
ar
X

iv
:2

50
5.

03
81

7v
1

 [
cs

.C
R

]
 2

 M
ay

 2
02

5

Modeling Behavioral Preferences of Cyber Adversaries Using Inverse
Reinforcement Learning

Aditya Shinde1 , Prashant Doshi1
1THINC Lab, School of Computing, University of Georgia

{adityas, pdoshi}@uga.edu

Abstract
This paper presents a holistic approach to attacker
preference modeling from system-level audit logs
using inverse reinforcement learning (IRL). Adver-
sary modeling is an important capability in cyber-
security that lets defenders characterize behaviors
of potential attackers, which enables attribution to
known cyber adversary groups. Existing approaches
rely on documenting an ever-evolving set of attacker
tools and techniques to track known threat actors.
Although attacks evolve constantly, attacker behav-
ioral preferences are intrinsic and less volatile. Our
approach learns the behavioral preferences of cy-
ber adversaries from forensics data on their tools
and techniques. We model the attacker as an expert
decision-making agent with unknown behavioral
preferences situated in a computer host. We lever-
age attack provenance graphs of audit logs to derive
a state-action trajectory of the attack. We test our
approach on open datasets of audit logs containing
real attack data. Our results demonstrate for the first
time that low-level forensics data can automatically
reveal an adversary’s subjective preferences, which
serves as an additional dimension to modeling and
documenting cyber adversaries. Attackers’ prefer-
ences tend to be invariant despite their different tools
and indicate predispositions that are inherent to the
attacker. As such, these inferred preferences can
potentially serve as unique behavioral signatures of
attackers and improve threat attribution.

1 Introduction
Sophisticated cyber attackers are increasingly targeting large
organizations and critical infrastructures. These threat actors,
also known as advanced persistent threats (APT), are stealthy,
resourceful, and often employ novel exploitation techniques
to achieve their objectives. Documenting, analyzing, and
modeling such threat actors is critical for improving defenses
against them. Recently, provenance graphs of audit log data
has emerged as a popular computational representation for
analyzing attacks by APTs [King and Chen, 2003; Hossain et
al., 2017]. Provenance graphs are a causal representation of
interactions between kernel-level objects such as processes,

threads, and files, which facilitates analysis by connecting
together objects that interact. Recent efforts have adopted
AI-based techniques to automate detecting APTs [Wang et al.,
2022; Milajerdi et al., 2019b].

Tactical information about cyber threats is critical for their
detection and timely response. However, the advantage of
having such specific intelligence is fleeting as attacker tools
and techniques evolve constantly. Approaches to modeling
adversaries lack broader insights into an attacker’s behavioral
characteristics and preferences. At a strategic level, past work
has adopted game-theoretic [Ferguson-Walter et al., 2019;
Schlenker et al., 2018] and decision-theoretic frameworks [Sar-
raute et al., 2012; Shinde and Doshi, 2024] to model cy-
ber adversaries. However, most goal and intent recognition
approaches for cybersecurity focus exclusively on end-goal
recognition. These efforts do not target the broader preferences
that the attacker’s behavior implicitly reveals. They also rely
on assumptions, such as the attacker’s intent is restricted to a
set of previously-known candidate reward functions [Mirsky
et al., 2019; Shinde et al., 2021].

This paper presents a novel, end-to-end approach to mod-
eling adversary preferences from raw forensics data using
inverse reinforcement learning (IRL) [Arora and Doshi, 2021].
We use low-level audit logs as they are often the only attack-
relevant data source in a post-breach scenario and are com-
monly used in cybersecurity. Our methodology leverages a
provenance graph representation of the system-level audit logs.
We model the attacker in a host as an expert decision-making
agent in the context of a Markov decision process (MDP).
Then, we utilize subgraph isomorphism to map parts of the
provenance graph to attacker actions grounded in the popular
MITRE ATT&CK matrix. The ATT&CK matrix is a compre-
hensive catalogue of techniques and tactics used by various
attackers [Strom et al., 2018]. In doing so, we bridge the gap
between raw security log data and the symbolic action repre-
sentations that are prevalent in the decision-making models
applied to cybersecurity. These mappings enable us to gener-
ate trajectories of observed attacker behavior. Subsequently,
we infer an attacker’s behavioral preferences from these audit
logs using IRL. This is a novel application of IRL to adversary
modeling, a pertinent goal in modern cyber defense. We model
an adversary’s preferences through behavioral features such
as discoverability, duration, attributability, sophistication, and
impact. These informative features encompass an attacker’s

https://arxiv.org/abs/2505.03817v1

broader preferences at a level above their tools and techniques
and serve as a unique signature of an adversary.

Subsequently, we utilize IRL to compute the weighting of
previously mentioned preference features from the trajectories.
We test this pipeline on multiple open datasets [Keromytis,
2018], which contain real cyber attacks on different target
hosts. Ground truth on an adversary’s preferences is usually
not available! We work around this challenge by using two dif-
fering IRL techniques and analyzing inter-method agreement.
Our results demonstrate the benefit of this novel approach in
extracting broader and likely invariant insights about attacker
behavior from low-level log data. This automated approach to
recognizing attacker preferences using IRL enables the study
of behavioral aspects of cyber attackers without assumptions
about their goals.

2 Background
Our approach leverages attack provenance graphs to extract
trajectories of attacker behavior for inferring their preferences
using IRL. In this section, we provide a brief background on
provenance graphs and IRL.

2.1 Attack Provenance Graphs
APTs utilize sophisticated tools and techniques that are diffi-
cult to detect with traditional detection mechanisms [Karantzas
and Patsakis, 2021]. Recently, the cybersecurity commu-
nity has successfully applied data provenance to system-level
log data for detecting such threats [King and Chen, 2003;
Hossain et al., 2017; Milajerdi et al., 2019b; Setayeshfar et al.,
2019]. Provenance graphs capture the interactions between
system-level subjects such as processes and threads, and ob-
jects such as files, sockets, and pipes. The graphical represen-
tation aids attack investigations by restricting the search space
to events causally connected to an indicator of compromise.

Formally, a provenance graph G is defined as G = ⟨N,E⟩
where N is the set of nodes representing abovementioned
subjects and objects. E = {e1, e2, ..., et} is the set of time-
stamped edges representing interactions and the direction of
information flow between the nodes. Provenance graphs fa-
cilitate impact analysis by forward-tracing the paths causally
linked to a suspicious node. Starting from a node n at time
t′, the set of nodes impacted by n is given by traversing all
edges et≥t′ ∈ E. Similarly, backward search enables root-
cause analysis that determines the source of an attack [King
and Chen, 2003; Lee et al., 2013a]. The set of nodes that
can likely influence a node n at time t′ is similarly generated
by traversing all edges et≤t′ ∈ E. In practice, audit logging
systems can produce gigabytes of log data per day [Xu et al.,
2016]. Several compression techniques have been proposed
to address this challenge [Xu et al., 2016; Lee et al., 2013b;
Tang et al., 2018]. Figure 1 illustrates this pipeline of generat-
ing a provenance graph from audit logs.

In our work, we generate an attack scenario graph starting
from the source of the intrusion using forward analysis and a
well-known state-based node versioning technique [Hossain
et al., 2018]. Subsequently, we map parts of the attack sce-
nario graph to the MITRE ATT&CK matrix using subgraph
isomorphism to generate trajectories of attacker behavior.

2.2 Inverse RL
Inverse reinforcement learning (IRL) enables an observer to
infer an expert decision-making agent’s reward function from
observed behavior and, optionally, the agent’s policy [Ng
and Russell, 2000; Arora and Doshi, 2021]. IRL methods
commonly formulate the decision making of the expert agent
as a Markov decision process (MDP). The expert’s MDP is
defined formally as a tuple ⟨S,A, T, γ,R⟩, where S is the
set of states, A the set of actions of the expert, T : S ×
A × S −→ [0, 1] is the transition function, R : S × A −→
R is the expert’s unknown reward function, and γ ∈ (0, 1)
is the discount factor. The expert agent’s behavior data is
available as a set of M state-action trajectories of length T ,
X = {(s1, a1), (s2, a2), ..., (sT , aT)} and |X | = M . For
large state spaces, the expert’s reward function is approximated
linearly as R(s, a) = w1ϕ1(s, a) + · · ·+ wkϕk(s, a), where
s ∈ S, a ∈ A, and ϕ1, . . . , ϕk are bounded basis functions
ϕ : S × A −→ {0, 1} [Abbeel and Ng, 2004]. Basis weights
w1, . . . , wk are unknown parameters to be learned.

Bayesian IRL [Ramachandran and Amir, 2007] is a well-
known framework that assumes a prior distribution over
the reward functions with i.i.d reward values, P (R) =∏

s∈S,a∈A P (R(s, a)), and computes the posterior distribu-
tion, P (R|X), using the expert’s trajectories as follows,

P (R|X) = αP (X|R)P (R). (1)

Here, α is the normalization constant, and P (X|R) is the
likelihood function expressed as,

P (X|R) =

M∏
m=1

T∏
t=1

eβQ
∗(smt ,am

t ;R)∑
a e

βQ∗(smt ,a;R)
.

As computing the partition function contained in α is hard,
several approaches exist to compute a point estimate of R dis-
tributed according to P (R|X) [Arora and Doshi, 2021]. In our
work, we utilize a maximum-a-posteriori (MAP) estimation for
the reward function within the Bayesian IRL framework [Choi
and Kim, 2011]. The MAP-BIRL approach computes a re-
ward, RMAP , that maximizes the log of the posterior in Eq. 1
using a gradient method:

RMAP = argmax
R

logP (R|X)

= argmax
R

logP (X|R) + logP (R)

Value functions V ∗(R) and Q∗(R) are convex and differen-
tiable almost everywhere [Choi and Kim, 2011]. These prop-
erties enable efficient computation of RMAP using a gradient
method with the update rule, Rnew ←− R+ δt∇RP (R|X).

3 Host-Level Cyber Threat Domain
Section 2 reviewed MAP inference in Bayesian IRL for com-
puting the expert agent’s reward function. In our work, the
expert is the attacker, and the audit logs generated by the at-
tacker’s actions are the behavior data that we utilize to infer the
attacker’s preferences wi for reward features ϕi. We present
the MDP that we use to model the attacker agent next.

Action States affected Description
InitialAccessUser AttackerActive Attacker gets user-level access on the target host

InitialAccessRoot
AttackerActive

Attacker establishes privileged access
AttackerPrivs

C2 C2Established Attacker communicates with command-and-control infrastructure
IngressToolTransfer IOCGenerated Attacker downloads a payload on the target host
PrivEsc AttackerPrivs Attacker achieves elevated privileges
DataExfil – Attacker exfilterates sensitive data from the target
DefenseEvasion IOCGenerated Attacker deletes artifacts and evidence
Exit AttackerActive Attacker concludes the attack

Table 1: We model the set of attacker actions based on tactics and techniques in the MITRE ATT&CK matrix.

3.1 Attacker Model
We model the attacker’s decision-making problem as an
MDP/R = ⟨S,A, T ⟩, where S is the set of states of the target
host system, A is the set of actions available to the attacker,
and T is the transition function representing the effect of the
attacker’s actions on the target host. The reward function R
capturing the attacker’s behavior preferences is unknown to
the defender and must be learned.

Elements of the state space represent the attacker’s per-
spective of the state of the target host. The attacker
utilizes her actions to manipulate these states based on
her preferences. In our model of the attacker’s MDP,
we define the state space using 4 state features, S =
{AttackerActive, AttackerPrivs, IOCGenerated,
C2Established}. The AttackerActive state feature indicates
whether the attacker has established a presence on the tar-
get host. The initial value of AttackerActive is false. An
attacker may utilize numerous techniques ranging from so-
phisticated exploits to phishing attacks to get initial access
to the target host. We model these techniques using the ac-
tions InitialAccessUser and InitialAccessRoot. Upon the
attacker’s initial access, AttackerActive transitions to true.
Once inside the target host, an attacker may use the C2 action
to reach the command and control (C2) infrastructure. The
C2Established state feature represents whether the attacker
has achieved communication with their C2 infrastructure. We
represent the privilege level of the attacker on the target host
using the AttackerPrivs feature. An attacker may have user-
level privileges indicated by the feature value user, or root
privileges indicated by root. A sophisticated attacker may
achieve root privileges simultaneously while establishing ini-
tial access using the InitialAccessRoot action. Attackers may
also utilize various privilege escalation techniques after es-
tablishing initial access. We model these techniques with the
PrivEsc action. We model a noisy transition of Attacker-
Privs due to PrivEsc to account for failed escalation attempts.
Throughout the attack, the tools employed by the attacker
may generate artifacts like log files. An attacker may also
download additional tools such as malware stages using the
IngressToolTransfer action. Such artifacts, also known as
indicators-of-compromise, are subsequently utilized by foren-
sics analysts to reconstruct and investigate the attack. The
IOCGenerated state feature indicates whether the attacker’s
actions generate such indicators. The attacker may also erase

indicators of the attack to prevent detection by end-point de-
fense software using the DefenseEvasion action. Table 1
summarizes the complete set of attacker actions that we model.

3.2 Reward Features
Recall that we approximate the attacker’s reward function
using a linearly weighted sum of bounded basis functions,
R(s, a) =

∑k
i=1 wiϕi(s, a). The basis functions, ϕi(s, a),

are the features used to characterize the attacker’s behavior.
Specifically, the preference features that we model are–
1. Discoverability is the attacker’s use of actions that may

produce digital artifacts or other evidence. If an attacker
downloads tools or malware stages to the compromised
host, the attack can be discovered in an investigation.

2. Attributability is the attacker’s preference or lack thereof
for actions that facilitate the identification of the threat
actor group associated with the attack.

3. We model sophistication as the attacker’s preference for
using advanced tools and techniques. For instance, an
attacker’s ability to exploit privileged processes remotely
is indicative of sophistication.

4. Impact is the attacker’s preference for states and actions
that can potentially cause severe consequences for the com-
promised host.

5. Evasion is the attacker’s preference for erasing digital arti-
facts and indicators to avoid detection.

6. Duration is the attacker’s preference for staying active in
the compromised system.

Table 2 summarizes the reward features and their associated
state-action values. Though not exhaustive, the features offer
deep insights into the attacker’s behavior and can be inferred.

Feature name States Actions
Discoverability Att.Active = true IngressToolTransfer
Attributability Att.Active = true C2
Sophistication Att.Active = false InitialAccessRoot
Impact Att.Active = true PrivEsc
Duration Att.Active = true DataExfil

Evasion Att.Active = true DefenseEvasion
IOCGen. = true

Table 2: We use the reward features ϕi to model an attacker’s behav-
ioral tendencies. Here, * denotes any action.

893/nginx recvfrom 25.159.96.207 ...
893/nginx connect 76.56.184.25 ...
893/nginx sendto 76.56.184.25 ...
893/nginx recvfrom 76.56.184.25 ...
893/nginx mprotect ...
893/nginx write /var/log/nginx-error.log ...
...
...
...

(a) Audit logs record system-
level interactions between dif-
ferent kernel-level objects

nginx

/var/log/nginx-error.log

/etc/passwd

/tmp/grain

25.159.96.207

76.56.184.25

155.162.39.48
unnamed process

(b) A provenance graph establishes causal relation-
ships between related entities that interact. Here,
nginx is a Web server process

nginx
/var/log/nginx-error.log

/etc/passwd

/tmp/grain

25.159.96.207

76.56.184.25

155.162.39.48

76.56.184.25

nginx

nginx

unnamed process

(c) State-based versioning techniques eliminate
redundant edges between entities

Figure 1: Provenance graphs aid forensic investigations by causally connecting related entities even when they are temporally distant in logs.

We utilize the attacker’s state-action trajectory to compute
the preference weights, wi of features ϕi using IRL. The val-
ues of these weights inform us about the preference ordering
of each feature of the attacker’s reward function. For instance,
an attacker who prefers to stay undetected may prioritize delet-
ing evidence of the attack and minimizing their attack duration
over the level of impact. A likely preference ordering for such
an attacker would be: evasion ≻ sophistication ≻ impact ≻
duration ≻ attributability ⪰ discoverability. In contrast, an
attacker that aims to cause destruction, but is indifferent to-
wards getting detected would prioritize maximizing impact
on the compromised host resulting in a preference ordering:
impact ≻ duration ≻ sophistication ≻ attributability ⪰
discoverability ⪰ evasion. Such information about the at-
tacker’s implicit preferences is not directly accessible using
prevailing log analysis and attack reconstruction techniques
on audit log data. By modeling the contextual features of
the attacker’s intent, IRL enables discerning these underlying
behavioral characteristics from log data.

4 Trajectories from Provenance Graphs
In cyberattack scenarios, a breach is usually detected long after
the initial intrusion. Consequently, post-attack investigations
must rely on log data from compromised systems to analyze
the attack. In our work, we first construct provenance graphs
from the log data. We then employ subgraph isomorphism to
obtain the actions defined in the attacker’s MDP model for
generating state-action trajectories of the attack trace.

4.1 Obtaining Scenario Graphs from Logs
In post-attack analyses, preliminary forensics investigations
often yield information regarding the time of the initial breach,
and notable artifacts such as malicious IP addresses and files.
We start by processing audit log data recorded during the attack
time interval. We then construct a versioned provenance graph
from audit events during the attack time window using the
state-versioning technique referenced in Section 2.1. Notably,
the state-versioning algorithm eliminates redundant events
while preserving dependency between subjects and objects.
We employ forward and backward search techniques on the
versioned provenance graph to extract a scenario graph.
Definition 1 (Attack scenario). An attack scenario graph
Gs = ⟨Ns, Es⟩ is a subgraph of the provenance graph G

containing nodes Ns and edges Es causally dependant on
known attack-related nodes. It begins with first intrusion and
terminates at attacker egress.

To construct Gs, we traverse G backward from a known
detection point– like a file, to a source– such as a network
socket. We also collect process nodes that executed malicious
files encountered during the backward tracing process. We
then search forward from each source node to collect events
and nodes causally related to that source node. We construct
Gs from the nodes and events traversed during forward search

Event Propagation rule

S
RECV←−−−− N isUntrusted(N) −→ tag(S)

S
WRITE−−−−−→ F isUntrusted(S) −→ tag(F)

S
EXEC−−−−→ F isUntrusted(F) −→ tag(S)

S1
FORK−−−−→ S2 isUntrusted(S1) −→ tag(S2)

Table 3: Propagation rules tag untrusted nodes based on their in-
teractions with other nodes. (S = Subject, F = FileObject, N =
NetflowObject)

The scenario graph constructed from forward and backward
search may still contain subgraphs of benign events causally
connected through false dependencies. To avoid false posi-
tives while mapping these attack subgraphs to attacker actions,
we include an additional preprocessing step that employs tag
propagation [Hossain et al., 2017]. We first tag the nodes in
the source set as untrusted. Then, traverse the attack scenario
graph and utilize the following rules to propagate the tag:
1. If a subject node reads data from an untrusted network

socket object, the subject node is tagged as untrusted.
2. If an untrusted subject node writes to a file object, the file

object node is tagged as untrusted.
3. If a subject process or thread executes an untrusted file, the

subject node is marked as untrusted.
4. If a subject node is untrusted, all its child processes are

tagged as untrusted.
Table 3 summarizes the events and applicable tag-propagation
rules that we utilize to taint untrusted nodes. If a node is
tainted, we also taint all of its subsequent versions. We use this
information to reduce false positives when matching subgraph
templates with the scenario graph to extract attacker actions.

Untrusted IP
address

Internet-facing
process

recvfrom

(a) Template for the Initial Access
tactic shows the initial intrusion
from a network socket to a process

Untrusted IP
address

Compromised
process

recvfrom

sendto

(b) Template graph for Command
and Control shows the attacker-
controlled process communicating
with an external address

Untrusted IP
address

Compromised
process

recvfrom

Malicious file

open
write

(c) Template Ingress Tool Transfer
shows the attacker-controlled pro-
cess creating an untrusted file

Compromised
process

exec
Malicious

file

open

write

Elevated
process

(d) Template graph for Privilege
Escalation shows a privileged pro-
cess executing an untrusted file

Figure 2: The template graphs represent tactics and techniques in the ATT&CK matrix. We utilize these templates to identify attacker actions
in the provenance graph using subgraph isomorphism.

4.2 Extracting Trajectories using Graph
Isomorphism

The scenario graph we generate from system-level audit data
contains all events causally related to the source node of an
attack. We use subgraph isomorphism to match parts of the
scenario graph with templates representing the attacker’s ac-
tions. We call these as template graphs and the corresponding
isomorphic subgraphs in the scenario graph as action sub-
graphs. Recall from Section 2.1 that the attacker actions we
model are grounded in the MITRE ATT&CK matrix. Conse-
quently, we develop template graphs for the attacker ac-
tions based on the tactics and techniques in the ATT&CK
matrix. Specifically, we build template graphs for the Initial
Access, Command and Control, Execution, Privilege Esca-
lation, and Defense Evasion tactics. Figure 2 illustrates the
template graphs for some notable actions we model. Notice
that most of the attacker’s actions span multiple causally re-
lated events. In a raw log file, long durations of unrelated
activity may separate discrete events representing the same
action. A provenance graph facilitates the direct matching of
related events using subgraph isomorphism and unification,
regardless of their temporal separation in a log file. Unification
facilitates the matching of template and scenario subgraphs
by substituting node information like process privileges and
taint tags from the scenario graph into the template graphs
and checking for equivalence. We unify each template graph
with an isomorphic attack scenario subgraph to get a series of
action subgraphs representing the attacker’s action sequence.

Feature information from the nodes of the action subgraphs
also facilitates the tracking of state values of the attacker’s
MDP. Information about a tainted subject’s privileges indi-
cates the attacker’s privilege level, which determines the value
of the AttackerPrivs state feature. Similarly, we monitor the
filename information from the action subgraphs representing
Ingress Tool Transfer to track the indicators of compromise
that this action generates. We utilize this information to de-
termine the value of the IOCGenerated state feature. C2 IP
addresses are collected similarly from the C2 action subgraphs.
Subsequently, we retrieve information about the attacker’s ac-
tions and the MDP state transitions from the action subgraphs.

4.3 Learning Attacker Preferences
We utilize the actions and state information obtained us-
ing subgraph isomorphism to define a state-action trajectory
of the attacker’s observed behavior. An example sequence
of an attacker’s actions from such a trajectory would be,

{InitialAccessUser, C2, IngressToolTransfer, PrivEsc, ..., C2,
DataExfil}. In this example, the attacker first achieves user-
level access and then establishes C2. The attacker then down-
loads a payload and escalates it to root privileges. Finally, the
attacker exfiltrates data from the target system. Our methodol-
ogy accordingly lifts low-level system call logs to this higher
level of abstraction thereby enabling the application of IRL to
learn the behavioral preferences of the attacker. The host-level
cyber threat domain MDP defined in Section 3 serves as our
model of the environment. The model-based MAP-BIRL re-
viewed in Section 2.2 utilizes this MDP to infer the attacker’s
preferences that explain the trajectory obtained from the logs.
We also use model-free MLE-IRL to learn the preferences
and compare the agreement between the two techniques. For
the abovementioned example trajectory, a likely preference
ordering would be {attributability, discoverability, impact,
duration} ≻ {evasion, sophistication}. We evaluate the per-
formance of IRL at learning the attacker’s preference function,
using an empirical estimate of inverse learning error (ILE),
||V πE −V π̂E ||, where V πE is value of the attacker’s observed
trajectory using the learned Q function, and V π̂E is value
of sampled trajectories from the learned policy. In the next
section, we evaluate the performance of IRL toward learning
attacker preferences directly from real log data.

5 Experiments
We described our model of the attacker’s MDP in Section 3,
and a general methodology for extracting state-action trajecto-
ries from a provenance graph representation of raw audit logs
in Section 4. We utilize these trajectories with our model of
the attacker’s MDP to infer an attacker’s hidden preference
ordering for the reward features described in Section 3.2.

5.1 Realistic Attack Datasets
We evaluate our approach on large publicly available
datasets from DARPA’s transparent computing (TC) pro-
gram [Keromytis, 2018]. The data was collected from a se-
ries of red team engagements, of which Engagement 3 was
publicly released. The attacks comprised APT simulations on
hosts with various provenance capture software which DARPA
intended to evaluate. We use the CADETS dataset [Strnad
et al., 2019] recorded on a FreeBSD host, and the THEIA
dataset [Fazzini, 2017] recorded on a Linux host. We evalu-
ate our approach on 4 provenance graphs automatically con-
structed from the CADETS logs and 2 from the THEIA logs.
These graphs contain data from separate APT attacks. Table 4

shows the size of each attack scenario graph with the attack
storyline obtained from log analysis and after-action reports.

Datasets |Ns| |Es| Attack storyline and Ground truth
CADETS-1 8,394 21,394 RE −→ C2 −→ PE −→ DE

(Features: Sop, Att, Imp, Dis)
CADETS-2 1,734 9,267 UA −→ C2 (Features: Att, Dis)
CADETS-3 44,974 98,584 UA −→ C2 −→ PE −→ DE

(Features: Att, Imp, Dis, Eva)
CADETS-4 196,502 469,094 UA −→ C2 −→ PE

(Features: Att, Imp, Dis)
THEIA-1 824 911 UA −→ C2 −→ PE

(Features: Att, Imp, Dis)
THEIA-2 30,504 70,300 UA −→ C2 −→ PE −→ DE

(Features: Att, Imp, Dis, Eva)

Table 4: Size of each dataset’s attack scenario graph with the attack
storyline (RE = Root exploit, UA = User-level access, C2 = Com-
mand and control, PE = Privilege elevation, DE = Defense evasion).
Associated behavioral features are also shown (Sop = Sophistication,
Att = Attributability, Imp = Impact, Dis = Discoverability, Eva =
Evasion, Dur = Duration), which serves as the ground truth.

The DARPA TC dataset is widely used for evaluating prove-
nance graph-based APT detection. While some inconsisten-
cies were reported in the data caused by the target hosts occa-
sionally crashing during process-injection attacks, the dataset
is a benchmark in the cybersecurity community due to a lack
of realistic attack log data. We could infer attacker preferences
from the available data using our approach. We show detailed
trajectories extracted from each dataset in Appendix A.

5.2 Learned Preferences
We generated provenance graphs for each APT attack in the
CADETS and THEIA datasets and stored them in a Neo4j
database. We then extracted state-action trajectories for each
attack using Cypher queries for subgraph isomorphism. To
infer the attacker’s preferences, we use MAP-BIRL as well as
model-free maximum likelihood estimation (MLE) approach
to IRL [Jain et al., 2019]. We then use Mean Shift clustering
to group the preference features according to their learned
weights. We estimate ILE using 1000 sampled trajectories.
Both techniques are effective in learning the preference func-
tion as indicated by the low ILE values, with MAP-BIRL
performing better on more of the datasets.

Datasets Spearman’s ρ Inverse learning error
MAP-BIRL MLE-IRL

CADETS-1 0.94, p < 0.005 1.75 ± 1.44 1.46 ± 1.66
CADETS-2 0.82, p < 0.05 3.74 ± 3.5 6.21 ± 3.45
CADETS-3 0.94, p < 0.005 4.18 ± 2.5 9.61 ± 8.76
CADETS-4 0.77, p < 0.08† 1.2 ± 1.35 3.1 ± 5.44
THEIA-1 0.94, p < 0.005 4.4 ± 4.26 11.77 ± 7.08
THEIA-2 0.94, p < 0.005 3.53 ± 3.58 10.71 ± 6.48

Table 5: Spearman’s rank correlation coefficient (ρ) measures the
agreement between the feature weights learned by MAP-BIRL and
MLE-IRL. †– may not correlate. MAP-BIRL exhibits a lower ILE
for all but one dataset.

Figure 3 shows the normalized weights representing each
attacker’s behavioral preferences learned using both methods.
Logs from CADETS-1 consisted of 18 attacker actions. The
attacker deployed a remote exploit to get root-level access

via an nginx server (InitialAccessRoot) demonstrating high
sophistication. The attacker’s preference to escalate a malware
payload, erase evidence and C2 with multiple IP addresses
indicated high impact, evasion, and attributability as shown
in Table 4. Both MAP and MLE IRL correctly infer these
preferences as shown in Fig. 3a. In the CADETS-2 attack,
our methodology identified 7 attacker actions. The attacker
initially gained user-level access (InitialAccessUser) and
immediately established C2. Subsequently, the attacker down-
loaded a payload (IngressToolTransfer) and concluded the
attack. The attacker’s failure to elevate privileges and erase the
payload was correctly inferred by MAP via negative weights
for impact and evasion as shown in Fig. 3b. The CADETS-3
attack contained 55 actions. Similar to CADETS-2, the at-
tacker gained access by exploiting a Web-facing application.
Subsequently, the attacker downloaded multiple payloads for
process injection but failed, and instead ran an elevated process.
The attacker’s preference for subsequent privilege escalation
instead of an initial root-level exploit was correctly inferred
by MAP-BIRL as a lack of sophistication. The CADETS-4
and THEIA-1 attacks were similar, consisting of 17 and 12
actions respectively. The attackers gained user-level access,
established C2, and elevated privileges. However, both failed
to erase their respective payloads to avoid detection. Both
IRL techniques correctly identified this behavioral preference
as indicated by lower values for evasion in Figs. 3d and 3e.
Finally, the THEIA-2 attack contained 11 actions. The at-
tacker gained user-level access and downloaded payloads for
injection. However, the attacker promptly deleted all except
one payload. Consequently, Fig. 3f shows higher preferences
for discoverability and evasion. Similar to CADETS-3,4 and
THEIA-1, a lack of sophistication was also observed. None of
the attacks contained data exfiltration or similar actions requir-
ing prolonged attacker presence. Consequently, the weights
for duration were low for all attacks.

Datasets Ground Truth Preference Ordering
Learned by MAP-BIRL

CADETS-1 Sop, Att, Imp, Dis {Att, Eva, Dis, Imp, Sop} ≻ Dur
CADETS-2 Att, Dis {Att, Dis} ≻ {Eva, Imp, Dur, Sop}
CADETS-3 Att, Imp, Dis, Eva {Att, Imp, Eva, Dis} ≻ {Sop, Dur}
CADETS-4 Att, Imp, Dis {Att, Dis, Imp} ≻ {Eva, Dur} ≻ Sop
THEIA-1 Att, Imp, Dis {Att, Dis, Imp} ≻ {Eva, Dur, Sop}
THEIA-2 Att, Imp, Dis, Eva {Eva, Dis, Att, Imp} ≻ {Dur, Sop}

Table 6: The preference orderings learned by MAP-BIRL is consis-
tent with the features emphasized in the ground truth.

Table 5 shows the rank correlation between the preferences
learned by both IRL techniques. The table also shows that
both techniques were effective in learning the attacker’s reward
function as indicated by the low values of ILE. Note that the
preferences inferred by our methodology are consistent with
the ground-truth as shown in Table 6. These weights can serve
as unique behavior-generating signatures of the attackers.

6 Related Work
Recognizing an attacker’s intent from forensics data is a topic
of much interest at the intersection of cyber security and AI.
Log Analysis: Several recent works in cybersecurity adopt
provenance graphs for APT detection [Hossain et al., 2017;

0.0

0.2

0.4
MAP

Dis. Sop. Att. Imp. Dur. Eva.0.0

0.2

0.4
MLE

Features ()

W
ei

gh
ts

 (w
i)

(a) Behavioral signature from MAP
for CADETS-1 indicates the ordering,
{attributability, evasion, discoverability,
impact, sophistication} ≻ duration

0.5

0.0
MAP

Dis. Sop. Att. Imp. Dur. Eva.

0.0

0.5
MLE

Features ()

W
ei

gh
ts

 (w
i)

(b) Behavioral signature from MAP
for CADETS-2 indicates the ordering,
{attributability, discoverability} ≻ {evasion,
impact, duration, sophistication}

0.5

0.0

0.5

MAP

Dis. Sop. Att. Imp. Dur. Eva.

0.00

0.25

0.50 MLE

Features ()

W
ei

gh
ts

 (w
i)

(c) Behavioral signature from MAP
for CADETS-3 indicates the ordering,
{attributability, impact, evasion, discoverabil-
ity} ≻ {sophistication, duration}

0.0

0.5 MAP

Dis. Sop. Att. Imp. Dur. Eva.
0.25

0.00

0.25

0.50 MLE

Features ()

W
ei

gh
ts

 (w
i)

(d) Behavioral signature from MAP
for CADETS-4 indicates the ordering,
{attributability, discoverability, impact} ≻
{evasion, duration} ≻ sophistication

0.50

0.25

0.00

0.25 MAP

Dis. Sop. Att. Imp. Dur. Eva.

0.00

0.25

0.50 MLE

Features ()

W
ei

gh
ts

 (w
i)

(e) Behavioral signature from MAP
for THEIA-1 indicates the ordering,
{attributability, discoverability, impact} ≻
{evasion, duration, sophistication}

0.5

0.0

MAP

Dis. Sop. Att. Imp. Dur. Eva.

0.00

0.25

0.50

MLE

Features ()

W
ei

gh
ts

 (w
i)

(f) Behavioral signature from MAP for
THEIA-2 indicates the ordering, {evasion,
discoverability, attributability, impact} ≻
{duration, sophistication}

Figure 3: The reward functions inferred from the trajectories of different attackers using MAP-BIRL show their behavioral preferences.

Milajerdi et al., 2019a; Wang et al., 2022; Cheng et al., 2024].
HOLMES [Milajerdi et al., 2019b] is one such relevant ap-
proach that explains APT campaigns at a tactical level. How-
ever, these approaches aim to identify APT activity and re-
construct attacks from provenance graphs. Our work goes
beyond attack detection and models APT behavior to sup-
plement post-attack investigations with deeper insights into
attacker preferences.

AI-based Intent Recognition: Recently, AI-based techniques
are also being applied to attacker intent recognition [Kassa et
al., 2024]. One such approach proposes an AI-based method-
ology to identify attack phases from system call logs using
an HMM and learned classifiers [AbuOdeh et al., 2021]. An-
other approach employed an HMM to recognize tactics in the
MITRE ATT&CK matrix from sensor alerts [Zhang et al.,
2009]. Instead, we model these tactics and phases as actions
and learn the intrinsic behavioral preferences of an attacker
from them. Another interesting work adopts the I-POMDPX
framework for attacker intent recognition on a honeypot sys-
tem [Shinde et al., 2021]. The I-POMDPX -based defender
employs deception to actively infer an attacker’s intent from
a predefined set specified a priori. In contrast, our work does
not make such assumptions about the attacker’s intent and
learns preferences for abstract behavioral features. As such,

our approach to modeling these preferences using IRL differs
significantly from conventional approaches in cybersecurity.

7 Conclusion
The lack of representative data on adversarial intent is a known
challenge in cybersecurity. Low-level forensics logs are of-
ten the only source of attack-relevant data. Conventional ap-
proaches to understanding adversary tools and techniques typi-
cally do not provide long-term insights into adversary behavior
as attacker tools and techniques evolve constantly. However,
their behavioral tendencies are long-lasting and independent
of their specific tools. Consequently, automated ways of ex-
tracting higher-level (deeper) insights into adversary behavior
from low-level data is very valuable to modern cyber defense.
Our AI-anchored methodology instruments a novel use case of
IRL to model cyber adversaries. The significant results demon-
strate the efficacy of the methodology and IRL’s effectiveness
in correctly learning adversary behavior from log data.

Insights into an adversary’s behavioral tendencies will en-
able defenders to orient their defenses appropriately to prevent
future attacks. Toward this, future work could utilize the
learned preferences to engage in forward RL on simulations
of various host configurations to predict how an attack from
the adversary would unfold.

References
[Abbeel and Ng, 2004] Pieter Abbeel and Andrew Y. Ng. Ap-

prenticeship learning via inverse reinforcement learning. In
Proceedings of the Twenty-First International Conference
on Machine Learning, ICML ’04, page 1, 2004.

[AbuOdeh et al., 2021] Muhammed AbuOdeh, Christian Ad-
kins, Omid Setayeshfar, Prashant Doshi, and Kyu H Lee. A
novel ai-based methodology for identifying cyber attacks
in honey pots. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 15224–15231,
2021.

[Arora and Doshi, 2021] Saurabh Arora and Prashant Doshi.
A survey of inverse reinforcement learning: Challenges,
methods and progress. Artificial Intelligence, 297:103500,
2021.

[Cheng et al., 2024] Zijun Cheng, Qiujian Lv, Jinyuan Liang,
Yang Wang, Degang Sun, Thomas Pasquier, and Xueyuan
Han. Kairos: Practical intrusion detection and investigation
using whole-system provenance. In 2024 IEEE Symposium
on Security and Privacy (SP). IEEE, 2024.

[Choi and Kim, 2011] Jaedeug Choi and Kee-Eung Kim.
Map inference for bayesian inverse reinforcement learn-
ing. Advances in neural information processing systems,
24, 2011.

[Fazzini, 2017] Mattia Fazzini. Tagging and tracking of multi-
level host events for transparent computing. 2017.

[Ferguson-Walter et al., 2019] Kimberly Ferguson-Walter,
Sunny Fugate, Justin Mauger, and Maxine Major. Game
theory for adaptive defensive cyber deception. In Proceed-
ings of the 6th Annual Symposium on Hot Topics in the
Science of Security, page 4, New York, NY, USA, 2019.
ACM, Association for Computing Machinery.

[Hossain et al., 2017] Md Nahid Hossain, Sadegh M Mi-
lajerdi, Junao Wang, Birhanu Eshete, Rigel Gjomemo,
R Sekar, Scott Stoller, and VN Venkatakrishnan.
{SLEUTH}: Real-time attack scenario reconstruction from
{COTS} audit data. In 26th USENIX Security Symposium
(USENIX Security 17), pages 487–504, 2017.

[Hossain et al., 2018] Md Nahid Hossain, Junao Wang, Ofir
Weisse, R Sekar, Daniel Genkin, Boyuan He, Scott D
Stoller, Gan Fang, Frank Piessens, Evan Downing, et al.
{Dependence-Preserving} data compaction for scalable
forensic analysis. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1723–1740, 2018.

[Jain et al., 2019] Vinamra Jain, Prashant Doshi, and
Bikramjit Banerjee. Model-free irl using maximum likeli-
hood estimation. In AAAI, pages 3951–3958, 2019.

[Karantzas and Patsakis, 2021] George Karantzas and Con-
stantinos Patsakis. An empirical assessment of endpoint
detection and response systems against advanced persis-
tent threats attack vectors. Journal of Cybersecurity and
Privacy, 1(3):387–421, 2021.

[Kassa et al., 2024] Yidnekachew Worku Kassa, Joshua Isaac
James, and Elefelious Getachew Belay. Cybercrime inten-

tion recognition: A systematic literature review. Informa-
tion, 15(5):263, 2024.

[Keromytis, 2018] Angelos D Keromytis. Transparent com-
puting engagement 3 data release. README-E3. md, 2018.

[King and Chen, 2003] Samuel T King and Peter M Chen.
Backtracking intrusions. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages
223–236, 2003.

[Lee et al., 2013a] Kyu Hyung Lee, Xiangyu Zhang, and
Dongyan Xu. High accuracy attack provenance via binary-
based execution partition. In NDSS, volume 16, 2013.

[Lee et al., 2013b] Kyu Hyung Lee, Xiangyu Zhang, and
Dongyan Xu. Loggc: garbage collecting audit log. In
Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security, pages 1005–1016, 2013.

[Milajerdi et al., 2019a] Sadegh M Milajerdi, Birhanu Eshete,
Rigel Gjomemo, and VN Venkatakrishnan. Poirot: Align-
ing attack behavior with kernel audit records for cyber
threat hunting. In Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security,
pages 1795–1812, 2019.

[Milajerdi et al., 2019b] Sadegh M Milajerdi, Rigel
Gjomemo, Birhanu Eshete, Ramachandran Sekar, and
VN Venkatakrishnan. Holmes: real-time apt detection
through correlation of suspicious information flows. In
2019 IEEE Symposium on Security and Privacy (SP),
pages 1137–1152. IEEE, 2019.

[Mirsky et al., 2019] Reuth Mirsky, Ya’ar Shalom, Ahmad
Majadly, Kobi Gal, Rami Puzis, and Ariel Felner. New
goal recognition algorithms using attack graphs. In Cyber
Security Cryptography and Machine Learning: Third In-
ternational Symposium, CSCML 2019, Beer-Sheva, Israel,
June 27–28, 2019, Proceedings 3, pages 260–278. Springer,
2019.

[Ng and Russell, 2000] Andrew Y Ng and Stuart Russell. Al-
gorithms for inverse reinforcement learning. In Icml, vol-
ume 1, page 2, 2000.

[Ramachandran and Amir, 2007] Deepak Ramachandran and
Eyal Amir. Bayesian inverse reinforcement learning. In
IJCAI, volume 7, pages 2586–2591, 2007.

[Sarraute et al., 2012] Carlos Sarraute, Olivier Buffet, and
Jörg Hoffmann. Pomdps make better hackers: Accounting
for uncertainty in penetration testing. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 26,
pages 1816–1824, 2012.

[Schlenker et al., 2018] Aaron Schlenker, Omkar Thakoor,
Haifeng Xu, Long Tran-Thanh, Fei Fang, Phebe Vayanos,
Milind Tambe, and Yevgeniy Vorobeychik. Deceiving cy-
ber adversaries: A game theoretic approach. Proceedings of
the International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS, 2:892–900, 2018.

[Setayeshfar et al., 2019] Omid Setayeshfar, Christian Ad-
kins, Matthew Jones, Kyu Hyung Lee, and Prashant Doshi.
GrAALF: Supporting Graphical Analysis of Audit Logs
for Forensics. arXiv e-prints, September 2019.

[Shinde and Doshi, 2024] Aditya Shinde and Prashant Doshi.
Modeling cognitive biases in decision-theoretic planning
for active cyber deception. In Proceedings of the 23rd Inter-
national Conference on Autonomous Agents and Multiagent
Systems, pages 1718–1726, 2024.

[Shinde et al., 2021] Aditya Shinde, Prashant Doshi, and
Omid Setayeshfar. Cyber attack intent recognition and
active deception using factored interactive pomdps. In
Proceedings of the 20th International Conference on Au-
tonomous Agents and MultiAgent Systems, pages 1200–
1208, 2021.

[Strnad et al., 2019] Amanda Strnad, Quy Messiter, Robert
Watson, Lucian Carata, Jonathan Anderson, and Brian Kid-
ney. Casual, adaptive, distributed, and efficient tracing
system (cadets). Technical report, Technical report, BAE
Systems Burlington United States, 2019.

[Strom et al., 2018] Blake E Strom, Andy Applebaum,
Doug P Miller, Kathryn C Nickels, Adam G Pennington,
and Cody B Thomas. Mitre att&ck: Design and philosophy.
Technical report, MITRE Corp., 2018.

[Tang et al., 2018] Yutao Tang, Ding Li, Zhichun Li,
Mu Zhang, Kangkook Jee, Xusheng Xiao, Zhenyu Wu,
Junghwan Rhee, Fengyuan Xu, and Qun Li. Nodemerge:
Template based efficient data reduction for big-data causal-
ity analysis. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1324–1337, 2018.

[Wang et al., 2022] Su Wang, Zhiliang Wang, Tao Zhou,
Hongbin Sun, Xia Yin, Dongqi Han, Han Zhang, Xingang
Shi, and Jiahai Yang. Threatrace: Detecting and tracing
host-based threats in node level through provenance graph
learning. IEEE Transactions on Information Forensics and
Security, 17:3972–3987, 2022.

[Xu et al., 2016] Zhang Xu, Zhenyu Wu, Zhichun Li,
Kangkook Jee, Junghwan Rhee, Xusheng Xiao, Fengyuan
Xu, Haining Wang, and Guofei Jiang. High fidelity data
reduction for big data security dependency analyses. In Pro-
ceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pages 504–516, 2016.

[Zhang et al., 2009] Qiang Zhang, Dapeng Man, and
Wu Yang. Using hmm for intent recognition in cyber se-
curity situation awareness. In 2009 Second International
Symposium on Knowledge Acquisition and Modeling, vol-
ume 2, pages 166–169. IEEE, 2009.

8 Appendix
8.1 CADETS-1
The CADETS-1 attacker exploited an internet-facing appli-
cation running at elevated privileges for initial access. The
attacker then established command and control with the IP
addresses 78.205.235.65 and 200.36.109.214. Next, the at-
tacker downloaded the file /tmp/vUgefal. This file was an APT
stage which the attacker executed with root-level privileges.
The attacker then deleted /tmp/vUgefal to avoid detection.
Subsequently, the attacker downloaded another APT stage

AttackerActive = false

C2Established = false

IOCGenerated = false

AttackerPrivs = user

State Action

InitialAccessUser

AttackerActive = true

C2Established = false

IOCGenerated = false

AttackerPrivs = user

Metadata

Source IP
25.159.96.207

C2

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = user

C2 IP 76.56.184.25

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = user

C2 C2 IP 155.162.39.48

IngressToolTransfer Downloaded
/tmp/grain

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = user

C2 C2 IP 155.162.39.48

Figure 4: The state-action trajectory for the CADETS-2 attack

/var/log/devc before exiting the system. Figure 5 shows the
important state-action pairs for this trajectory.

8.2 CADETS-2

Figure 4 shows the trajectory for the CADETS-2 attacker. The
attacker established user-level access by exploiting an internet-
facing application. Next, the attacker reached out to the IP
addresses 76.56.184.25 and 155.162.39.48. Finally, the at-
tacker downloaded the file /tmp/grain, an APT stage. Figure 6
shows a small provenance subgraph of the CADETS-2 attack
and attacker actions obtained using subgraph isomorphism
with the template graphs.

8.3 CADETS-3

The CADETS-3 attacker began with user-level access to
the target. The attack lasted for 53 steps. Throughout
the attack, the attacker communicated with 76.56.184.25,
155.162.39.48, 53.158.101.118, and 192.113.144.28 for C2.
Additionally, the attacker downloaded multiple APT stages
and attempted to escalate them. As a result, various indica-
tors of compromise were generated. Specifically, /tmp/tmux-
1002, /tmp/minions, /tmp/font, /tmp/XIM, /var/log/netlog,
/var/log/sendmail, /tmp/main, and /tmp/test were the files
containing APT stages that the attacker downloaded. Sub-
sequently, the attacker deleted all files except /tmp/minions.
Figure 7 shows the important state-action pairs for this trajec-
tory.

8.4 CADETS-4
The CADETS-4 attacker started the attack with user-level
access to the target. The attacker established command and
control with the IP addresses 76.56.184.25, 155.162.39.48,
and 53.158.101.118. The attacker also downloaded the APT
stages /tmp/pEja72mA, /tmp/eWq10bVcx, /tmp/memhelp.so,
/tmp/eraseme, and /tmp/done.so. Only /tmp/pEja72mA was
escalated to root privileges. The attacker also did not attempt
to erase any downloaded APT stages. Figure 7 shows the
notable state-action pairs for this trajectory.

8.5 THEIA-1
The THEIA-1 attacker also started the attack by exploiting
a user-level application on the target. The attacker used the
IP addresses 146.153.68.151 and 161.116.88.72 for C2. The
attacker then downloaded the APT stages /home/admin/clean
and /home/admin/profile. Both APT stages were elevated
to root privileges for execution. Similar to CADETS-4, the
attacker did not attempt to avoid detection by deleting the APT
stages once they were executed. Figure 9 shows the THEIA-1
trajectory.

8.6 THEIA-2
The THEIA-2 attacker started with user-level privileges by
exploiting the Firefox browser. The attacker downloaded the
APT stage /etc/firefox/native-messaging-hosts/gtcache. The
attacker executed this APT stage with user-level privileges.
Subsequently, the attacker downloaded additional APT stages
/var/log/wdev, /tmp/memtrace.so, and /var/log/mail. However,
the attacker only elevated /var/log/mail to root privileges and
deleted all the other files. Throughout the attack, the attacker
communicated with 146.153.68.151 for command and con-
trol.Figure 10 shows the THEIA-2 trajectory. Figure 11 shows
a small provenance subgraph of the THEIA-2 attack and at-
tacker actions obtained using subgraph isomorphism with the
template graphs.

AttackerActive = false

C2Established = false

IOCGenerated = false

AttackerPrivs = user

State Action

InitialAccessRoot

AttackerActive = true

C2Established = false

IOCGenerated = false

AttackerPrivs = root

Additional information

Source IP
81.49.200.166

C2

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = root

C2 IP 78.205.235.65

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = root

C2 C2 IP 200.36.109.214

IngressToolTransfer Downloaded
/tmp/vUgefal

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

C2 C2 IP 200.36.109.214

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

PrivEsc Escalate
/tmp/vUgefal

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

C2 C2 IP 200.36.109.214

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

DefenseEvasion Delete
/tmp/vUgefal

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = root

C2 C2 IP 200.36.109.214

Figure 5: The state-action trajectory for the CADETS-1 attack

/dev/random

25.159.96.207

76.56.184.25

/tmp/grain

nginx

nginx

MPROTECT 155.162.39.48
RECVFROM

nginx

SENDTO

OPENWRITE

MOD_FILE_ATTR

nginx

MPROTECT 155.162.39.48
RECVFROM

nginx

SENDTO

RECVFROM

nginx
RECVFROM

nginx

SENDTO
CONN

nginx

MPROTECT

nginx

OPEN

READ

155.162.39.48

SENDTO 127.0.0.1

WRITE

nginx
RECVFROM

/var/log/nginx-error.log

WRITE

WRITE

127.0.0.1

nginx

RECVFROM

CLOSE

/var/log/nginx-access.log

WRITE

(73 VERSIONS LATER)

InitialAccessRoot

C2

C2

C2

IngressToolTransfer

Figure 6: A small subgraph of the state-versioned provenance graph for the CADETS-2 attack shows the attacker’s activity on the target system.
The nodes and edges highlighted in red match the subgraph templates for attacker actions in the MDP model. The dotted boxes surrounding
those subgraphs indicate the action that was identified using subgraph isomorphism

AttackerActive = false

C2Established = false

IOCGenerated = false

AttackerPrivs = user

State Action

InitialAccessUser

AttackerActive = true

C2Established = false

IOCGenerated = false

AttackerPrivs = user

Additional information

Source IP
25.159.96.207

C2

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = user

C2 IP 76.56.184.25

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = user

C2 C2 IP 155.162.39.48

IngressToolTransfer Downloaded
/tmp/tmux-1002

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = user

C2 C2 IP 155.162.39.48

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = user

PrivEsc Escalate
/tmp/tmux-1002

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

C2 C2 IP 155.162.39.48

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

DefenseEvasion Delete
/tmp/tmux-1002

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = root

C2 C2 IP 155.162.39.48

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = root

IngressToolTransfer Downloaded
/tmp/minions

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

C2 C2 IP 155.162.39.48

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

PrivEsc Escalate
/tmp/minions

Figure 7: The state-action trajectory for the CADETS-3 attack

AttackerActive = false

C2Established = false

IOCGenerated = false

AttackerPrivs = user

State Action

InitialAccessUser

AttackerActive = true

C2Established = false

IOCGenerated = false

AttackerPrivs = user

Additional information

Source IP
25.159.96.207

C2

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = user

C2 IP 76.56.184.25

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = user

C2 C2 IP 155.162.39.48

IngressToolTransfer Downloaded
/tmp/pEja72mA

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = user

C2 C2 IP 155.162.39.48

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = user

IngressToolTransfer Downloaded
/tmp/eWq10bVcx

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = user

C2 C2 IP 155.162.39.48

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = user

PrivEsc Escalate
/tmp/eWq10bVcx

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = root

C2 C2 IP 155.162.39.48

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = root

IngressToolTransfer Downloaded
/tmp/minions

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

C2 C2 IP 155.162.39.48

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

PrivEsc Escalate
/tmp/minions

Figure 8: The state-action trajectory for the CADETS-4 attack

AttackerActive = false

C2Established = false

IOCGenerated = false

AttackerPrivs = user

State Action

InitialAccessUser

AttackerActive = true

C2Established = false

IOCGenerated = false

AttackerPrivs = user

Additional information

Source IP
141.43.176.203

C2 C2 IP 146.153.68.151

AttackerActive = true

C2Established = true

IOCGenerated = false

AttackerPrivs = user

IngressToolTransfer Downloaded
/home/admin/clean

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = user

PrivEsc

C2 IP 161.116.88.72

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

C2

Escalate
/home/admin/clean

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

IngressToolTransfer Downloaded
/home/admin/profile

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

PrivEsc

C2 IP 161.116.88.72

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

C2

Escalate
/home/admin/profile

Figure 9: The state-action trajectory for the THEIA-1 attack

AttackerActive = false

C2Established = false

IOCGenerated = false

AttackerPrivs = user

State Action

InitialAccessUser

Additional information

Source IP
141.43.176.203

AttackerActive = true

C2Established = false

IOCGenerated = false

AttackerPrivs = user

IngressToolTransfer Downloaded
../../gtcache

AttackerActive = true

C2Established = false

IOCGenerated = true

AttackerPrivs = user

ExecUser

C2 IP 146.153.68.151

AttackerActive = true

C2Established = false

IOCGenerated = true

AttackerPrivs = user

C2

Execute
../../gtcache

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = user

IngressToolTransfer Downloaded
/var/log/mail

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = user

PrivEsc

AttackerActive = true

C2Established = true

IOCGenerated = true

AttackerPrivs = root

DefenseEvasion

Escalate
/var/log/mail

Delete
/var/log/mail

Figure 10: The state-action trajectory for the THEIA-2 attack

firefox

141.43.176.203

RECVFROM

/etc/firefox/native-.../gtcache
OPEN

WRITE

firefox

CLONE

146.153.68.151

EXEC

/lib/x86_64-linux-gnu/libc-2.15.so
OPEN

/etc/ld.so.cache
OPEN

firefox

firefox

READ

MPROTECT

gtcache CLONE

OPEN

EXEC

/dev/null

OPEN

OPEN gtcache

CLONE

gtcache gtcache

gtcache

CONNSENDTO

RECVFROM

gtcache

MPROTECT

gtcache

gtcache gtcache gtcache

gtcache

gtcache

CLONE CLONECLONECLONE

/tmp/memtrace.so

OPEN OPENOPEN OPEN

UNLINK
OPEN

WRITE

CLONE
CLONE

(MANY VERSIONS AND PROCESS CLONES LATER)

InitialAccessUser

IngressToolTransfer

ExecUser

C2

IngressToolTransferDefenseEvasion

Figure 11: A small subgraph of the state-versioned provenance graph for the THEIA-2 attack shows the attacker’s activity on the target system.
The nodes and edges highlighted in red match the subgraph templates for attacker actions in the MDP model. The dotted boxes surrounding
those subgraphs indicate the action that was identified using subgraph isomorphism

	Introduction
	Background
	Attack Provenance Graphs
	Inverse RL

	Host-Level Cyber Threat Domain
	Attacker Model
	Reward Features

	Trajectories from Provenance Graphs
	Obtaining Scenario Graphs from Logs
	Extracting Trajectories using Graph Isomorphism
	Learning Attacker Preferences

	Experiments
	Realistic Attack Datasets
	Learned Preferences

	Related Work
	Conclusion
	Appendix
	CADETS-1
	CADETS-2
	CADETS-3
	CADETS-4
	THEIA-1
	THEIA-2

