm
terminates when the desired number of counterexamples are
obtained, or when the execution budget is exceeded. We
consider the execution budget as the number of retraining
iterations permitted for the algorithm. Algorithm 3 describes
the falsification procedure, referred to as Decision Tree-based
Falsification (DTFAL). The left part of Figure 1 illustrates the
DTFAL procedure, the details of which are discussed in the
subsequent sections.

B. CPS to Decision-Tree

1) Dataset Generation: Unlike the earlier dataset, which
focused on capturing the system’s general input-output behav-
ior, this dataset enables us to classify the trajectories based
on their robustness measure. This specialization enhances the
decision tree’s ability to identify regions of the input space
where the system is likely to violate the safety specification.



6

The dataset is generated from the CPS using the simulators
discussed in Section III-A1 together with an STL monitoring
tool Breach [9], which evaluates the robustness of the tra-
jectory with respect to a specified STL safety specification.
The input features of the dataset are the components of the
initial configuration of the CPS I, that is an initial state
⟨xi⟩, and a piecewise constant input signal ⟨ui⟩ ∈ C(R),
represented as a vector, element of Rk×m. All trajectories
are computed over the same time-horizon and therefore, time-
horizon is not captured in the dataset. The output feature is a
robustness measure of the trajectory, computed with respect to
the given STL safety specification. The structure of the dataset
for building a decision tree is shown in Table III.

TABLE III: The dataset D of N trajectories for an STL
safety specification φ. Each row is treated as labeled data for
Decision-Tree construction. ρ(φ; Γi) is the robustness value of
the i-th trajectory.

Initial state Input signal Output
⟨x1

0 ⟩ ⟨u1
0, . . . , u

1
k−1⟩ ρ(φ; Γ1)

⟨x2
0⟩ ⟨u2

0, . . . , u
2
k−1⟩ ρ(φ; Γ2)

⟨x3
0⟩ ⟨u3

0, . . . , u
3
k−1⟩ ρ(φ; Γ3)

. . . . . . . . .

. . . . . . . . .

⟨xN
0 ⟩ ⟨uN

0 , . . . , uN
k−1⟩ ρ(φ; ΓN )

2) Decision-Tree Building: We used sklearn (Scikit-learn),
a data modeling library in Python to build the Decision
Tree. Specifically, the DecisionTreeRegressor method has been
used. The method uses the CART [6] algorithm that builds a
binary tree in which leaf nodes represent the predicted output
features and intermediate nodes, also known as decision nodes,
are where decision choices are made. We used the default
parameter settings in DecisionTreeRegressor.

When the algorithm meets a stopping criterion in a node,
the node is designated as a leaf node. The value of a leaf node
is the mean of the datapoint of the target attribute in that node,
in our case, which is the robustness value of the trajectories.

C. Generating Explanations to Safety Property Violation

1) Finding Falsifying Leaf Nodes: Once we approximate
the actual CPS with the Decision Tree M′ from the dataset
D, our algorithm generates an explanation for the violation
of a given STL safety specification by M′. The initial phase
for generating the explanation is the retrieval of all leaf nodes
from the decision treeM′, followed by filtering the leaf nodes
that characterize trajectories that are likely to violate the safety
specification. Every leaf node is associated with a predicted
robustness measure of the trajectories that map to that node.
If a leaf node’s robustness measure is less than 0, it classifies
the trajectories that are safety violating. We designate such a
node as falsifying leaf node.

Definition 5 (Falsifying leaf node): A falsifying leaf node
of the decision tree M′ is defined as a leaf node L such that
Lρ < 0, where Lρ is the node’s predicted robustness measure.
Consider a decision tree in Figure 2a for an illustration. The
only falsifying leaf node in this example is highlighted in

Red. If no falsifying leaf node is found in the decision tree,
our algorithm finds the nearest falsifying leaf node(s), that is,
nodes with robustness value closest to 0. The nearest falsifying
leaf nodes are then referred to generate an explanation. The
definition of nearest falsifying leaf node is as follows:

Definition 6 (Nearest falsifying leaf node): Given a decision
tree M′ and given that M′ has no falsifying leaf node, we
define a nearest falsifying leaf node Lnear to be a leaf node
with predicted robustness value closest to zero.

Lnear = arg min
l∈leaf

lρ

where lρ is the predicted robustness value of leaf l, and lρ is
its predicted robustness measure.
The illustrative decision tree in Figure 2b shows the nearest
falsifying leaf node in Red. Algorithm 2 describes the proce-
dure for finding the nearest falsifying leaf nodes.

Algorithm 2 FIND NEAREST LEAF NODE(M′)
Input: A Decision Tree M′.
Output: A set of falsifying leaf nodes Lnear .
Initialization: Lnear ← ∅ ; m =∞ ▷ Initialize min robustness to infinity.
leaf ← FIND ALL LEAFS(M′)
for l ∈ leaf do

if |lρ| < m then
m = |lρ| ▷ Update minimum robustness value.

end if
end for
for l ∈ leaf do

if |lρ| = m then
Lnear ← Lnear ∪{l} ▷ Add leaf nodes with robustness value m.

end if
end for
return Lnear

2) Generating Explanations: Once a falsifying leaf node is
identified, our algorithm generates an explanation to violating
a safety specification. To place the definition of explanation,
we present a few notations. The input features of a decision
tree are represented by the set X = {x1, x2, . . . , xn} of n
real-valued variables. A valuation v is an assignment of a real
value to each variable x ∈ X . We now define an explanation,
the central idea to the falsification algorithm.

Definition 7 (explanation): Given a decision tree M′ with
a set X of n input features and an STL safety specification φ,
an explanation for violating φ byM′ is defined as a predicate
ExpM′(X ) over the free variables in X such that there exists
a valuation v of X , where ExpM′(v) is true and M′(v) < 0.
The set of all valuations that satisfy the explanation predicate
describes a region of inputs ⊆ I to the decision tree which
contains a counterexample to the safety specification. Our
algorithm constructs an explanation by traversing the decision
tree from the falsifying leaf node to the root, conjoining the
decision-making condition at each intermediate node, to form
a predicate that is a conjunction of linear constraints. The
process of collecting the decision-making conditions along
the path from falsifying leaf node to the root is discussed
in Algorithm 4. Initially, the explanation predicate is set to
true. While traversing upward in the tree from a leaf node,
if the current node is left child, the decision-making condition
of its parent node is conjoined with the explanation predicate.
On the other hand, if the current node is a right child, the



7

phi ≤ 7.525
value = 10.422

phi ≤ 4.18
value = 2.24

True

time ≤ 2.25
value = 15.877

False

value = -1.31 value = 5.79 value = 14.54 theta ≤ 5.71
value = 16.545

value = 16.4 value = 16.69

(a)

psi ≤ 5.38
value = 10.364

phi ≤ 9.56
value = 14.303

True

phi ≤ 7.525
value = 4.455

False

value = 15.6 time ≤ 4.615
value = 13.655

value = 13.31 value = 14.0

value = 5.79 value = 3.12

(b)

Fig. 2: Demonstrating the explanation generation process for a safety property □[0,15](x > 0). a) This figure shows the
explanation generation process when a falsifying leaf node is present in the decision tree. The explanation is derived from
the path that traces backwards from the falsifying node depicted in Red to the root node. b) When no falsifying leaf node is
present in a decision tree, the nearest falsifying leaf node, highlighted in Red is considered to generate the explanation.

negation of the decision-making condition from its parent node
is conjoined with the explanation, since moving to the right
branch indicates that the decision condition is not satisfied by
the input. Consider the decision tree depicted in Figure 2a and
a safety property φ = □[0,15](x > 0) for an illustration. The
first step of the explanation generation process is to identify
the falsifying leaf node among all leaf nodes. In Figure 2a,
the Green nodes represent the leaf nodes, while the Red one
is the falsifying leaf node with a predicted robustness value
≤ 0. The next step is to collect the decision-making conditions
on the input attributes along the path shown in the figure
(starting from the red node followed by two consecutive yellow
nodes). Two decision-making conditions (phi ≤ 4.18 and
phi ≤ 7.525) are obtained which are conjoined because the
falsifying leaf node and the intermediate node are the left child
of their respective parent nodes. Therefore, the explanation for
the falsification of φ is (phi ≤ 4.18 ∧ phi ≤ 7.525). On the
other hand, when a falsifying leaf node is not present in the
decision tree, our algorithm identifies the nearest falsifying
leaf nodes from which the explanation is generated. Figure 2b
shows a decision tree where there in no falsifying leaf node
for the safety property φ. In this figure, the closest falsifying
leaf node is shown in Red which is used to generate the
explanation. The explanation using this nearest falsifying leaf
node is (phi > 7.525 ∧ psi > 5.38), the leaf and intermediate
node being the right child of their respective parents.

D. Generating Counterexamples

Algorithm 3 illustrates the DTFAL procedure, which takes
the CPS model M, an initial condition I, a STL safety
specification φ, the number of initial trajectories N , execution
budget epoch, and required counterexample min ce as inputs.
The function GENERATE TRAINING SAMPLES(M, I, φ, N )
in line 1 generates the dataset from the initial condition I
for N trajectories and stores into D. The for loop in line
2 iterates over the execution budget epoch. The decision
tree M′ is constructed from the dataset D in line 3 using

Algorithm 3 DTFal Algorithm for Falsification of CPS.
Input: CPS modelM : P×C(R)×R→ Rn, an initial set of configurations
I ⊆ P × C(R) × R, an STL safety specification φ, number of
initial trajectories N , maximum retrain epoch, random simulation R, and
minimum counterexample min ce.

Output: The desired counterexamples CE if exists, otherwise Failure.
Initialization: D ← ∅, CE = 0
1: D ← D ∪ GENERATE TRAINING SAMPLES(M, I, φ, N ) ▷

Generating dataset.
2: for i = 0 to epoch do
3: M′ ← CART ALGORITHM(D) ▷ Described in CART algorithm.
4: L ← FIND FALSIFYING LEAF NODE(M′)
5: if (L = ∅) then
6: L ← FIND NEAREST LEAF NODE(M′)
7: end if
8: for leaf in L do
9: ExpM′ ← GEN EXPLANATIONS(M′, leaf) ▷ Generating

explanations
10: ce, traj data = SIMULATOR(M, ExpM′ , φ, R) ▷ Searching

counterexamples by R simulations.
11: CE ← CE + ce
12: if (CE ≥ min ce) then
13: return CE
14: end if
15: D ← D ∪ traj data
16: end for
17: end for
18: return Failure

Algorithm 4 GEN EXPLANATIONS(M′, leaf )
Input: A Decision Tree M′, and a falsifying leaf node leaf .
Output: An explanation ExpM′ from M′ for a falsifying leaf node leaf .
Initialization: ExpM′ ← True
1: current node = leaf
2: while (current node ̸= Null) do ▷ Iterate until the current node

becomes root.
3: if (current node.leftChild) then ▷ If current node is the left

child of its parent.
4: current node = current node.parent
5: ExpM′ ← ExpM′ ∧ current node.condition
6: else ▷ If current node is the right child of its parent.
7: current node = current node.parent
8: ExpM′ ← ExpM′ ∧ ¬(current node.condition)
9: end if

10: end while
11: return ExpM′



8

the CART algorithm. Line 4 finds the falsifying leaf nodes
(L). Line 6 states that if M′ has no falsifying leaf node,
then our algorithm finds the nearest falsifying leaf nodes.
The for loop in lines 8 - 16 iterates over the leaf nodes
L, identifying the explanation (ExpM′ ) to the violation of
φ and subsequently determining the true counterexamples.
Line 9 finds the explanation (ExpM′ ) using the procedure
defined in Algorithm 4. In the procedure SIMULATOR in line
10, R many valuations are randomly selected that satisfy
the explanation ExpM′ . From these R valuations, R random
trajectories are simulated, and their robustness is observed to
see how many qualify to be counterexamples. This function
also generates the dataset (traj data) from the R trajectories,
which is used to retrain the decision tree, if required. If
the number of counterexamples (CE) reaches the required
minimum threshold within the execution budget, the algorithm
terminates and displays the CE counterexamples. Otherwise,
failure is returned.

V. RESULTS

Benchmarks The framework has been evaluated on falsifica-
tion problem instances from 9 CPS out of which 6 have linear
dynamics (Navigation [13], Oscillator [14], Two tanks [17],
Bouncing ball, Adaptive Cruise Controller (ACC) [7], and
Chasing Cars (CC) [19]) and three have non-linear dynamics
(Aircraft Ground Collision Avoidance System (F16) [16],
Automatic Transmission (AT) [18], and Fuel Control of an
Automotive Powertrain (AFC) [20]. Recently, a procedure for
creating synthetic benchmarks has been recently introduced
in [39] for testing the strength of falsification methods. We
considered five Synthetic Benchmarks (SB) from that paper,
each involving an LSTM model trained on a synthetic dataset
designed for a specific safety property. We now briefly describe
the models and the specifications, some of which are from the
annual friendly tool competition ARCH-COMP 2024 [22], in
the falsification category. The safety specifications in signal
temporal logic (STL) are shown in Table IV.

A. Implementation and Experimental Setup

The framework is implemented in a tool FLEXIFAL and
offers the two falsification strategies to a user, namely NNFAL
and DTFAL. The tool provides a command-line interface.
The source code of FLEXIFAL, the command-line options
and user instructions are made publicly available on GitLab
[https://gitlab.com/Atanukundu/FlexiFal]. We evaluate FLEXI-
FAL on Ubuntu 22.04.5, 64 GB RAM with 6 GB GPU, and a
5 GHz 12-core Intel i7-12700K processor. For the evaluation
of NNFAL, we build the neural network surrogates of CPS in
advance. The neural networks were trained in Google Colab,
with Intel Xeon 2.20 GHz CPU, 12.7 GB RAM with 15 GB
Tesla T4 GPU, and Ubuntu 20.04. In order to quantify the
difficulty level of a falsification instance, specifically for the
hybrid automata instances, we define a degree of difficulty
(DoD) metric, which is the percentage of the falsifying tra-
jectories in N randomly simulated trajectories. The lower the
DoD, the harder it is to falsify the instance. All experiments
have 1 hour timeout and a maximum memory usage limit of 6

GB. We test each falsification instance ten times and report the
success rate and the average falsification time of the successful
tests. In the following performance comparison table, the gray
cells highlight the algorithms or tools that demonstrate the
best time to falsify the respective instances. The results of
the experiments provide a response to the following research
questions.
RQ1: Which out of DTFAL and NNFAL is more effective in
falsifying CPS instances?
RQ2: How does FLEXIFAL compare with state-of-the-art CPS
falsification tools?
RQ3: Can FLEXIFAL find multiple counterexamples effi-
ciently?

B. RQ1: NNFAL vs DTFAL

Table V demonstrates the empirical results of executing NN-
FAL and DTFAL on several falsification instances. We describe
the choice of parameters and a performance comparison.

a) Evaluation using NNFAL : Recall that NNFAL pro-
vides a repertoire of neural network adversarial attack al-
gorithms and network verification tools via the DNNF and
DNNV interface. We report the performance of NNFAL
using adversarial attack algorithms as well as using neural
network verification tools supporting falsification. The falsi-
fication instances are evaluated using four attack algorithms,
namely pgd [26], fgsm [15], bim [25], and ddnattack [31].
In the table for NNFAL, we show the result of the fastest
algorithm to falsify. The fastest in our experiments turns out
to be pgd. Furthermore, all falsification instances are also
evaluated using three neural network verification tools, namely
Reluplex [21], Neurify [38], and Nnenum [5]. We observe
that Nnenum is the fastest to falsify in our experiments, and
thus we report results on Nnenum for NNFAL. Our find-
ings indicate that falsification with NNFAL generates novel
counterexamples that are unseen in the dataset. The results
show that Nnenum finds counterexamples faster compared to
pgd in most instances. However, for hard instances (very low
DoD), Nnenum fails in the falsification task, where pgd is
successful in a reasonable time. The observations, therefore,
do not conclude that verification tools of deep neural networks
are more effective than local robustness property falsifiers or
vice versa for CPS falsification. Rather, we conclude that they
have complementary strengths, and we can therefore reap the
benefits of these techniques with our framework. Note that
the time to build the neural network is not included in the
falsification time for NNFAL. We choose to do so because
the falsification algorithms need not construct the network
every time a new specification is given for falsification. The
networks, once constructed, can be reused for falsification
tasks. Since NNFAL is limited to falsification of reachability
specifications, it could not falsify many of the instances in
our set which had generic STL properties. Such instances are
marked with NA against NNFAL in the table. Overall, it could
falsify 14 out of 37 instances.

b) Evaluation using DTFAL: The reported falsification
time includes the time to train the decision tree since decision
tree learning is specification dependent. The algorithm is

https://gitlab.com/Atanukundu/FlexiFal


9

TABLE IV: Safety specifications are given in STL. Dims is the sum of the number of system variables and input variables in
the CPS. DoD is the percentage of safety-violating trajectories of 2000 simulated trajectories.

Instance CPS Dims DoD Safety Specification in Signal Temporal Logic
TT1

Two tanks

3 0.32% □[0,10]¬
(
(x1 ≥ 0) ∧ (x1 ≤ 0.40) ∧ (x2 ≥ −0.500) ∧ (x2 ≤ −0.465)

)
TT2 3 0.83% □[0,10]¬

(
(x1 ≥ −0.20) ∧ (x1 ≤ 0.20) ∧ (x2 ≥ 0.31) ∧ (x2 ≤ 0.35)

)
TT3 3 2.68% □[0,10]¬

(
(x1 ≥ −0.20) ∧ (x1 ≤ 0.20) ∧ (x2 ≥ 0.30) ∧ (x2 ≤ 0.35)

)
TT4 3 2.95% □[0,10]¬

(
(x1 ≥ 1) ∧ (x1 ≤ 1.5) ∧ (x2 ≥ −0.4) ∧ (x2 ≤ −0.23)

)
NAV1

Navigation
3 0.003% □[0,50]¬

(
(x1 ≥ 7) ∧ (x1 ≤ 8) ∧ (x2 ≥ 9) ∧ (x2 ≤ 10)

)
NAV2 3 0.07% □[0,50]¬

(
(x1 ≥ 22) ∧ (x1 ≤ 23) ∧ (x2 ≥ 11) ∧ (x2 ≤ 12)

)
NAV3 3 2.77% □[0,50]¬

(
(x1 ≥ 11) ∧ (x1 ≤ 12) ∧ (x2 ≥ 16) ∧ (x2 ≤ 17)

)
OSC1

Oscillator
3 0.15% □[0,10]¬

(
(p ≥ 0) ∧ (p ≤ 0.1) ∧ (q ≥ 0.13485) ∧ (q ≤ 0.15)

)
OSC2 3 0.29% □[0,10]¬

(
(p ≥ −0.50) ∧ (p ≤ −0.45029) ∧ (q ≥ 0.1) ∧ (q ≤ 0.1968)

)
OSC3 3 0.41% □[0,10]¬

(
(p ≥ 0.100) ∧ (p ≤ 0.193) ∧ (q ≥ −0.30) ∧ (q ≤ −0.25)

)
BB1 Bouncing ball 3 1.2% □[0,10]¬((v ≥ −1) ∧ (v ≤ 1) ∧ (x ≥ 1) ∧ (x ≤ 2))

ACC1 ACC 10 0%
∧

i=0..3 □[0,10](xi > xi+1)
F16 F16 16 0.1% □[0,15](altitude > 0)
CC1

CC

7 0.60% □[0,100](y5 − y4 ≤ 40)
CC2 7 0% □[0,70]♢[0,30]y5 − y4 ≥ 15
CC3 7 1.15% □[0,80]((□[0,20]y2 − y1 ≤ 20) ∨ (♢[0,20]y5 − y4 ≥ 40))
CC4 7 0% □[0,65]♢[0,30]□[0,5]y5 − y4 ≥ 8
CC5 7 1.45% □[0,72]♢[0,8]((□[0,5]y2 − y1 ≥ 9)→ (□[5,20]y5 − y4 ≥ 9))
CCx 7 0.55%

∧
i=1..4 □[0,50](yi+1 − yi > 7.5)

AT1

AT

5 0% □[0,20](v < 120)
AT2 5 4.55% □[0,10](ω < 4750)
AT51 5 9.05% □[0,30]((¬g1 ∧ ◦ g1)→ ◦ □[0,2.5]g1),

where [◦ ϕ ≡ ⋄[0.001,0.1] ϕ]
AT52 5 5.55% □[0,30]((¬g2 ∧ ◦ g2)→ ◦ □[0,2.5]g2)
AT53 5 6.05% □[0,30]((¬g3 ∧ ◦ g3)→ ◦ □[0,2.5]g3)
AT54 5 3.1% □[0,30]((¬g4 ∧ ◦ g4)→ ◦ □[0,2.5]g4)
AT6a 5 0.25% (□[0,30]ω < 3000)→ (□[0,4]v < 35)
AT6b 5 0.1% (□[0,30]ω < 3000)→ (□[0,8]v < 50)
AT6c 5 0.15% (□[0,30]ω < 3000)→ (□[0,20]v < 65)

AT6abc 5 0.35% AT6a ∧ AT6b ∧ AT6c

AFC27
AFC

4 1.5% □[11,50]((rise ∨ fall)→ (□[1,5]|µ| < 0.008))
where rise = (θ < 8.8 ∧ ♢[0,0.05]θ > 40.0)

fall = (θ > 40.0 ∧ ♢[0,0.05]θ < 8.8)
AFC29 4 7.95% □[11,50](µ < 0.007)
AFC33 4 8.2% □[11,50](µ < 0.007)

SB1 SB-1 3 0% □[0,24] (b < 20)
SB2 SB-2 2 0% □[0,18](b > 90 ∨ ♢[0,6]b < 50)
SB3 SB-3 3 0.05% (♢[6,12]b > 10)→ (□[18,24]b > −10)
SB4 SB-4 4 0% □[0,19]((□[0,5]b1 ≤ 20) ∨ (♢[0,5]b2 ≥ 40))
SB5 SB-5 3 0% □[0,17](♢[0,2]¬((□[0,1]b1 ≥ 9) ∨ (□[1,5]b2 ≥ 9)))

invoked with a command to generate one counterexample and
allowing maximum 1 retraining. The size of the dataset and the
number of random simulations to search from an explanation
are chosen on a trail and error basis, with the goal of keeping
it as small as possible and at the same time succeeding in
falsification. We observe that DTFAL shows high falsification
rate in most of the instances and more importantly, it displays
high success rate, falsifying 33 out of 37 instances. The falsifi-
cation time in DTFAL is better than NNFAL in most instances.
Overall, we can conclude that DTFAL is more effective than
NNFAL in our experiments. Figure 3 depicts counterexamples
generated by NNFAL on Oscillator, Navigation, and ACC.
Figure 4 and 5 show the counterexamples obtained by DTFAL
on some of the benchmark instances.

C. RQ2 Comparison with CPS falsification tools

We present a comparison of FLEXIFAL with the falsifica-
tion tools that participated in ARCH-COMP 24 [22]. The
performance of these tools is shown in Table VI. The data
shown in the table is from the ARCH-COMP 2024 [22] report,
except the appended results of FLEXIFAL. Participating tools

use different methodologies, making it challenging to decide
on the comparison metrics and judging the best-performing
tool. Over the past editions of the competition, falsification
rate (FR) along with the mean number of simulations (S)
required to falsify an instance are the agreed upon metrics
that each participating tool report. The primary objective of
the competition is to report the state-of-the-art falsification
tools, highlighting their strengths and limitations for different
benchmarks. We observe that FREAK requires a very small
number of simulations to falsify the instances among the
other tools. However, it cannot falsify F16 and AFC33, where
DTFAL succeeds. The falsification rate (FR) is nearly the same
for all the instances among the tools. The mean number of
simulations needed to falsify an instance varies considerably
across the tools. We see that DTFAL algorithm of FLEXIFAL
finds counterexamples in most of the instances with high FR
rate. However, it generally requires a larger number of simu-
lations than the others. On the brighter side, DTFAL identifies
counterexamples in instances such as F16 and AFC33, which
most of the other tools fail to falsify. We therefore believe that
FLEXIFAL is competent among the state-of-the-art.



10

TABLE V: FR stands for falsification rate, the number of successful runs out of 10 for which our framework finds a
counterexample (CE). In DTFAL, DG denotes the time taken to generate the training dataset, while Train represents the
time to train the decision tree, including the retrainings if necessary. Search refers to the time to find counterexamples using
the generated explanations. Fal represents the total time to identify a counterexample, calculated as the sum of DG, Train, and
Search time. In NNFAL, TT is the neural network training time. MR shows the maximum number of search refinements to
eliminate spurious CEs before finding a valid one. Avg time is the average time that pgd takes to find a valid CE, calculated
over successful runs. Val is the average time taken by NNFAL to validate the CE on the actual CPS across the successful runs,
incorporating the time required for spurious ce checking and the specification modifications before the true CE is encountered.
Fal Time in an adversarial attack algorithm is the sum of Avg and Val over the successful runs. Fal Time in the DNN verification
tool is similarly the sum of falsification time and validation time for the respective instances. Times are reported in seconds
except in the TT column, which shows time in hours. NA indicates that the respective algorithm does not support the instance.

Instance

DTFAL NNFAL

FR Time TT Adversarial Attack Algorithm (pgd) DNN Verification Tool (nnenum)
DG Train Search Fal FR MR Avg Time Val Fal Time FR MR Time Val Fal Time

TT1 10 6.6 0.35 0.17 7.12

4.3

10 1 150.80 0.32 151.12 10 0 1.78 0.26 2.04
TT2 10 1.64 0.03 0.18 1.85 10 0 996.66 0.25 996.91 10 0 4.00 0.26 4.26
TT3 10 1.67 0.03 0.17 1.87 10 0 62.94 0.25 63.19 10 0 3.33 0.27 3.60
TT4 10 1.61 0.03 0.17 1.81 10 0 23.41 0.28 23.69 10 0 1.51 0.27 1.78
Osc1 10 6.99 0.37 0.26 7.62

0.3
10 0 0.24 0.28 0.52 10 0 1.60 0.31 1.91

Osc2 10 7.11 0.35 0.20 7.66 OOM Timeout
Osc3 10 1.09 0.005 0.19 1.28 10 5 70.04 1.68 71.72 6 9 22.47 1.85 24.32
NAV1 10 133.33 12.95 1.83 148.11

3.6
5 3 1091.07 5.25 1096.32 Timeout

NAV2 10 14 0.75 1.80 16.55 7 2 14.16 3.11 17.27 Timeout
NAV3 10 2.88 0.04 0.86 3.78 10 0 3.20 1.38 4.58 10 3 3.65 2.68 6.33
BB1 10 1.61 0.73 0.17 2.51 0 Timeout Error

ACC1 10 1.24 0.007 0.22 1.47 0.5 10 3 0.09 0.40 0.49 10 1 1.40 0.37 1.77
F16 10 469.52 0.176 67.40 537.09 1.4 Timeout OOM
CC1 10 72.33 15.48 7.53 95.34

0.7

10 0 0.11 23.54 23.65 10 0 2.21 23.36 25.57
CC2 10 97.96 11.41 17.96 127.33 NA NA
CC3 10 72.88 8.88 1.27 83.03 NA NA
CC4 Timeout NA NA
CC5 10 75.47 3.90 4.11 83.48 NA NA
CCx 10 147.72 8.98 56.34 213.04 10 0 0.15 46.35 46.50 5 0 1.70 40.70 42.40
AT1 Timeout

4.0

1 2 0.10 72.44 72.54 1 4 96.79 46.45 143.24
AT2 10 13.95 0.30 1.90 16.15 OOM Error

AT51 10 17.74 0.22 1.15 19.11 NA NA
AT52 10 14.19 0.17 2.34 16.70 NA NA
AT53 10 14.34 0.22 2.34 16.90 NA NA
AT54 10 14.19 0.14 2.04 16.37 NA NA
AT6a 10 42.52 2.25 0.38 45.15 OOM Timeout
AT6b 10 65.68 3.35 3.45 72.48 OOM Timeout
AT6c 10 43.19 1.34 8.20 52.73 2 1 0.01 46.23 46.24 Timeout

AT6abc 10 43.76 1.31 1.49 46.56 OOM OOM
AFC27 10 26.85 1.33 4.84 33.02

2.3
NA NA

AFC29 10 26.95 0.88 1.89 29.72 Timeout Timeout
AFC33 10 25.28 0.67 1.86 25.28 Timeout Timeout

SB1 5 3182.71 10.43 17.67 3210.81 0.1 OOM Timeout
SB2 Timeout NA NA
SB3 10 52.72 0.02 11.92 64.66 NA NA
SB4 10 1951.45 3.14 88.97 2043.56 NA NA
SB5 Timeout NA NA

TABLE VI: A Comparison with the CPS falsification tools. FR is the falsification rate. S is the mean number of simulations
needed to falsify the respective instances. The blank in the table indicates that the respective tools could not falsify the instances.

Tool UR ARIsTEO ATheNA EXAM-Net FalCAun ForeSee FReak Moonlight FlexiFal OD Ψ− TaLiRo Ψ− TaLiRo
Approach ARX-2 (DTFal) ConBo-LS PART-X
Instance FR s FR s FR s FR s FR s FR s FR s FR s FR s FR s FR s FR s

F16 10 21 10 371.72
CC1 10 16.4 10 11.3 10 60.5 10 36.1 10 396 10 21.8 10 3 10 169.90 10 61.2 10 18 10 17.6
CC2 10 12.4 10 10.5 10 94 9 398.6 10 76 8 224.3 10 3 10 241.09 4 109.3 10 14.8 10 17.8
CC3 10 19.6 10 18.8 10 119.2 10 14.9 10 122 10 36.1 10 2.6 10 152.1 10 35.2 10 11.4 10 13.5
CC4 2 514 4 1256 7 680 10 1349.9 1 1387
CC5 10 37.4 10 29.1 9 112 10 78.2 10 88.7 10 47.5 10 523.1 10 55.7 10 32.3 10 29.9
CCx 6 396.7 9 610.4 5 86.4 10 448.1 10 228 7 1723.6 10 468.66 2 261.5 10 244.2 10 607
AT1 10 150.4 10 896 10 387.4 10 4.5 10 5 1131.7 10 30.5
AT2 10 18.8 10 15.1 10 62.3 10 22.7 10 256 9 196.6 10 2.2 10 51 10 18.5 10 13.7 10 6.5

AT51 10 20.5 1 1371 10 106 10 8.5 10 15 10 17.7 10 57.78 10 11.6 10 10.1 10 13.3
AT52 10 74.1 10 4.4 10 19 10 10.3 10 65.7 10 5.2 10 52.8 10 8.6 10 67.8 10 66.5
AT53 10 1.5 10 4.4 10 2.2 10 1.5 10 4.3 10 3.9 10 53.1 10 2.2 10 4.1 10 2.2
AT54 10 47.9 6 571.5 10 138.9 10 89.6 10 60.3 10 103 10 10 18.4 10 37.4 10 85
AT6a 10 156.6 8 271.4 10 245.5 10 61.1 10 1002 10 115.2 10 24.6 10 197.9 10 64.3 10 304.5 10 153.7
AT6b 10 472.2 6 536 9 279.3 10 119.4 10 253.9 10 17.4 10 314.2 10 122 6 782.2 10 307.9
AT6c 10 326.8 8 643.8 10 194.5 10 176.5 10 898 10 133.1 10 15.5 10 292.2 10 118.5 9 472.1 10 334.4

AT6abc 10 149 8 505.2 10 234.4 10 57.4 10 1232 10 123.6 10 13.1 10 220.8 10 61.3 10 139.2 10 106.9
AFC27 9 56.2 8 137.8 10 235.8 10 12 10 25.7 10 391.2 10 101.8 10 34.3
AFC29 10 25.1 10 3.9 10 18.6 10 8.5 10 3.1 10 21 10 13 10 9.1 10 12.1
AFC33 10 21



11

Fig. 3: Counterexamples generated by FLEXIFAL using NNFAL algorithm.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

q

p

trajectory
bad
init

(a) A trajectory that results in a violation
of OSC3 by entering an unsafe region.

 10

 12

 14

 16

 18

 20

 22

 24

 4  9  14  19  24

x
2

x1

trajectory
bad
init

(b) A navigation trajectory leading to an
unsafe region, violating NAV2.

 6

 8

 10

 12

 14

 16

 18

 20

 6  9  12  15

x
1

x0

trajectory
init
bad

(c) A positions trajectory of two cars
crashing (x0 = x1), violating ACC1.

Fig. 4: Counterexamples generated by FLEXIFAL using DTFAL algorithm.

 0

 500

 1000

 1500

 2000

 2500

 0  2  4  6

a
lt

it
u
d
e

time

trajectory
bad
init

(a) A flight trajectory of an aircraft crash-
ing at the surface, violating F16.

 5

 10

 15

 20

 25

 4  9  14  19  24

x
2

x1

trajectory
bad
init

(b) A navigation trajectory leading to an
unsafe region, violating NAV1.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x
2

x1

trajectory
bad
init

(c) A trajectory of instance TT4 that inter-
sects with an unsafe region.

Fig. 5: Counterexamples generated by FLEXIFAL using DTFAL algorithm.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  2  4  6  8  10

e
n
g
in

e
 s

p
e
e
d

time

trajectory
bad
init

(a) A trajectory showing the violation of
engine speed of the instance AT2.

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 10 15 20 25 30 35 40 45 50

a
ir

 t
o
 f

u
e
l 
ra

ti
o

time

trajectory
bad
init

(b) Air to fuel ratio is leading to the unsafe
threshold, violating the instance AFC29.

 0

 2

 4

 6

 8

 10

 12

 14

-15 -10 -5  0  5  10  15

x

v

trajectory
bad
init

(c) A position vs. velocity plot of BB1 that
results in a safety violation.



12

TT
1

TT
2

TT
3

TT
4

OSC
1

OSC
2

OSC
3

NAV
1

NAV
2

NAV
3

BB1
ACC

1

Instances

0

25

50

75

100

125

150

175

200
Ti

m
e 

(s
ec

on
ds

)

7.1 1.9 1.9 1.8
7.6 7.7

1.3

148.1

16.6
3.8 2.5 1.5

7.3 3.4 3.2 2.1

19.2
10.0

1.4

195.5

47.4

8.3 2.7 3.0

51

99
90

51

69

96

51

162

66
73

51 56

Time: One CE
Time: > 50 CEs
#Counterexamples (CE)

0

2000

4000

6000

8000

10000

#
 S

im
ul

at
io

ns
 (

Si
m

u)# Simu: One CE
# Simu: > 50 CEs

Fig. 6: #Simulations to find one vs multiple counterexamples
nearly overlap. The time difference between finding one coun-
terexample vs many is small in most of the instances.

F1
6

CC
1

AT
2

AT
51

AT
52

AT
53

AT
6a

AT
6b

AT
6a

bc

AFC
27

AFC
29

AFC
33

0

200

400

600

Ti
m

e 
(s

ec
on

ds
)

Time: One CE
Time: > 50 CEs

F1
6

CC
1

AT
2

AT
51

AT
52

AT
53

AT
6a

AT
6b

AT
6a

bc

AFC
27

AFC
29

AFC
33

0

200

400

600

#
 S

im
ul

at
io

ns
 (

Si
m

u)

# Simu: One CE
# Simu: > 50 CEs

Fig. 7: Top: Time for finding 1 vs more than 50 counterex-
amples. Bottom: #simulations to find 1 vs more than 50
counterexamples across the Simulink instances.

D. RQ3: Generating multiple counterexamples efficiently

This section evaluates the ability of FLEXIFAL to generate
multiple counterexamples efficiently. The NNFAL algorithm
relies primarily on the DNN verifier or adversarial attack
algorithms, which requires considerable computational effort
just to obtain a single counterexample. Running the algorithm
multiple times to find new counterexamples is expensive. In
contrast, the DTFAL algorithm builds explanations for prop-
erty violation, which can be potentially used to find multiple
counterexamples with a little extra computational effort. The
computational effort is measured by the number of random
simulations and the time required to find them. Figures 6 and 7
show the results of finding many (> 50) counterexamples, and
we see that DTFAL finds them with a little extra computational
effort compared to finding just one.
Figure 7 shows the comparison for instances on Simulink

models. For example, DTFAL finds a single counterexample
in F16 using 400 simulations in 513 seconds. In comparison,
DTFAL generates 50 counterexamples using 500 simulations
in 650 seconds, that is 49 more in less than 150 seconds with
just 100 extra simulations.

VI. RELATED WORKS

Surrogate model-based CPS falsification: Recently, [28],
[37] propose learning surrogate models from the CPS execu-
tions aiming to use them for falsification. A black-box tech-
nique with an approximation-refinement strategy is reported
in [28] in which compute-intensive CPS that can take hours
to simulate is converted to a surrogate model that is faster to
execute. Surrogate models such as the Hammerstein-Wiener
or the non-linear ARX model are generated using Matlab’s SI
(System Identification) toolbox from the system’s input-output
response. The surrogate is then tested against the specifica-
tions represented in signal temporal logic (STL). A falsifying
trajectory is validated on the original CPS, and the surrogate
model is iteratively refined to eliminate spurious trajectories.
A robustness-guided black box checking for falsification of
STL properties is reported in [37], in which a Mealy machine
is constructed using automata learning. The counterexample
in the Mealy machine is validated, and the model is refined
to eliminate spurious counterexamples. FREAK [3] is a data-
driven falsification tool that employs a surrogate model to
replicate system dynamics. It uses Koopman operator lin-
earization to construct a linear model of non-linear dynamics
systems as a surrogate. The tool uses reachable analysis of
the surrogate model and uses the reachability knowledge
in the encoding of STL specifications into a Mixed-Integer
Linear Program (MILP) to identify the least robust trajectory
within the reachable state-space. If the trajectory is spurious,
additional simulation data is generated to retrain the Koopman
model and repeat the process until the instance is falsified.
None of these works use machine learning models as CPS
surrogates, which makes them different from our work.
Falsification tools for Simulink models: On the other hand,
several state-of-the-art falsification tools for CPS represented
as Simulink models are reported in [11], [9], [36], [28],
[2], [37]. These algorithms are simulation-based falsification
procedures for specifications written in Metric Temporal Logic
(MTL) or Signal Temporal Logic (STL). A falsification algo-
rithm proposed in [11] is based on adaptive Las-Vegas Tree
Search (aLVTS), which constructs falsifying inputs incremen-
tally in time. The fundamental concept is to start with simple
inputs and scale up gradually by taking samples from input
domains with improved temporal and spatial resolution. In [2],
a toolbox is reported for falsifying MTL properties based
on stochastic optimization techniques such as Monte-Carlo
methods and Ant-Colony Optimization. The stochastic sampler
suggests an input signal to the simulator which returns a tra-
jectory. The robustness analyzer then examines the trajectory
and returns a robustness value. The negative robustness value
indicates that the toolbox falsifies the temporal property. A
positive robustness value is used by the sampler to decide
the next input. Ψ-TaLiRo [36] is another robustness-guided



13

falsification tool for CPS, which is a Python implementation
of the toolbox proposed in [2]. The updated version supports
built-in optimizers like DA and Uniform Random, with two
new optimization algorithms such as Conjunctive Bayesian
Optimization - Large Scale (ConBO-LS) and Part-X.

Breach [9] is a MATLAB toolbox mainly designed for STL
specification monitoring and test case generation for hybrid
dynamical systems. In addition, it supports optimization-based
falsification and requirements mining for CPS. In contrary to
these works, our falsification framework is data driven, making
it application to any executable CPS in general and not limited
to Simulink models per se.
Falsification tools for Hybrid Automaton Models: Hybrid
automaton models of CPS have been studied with the focus on
verification and model-checking. Some of the model-checkers
for HA, such as DREACH [23], HYLAA [4], XSPEED [30],
SAT-REACH [24]), have counterexample generation feature
for reachability specifications expressed in their tool-specific
language. As the computational effort in these tools is directed
towards symbolic state-space exploration for proving safety
rather than falsification, the computational effort that these
tools incur for falsification is not comparable with falsifica-
tion methods and tools. However, FLEXIFAL is capable of
efficiently falsifying HA models with STL specifications.

VII. CONCLUSION

A data-driven framework has been proposed to falsify CPS
safety specifications, which is primarily based on the building
of a surrogate model, approximating a CPS given as an
executable. The framework has the option to construct either
a feedforward neural network or a decision tree as a surrogate
model. The network-based falsification algorithm leverages
adversarial attack algorithms and efficient verification tools
for the falsification of reachability specifications. The use of a
decision tree as a surrogate model has shown great promise on
the falsification of CPS. The experimental evaluation indicates
that our framework FLEXIFAL finds multiple hard-to-find
counterexamples in CPS. The datasets and network surrogates
of CPS have been made available in the public domain,
which can be useful for novel machine learning-based analysis
algorithms for CPS.

REFERENCES

[1] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin
Ho. Hybrid automata: An algorithmic approach to the specification and
verification of hybrid systems. pages 209–229. Springer-Verlag, 1992.

[2] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram
Sankaranarayanan. S-taliro: A tool for temporal logic falsification for
hybrid systems. In TACAS 2011, Saarbrücken, Germany, March 26–
April 3, 2011., pages 254–257. Springer, 2011.

[3] Stanley Bak, Sergiy Bogomolov, Abdelrahman Hekal, Niklas
Kochdumper, Ethan Lew, Andrew Mata, and Amir Rahmati. Falsification
using reachability of surrogate koopman models. In HSCC 24, pages
1–13, 2024.

[4] Stanley Bak and Parasara Sridhar Duggirala. Hylaa: A tool for com-
puting simulation-equivalent reachability for linear systems. In HSCC,
Pittsburgh, PA, USA, April 18-20, 2017, pages 173–178. ACM, 2017.

[5] Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Taylor T Johnson.
Improved geometric path enumeration for verifying relu neural networks.
In CAV 2020, Los Angeles, CA, USA, July 21–24, 2020, pages 66–96.
Springer, 2020.

[6] Leo Breiman. Classification and regression trees. Routledge, 2017.

[7] Lei Bu, Alessandro Abate, Dieky Adzkiya, Muhammad Syifa’ul Mufid,
Rajarshi Ray, Yuming Wu, and Enea Zaffanella. ARCH-COMP20
category report: Hybrid systems with piecewise constant dynamics and
bounded model checking. In ARCH 2020., volume 74 of EPiC Series
in Computing, pages 1–15. EasyChair, 2020.

[8] Nicholas Carlini and David A. Wagner. Towards evaluating the robust-
ness of neural networks. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 39–57.
IEEE Computer Society, 2017.

[9] Alexandre Donzé. Breach, a toolbox for verification and parameter
synthesis of hybrid systems. In CAV 2010, Edinburgh, UK, July 15-
19, 2010. Proceedings 22, pages 167–170. Springer, 2010.

[10] Alexandre Donzé and Oded Maler. Robust satisfaction of temporal
logic over real-valued signals. In Krishnendu Chatterjee and Thomas A.
Henzinger, editors, Formal Modeling and Analysis of Timed Systems,
pages 92–106, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[11] Gidon Ernst, Sean Sedwards, Zhenya Zhang, and Ichiro Hasuo. Fast
falsification of hybrid systems using probabilistically adaptive input. In
QEST 2019, Glasgow, UK, September 10–12, 2019, Proceedings 16,
pages 165–181. Springer, 2019.

[12] Chuchu Fan, Bolun Qi, Sayan Mitra, and Mahesh Viswanathan. Dryvr:
Data-driven verification and compositional reasoning for automotive
systems. In CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I, volume 10426, pages 441–461. Springer, 2017.

[13] Ansgar Fehnker and Franjo Ivancic. Benchmarks for hybrid systems
verification. In HSCC, pages 326–341, 2004.

[14] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton,
Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao
Dang, and Oded Maler. SpaceEx: Scalable Verification of Hybrid
Systems. In CAV, LNCS. Springer, 2011.

[15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[16] Peter Heidlauf, Alexander Collins, Michael Bolender, and Stanley Bak.
Verification challenges in F-16 ground collision avoidance and other
automated maneuvers. In ARCH@ADHS 2018, Oxford, UK, July 13,
2018, volume 54, pages 208–217. EasyChair, 2018.

[17] Ian A. Hiskens. Stability of limit cycles in hybrid systems. In 34th
Annual Hawaii International Conference on System Sciences (HICSS-
34), January 3-6, 2001, Maui, Hawaii, USA. IEEE Computer Society,
2001.

[18] Bardh Hoxha, Houssam Abbas, and Georgios Fainekos. Bench-
marks for temporal logic requirements for automotive systems.
In ARCH@CPSWeek 2014, Berlin, Germany, April 14, 2014 /
ARCH@CPSWeek 2015, Seattle, WA, USA, April 13, 2015, volume 34,
pages 25–30. EasyChair, 2014.

[19] Jianghai Hu, John Lygeros, and Shankar Sastry. Towars a theory
of stochastic hybrid systems. In HSCC 2000, page 160–173, Berlin,
Heidelberg, 2000. Springer-Verlag.

[20] Xiaoqing Jin, Jyotirmoy V Deshmukh, James Kapinski, Koichi Ueda,
and Ken Butts. Powertrain control verification benchmark. In Pro-
ceedings of the 17th international conference on Hybrid systems:
computation and control, pages 253–262, 2014.

[21] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J
Kochenderfer. Reluplex: An efficient smt solver for verifying deep
neural networks. In CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I 30, pages 97–117. Springer, 2017.

[22] Tanmay Khandait, Federico Formica, Paolo Arcaini, Surdeep Chotaliya,
Georgios Fainekos, Abdelrahman Hekal, Atanu Kundu, Ethan Lew,
Michele Loreti, Claudio Menghi, et al. Arch-comp 2024 category report:
Falsification. In Proceedings of the 11th Int. Workshop on Applied,
volume 103, pages 122–144, 2024.

[23] Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. dreach: δ-
reachability analysis for hybrid systems. In TACAS 2015, London, UK,
April 11-18, 2015, Proceedings, volume 9035, page 200. Springer, 2015.

[24] Atanu Kundu, Sarthak Das, and Rajarshi Ray. Sat-reach: A bounded
model checker for affine hybrid systems. ACM Trans. Embed. Comput.
Syst., 22(2), jan 2023.

[25] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial
examples in the physical world. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Workshop Track Proceedings. OpenReview.net, 2017.

[26] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.



14

[27] Oded Maler and Dejan Nickovic. Monitoring temporal properties of
continuous signals. In International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems, pages 152–166. Springer, 2004.

[28] Claudio Menghi, Shiva Nejati, Lionel C. Briand, and Yago Isasi Parache.
Approximation-refinement testing of compute-intensive cyber-physical
models: an approach based on system identification. In Gregg Rothermel
and Doo-Hwan Bae, editors, ICSE ’20, Seoul, South Korea, 27 June -
19 July, 2020, pages 372–384. ACM, 2020.

[29] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal
Frossard. Deepfool: A simple and accurate method to fool deep neural
networks. In CVPR 2016, Las Vegas, NV, USA, June 27-30, pages
2574–2582. IEEE Computer Society, 2016.

[30] Rajarshi Ray, Amit Gurung, Binayak Das, Ezio Bartocci, Sergiy Bogo-
molov, and Radu Grosu. XSpeed: Accelerating Reachability Analysis
on Multi-core Processors. In HVC 2015, Haifa, Israel, November 17-19,
Proceedings, pages 3–18, 2015.

[31] Jérôme Rony, Luiz G Hafemann, Luiz S Oliveira, Ismail Ben Ayed,
Robert Sabourin, and Eric Granger. Decoupling direction and norm
for efficient gradient-based l2 adversarial attacks and defenses. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4322–4330, 2019.

[32] Radu Serban and Alan C Hindmarsh. Cvodes: the sensitivity-enabled
ode solver in sundials. In International Design Engineering Technical
Conferences and Computers and Information in Engineering Confer-
ence, volume 47438, pages 257–269, 2005.

[33] David Shriver, Sebastian Elbaum, and Matthew B Dwyer. Reducing
dnn properties to enable falsification with adversarial attacks. In 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), pages 275–287. IEEE, 2021.

[34] David Shriver, Sebastian G. Elbaum, and Matthew B. Dwyer. DNNV:
A framework for deep neural network verification. In CAV 2021, July
20-23, Proceedings, Part I, volume 12759, pages 137–150. Springer,
2021.

[35] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. In ICLR 2014, Banff, AB, Canada, April 14-16,
Conference Track Proceedings, 2014.

[36] Quinn Thibeault, Jacob Anderson, Aniruddh Chandratre, Giulia
Pedrielli, and Georgios Fainekos. Psy-taliro: A python toolbox for
search-based test generation for cyber-physical systems. In FMICS 2021,
Paris, France, August 24-26, Proceedings, volume 12863, pages 223–
231. Springer, 2021.

[37] Masaki Waga. Falsification of cyber-physical systems with robustness-
guided black-box checking. In Proceedings of HSCC 23, pages 1–13,
2020.

[38] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman
Jana. Efficient formal safety analysis of neural networks. Advances in
neural information processing systems, 31, 2018.

[39] Yipei Yan, Deyun Lyu, Zhenya Zhang, Paolo Arcaini, and Jianjun Zhao.
Automated generation of benchmarks for falsification of stl specifi-
cations. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2025.

[40] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial
examples: Attacks and defenses for deep learning. IEEE transactions
on neural networks and learning systems, 30(9):2805–2824, 2019.


	Introduction
	Preliminaries
	Framework for CPS Falsification
	CPS design to Neural Networks
	Dataset Generation from CPS
	Data Pre-processing
	Neural Network Training

	Generating a Counterexample
	Eliminating Spurious Counterexamples

	A Falsification Procedure using Decision-Tree
	Robustness of a Trajectory
	CPS to Decision-Tree
	Dataset Generation
	Decision-Tree Building

	Generating Explanations to Safety Property Violation
	Finding Falsifying Leaf Nodes
	Generating Explanations

	Generating Counterexamples

	Results
	Implementation and Experimental Setup
	RQ1: NNFal vs DTFal
	RQ2 Comparison with CPS falsification tools
	RQ3: Generating multiple counterexamples efficiently

	Related Works
	Conclusion
	References

