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Mitigating Backdoor Triggered and Targeted Data
Poisoning Attacks in Voice Authentication Systems

Alireza Mohammadi, Keshav Sood, Dhananjay Thiruvady, Asef Nazari

Abstract—Voice authentication systems remain susceptible to
two major threats: backdoor-triggered attacks and targeted data
poisoning attacks. This dual vulnerability is critical because con-
ventional solutions typically address each threat type separately,
leaving systems exposed to adversaries who can exploit both
attacks simultaneously. We propose a unified defense framework
that effectively addresses both BTA and TDPA. Our framework
integrates a frequency-focused detection mechanism that flags
covert pitch-boosting and sound-masking backdoor attacks in
near real-time, followed by a convolutional neural network that
addresses TDPA. This dual-layered defense approach utilizes
multidimensional acoustic features to isolate anomalous signals
without requiring costly model retraining. In particular, our
PBSM detection mechanism can seamlessly integrate into existing
voice authentication pipelines and scale effectively for large-
scale deployments. Experimental results on benchmark datasets
and their compression with the state-of-the-art (SoTA) algorithm
demonstrate that our PBSM detection mechanism outperforms
the SoTA. Our framework reduces attack success rates to as
low as 5–15%, while maintaining a recall rate of up to 95% in
recognizing TDPA.

Index Terms—Voice Authentication, Backdoor Attacks, Tar-
geted Data Poisoning, Network Security, Artificial Intelligence.

I. INTRODUCTION

VOICE authentication systems (VAS)—often referred to
as speaker recognition or voice biometrics—identify or

verify users by analyzing distinctive acoustic characteristics
in their speech [1]. These systems typically operate in two
phases: enrollment, where a user’s voice profile is recorded
and stored, and verification, where an incoming voice sample
is compared against the stored profile. Due to their ease of
use and hands-free operation, voice authentication systems
have gained widespread adoption in many domains including
mobile banking, call center authentication, digital assistants
(e.g., Siri, Alexa), and enterprise security solutions. However,
the reliability of such systems critically depends on their
security. If adversaries successfully exploit underlying vulner-
abilities, they can subvert legitimate user profiles or bypass
verification, fundamentally undermining the trustworthiness of
voice biometrics [2], [3].

1

Neural network–based VASs have achieved remarkable suc-
cess in real-world applications due to their ability to learn
complex acoustic representations and generalize across diverse
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1Table I provides a summary of key abbreviations.

TABLE I
LIST OF ABBREVIATIONS

Abbreviation Description
ASR Attack Success Rate
BTA Backdoor-Triggered Attacks
CNN Convolutional Neural Network
HF High-Frequency

HFHPS High-Frequency High-Pitched Signal
STFT Short-Time Fourier Transform
PBSM Pitch-Boosting and Sound Masking
RTA Recognition-Triggered Accuracy

TDPA Targeted Data Poisoning Attacks
VAS Voice Authentication Systems

speakers and environments. Despite this success, these au-
thentication systems remain susceptible to multiple adversarial
threats [4]. Two particularly concerning threats against neural
network driven VASs are backdoor triggered attacks (BTA)
and targeted data poisoning attacks (TDPA). BTA involves
implanting imperceptible triggers—such as high-frequency
signals—into training data, allowing adversaries to manipulate
verification outputs whenever these triggers appear [5]. TDPA,
on the other hand, replaces genuine user data with malicious
samples to shift decision boundaries, enabling unauthorized
access once the poisoned dataset is used for training [6].
While each attack independently poses a significant risk, their
combination creates a multi-faceted threat that existing de-
fenses fail to effectively detect and mitigate. Most prior works
have focused on mitigating either BTA or TDPA in isolation,
leaving systems vulnerable to hybrid attack strategies [7].
Our work specifically examines these vulnerabilities—BTA
and TDPA—and highlights their significance in modern VASs
settings, particularly in text-independent systems that rely on
extended speech segments.

TDPA manipulates training data by systematically replacing
legitimate voice samples with adversarially crafted recordings,
thereby distorting the model’s learned decision boundaries.
Li et al. [6] demonstrated that modifying up to 50% of the
training data can significantly degrade system performance.
However, such large-scale manipulations are impractical in
real-world settings, where only a small fraction of the data
may be compromised. Furthermore, existing TDPA defenses
rely heavily on anomaly detection in one-dimensional feature
spaces [8] or computationally expensive methodologies such
as ensemble learning proposed by [6]. In contrast, BTA
implants hidden triggers—such as pitch-boosting or high-
frequency signals—into training data, causing the model to
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misclassify any sample containing these triggers [9], [10].
Addressing BTA and TDPA jointly under more realistic con-
straints remains an open challenge.

To better understand, we give one notable example, which is
the PBSM backdoor attack, which embeds adversarial triggers
by simultaneously increasing the pitch of the speech signal
(pitch boosting) and injecting carefully crafted high-frequency
components (sound masking) [10]. This two-pronged threat
approach exploits psychoacoustic principles to make the pitch
alterations imperceptible to humans and difficult for standard
defenses to detect. However, while [10] introduces the PBSM-
based threat model, it does not propose a dedicated defense
mechanism to counteract this attack. Instead, the authors
evaluate the effectiveness of existing defense techniques, such
as model pruning [11] and fine-tuning [12], ultimately demon-
strating that these approaches fail to effectively mitigate the
success of their proposed backdoor threat model. Furthermore,
the original PBSM framework is constrained by its reliance
on short fixed-command audio files, which do not accurately
represent the complexity of modern text-independent VAS.
These limitations highlight the urgent need for a more robust
and scalable defense mechanism capable of securing real-
world text-independent VAS against sophisticated attacks.

To address the pressing gap of an effective defense mech-
anism against BTA and TDPA, we leverage a time-frequency
spectrogram analysis to extract energy signatures across key
frequency ranges, with a particular focus on high-pitch en-
ergy manipulations. This novel energy-based approach enables
the detection of subtle backdoor triggers, demonstrating a
robust defense mechanism against the threat model introduced
in [10]. Furthermore, recognizing the additional challenge
posed by TDPA, our framework incorporates a CNN-based
module to effectively mitigate such data replacements. Over-
all, our solution mitigates both BTA and TDPA within a
single pipeline. This unification is critical for two reasons:
a) adversaries can launch simultaneous attacks, exploiting
the absence of integrated defenses, and b) prior research
predominantly investigates these attacks in isolation, leaving
systems susceptible to combined attacks. By integrating both
detection mechanisms within a single pipeline, our unified
framework meets the critical need for an effective defense
mechanism in real-world VASs.

While our unified defense framework offers substantial ben-
efits, it also opens up valuable avenues for further exploration,
particularly with regard to its scalability, complexity, and
deployment in real-world voice authentication environments.
To address these considerations, we conduct a comprehen-
sive evaluation of our framework’s performance, highlighting
its empirical advantages over existing solutions [11], [12].
Building upon these foundations, we summarize our key
contributions as follows.

1) Realistic Multi-Faceted Threat Model. We propose a
new attack scenario that simultaneously imposes both
BTA and TDPA in a voice authentication system, reflect-
ing real-world adversarial strategies. Unlike prior works
that consider these threats in isolation under impracti-
cal assumptions, our model adopts a text-independent
enrollment process with only 5% poisoning for both

BTA and TDPA. This scenario offers a stealthy yet
challenging attack setup which has not been addressed
previously. Extensive experiments on publicly available
datasets validate the robustness of our framework against
this realistic multi-faceted threat.

2) Energy-Based Detection with Low Overhead: By con-
verting audio signals into time-frequency representations,
we systematically analyze high-pitch and high-frequency
anomalies to detect backdoor triggers and poisoned sam-
ples. Despite its multi-layered detection strategy, our
approach remains computationally efficient, making it
suitable for real-world deployment.

3) Unified Framework. We introduce the first unified
framework that simultaneously addresses both BTA
and TDPA effectively in text-independent VAS. Un-
like prior works that address these threats separately,
our approach mitigates hybrid attacks by combining
frequency-based PBSM detection with CNN-based classi-
fication—effectively capturing subtle pitch manipulations
and small-scale data poisoning. Our experiments demon-
strate a significant Attack Success Rate (ASR) reduction
from 95% to as low as 5–15% and achieve around 95%
recall in detecting targeted data poisoning, establishing a
robust and all-encompassing defense for a modern VAS.

Novelty: We propose a multi-faceted threat model that
addresses the urgent security challenges it imposes, and our
solution to that threat introduces the first unified framework
that jointly mitigates both BTA and TDPA for text-independent
voice authentication. Through a combination of efficient detec-
tion, multilayer architecture, and extensive empirical analysis,
our work represents a significant step forward in safeguarding
neural network-driven authentication systems in real-world
environments.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work on BTA and TDPA. Section III
describes the detailed methodology for each component of
the proposed framework. Section IV presents empirical results
demonstrating our framework’s effectiveness and scalability,
and broader implications for securing voice authentication
systems. Finally, Section V concludes the paper and outlines
red the directions for future research.

II. RELATED WORK

A. Attack Scenarios

Zhai et al. [13] embedded inaudible, high-frequency har-
monic perturbation signals into training data, achieving near-
perfect ASR while bypassing human perception. However,
this method’s dependency on hardware capabilities limits its
practical application. In contrast, our threat model approach
leverages naturally occurring acoustic modifications effective
across standard devices. Furthermore, Dynamic attacks such as
DriNet [14] modify amplitude and temporal structures to evade
static detection heuristics. Similarly, phase-based attacks [15]
alter phase components without modifying amplitude, ren-
dering amplitude-based defenses ineffective. However, these
methods are highly sensitive to hardware inconsistencies, a
limitation our framework addresses by integrating frequency
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TABLE II
CHRONOLOGICAL COMPARISON OF POISONING ATTACK TECHNIQUES AND DEFENSE STRATEGIES IN VOICE RECOGNITION SYSTEMS

Year Objective Solution Limitation/Advantage
Threat Models

2021 [13] Achieve high backdoor success in speech
recognition with imperceptible triggers.

Embed inaudible ultrasonic pulses into
training data.

Highly dependent on specialized hard-
ware; consumer-grade devices may fail to
capture ultrasonic signals reliably.

2022 [14] Implement dynamic backdoor attacks that
adapt trigger properties over time.

Modulate amplitude and temporal struc-
ture of triggers to evade static detection
methods.

May remain vulnerable to advanced
frequency-based defenses and adaptive
countermeasures.

2023 [15] Embed backdoors by modifying phase
components of audio signals.

Alter phase characteristics—leaving am-
plitude unchanged—to bypass amplitude-
based defenses.

Sensitive to environmental and hardware
variations, making reproducibility chal-
lenging.

2024 [16] Implant targeted backdoors during the
enrollment phase of speaker recognition
systems.

Inject adversarial ultrasound signals to
create covert triggers.

Susceptible to hardware-related
constraints affecting trigger reliability.

2024 [10] Implant imperceptible backdoor triggers
in VAS.

Introduce the Pitch-Boosting and Sound
Masking (PBSM) method by embedding a
high-pitched signal while increasing over-
all pitch.

Relies on subtle acoustic manipulations
that may be circumvented if detection
thresholds improve.

2025 [17] Embed backdoors by subtly altering the
temporal dynamics of speech signals.

Apply Random Spectrogram Rhythm
Transformation (RSRT) to stretch or com-
press segments of the mel spectrogram.

Inconsistencies due to natural speech
rhythm variability, reducing overall attack
reliability.

Ours Propose a real-world, dual-attack scenario
that simultaneously plants back-door trig-
gers and performs small-scale data poi-
soning.

Combine BTA with TDPA on
text-independent, 3-s utterances, allowing
attacker access with only partial control
of the dataset.

Most realistic setting to date; low poison-
ing ratio makes detection harder than prior
studies, providing a stringent benchmark
for future defenses.

Defense Mechanisms
2017 [12] Address hidden malicious functionalities

(neural trojans) in outsourced neural IPs.
Combine input anomaly detection, re-
training, and input preprocessing to miti-
gate Trojan activation.

Only partially effective against stealthy
attacks like PBSM (reducing ASR to ap-
proximately 45%).

2018 [8] Demonstrate the vulnerability of VAS to
targeted data poisoning attacks.

Replace a small fraction of genuine audio
files with adversary-generated audio dur-
ing training.

Conventional anomaly detection fails to
capture subtle poisoning, limiting defense
effectiveness.

2018 [11] Mitigate backdoor triggers by reducing
network capacity.

Prune dormant neurons inactive on benign
inputs.

Ineffective against adaptive, pruning-
aware attacks consolidating clean and
backdoor features.

2023 [6] Defend against targeted data poisoning at-
tacks in voice authentication by detecting
poisoned training data

Propose a CNN-based discriminator that
integrates bias reduction, input augmenta-
tion, and ensemble learning to distinguish
between poisoned and legitimate accounts

Unrealistic methodology and limited to
CNN-based authentication models; can be
affected by extreme noise conditions com-
pared to more flexible frameworks.

2024 [18] Develop a robust detection method that
overcomes the assumption of latent fea-
ture separability by capturing the evolu-
tion dynamics of inputs in a DNN.

Propose Topological Evolution Dynamics
(TED) which records the ranking of near-
est neighbors from predicted class across
multiple layers, then uses outlier detection
on topological features.

Although excels against dynamic-
trigger attacks, its does not incorporate
frequency-specific analyses critical for
VAS; Challenging integration into real-
time voice systems.

Ours Provide a realistic threat model along with
a unified defense framework countering
both attacks in VAS.

Introduce a multi-level framework inte-
grating PBSM backdoor detection and a
robust CNN-based model for rapid, scal-
able TDPA detection.

Outperform prior methods by achieving a
high detection rate of TDPA and reducing
ASR to 5–15% with minimal computa-
tional overhead.

and pitch variability analysis to ensure robust detection. Fur-
thermore, Targeted ultrasound-based attacks [16] inject covert
signals during the enrollment phase, allowing attackers to
manipulate authentication models.

Despite their effectiveness, these attacks suffer from repro-
ducibility challenges due to hardware constraints. In response,
we focus on detecting audible acoustic anomalies, ensuring
cross-device resilience. Likewise, Cai et al. [10] employ Pitch-
Boosting and Sound Masking (PBSM) to create impercep-
tible triggers, achieving high ASR. Furthermore, Zhang et
al. [17], propose a Random Spectrogram Rhythm Transforma-
tion (RSRT) backdoor attack, which subtly alters the temporal
dynamics of speech by stretching or compressing segments of
the mel spectrogram. This preserves linguistic content while

embedding a trigger that remains imperceptible to human
listeners. Although RSRT achieves high attack success even at
low poisoning rates, the natural variability in speech rhythms
affects consistency, motivating the need for robust detection
mechanisms that accommodate nuanced temporal variations.

B. Defense Strategies

Beyond backdoor attacks, TDPA presents an equally critical
challenge. One prominent example is Guardian [6], which
employs a CNN-based discriminator to detect data poisoning
attacks. However, it assumes that up to 50% of the training
data is compromised. This assumption is significantly more
unrealistic than our hypothesis, in which the data is ma-
nipulated as little as 5%. Although Guardian demonstrates
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strong accuracy, its reliance on multiple model initializations
and nearest-neighbor classification makes it computationally
intensive. Moreover, it focuses solely on TDPA, neglecting
imperceptible backdoor triggers such as PBSM.

Liu et al. [11] demonstrate that pruning dormant neu-
rons reduces the capacity of backdoor triggers. However,
pruning-aware attacks adapt by embedding backdoors into ac-
tive neurons, limiting effectiveness. Fine-tuning [11] partially
mitigates this issue but remains computationally expensive
and ineffective against PBSM attacks, reducing ASR only
to 65%. In contrast, our detection method eliminates costly
retraining while ensuring model-agnostic adaptability. In an-
other work, Paudice et al. [8] apply anomaly detection to
mitigate poisoning attacks, using distance-based outlier filter-
ing to remove adversarial examples. While computationally
efficient, this method struggles with high-dimensional data
and lacks domain-specific frequency analysis crucial for voice
authentication. Our approach extends this idea by integrating
frequency-based features, improving detection robustness.

Liu et al. [12] examine the broader threat of neural trojans
embedded in outsourced neural IPs. Their work underscores
the risk that hidden malicious functionalities—neural tro-
jans—can be introduced during training and remain dormant
until activated by specific triggers. They propose several
mitigation strategies, including input anomaly detection, re-
training, and input preprocessing. While effective in reducing
Trojan activation, these methods do not address PBSM attacks
effectively, reducing ASR reduction to 45%. Furthermore,
in TED [18] introduces a topological perspective for Trojan
detection, analyzing input evolution dynamics across layers.
However, TED lacks frequency-specific insights, which lim-
its its effectiveness in voice authentication. Our framework
integrates frequency-focused features, significantly improving
detection rates while maintaining computational efficiency.

Uniqueness of our work: The reviewed literature highlights
the increasing sophistication of BTA and TDPA. However,
existing research remains limited in scope in proposing a
multi-faceted threat model. At the same time, current defense
mechanisms against such complex attack scenarios are often
ineffective. Many approaches focus on countering a single
type of attack, leaving systems vulnerable to multi-faceted
adversarial strategies. To address these gaps, we introduce
a multi-faceted attack scenario along with a holistic defense
mechanism that simultaneously counters BTA and TDPA.
Notably, our proposed threat model poses a greater challenge
for modern VAS. In response, our unified framework signif-
icantly outperforms existing defense methods by achieving a
substantial reduction in ASR and a high detection rate for
TDPA, while maintaining a low computational cost.

III. PROPOSED METHODOLOGY

The following subsections describe the attack design, the
subsequent detection and classification strategies, the genera-
tion of discriminative embeddings, and the CNN model train-
ing process. Figure 1 gives an overview of the entire process
from staging our proposed threat model to implementing our
defense framework. First, a portion of user audio recordings

(each standardized to about three seconds) are embedded with
HFHPS triggers and another portion is poisoned by attacker-
supplied segments. Next, the audio files go through our PBSM
detection mechanism and this layer labels the backdoor trig-
gered files. The labeled audio files are then transformed into
feature embeddings to train a convolutional neural network
(CNN) capable of distinguishing poisoned files. To finalize
decisions at the user level, a majority-vote mechanism aggre-
gates classifications. By combining frequency-based detection,
CNN-based classification, and voting-based user assignment,
our framework robustly captures both subtle pitch-based trig-
gers and malicious sample replacements. Figure 1 provides
an overview of the entire process, from staging the proposed
threat model to implementing our defense framework. Initially,
a subset of user audio recordings (each trimmed down to three
seconds) is embedded with HFHPS triggers, while another
portion is poisoned with attacker-supplied segments. These
manipulated audio files then pass through our PBSM detection
mechanism, which identifies and labels backdoor-triggered
samples. Next, the labeled audio is transformed into feature
embeddings, serving as input for our proposed CNN trained to
differentiate between legitimate, poisoned, and triggered files.
Finally, a majority-vote mechanism aggregates classifications
at the user level, determining whether an account is Triggered,
Attacked, or Legitimate. In order to unify the mathematical
expressions used across this paper, Table III defines the
symbols frequently referenced in this work.

TABLE III
NOTATION TABLE: SYMBOLS AND DEFINITIONS USED IN THIS WORK

Symbol Description
D Entire dataset
n Number of audio files
η Beep Threshold Factor

Dattacker Attacker’s dataset
x Single audio representation
ω Set of target high-pitched signal frequencies
∆ω Tolerance around each target frequency
α high-pitched signal energy threshold factor
x̂ STFT representation of audio

β(x) Detected high-pitched signal frames/times
f0(x) Estimated average pitch
σ2
f0

(x) Pitch variance
HF(x) High-frequency energy above 4 kHz
σ2

HF(x) Variance of high-frequency energy
ρp(x) Pitch variance ratio
ρHF(x) HF variance ratio
S(x) Final score of sample
τ Global trigger threshold
Π Proportion of triggered samples in an account
c Confidence measure
S account

decision(S) Final label for an account

A. Significance of PBSM Over Existing Attacks

The PBSM backdoor attack represents a critical advance-
ment over prior backdoor strategies in VAS. Some of the prior
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Fig. 1. Overview of our eight-step procedure, from the attack implementation to the development of a unified defense framework against BTA and TDPA in
VAS. The process begins with Step 1, where raw user audio files are processed, and HFHPS triggers are embedded into a subset of the recordings. In Step
2, targeted data poisoning is introduced by replacing a portion of user audio with attacker-supplied samples. Step 3 applies frequency-based analysis and
weighted scoring to detect HFHPS triggers, followed by Step 4, where detected triggered samples are labeled accordingly. In Step 5, all labeled audio files
are transformed into embeddings, which serve as input for Step 6, where a convolutional neural network (CNN) is trained to distinguish between legitimate,
attacked, and triggered samples. The trained model is then evaluated in Step 7 on an unseen dataset to identify both TDPA and BTA cases. Finally, in Step 8,
a voting aggregation mechanism integrates sample-level classifications to make a final user-level decision. This multi-stage approach enhances the detection
of backdoor triggers and data poisoning while minimizing false positives, ensuring reliable authentication in VAS.

works include PIBA [19], DABA [20], and Ultrasonic [13].
The mentioned works rely on perceptible triggers such as
additive noise or separable audio clips. These methods suffer
from two key limitations. Firstly, their triggers are easily
detectable via spectral analysis. Secondly, their poisoned audio
files exhibit unnatural artifacts, which make them susceptible
to detection during human inspection. In contrast, PBSM
leverages the psychoacoustic principle of sound masking,
where the pitch-boosted background audio obscures the in-
jected high-pitched signal. The pitch-boosted audio makes
the trigger imperceptible to listeners while retaining spectral
coherence. This approach achieves an ASR of > 95% in
various models, surpassing existing backdoor attack strategies
in stealthiness [10].

B. Threat Model
To realistically simulate a poisoning scenario that concur-

rently exhibits both BTA and TDPA, our attack design is
organized into three key components: dataset partitioning with
attacker selection, the introduction of acoustic triggers via
PBSM, and staging targeted data poisoning.

1) Dataset Partitioning and Attacker Selection: In contrast
to prior work [10], which utilized 1-second audio files, we trim
each sample to a 3-second duration. This adjustment strikes a
balance between preserving the representative characteristics
of each audio file and maintaining computational efficiency.
Additionally, to ensure consistency in training and evaluation,
each user is limited to 10 audio files. The complete dataset,
denoted by D, is partitioned into four distinct subsets:

• Attacker Subset: we label 5% of D as Dattacker, and ex-
clude that from training and later use that to replace audio
files from uniformly randomly chosen user directories.

• Trigger Subset: We stage PBSM on another 5% of D. For
these audio files, HFHPS are embedded at random time
offsets in all 10 audio files of the selected accounts.

• Targeted Poisoned Subset: We stage TDPA on another 5%
of D; here, we replace 50% of the audio files for each
user directory by attacker audio drawn from Dattacker.

• Legitimate subset: We label the remaining 85% of D as
the baseline for training and subsequent evaluation, which
we labeled as legitimate.

2) Staging PBSM: Let x ∈ RL be a clean time-domain
waveform representation of an audio sample and x̂ =
STFT(x) ∈ CF×T its STFT. PBSM first scales the sample
and then injects a short high-pitched cue:

xp = p · x̂,xt = xp ⊕τ h, (1)

where
• p is a scalar pitch–scaling factor applied element-wise to
x̂;

• xp is the sample after pitch boosting;
• xp is its inverse-STFT reconstruction;
• h is a short, high-frequency trigger signal;
• ⊕ is element-wise addition after embedding the trigger.
3) Targeted Data Poisoning: This step is designed to mimic

an attacker’s attempt to obtain unauthorized access to victims’
accounts. Specifically, 5% of user accounts are selected such
that, within each account, half of the audio files are replaced
by attacker-controlled audio from Dattacker.

The mentioned threat setup lays the foundation for the
subsequent detection and classification strategies, which are
described in the following subsections. Algorithm 1 translates
the high-level ideas of BTA and TDPA into a clear procedural
form.

C. Defense Design: Analysis and Classification
This part details our multi-faceted detection strategy, which

integrates frequency-based signal analysis, feature extraction,
and a classification scheme for user accounts.

1) Frequency-Based High-Pitched Signal Detection: Back-
door triggers often exploit high-frequency regions that are
typically overlooked during conventional speech processing.
To capture these subtle cues, we first apply the STFT to convert
each audio y into its time-frequency representation:

STFT(y) ∈ RF×T , (2)
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Algorithm 1 Attack Simulation Pipeline: BTA (PBSM) +
TDPA
Input: D, pPBSM, pTDPA, p,h
Output: D′

1: n← |D|
2: kPBSM ← ⌊pPBSM · n⌋
3: kTDPA ← ⌊pTDPA · n⌋
4: DATTACKER ← RANDOMSUBSET(D, ⌊0.05n⌋)
5: DPBSM ← RANDOMSUBSET(D \ DATTACKER, kPBSM)
6: DTDPA ← RANDOMSUBSET(D \ DATTACKER ∪ DPBSM, kTDPA)
7: DLEGITIMATE ← D \ (DPBSM ∪ DTDPA)
8: for ∀x ∈ DPBSM do
9: x̂← STFT(x)

10: xp = p · x̂ ▷ Element-wise multiplication.
11: xt ← ISTFT(xp ⊕ h)
12: Update x with xt

13: end for
14: for ∀S ∈ DTDPA do
15: k ← ⌊0.5|S|⌋
16: SPOISON ← RANDOMSUBSET(DATTACKER, k)
17: S ← (S \ RANDOMSUBSET(S, k)) ∪ SPOISON

18: end for
19: Return D′ ← DLEGITIMATE ∪ DPBSM ∪ DTDPA

where F denotes the number of frequency bins and T the
number of time frames. Focusing on the target frequency
range, we compute the aggregated energy over the selected
bins. Let Fbeep be the set of frequency bins corresponding to
the high-pitched signal. Then, the energy in a time frame t is
defined as:

beep energyy(t) =
∑

f∈Fbeep

|STFT(y)[f, t]|. (3)

A frame is marked as containing a suspicious high-pitched
signal if its energy exceeds a dynamic threshold given by:

threshold =
mean(beep energyx)× η.

With this method we are able to detect covert high-
frequency manipulations even when they are masked by le-
gitimate speech energy.

2) Feature Extraction: While our frequency-based high-
pitched signal detection effectively flags anomalous frames
containing covert triggers, relying solely on localized detec-
tions presents two critical limitations. First, pitch-boosted trig-
gers may obscure other subtle artifacts—such as compressed
amplitude envelopes or transient distortions—that, despite
lacking strong high-frequency peaks, still indicate adversarial
tampering. Second, brief or partially embedded triggers may
be masked by legitimate speech energy, rendering a purely
frame-level detection approach inadequate for capturing the
broader acoustic shifts. By extracting pitch-related parameters
alongside broader spectro-temporal features, our PBSM de-
tection preserves crucial nuanced information necessary for
differentiating backdoored accounts from benign ones.

• Pitch Analysis: We estimate the fundamental frequency
f0(x) of an audio sample, and compute the pitch variance
σ2
f0
(x). Sudden deviations or elevated variance can indi-

cate pitch manipulation resulting from backdoor triggers.
• High-Frequency Energy Analysis: We calculate the over-

all energy HF(x) in frequency components above a

threshold, along with its variance σ2
HF(x), to detect ab-

normal spectral patterns.
• Ratio-Based Normalization: To mitigate variations across

audio files, we compute normalized indicators such as
the pitch variance ratio ρp(x) = σ2

f0
(x)/f0(x) and

the high-frequency energy variance ratio ρHF(x) =
σ2

HF(x)/HF(x).

A weighted scoring mechanism then aggregates these features
into a unified score for each sample:

score = Wpitch · f0(x) + Whf · HF(x) +

Wpvar · ρp(x) + Whfvar · ρHF(x),
(4)

where the weights {Wpitch,Whf,Wpvar,Whfvar} are tuned to
balance the contribution of each feature. A sample is flagged as
“Triggered” if its score exceeds a threshold τ . The threshold
for the score is selected to balance false positives and false
negatives in the detection of HFHP signals. A grid search was
conducted over various threshold values on a validation subset
of user accounts, evaluating the trade-off between incorrectly
flagged legitimate accounts and undetected triggered accounts.
Algorithm 2 provides a clear, step-by-step procedure for
implementing the PBSM backdoor detection mechanism.

Algorithm 2 Defense Pipeline: Frequency-Based Detection
with Multi-Level Classification
Input: {S1, . . . ,Sn},
α, τ, γ, ω,∆ω, {Wpitch,Whf,Wpvar,Whfvar}
Output: {decision(Si)}ni=1}
1: for ∀S ∈ {S1, . . . ,Sn} do Scores← ∅, BeepCounts← ∅
2: for all audio sample x ∈ S do
3: x̂← STFT(x)
4: beep energyx ←

∑
f∈[ω−∆ω,ω+∆ω]

|x̂[f, t]|, ∀t

5: T ← α · E[beep energyx]
6: β(x)← {t | beep energyx(t) > T}
7: BeepCounts← BeepCounts ∪ {|β(x)|}

Phase 1: Feature Extraction
8: f0(x)← E[f ], σ2

f0
(x)← Var(f)

9: HF(x)← E[|H|], σ2
HF(x)← Var(|H|)

10: ρp (x)← σ2
f0

(x)/f0(x), ρHF(x)← σ2
HF(x)/HF(x)

Phase 2: Sample Scoring
11: S(x)←Wpitchf0(x)+WhfHF(x)+Wpvarρp (x)+WhfvarρHF (x)
12: Scores← Scores ∪ {S(x)}
13: end for
14: count_moderate← |{x ∈ S | |β(x)| ∈ min_beep_count}|
15: if count_moderate ≥ θoverride then
16: decision(S)← Triggered
17: continue to next account
18: end if
19: Stotal ←

∑
x∈S

S(x)

20: Π← 1
Stotal

∑
x∈S 1{S(x)>τ } S(x)

21: c← 2Π− 1
22: if c ≥ γ then
23: decision(S)← Legitimate
24: else
25: decision(S)← Deferred
26: end if
27: end for
28: Return {decision(Si)}ni=1}
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D. Embedding Generation: Enhancing the Representativeness
of Attackers

Robust embedding generation is a critical component of our
detection framework, as it extracts high-level representations
from audio files that capture both subtle and overt adversarial
patterns. Previous approaches, such as [6], relied on randomly
pairing audio files to create embeddings. However, random
pairing may lead to incomplete utilization of available data
and insufficient representation of adversarial characteristics. In
contrast, our method adopts a structured approach to embed-
ding generation, ensuring that every audio sample contributes
effectively to the final feature space and thereby enhancing the
overall robustness of our defense mechanism.

1) Phase A: Single Embedding Generation: Initially, each
audio sample is processed individually to extract a single em-
bedding. To ensure computational efficiency, we check for the
most recent model checkpoint for the CNN model [21] used
for embedding generation. When available, pretrained weights
are loaded, allowing the model to resume from a previously es-
tablished state. This practice reduces redundant computations
and leverages prior training progress. The embedding files are
generated using the neural network proposed by [21]. These
embeddings capture essential acoustic characteristics and are
temporarily stored, forming the basis for the pairing process.
Each embedding is standardized by trimming or padding to
a uniform length. Standardization is critical to ensure that all
embeddings have comparable dimensions.

2) Phase B: Embedding Pairing and Combination: To
maximize the representativeness of the final embeddings,
we combine single embeddings using a systematic pairing
mechanism which is done as following. For each user, the
available embeddings are sorted and divided into two halves.
In the first pass, each embedding in the first half is paired with
the corresponding embedding in the second half. In the second
pass, the embeddings in the second half are cyclically rotated
by one position, generating additional, non-redundant pairs.
The final embeddings are typically formed by concatenating
the paired embeddings. This structured approach enriches the
feature representation by integrating a broader spectrum of
audio characteristics, enhancing the model’s ability to identify
both HFHPS triggers and targeted poisoning manipulations of
accounts.

3) User-Level Analysis and Classification: To further en-
hance detection reliability and reduce false positives, the
analysis is performed at the account level:

• Weighted Trigger Proportion: For each account S, we
compute a weighted proportion Π of audio files labeled
as Triggered:

Π =
1

Stotal

∑
x∈S

1{S(x)>τ } S(x), (5)

where 1{·} is the usual indicator function.
• Rule-Based High-Pitched Signal Override: In cases where

a account shows a consistent pattern of moderate high-
pitched signal counts, the account is directly classified as
Triggered, bypassing the weighted proportion logic.

A confidence measure is derived as:

c = 2Π− 1, (6)

which maps Π ∈ [0, 1] to c ∈ [−1, 1]. Finally, using a
threshold γ ∈ (0, 1), each account is assigned to one of three
categories:

• Legitimate if c ≥ γ;
• Deferred if 0 < c < γ;
• Triggered if rule-based override is applied.

E. Model and Training Process
To detect BTA and TDPA, we integrate a CNN into our

defense framework. CNNs are well-suited for extracting local
patterns from spectrogram representations, effectively captur-
ing high-frequency bursts and pitch variations indicative of
adversarial manipulations [22], [23]. Compared to recurrent
or transformer-based architectures, CNNs offer lower latency
and greater parallelizability, making them ideal for large-scale,
real-time voice authentication [24].

1) CNN Architecture: The network processes 32×32
grayscale spectrograms extracted from acoustic embeddings.
Its architecture consists of the following key components:

1) Preprocessing and Normalization: Input spectrograms are
scaled using batch normalization.

2) Convolutional Feature Extraction: Three convolutional
blocks progressively extract hierarchical features:
• Block 1: 32 filters, 4×4 kernels, ReLU activation, batch

normalization, 2× 2 max pooling, dropout.
• Block 2: 64 filters, 3×3 kernels, identical normalization

and pooling.
• Block 3: 128 filters, 3× 3 kernels, final normalization

and pooling.
3) Fully Connected Layers: Extracted features are flattened

and passed through:
• Dense (128 units) with ReLU, dropout, L1/L2 regular-

ization.
• Dense (32 units) with ReLU, dropout, L1/L2 regular-

ization.
4) Output Layer: A softmax layer with three units classifies

samples as Legitimate, Attacked, or Triggered.
To minimize labeling errors, deferred accounts are excluded
from training, while triggered samples are explicitly included
to enhance the model’s ability to detect PBSM backdoored
accounts. The model is optimized using Adam with categorical
cross-entropy loss, and hyperparameters such as dropout rates
and L1/L2 regularization are fine-tuned for optimal perfor-
mance.

2) Training Procedure and Testing Process and User-Level
Voting: Acoustic embeddings and their corresponding one-hot
encoded labels are loaded using a custom data pipeline that
retains metadata for analysis. To mitigate class imbalance, we
employ an oversampling strategy for underrepresented classes
(Attacked and Triggered). Additionally, we apply mixup aug-
mentation with probability p:

x̃ = λx+ (1− λ)x′, ỹ = λy + (1− λ)y′,

where λ ∼ Beta(α, α) to enhance generalization and pre-
vent overfitting. We adopt stratified K-fold cross-validation
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(K = 5) to preserve class distributions across training splits.
The CNN is compiled using the Adam optimizer with cate-
gorical cross-entropy loss. Batch sizes and the total number
of epochs are tuned to match dataset characteristics, ensuring
stable and efficient model convergence. The testing process is
designed to consolidate the predictions at the user level via
a voting mechanism. This approach effectively reduces the
ASR of BTA and increases the detection efficacy of TDPA by
aggregating the predictions of multiple audio files belonging
to the same user. Therefore, the voting mechanism mitigates
the risk of HFHPS backdoor accounts and attacked accounts
under TDPA evading detection.

In summary, our proposed framework seamlessly integrates
sophisticated attack simulation with a multi-layered defense
mechanism. This includes PBSM backdoor detection, struc-
tured embedding generation, and a CNN-based classifier. By
addressing both backdoor triggers and TDPA through a robust
training strategy and balanced data utilization, the system
maintains high detection accuracy and generalizability even
in complex multi strategy poisoning attack scenarios.

IV. EXPERIMENTAL RESULTS

A. Datasets and Experimental Setup

For this experiment, we conduct our evaluation on a ma-
chine equipped with an Intel(R) Xeon(R) W-2133 CPU @
3.60GHz and 30 GB RAM. The system utilizes an NVIDIA
Quadro RTX 5000 GPU. The operating system is Ubuntu.
Our experiments are conducted using two widely recognized
benchmark datasets: LibriSpeech and VoxCeleb. The Lib-
riSpeech dataset comprises 2,218 user accounts, whereas the
VoxCeleb dataset includes 988 user accounts. Additionally,
we use the mergerd version of both datasets which comprises
3206 user accounts. We train the CNN model incorporated in
our framework on 1,684 users’ accounts from LibriSpeech,784
users’ accounts from VoxCeleb and 1923 accounts from
merged dataset. Consequently, we test the CNN model on
534 users’ accounts from LibriSpeech, 204 users’ accounts
from VoxCeleb and 641 accounts from merged dataset. This
experimental design simulates realistic adversarial conditions,
allowing us to assess both the PBSM backdoor detection per-
formance and the robustness of our framework under diverse
attack scenarios at the same time.

B. Evaluation Metrics

Firstly, we assess the ability of our framework to cor-
rectly classify user accounts based on their acoustic features,
emphasizing the separation between triggered and poisoned
accounts. Similar to [10] ASR is considered as the main
metric to evaluate the performance of our PBSM backdoor
detection mechanism against the BTA attack.Therefore, we
are able to make a relevant comparison in terms of efficiency
between our PBSM detection mechanism and the existing
ones. Furthermore, in order to assess the performance of
our CNN model in detecting TDPA, we use classification
metrics. We use a separate test dataset for the evaluation of
our framework’s performance. The trained model is used to
predict the class labels for each test file.

1) User-Level PBSM backdoor detection Performance: Our
framework demonstrates robust performance in classifying
user accounts based on their acoustic features. Figures 2(a) and
2(b), present stacked bar charts categorizing user accounts into
three decision outcomes: Triggered, Legitimate, and Deferred.

The results directly supports our hypothesis that backdoor
modifications—particularly pitch and HF energy shifts—are
reliably captured by our detection mechanism, ensuring that no
triggered user is overlooked. The legitimate category exhibits
strong precision, as indicated by the large green bars. Specifi-
cally, 852 legitimate accounts in Figure 2(a) and 1,966 legiti-
mate accounts in Figure 2(b) are correctly classified, highlight-
ing the accuracy of our framework. This outcome demonstrates
that legitimate users, who generally exhibit moderate pitch
and HF-energy levels, are reliably recognized as legitimate. A
small fraction of legitimate accounts—28 in Figure 2(a) and 30
in Figure 2(b)—appear in the triggered or “incorrect” section.
These misclassifications likely result from atypical pitch or
HF-energy signatures caused by artifacts such as background
noise, unusual vocalization, or partial silence. Additionally,
the deferred category—59 accounts in Figure 2(a) and 112
in Figure 2(b)—captures cases where acoustic signatures are
ambiguous enough to warrant manual inspection. While these
deferred accounts predominantly belong to legitimate users,
our system conservatively flags them for secondary review,
thereby reducing the risk of mistakenly granting access to
genuinely triggered users.

Complementing the classification statistics, the scatter plots
are presented in Figures 3(a) and Figure 3(b) displaying the
average pitch (x-axis) with high-frequency energy (y-axis) for
the user accounts. A key observation from these scatter plots
is the distinct separation in the feature space; as mentioned in
the caption of this Figure. This empirical evidence supports
the robustness of our proposed PBSM backdoor detection in
capturing pitch-based manipulations.

2) Extended Analysis: Classification Metrics, ASR, and
Computational Efficiency: To further provide a holistic picture
of the real-world practicality of our framework, we measure
the execution times for each major processing stage, ranging
from the staging of the attack scenarios to the final classifi-
cation outputs. Table IV reports the total execution times in
seconds for the key steps in the process of detection throughout
the framework. These measurements are provided for three
scenarios. Separate runs on LibriSpeech and VoxCeleb, as
well as a run on a merged version of both datasets. The
timings across datasets indicates that our PBSM backdoor
detection mechanism scales effectively. Notably, PBSM back-
door detection consistently requires 4–6 seconds per user
processing time, even when accounting for minor variability
due to environmental or speaker differences. Although, the
total execution time increases with dataset size, the overall
processing remains within the mentioned time frame per user.

a) Classification Metrics and ASR: Table V summarizes
the classification performance of our framework at different
stages. Specifically, the table presents precision, recall and f1-
score for the legitimate, attack, and triggered classes across
three datasets. The results indicate that, even with the merged
dataset containing data from multiple sources, the recall for the
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(a) (b)
Fig. 2. Stacked-bar visualisation of user-level classification outcomes for the two evaluation. Each bar represents the complete test set for a corpus and is
subdivided along the horizontal axis into three decision classes—Triggered, Legitimate, and Deferred. Within each class segment, the green portion indicates
accounts whose ground-truth label matches the automated decision; the red portion marks mismatches. Absolute account counts are printed above each segment;
bar height is normalised to the total number of accounts in the respective corpus.

(a) (b)
Fig. 3. Scatter plots of average pitch versus high-frequency energy for individual user accounts. Each point corresponds to a single user account. Green
circles represent accounts labeled Legitimate; red squares represent accounts labeled Triggered.

attacked and triggered class remain high while precision drops
slighty in comparison to LibriSpeech’s metrics. Importantly, in
the merged dataset, the ASR is elevated at 15.22% (compared
to 11.11% on VoxCeleb and 4.17% on Libri0Speech), which
we attribute to the increased acoustic and linguistic diversity.
Nonetheless, our framework remarkably reduces the risk of
BTA from a baseline ASR of 95–100%, prior to the imple-
mentation of our framework as shown in [10], to levels that
remain at 4–15%. It is important to note that the CNN model
evaluation stage takes place after PBSM backdoor detection.
This implies that even if a triggered account with minimal
chance surpasses PBSM detection with nearly 100% RTA,
there remains an approximately 85–96% probability that it will
be detected through the second stage of analysis by the CNN
model.

The evaluation of the merged dataset shows that our unified
framework significantly reduces the ASR of BTA, while
detecting accounts under TDPA with a high recall. With the
ability to process each user’s audio files in 4-–6 seconds, the
PBSM backdoor detection mechanism is very successful in
identifying and flagging backdoor triggered audio files at the
time of user enrollment. This rapid-response mechanism safe-
guards the training pipeline from compromised data, preserv-

TABLE IV
EXECUTION TIME FOR STAGING ATTACK SCENARIOS AND DATA

PROCESSING ON LIBRI, VOX, AND MERGED DATASETS

Task Description Libri (sec) Vox (sec) Merged (sec)
Staging Tageted
and Backdoor
Attacks

60 32 87

PBSM Detection
(Processing All
Users)

8977 5201 14346

NPY and Embed-
ding Generation of
Audio Files

1557 888 4095

Total Train and Test
Time

3712.38 2569 5531

ing high classification recall. Subsequently, our CNN model’s
training includes triggered users along with attacked ones,
which enables it to effectively mitigate backdoor-triggered
user accounts and improve overall system resilience, while
effectively recognizing TDPA with a high recall.

Figure 4 presents a radar plot analysis of the multi-
dimensional acoustic feature profiles corresponding to both
legitimate and triggered user accounts. Each spoke in the
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(a) (b) (c) (d)
Fig. 4. Radar plots of the five normalised acoustic features—average pitch, pitch variance, high-frequency (HF) energy, HF-energy variance, and average
beep interval—for four representative user accounts. The dashed grey circle marks the acceptance band [−1, 1] used in Eq. (4); polygons that extend beyond
this band (subfigures(c) and (d)) correspond to accounts whose aggregated score exceeds the trigger threshold τ .

TABLE V
PRECISION, RECALL, AND F1 SCORES

Dataset Class Precision Recall F1 ASR
Legitimate 0.99 0.98 0.98

LibriSpeech Attack 0.76 0.95 0.84 4.17%
Triggered 0.81 0.98 0.88
Legitimate 0.96 0.95 0.95

VoxCeleb Attack 0.68 0.94 0.78 11.11%
Triggered 0.71 0.96 0.81
Legitimate 0.99 0.97 0.98

Merged Attack 0.72 0.93 0.84 15.22%
Triggered 0.73 0.96 0.82

radar plot represents a z-scored acoustic feature, with the
region between [−1, 1] marked as the acceptance band. A
user account is classified as Triggered if any of its normalized
feature means extend beyond this band, as such a deviation
ensures that the per-sample score S(x), defined in Eq. (4),
surpasses the global threshold τ . Subfigures 4a and 4b remain
entirely within the acceptance region and are thus labeled
Legitimate. In contrast, Subfigures 4c and 4d exhibit clear
violations along both the average-pitch and high-frequency en-
ergy (HF-energy) axes. These excursions lead to S(x) > τ for
all samples within those accounts, prompting Algorithm 2 to
flag them as Triggered. For legitimate accounts, the radar plot
polygons are compact and show strong alignment across key
axes, particularly avg_pitch and avg_beep_interval,
indicating stable acoustic behavior. Conversely, the radar plots
for triggered accounts display significant outward expansion,
especially along the avg_pitch and hf_energy dimen-
sions. This increased dispersion is consistent with the presence
of HFHPS and other high-frequency anomalies, characteristic
of BTA-based attacks.

Table VI depicts the confirmation of our beep-based and
weighted-score logic. Although radar charts visually de-
pict anomalies, it is the aggregated proportion triggered and
mean score that unify these observations into a single classi-
fication outcome.

C. Broader Security Implications

Table VII presents a comparative analysis of existing de-
fense mechanisms against PBSM backdoor attacks, highlight-

TABLE VI
CLASSIFICATION RESULTS SUMMARIZING EACH USER ACCOUNT’S

STATISTICS, INCLUDING MEAN SCORE, PROPORTION OF TRIGGERED FILES,
SCORE VARIANCE, AND FINAL DECISION.

Account Files Mean Score Triggered % Decision
0868 t 10 123.72 100 Triggered
1373 t 10 125.66 100 Triggered
47 10 90.17 11 Legitimate
27 10 63.62 0 Legitimate

ing their strengths and limitations relative to our unified
framework. Unlike prior approaches, our method simultane-
ously mitigates both BTA and TDPA, achieving lower ASR
with minimal computational overhead while ensuring real-time
adaptability. This scalability makes our detection mechanism
a robust solution for securing voice authentication systems
against PBSM-based adversarial threats. Several mitigation
strategies have been explored independently [11], [12], [25]–
[27]. Some defenses target BTA exclusively, while others
focus solely on TDPA. However, none provide comprehensive
protection against an adversary employing both attack vectors
simultaneously.

Fine-tuning [12] has shown partial success in countering
PBSM backdoor attacks by reducing ASR to 45%, but it
demands significant computational resources, requires mul-
tiple retraining epochs, and remains impractical for real-
time voice authentication. Moreover, it does not explicitly
address pitch-based acoustic triggers, limiting its effectiveness
against sophisticated poisoning attacks. Model pruning [11]
weakens backdoor activations by removing dormant neurons.
However, this method only reduces ASR to approximately
65%, leaving systems vulnerable to spectral manipulations
such as pitch boosting. Both fine-tuning and pruning fail to
integrate frequency- or pitch-aware defenses, a key limitation
that our approach overcomes by detecting adversarial triggers
before they influence the model.

Trigger filtering [10] achieves ASR reductions between
45–65%, yet it lacks the adaptability required for detecting
real-time voice-based attacks. TED [18], while effective for
image-based backdoor detection, lacks explicit mechanisms
for detecting high-frequency or pitch-shifted manipulations
central to PBSM attacks. Guardian [6] employs multiple neu-
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TABLE VII
COMPARATIVE SUMMARY OF EXISTING DEFENSES VS. OUR PROPOSED UNIFIED FRAMEWORK

Framework Mechanism ASR Approach Limitations
Fine-Tuning [12] BTA Only ∼45% Retrains network on a subset of clean data to

reduce Trojan activation.
High computational overhead; no real-time ca-
pability; lacks frequency-based analysis.

Model Pruning [11] BTA Only ∼65% Removes dormant neurons to limit backdoor
activations.

Degrades benign accuracy; does not analyze
pitch/frequency patterns.

Trigger Filtering [10] BTA Only ∼65% Amplitude or energy-based filtering. Ineffective against PBSM; relies on static thresh-
olds.

TED [18] BTA Only – PCA-based outlier detection across layer activa-
tions.

High computational cost; lacks frequency-
specific insights; poor scalability.

Guardian [6] TDPA Only – CNN-based discriminator with multi-model
training.

High training cost; slow large-scale deployment.

Ours BTA + TDPA 5–15% Lightweight CNN with frequency-analysis. Unified detection for BTA and TDPA; real-time
processing; preserves accuracy.

ral network models to detect TDPA, significantly increasing
training costs and inference latency. In contrast, our framework
unifies BTA and TDPA detection through a frequency-based
PBSM detection mechanism followed by a lightweight CNN
model.

The comprehensive experimental evaluation validates the
efficacy of our PBSM backdoor detection mechanism in a
number of dimensions. The efficacy of our proposed CNN-
based classification model is further confirmed by ASR and
classification metrics assessments. BTA baselines is decreased
from 95–100% before implementing our PBSM backdoor
detection to as low as 4.17% (LibriSpeech), 11.11% (Vox-
Celeb), and 15.22% (merged) after incorporating the detection
mechanism. Furthermore the attacked accounts under TDPA
have been recognized by our CNN model with a recall as high
as 95% (LibriSpeech), 94% (VoxCeleb), and 93% (merged).
Additionally, timing analysis verifies that every phase of our
system functions within realistic execution bounds, which of-
fers its scalability for practical implementation. By identifying
separate auditory signatures, the radar plot analysis (discussed
in the next section) further supports the differentiation between
triggered and legitimate accounts. The differentiation confirms
the efficacy of our multi-layer identification mechanism. All
together, these results confirm the practical viability and ro-
bustness of our framework, which preserves high classification
recall across various datasets.

V. CONCLUSION AND FUTURE WORK

This work introduced a unified defense framework capable
of detecting covert pitch-boosting backdoor triggered attacks
and mitigating data poisoning attack simultaneously. By ad-
dressing both BTA and TDPA, we establish a more resilient
defense mechanism for modern voice authentication pipelines.
Unlike conventional methods that address BTA or TDPA
in isolation, our approach integrates an effective detection
mechanism against PBSM backdoor attacks by reducing ASR
to 5-15% and a CNN-based classifier that identifies poisoned
audio files with more than 95% recall across multiple datasets.
In contrast to existing defenses that impose high computational
overhead, our method requires no extensive model re-training
or pruning. Despite these advancements, future research will
extend our detection approach to explore adaptive threshold

tuning and dynamic feature weighting that can enhance ro-
bustness by accommodating heterogeneous user profiles and
environmental variations.
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