
Directed Greybox Fuzzing via Large Language Model
Hanxiang Xu

Huazhong University of Science and
Technology

China
xuhx@hust.edu.cn

Yanjie Zhao
Huazhong University of Science and

Technology
China

yanjie_zhao@hust.edu.cn

Haoyu Wang
Huazhong University of Science and

Technology
China

haoyuwang@hust.edu.cn

Abstract
Directed greybox fuzzing (DGF) focuses on efficiently reaching spe-
cific program locations or triggering particular behaviors, making
it essential for tasks like vulnerability detection and crash repro-
duction. However, existing methods often suffer from path explo-
sion and randomness in input mutation, leading to inefficiencies
in exploring and exploiting target paths. In this paper, we pro-
pose HGFuzzer, an automatic framework that leverages the large
language model (LLM) to address these challenges. HGFuzzer trans-
forms path constraint problems into targeted code generation tasks,
systematically generating test harnesses and reachable inputs to
reduce unnecessary exploration paths significantly. Additionally,
we implement custom mutators designed specifically for target
functions, minimizing randomness and improving the precision of
directed fuzzing. We evaluated HGFuzzer on 20 real-world vulner-
abilities, successfully triggering 17, including 11 within the first
minute, achieving a speedup of at least 24.8× compared to state-
of-the-art directed fuzzers. Furthermore, HGFuzzer discovered 9
previously unknown vulnerabilities, all of which were assigned
CVE IDs, demonstrating the effectiveness of our approach in iden-
tifying real-world vulnerabilities.

CCS Concepts
• Security and privacy→ Software security engineering.

Keywords
Fuzzing; Directed Greybox Fuzzing; Large Language Model; Open-
source Library; Vulnerability
ACM Reference Format:
Hanxiang Xu, Yanjie Zhao, and Haoyu Wang. 2018. Directed Greybox
Fuzzing via Large Language Model. In Proceedings of Make sure to en-
ter the correct conference title from your rights confirmation email (Con-
ference acronym ’XX). ACM, New York, NY, USA, 14 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 Introduction
Fuzzing is a widely adopted and highly effective technique for
identifying software vulnerabilities by generating and executing
numerous test cases to detect abnormal program behaviors [11, 34].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

Over the years, fuzzing has evolved from simple random testing
to more sophisticated and targeted strategies. Among these evo-
lutionary paths, greybox fuzzing has emerged as a prominent
approach that balances efficiency and scalability [41] by combining
elements of both blackbox testing with minimal program visibility
and whitebox testing with comprehensive program analysis.

Most greybox fuzzers are traditionally coverage-guided, aiming
to maximize overall program exploration. As the field advanced,
researchers developed directed greybox fuzzing (DGF), which
focuses on specific target locations, such as bug-prone regions, mak-
ing it particularly useful for scenarios like patch testing and crash
reproduction [10, 13]. Despite its targeted approach, DGF faces two
key challenges that significantly hinder its efficiency: the com-
plexity of exploration and the randomness of exploitation.
The exploration phase often encounters the issue of path explosion,
where numerous infeasible paths are unnecessarily explored, con-
suming excessive resources. In the exploitation phase, the inherent
randomness of input generation and mutation frequently results
in irrelevant inputs being tested and fails to satisfy the precise
constraints required to trigger vulnerabilities [66].

To improve the efficiency of directed fuzzing, various solutions
have been proposed [22, 23, 53]. One approach focuses on opti-
mizing guidance toward target locations by analyzing program
characteristics, such as identifying deviation basic blocks [16, 21]
or satisfying execution path constraints [30, 62]. Another approach
aims to generate inputs with a higher likelihood of reaching tar-
get locations, for example, by predicting reachable inputs [67] or
instrumenting only the relevant parts of the code [39]. However,
existing methods that leverage static analysis and symbolic execu-
tion to evaluate path reachability and constrain execution [10, 62]
introduce additional computational overhead and struggle with
scalability. This inefficiency delays the discovery of vulnerabilities
and limits testing effectiveness, highlighting the need for more
intelligent and targeted strategies in both exploration and
exploitation phases.

Recent advances in artificial intelligence, particularly large lan-
guage models (LLMs), offer new opportunities to address these
challenges in DGF. LLMs have demonstrated remarkable capabili-
ties in various domains, including natural language understanding,
code generation, and program analysis [26]. Their ability to under-
stand code semantics, infer program logic, and generate contextu-
ally relevant code makes them particularly promising for tackling
the core difficulties in DGF. Several recent works have begun to
leverage LLMs to address key challenges in fuzzing [19, 55], such as
driver synthesis [40, 54], input generation [42, 48], and bug detec-
tion [31]. However, the application of LLMs specifically to the
dual challenges of exploration complexity and exploitation
randomness in DGF remains largely unexplored.

ar
X

iv
:2

50
5.

03
42

5v
1

 [
cs

.C
R

]
 6

 M
ay

 2
02

5

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hanxiang Xu, Yanjie Zhao, and Haoyu Wang

Building on these insights, we propose a novel framework, i.e.,
HGFuzzer, that leverages the reasoning and code generation capa-
bilities of LLMs to improve the efficiency of DGF. HGFuzzer tackles
the complexity of exploration by transforming the path constraint
problem into a code generation task. Specifically, it employs static
analysis to identify potential call chains of the target function and
guides LLM to analyze an available call chain, infer execution condi-
tions, and generate target harness. The harness constrains execution
paths to focus on relevant code regions, thereby reducing unneces-
sary exploration and computational overhead. For the exploitation
phase, HGFuzzer reduces randomness by systematically guiding in-
put generation and mutation. It utilizes LLM to generate reachable
seeds that satisfy the execution constraints derived from the call
chain analysis. Additionally, HGFuzzer constructs target-specific
mutators by analyzing the characteristics of the target function and
the associated vulnerability. These custom mutators are tailored
to efficiently trigger the target vulnerability by prioritizing input
mutations that align with the conditions required to exploit the
vulnerability. By integrating these components, HGFuzzer provides
an automatic approach to improve the efficiency of DGF.

We evaluate HGFuzzer across a benchmark of 20 real-world vul-
nerabilities, comparing it against state-of-the-art directed greybox
fuzzers, including AFLGo [10], Beacon [21], and SelectFuzz [39].
HGFuzzer demonstrates superior performance by successfully trig-
gering 17 out of 20 vulnerabilities, compared to 5 by AFLGo and
SelectFuzz and 6 by Beacon, with 11 vulnerabilities triggered within
the first minute of fuzzing. For successfully triggered known vulner-
abilities, it achieves at least a 24.8× speedup to baselines. HGFuzzer
also achieved a 27.5% improvement in target function hit rate over
the best-performing baseline, demonstrating its ability to effec-
tively guide execution paths toward target functions. Additionally,
HGFuzzer identified 9 previously unknown vulnerabilities in two
open-source libraries, all of which were assigned CVE IDs.

In summary, this paper makes the following contributions:
• We propose a novel framework, HGFuzzer, that integrates
LLM to improve the efficiency of directed greybox fuzzing.
• We transform path constraint analysis into a code generation
task, introducing LLM-guided reachable seed generation to
reduce exploration complexity and a target-specific mutator
to mitigate exploitation randomness during fuzzing.
• We implement HGFuzzer and demonstrate its superiority
over state-of-the-art directed fuzzers on real-world bench-
marks, successfully discovering 9 previously unknown vul-
nerabilities with CVE IDs.

2 Background
2.1 Directed Greybox Fuzzing (DGF)
DGF is a targeted software testing approach that focuses on ef-
ficiently reaching specific program locations or exposing certain
program behaviors, such as vulnerable code regions or critical
execution paths [51]. Unlike traditional coverage-guided fuzzing,
which maximizes coverage indiscriminately, DGF prioritizes inputs
closer to pre-defined targets, saving resources and improving effi-
ciency. First introduced by Böhme et al. with AFLGo [10], operating
in two phases: exploration and exploitation. During exploration,
the fuzzer aims to uncover as many paths as possible, favoring seeds

that trigger new paths to maximize the potential of reaching targets.
Once sufficient paths are uncovered, the exploitation phase focuses
on inputs closer to the targets, assigning them more energy to gen-
erate mutations that fulfill the testing goals. Recent advancements,
such as SemFuzz [59], ParmeSan [45] and FuzzGuard [67], have em-
ployed techniques like natural language processing, sanitizer-based
annotations and machine learning to automate target identifica-
tion, further expanding DGF’s applicability to scenarios like patch
testing, crash reproduction, and detecting complex vulnerabilities.

2.2 LLM for Fuzzing
Recent research has explored the application of LLMs in fuzzing,
demonstrating their potential to enhance input generation, driver
synthesis, and bug detection processes [25, 27]. Unlike traditional
fuzzing methods, which often rely on randomized or rule-based
approaches, LLMs utilize their generative capabilities to produce di-
verse and contextually valid inputs. Tools such as TitanFuzz [14] and
FuzzGPT [15] leverage LLMs to improve seed mutation and input
diversity, enabling more effective exploration of complex software
behaviors. LLMs have also been applied to automate fuzz driver
synthesis, a critical step in fuzzing workflows. For instance, Zhang
et al. [60] demonstrate the effectiveness of GPT-4 in generating
fuzz drivers for library APIs, significantly reducing manual effort.
Similarly, InputBlaster [38] and ChatAFL [43] enhance fuzzing for
mobile apps and network protocols, achieving higher bug detec-
tion rates and improved input validity. Despite these advances, the
potential of LLMs to specifically address the challenges of explo-
ration complexity and exploitation randomness in DGF has yet to
be thoroughly investigated.

2.3 Challenges and Motivations
Complexity of exploration. Existing approaches in the explo-
ration phase aim to uncover as many execution paths as possible, as
new paths increase the likelihood of reaching the target [10, 12, 16].
This is particularly necessary when the initial seeds are far from
the target. Some methods also leverage lightweight static analysis
to evaluate the reachability of execution paths to the target and use
symbolic execution to constrain path exploration [21, 39, 62]. How-
ever, these methods face the challenge of path explosion caused by
exploring numerous infeasible paths that cannot reach the given
target in a library. Furthermore, existing methods fail to directly
utilize the semantic results of static analysis. Instead, they con-
vert these results into constraints for symbolic execution, which
introduces additional computation overhead.

To address this issue, our core idea is to leverage the semantic
understanding and code generation capabilities of LLM. We trans-
form the complex path constraint problem into a code generation
task. Specifically, we collect the call chains of the target func-
tion within the target library, use LLM to analyze these call
chains, and generate an executable harness that explicitly
constrains the execution path to the target. This approach
avoids complex path exploration. As shown in Figure 1, CVE-2017-
2897 is an out-of-bounds write vulnerability in libxls 1.4.0. The
entry program contains numerous complex execution paths. Tra-
ditional directed fuzzers require extensive path exploration before
reaching the target, but most of these paths are irrelevant to the

Directed Greybox Fuzzing via Large Language Model Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

xls2csv.c:main

xls_parseWorkSheet()xls_row() xls_getWorkSheet()

ole2_open()

xlsConvertHeader()

xls_cell()xls_open()

ole2_fopen() ole2_read()

ole2_sopen()

read_MAST() xlsConvertPss()

ole2_bufread()

xls_preparseWorkSheet() ole2_seek()

xlsConvertBof()

xls_addCell()

xlsConvertRow()

xlsIntVal()

xlsShortVal()

xls_getfcell()

xls_makeTable()

Figure 1: A motivating example from CVE-2017-2897, where
the red blocks indicate a reachable path to the vulnerable
target function read_MAST.

vulnerable function read_MAST. By analyzing the call relations of
read_MAST in the library, we can generate a harness program to
constrain the execution path explicitly, significantly simplifying
the path exploration process.

001 unsigned char *tjLoadImage(const char *filename, ...)
002 {
003 if ((file = fopen(filename, "rb")) == NULL)
004 ...
005 if ((tempc = getc(file)) < 0 || ungetc(tempc, file) == EOF)
006 ...
007 else if (tempc == EOF)
008 ...
009 if (tempc == 'B') {
010 ...
011 } else if (tempc == 'P') {
012 if ((src = jinit_read_ppm(cinfo)) == NULL)
013
014 /* The first character of the input file should be 'P' */
015
016 ...
017 } else
018 ...
019
020 }
021
022 cjpeg_source_ptr jinit_read_ppm()
023 {
024 ...
025 source->pub.start_input = start_input_ppm;
026 ...
027 }
028
029 void start_input_ppm(j_compress_ptr cinfo,...)
030 {
031 ...
032 c = getc(source->pub.input_file);
033 maxval = read_pbm_integer(cinfo, source->pub.input_file, 65535);
034 ...
035 switch (c) {
036 ...
037 case '6': /* The second character of the input file must be '6' */
038 ...
039 if (maxval > 255) {
040 ...
041 } else if (maxval == MAXJSAMPLE && sizeof(JSAMPLE) == sizeof(U_CHAR) &&
042 (cinfo->in_color_space == JCS_EXT_RGB
043)) {
044 ...
045 } else {
046
047 /* The maxval of the input file must be less than 255 */
048
050 if (IsExtRGB(cinfo->in_color_space))
051
052 /* The color space of the input file must be extended RGB */
053
054 source->pub.get_pixel_rows = get_rgb_row;
055
056 /* Trigger the vulnerable function */
057
058 else if (cinfo->in_color_space == JCS_CMYK)
059 ...
060 else
061 ...
062 }
063 break;
064 }
065 ...
066 }

Figure 2: A motivating example from CVE-2020-13790.

Randomness of exploitation. Fuzzing is inherently a process
driven by randomness, where the generation andmutation of inputs

often rely on probabilistic techniques [29, 66]. This randomness
conflicts with the goal of directed fuzzing, as it can reduce efficiency
by diverting resources to inputs that are less likely to reach or trig-
ger the target during the exploitation phase. As shown in Figure 2,
CVE-2020-13790 requires satisfying multiple path constraints to
execute the vulnerable function get_rgb_row. For instance, the
input file must start with specific characters (‘P’ followed by ‘6’),
have a maxval less than 255, and use the JCS_EXT_RGB color space.
Traditional directed fuzzers rely on input without confirmation
of target reachability and random mutations to satisfy these con-
straints, which often results in numerous irrelevant inputs being
tested, increasing the time required to reach or trigger the vulnera-
bility. This randomness not only reduces efficiency but also leads
to excessive resource consumption, as mutations are not explicitly
guided toward satisfying the constraints necessary for exploitation.
Addressing this challenge requires reducing randomness in the
exploitation phase to better align with the goals of directed fuzzing.

To address this challenge, inspired by existing studies [28, 56, 64],
our basic idea is to utilize LLM to reduce the randomness in the
exploitation process. Specifically, we first leverage LLM to analyze
the complex parameter or variable constraints imposed by the target
call chain, enabling the generation of initial reachable inputs for
directed fuzzing. Subsequently, we use LLM to further analyze the
characteristics of the target function, combined with the potential
vulnerability risks, to generate custommutators tailored for directed
fuzzing. This approach aims to minimize the impact of randomness
by systematically guiding the fuzzing process.

3 Methodology
Our approach aims to improve the efficiency of directed fuzzing
by leveraging the reasoning and code generation capabilities of
LLM. As shown in Figure 3, HGFuzzer consists of multiple phases
to systematically guide the fuzzing process toward specific target
functions. First, it uses static analysis to identify all potential call
chains of the target function and filters out the feasible ones (Sec-
tion 3.1). Then, LLM analyze these call chains to infer the execu-
tion conditions required to trigger the target function (Section 3.2).
Based on this information, HGFuzzer generates executable target
harness and initial input seeds to guide execution paths toward the
target (Section 3.3, Section 3.4). Finally, HGFuzzer constructs target-
specific mutators using target execution reports to optimize input
mutation, reducing the time required to reach the target function
and enhancing the effectiveness of the fuzzing process (Section 3.5).

3.1 Call Chain Analysis
Call chain analysis is the initial step of HGFuzzer, where we utilize
static analysis to query all existing call chains of the target function
within the library and extract an available call chain for further
processing. This step provides crucial insights into the invocation
context of the target function and forms the basis for subsequent
reasoning and harness generation.

A call chain𝐶 is represented as a sequence of functions (𝐹𝑛, 𝐹𝑛−1,
. . . , 𝐹1, 𝐹0), where 𝐹0 is the target function and 𝐹𝑛 is the starting
function of the chain. Let 𝑆 denote the set of all call chains for the
target function. To identify an available call chain, HGFuzzer parses
𝑆 following the criteria defined in Algorithm 1. If there exists a call

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hanxiang Xu, Yanjie Zhao, and Haoyu Wang

Call Chain Analysis

Library

Target Function

Target Call
Chains

Identify

Available
Call Chain

Extract

Infer Execution
Conditions

Source Code

Execution Conditions Analysis

Source Code Execution
Conditions

Harness

Target Harness Generation

Infer

Executable Harness

Library Usage

Pass

Failed

RAG
Executable

Harness

Execution
Conditions

Reachable Input Generation

Infer

Input
Seed

Identify

Reachable
Input

Target-Specific Mutator
Generation

Infer

Custom
Mutator

Target
Description Run Fuzz

Figure 3: Overview of HGFuzzer.

chain 𝐶 ∈ 𝑆 with 𝐹𝑛 = main, HGFuzzer identifies the chain with
the smallest length |𝐶 | as the available call chain. If no such chain
exists, HGFuzzer searches 𝑆 for the call chain with the smallest
length |𝐶 | whose starting function 𝐹𝑛 is declared as an external
function in the library’s header files. If such a chain is found, it is
identified as the available call chain.

Algorithm 1 Call Chain Identification
Require: Target Function 𝐹0, Library 𝐿
Ensure: Available Call Chain 𝐶
1: 𝑆 ← CallChains(𝐹0, 𝐿)
2: 𝐶 ← ∅, 𝑙 ←∞ // 𝑙 means shortest length of available call chain
3: for 𝐶′ ∈ 𝑆 do
4: if 𝐹𝑛 (𝐶′) = main ∧ |𝐶′ | < 𝑙 then
5: 𝐶 ← 𝐶′, 𝑙 ← |𝐶′ |
6: end if
7: end for
8: if 𝐶 = ∅ then
9: for 𝐶′ ∈ 𝑆 do
10: if 𝐹𝑛 (𝐶′) ∈ 𝐿.headers ∧ 𝐹𝑛 (𝐶′) is extern ∧ |𝐶′ | < 𝑙

then
11: 𝐶 ← 𝐶′, 𝑙 ← |𝐶′ |
12: end if
13: end for
14: end if
15: return 𝐶

The preference for call chains starting with main is based on the
observation that main and its associated file often provide complete
parameter initialization, global variable declarations, and program
constraints for calling entry function 𝐹𝑛−1. As the primary entry
point, main is typically designed for specific functionalities, making
it an ideal candidate template example for generating a target har-
ness. When no call chain starting with main can be found, we prior-
itize call chains beginning with declared external functions, which
typically have well-defined interfaces and parameter specifications.
External functions, designed as entry points for libraries or mod-
ules, generally encapsulate the necessary contextual information

and environment setup for correctly invoking target functionality.
This strategy ensures we can identify call chains with sufficient
context to build executable target harnesses even without main. In
summary, by prioritizing either main-originated chains or those
starting with external functions, HGFuzzer ensures the selected
call chain provides sufficient initialization context to generate valid
and executable target harnesses.

3.2 Execution Conditions Analysis
Given an available call chain 𝐶 = (𝐹𝑛, 𝐹𝑛−1, . . . , 𝐹1, 𝐹0), HGFuzzer
then extracts the execution conditions required to traverse the chain
and ultimately reach the target function 𝐹0. This process involves
parsing the source code of all functions in the call chain and using
LLM to analyze the conditions for each function call in the chain.

HGFuzzer begins by utilizing static analysis to parse the source
code of all functions in 𝐶 . This parsing step generates a structured
representation of the code, enabling precise identification of func-
tion definitions and call sites. For each pair of functions <𝐹𝑖 , 𝐹𝑖−1>
in the chain, where 𝐹𝑖 calls 𝐹𝑖−1, HGFuzzer employs LLM to analyze
the specific execution conditions required for the call. The LLM is
designed to complete the following steps:

(1) Determining the Call Location: Identifying the exact lo-
cation in the source code where 𝐹𝑖−1 is called within 𝐹𝑖 . This
includes extracting the line number and the surrounding
code snippet containing the call.

(2) Identifying Decision Variables: Identifying the variables
that determine whether the call from 𝐹𝑖 to 𝐹𝑖−1 occurs. These
decision variables may include function parameters, global
variables, or local variables within 𝐹𝑖 .

(3) Analyzing Conditions: Analyzing the conditions that these
decision variables must satisfy for the call to occur. These
conditions are represented as logical predicates or constraints
on the variable values, such as inequalities, equality con-
straints, or ranges.

Figure 4 illustrates the structured output of the LLM for a single
function call <𝐹𝑖 , 𝐹𝑖−1>. Each decision variable is associated with
its constraints, which are expressed in formal logic for clarity and

Directed Greybox Fuzzing via Large Language Model Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Response of LLM

{
"current_function":"{current_func}",
"next_function":" {next_func}",
"call_location": {
 "line":<line_number>,
 "code_snippet":<exact_code_snippet>
 },
"decision_variables": [
 {
 "variable": "<variable_name>",
 "conditions": [
 "<condition_1>",
 "<condition_2>",
 "..."
]
 },
 "...”
]

}

Figure 4: An example of the response from the LLM in exe-
cution conditions analysis.

precision. By iterating over all function pairs in the call chain, HG-
Fuzzer builds a complete representation of the execution conditions
needed to reach the target function 𝐹0. This structured analysis
accurately captures the dependencies and constraints of the call
chain, providing essential information for generating executable
harness and deriving inputs that can traverse the chain and trigger
the target function.

Illustrative Case. For the motivating example in Figure 2, the
call chain𝐶 = (tjLoadImage, jinit_read_ppm, start_input_ppm,
get_rgb_row) leads to the target function get_rgb_row. The call
from tjLoadImage to jinit_read_ppm occurs at line 12 and is
conditional on the first character of the input file (temp_c) being
‘P’ (line 11). Within start_input_ppm, additional conditions must
be satisfied, such as the second character of the file being ‘6’ (line
37), the maximum pixel value (maxval) being less than 255 (line
39-45), and the color space of the input file being extended RGB
(JCS_EXT_RGB) (line 50). HGFuzzer identifies these decision vari-
ables and constraints for each function pair in the call chain, ensur-
ing the conditions required to traverse the chain and execute the
target function get_rgb_row are captured in a structured format
for downstream use.

3.3 Target Harness Generation
To direct the fuzzing process toward the target function, HGFuzzer
generates a targeted fuzz harness based on the available call chain,
execution conditions, and corresponding function source code. This
harness constrains the exploration space of the fuzzer, reducing
redundant path exploration and ensuring efficient reachability of
the target function.

Figure 5 presents the prompt template used in HGFuzzer for
target harness generation. In addition to the available call chain,
function source code, and execution conditions, the input context

Task: Generate a targeted C/C++ fuzz harness for a specific
fuzzing target within a given library.

Input Context:
l Target Description: Information about the fuzzing target

({target_info}).
l Target Function: The target function to be tested

({target_func}).
l Available Call Chain: The complete call chain leading

to the target function ({call_chain}).
l Execution Conditions: Execution conditions and

dependencies for each function in the call chain
({execution_conditions}).

l Entry Function: The entry function that initiates the call
chain {entry_func_code}.

l Source File: Source file where the entry function is
defined or called ({src_file}).

Instructions:
l Implement a main function that calls the entry function

{entry_func_name} and guides the execution path along
the call chain to the target function.

l Use argv[1] as the input file path, compatible with
AFL++ input (@@).

l Do not hardcode variables or implement library functions
that are already part of the call chain.

l Ensure proper resource management and include
necessary headers.

l Design the harness to trigger the target in the shortest
possible fuzzing time.

Prompt Template

Figure 5: Prompt template for target harness generation.

incorporates a target description, the entry function, and the cor-
responding source file. The target description provides an overall
summary of the fuzzing objective, which may come from prior
vulnerability reports (e.g., CVE records) or expert knowledge indi-
cating potential weaknesses in the target function. This description
helps guide the LLM in generating a relevant and effective harness.
The entry function is determined based on the structure of the call
chain. Given an available call chain𝐶 = (𝐹𝑛, 𝐹𝑛−1, . . . , 𝐹1, 𝐹0), if the
final function 𝐹𝑛 is the main function, then the entry function is set
to 𝐹𝑛−1, as it is the actual initiator of the call sequence. The main
function is treated as a template for invoking 𝐹𝑛−1. In this case,
the source file provided as input should be the file containing 𝐹𝑛
to ensure that the LLM has all necessary configuration details for
calling 𝐹𝑛−1. If 𝐹𝑛 is not the main function, then 𝐹𝑛 itself is treated
as the entry function, and the source file corresponds to the file
where 𝐹𝑛 is defined. By structuring the prompt in this manner, HG-
Fuzzer enables LLM to generate a valid fuzz harness that effectively
triggers the target function.

Compilation Error Resolution. To ensure that the generated
fuzz harness can be successfully compiled into an executable pro-
gram, HGFuzzer employs a compilation error resolutionmechanism

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hanxiang Xu, Yanjie Zhao, and Haoyu Wang

based on RAG (Retrieval-Augmented Generation), as shown in Al-
gorithm 2. This mechanism is based on an external knowledge base
that contains all source files, header files, and test cases from the
target library. These files are embedded into vector representations
and indexed to facilitate efficient similarity-based retrieval. If the
harness fails to compile within the library’s context, HGFuzzer col-
lects the compilation errors issued by the compiler and constructs
a query based on these errors. The query engine retrieves relevant
code snippets from the knowledge base, including the usage, im-
plementation, and definition of the error-related functions. The
retrieved results are then used by the LLM to guide the repair pro-
cess. Specifically, the LLM incorporates the context provided by the
retrieved snippets to iteratively refine the harness until the compi-
lation errors are resolved. This iterative repair process ensures that
the harness is not only syntactically correct but also semantically
compatible with the target library.

Algorithm 2 Compilation Error Resolution with RAG.
Require: Compilation error 𝐸, Target Harness 𝐻 , Knowledge base

𝐾 , Embedding model 𝑀 , Similarity threshold 𝑠 , Number of
chunks 𝑘 , LLM 𝐿, Refinement prompt 𝑃𝑟

Ensure: Revised harness 𝐻𝑟𝑒𝑣𝑖𝑠𝑒𝑑

1: 𝑄 ← 𝐵𝑢𝑖𝑙𝑑𝑄𝑢𝑒𝑟𝑦 (𝐸)
2: 𝐼𝑛𝑑𝑒𝑥𝐵𝑎𝑠𝑒 ← 𝐸𝑚𝑏𝑒𝑑 (𝐾,𝑀)
3: 𝑄𝑣𝑒𝑐 ← 𝐸𝑚𝑏𝑒𝑑 (𝑄,𝑀)
4: 𝐶1,𝐶2, . . . ,𝐶𝑘 ← 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝐶ℎ𝑢𝑛𝑘𝑠 (𝑄𝑣𝑒𝑐 , 𝐼𝑛𝑑𝑒𝑥𝐵𝑎𝑠𝑒, 𝑠, 𝑘)
5: 𝑅 ← 𝐿𝐿𝑀 (𝑄,𝐶1)
6: for all remaining chunk 𝐶𝑖 in 𝐶2, . . . ,𝐶𝑘 do
7: 𝑅 ← 𝑅𝑒 𝑓 𝑖𝑛𝑒𝑊 𝑖𝑡ℎ𝐿𝐿𝑀 (𝑅,𝐶𝑖 , 𝑃𝑟 , 𝐿)
8: end for
9: 𝐻𝑟𝑒𝑣𝑖𝑠𝑒𝑑 ← 𝐿𝐿𝑀 (𝑄, 𝑅, 𝐻)
10: return 𝐻𝑟𝑒𝑣𝑖𝑠𝑒𝑑

3.4 Reachable Input Generation
The target harness generated by HGFuzzer explicitly constrains
the fuzzer’s path exploration. However, the harness alone cannot
directly guide the execution path to the target function. This lim-
itation arises because the entry function often contains multiple
branches, which create diverse execution paths. To ensure that the
execution path reaches the target function, it is necessary to gen-
erate a reachable seed input that satisfies all execution conditions
within the call chain. These execution conditions provide logical
or mathematical constraints that must be met for the program to
traverse the intended path. Given the diversity and complexity of
library functionalities and their input formats, generating such an
input manually is both labor-intensive and error-prone.

An alternative approach might be to employ LLMs to directly
generate the initial input. However, this approach presents signifi-
cant challenges when considering the complex input requirements
of many libraries. For example, libraries such as libming process
SWF or ABC flash files, libjpeg-turbo requires correctly format-
ted JPEG or PPM images, and other libraries may demand inputs
with complex binary structures, specific headers, checksums, and
format-specific requirements. Directly generating such specialized

Task: Generate a Python script using standard libraries to
create an 'input_file’ whose content precisely satisfies all
execution conditions specified below, ensuring the target
function is reached via the intended execution path.

Input Context:
l Target Description: Information about the fuzzing target

({target_info}).
l Target Function: The target function to be tested

({target_func}).
l Harness Code: Code used to run the target with the

input ({harness_code}).
l Available Call Chain: The complete call chain leading

to the target function ({call_chain}).
l Execution Conditions: Execution conditions and

dependencies for each function in the call chain
({execution_conditions}).

Instructions:
l Satisfy ALL execution conditions precisely, prioritizing

mathematical/logical correctness over input realism or
validity.

l Use conservative values clearly within bounds for range
conditions (e.g., `100` if `<200`) and the exact required
value for equality conditions (e.g., `127` if `==127`).

l Ensure chosen values strictly follow the specified
conditions to avoid triggering alternative execution paths.

l Include detailed comments explaining value
choices/condition satisfaction, implement basic error
handling, and save the generated input as 'input_file' with
appropriate extension.

Prompt Template

Figure 6: Prompt template for reachable input generation.

binary or structured data as raw content exceeds the current capa-
bilities of LLMs and would invariably produce invalid inputs. For
instance, creating a valid SWF file requires comprehensive knowl-
edge of the flash file format specification, including its tag structure,
binary encoding rules, and internal consistency requirements.

To address this challenge, HGFuzzer instead employs LLM to
generate a Python script tailored to produce an initial input capa-
ble of meeting all specified execution conditions. This approach
leverages existing libraries in Python that can handle the
complexities of file format specifications, allowing for precise
construction of valid inputs. To guide the LLM in generating the
required Python script, HGFuzzer employs a structured prompt,
as listed in Figure 6. The prompt supplies essential input context,
encompassing the execution conditions derived from the program’s
call chain and the pertinent harness code. It explicitly defines the
task for the LLM: to generate a Python script producing an input
that satisfies all specified execution conditions, thereby ensuring
the target function is reached while avoiding unintended execution
paths. Additionally, the prompt details how to handle specific con-
dition types, instructing the LLM to use values well within bounds
for range constraints and precise values for equality constraints,
leveraging Python libraries for accurate input construction.

Directed Greybox Fuzzing via Large Language Model Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Once the Python script is generated, it is executed to produce
an initial input for the target harness. However, given the potential
for the LLM to generate incorrect or suboptimal code [36, 46, 47],
HGFuzzer integrates a verification mechanism using afl-cov [1].
This tool instruments the target harness and monitors the execution
path to verify whether the generated input successfully guides the
program to the target function. If the input fails to reach the target
function, the process is repeated iteratively. During each iteration,
the prompt is refined, and the LLM generates a new script aiming
to address previous deficiencies. This iterative process continues
until a reachable input is obtained. By combining the generative
capabilities of LLM with the verification of afl-cov, HGFuzzer en-
sures that the generated inputs effectively guide the execution path
to the target function.

3.5 Target-Specific Mutator Generation
After generating a reachable input to guide the execution path
to the target function, the next challenge is to ensure that the
target function can be triggered. Triggering the target requires the
program to enter specific execution states that satisfy the conditions
necessary for exploiting the target vulnerability. To reduce the
randomness of the fuzz engine in mutating the reachable seed,
HGFuzzer leverages LLM to generate a target-specific custom
mutator. The custom mutator is then integrated into the fuzzing
engine to implement tailored mutation strategies designed for the
specific target.

The generation of the custom mutator is based on a carefully
designed prompt, which incorporates the target description, the
target function’s source code, and the reachable input script. Addi-
tionally, the prompt provides the LLMwith the custommutator API
documentation and examples from the fuzzing engine to ensure
compatibility. We guide the LLM through a three-step chain-of-
thought prompt to generate the custom mutator:

(1) Analyzing Root Cause: The LLM first analyzes the target
function’s source code and the provided description of the
target, same as mentioned in Section 3.3. This analysis fo-
cuses on identifying the root cause of the vulnerability and
the specific program states that must be reached to trigger it.
By understanding the vulnerability pattern and its triggering
conditions, the LLM gathers critical insights into how the
input should be mutated to exploit the vulnerability.

(2) Designing Mutation Strategy: Based on the analysis of
the target function and its triggering conditions, the LLM
designs a mutation strategy aimed at efficiently exploiting
the vulnerability. This strategy prioritizes mutations that
directly target the vulnerability-triggering conditions. The
approach ensures that input values are mutated toward ex-
treme bounds or specific ranges that satisfy the conditions
identified in the target function, while simultaneously avoid-
ing mutations that would cause the input to fail the call chain
conditions or deviate from paths leading to the target.

(3) Generating Custom Mutator Code: After defining the
mutation strategy, the LLM generates the complete custom
mutator code in C/C++, adhering to the custom mutator
API. The mutator code implements the tailored mutation
strategy specific to the target vulnerability while ensuring

compatibility with the fuzzing engine. It includes all neces-
sary headers, struct definitions, and initialization functions
required by the custom mutator API documentation. The im-
plementation maintains performance optimization to ensure
the fuzzing engine runs smoothly without runtime errors or
performance degradation.

001 METHODDEF(JDIMENSION)
002 get_rgb_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
003 {
004 ppm_source_ptr source = (ppm_source_ptr)sinfo;
005 register JSAMPROW ptr;
006 register U_CHAR *bufferptr;
007 register JSAMPLE *rescale = source->rescale;
008 JDIMENSION col;
009 unsigned int maxval = source->maxval;
010 register int rindex = rgb_red[cinfo->in_color_space];
011 register int gindex = rgb_green[cinfo->in_color_space];
012 register int bindex = rgb_blue[cinfo->in_color_space];
013 register int aindex = alpha_index[cinfo->in_color_space];
014 register int ps = rgb_pixelsize[cinfo->in_color_space];
015
016 if (!ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width))
017 ERREXIT(cinfo, JERR_INPUT_EOF);
018 ptr = source->pub.buffer[0];
019 bufferptr = source->iobuffer;
020 if (maxval == MAXJSAMPLE) {
021 if (aindex >= 0)
022 RGB_READ_LOOP(*bufferptr++, ptr[aindex] = 0xFF;)
023 else
024 RGB_READ_LOOP(*bufferptr++,)
025 } else {
026 if (aindex >= 0)
027 RGB_READ_LOOP(rescale[UCH(*bufferptr++)], ptr[aindex] = 0xFF;)
028 else
029 RGB_READ_LOOP(rescale[UCH(*bufferptr++)],) /* Vulnerable code line */
030 }
031 return 1;
032 }

Figure 7: Vulnerable function in CVE-2020-13790.

To ensure the generated custom mutator is functional and ef-
fective, our approach incorporates an iterative refinement process.
If the generated custom mutator fails to compile or causes run-
time errors, the LLM automatically references the custom mutator
API documentation to fix the issues. Additionally, our framework
performs a lightweight validation check after integrating the cus-
tom mutator with the fuzzing engine, measuring basic execution
metrics over a short sample run to verify that it operates without
significant overhead or instability. This iterative process ensures
that the custom mutator can efficiently guide the fuzzing process
toward triggering the target vulnerability.

Illustrative Case. To address the heap buffer overflow vulner-
ability in the get_rgb_row function from CVE-2020-13790 in Fig-
ure 7, the LLM first analyzes the source code and identifies that the
root cause lies in the lack of proper boundary checks when access-
ing the rescale array through the pointer bufferptr. This occurs
under specific conditions, such as maxval!= MAXJSAMPLE (line 20-
25) and aindex<0 (line 26-28), while processing malformed PPM
files. Based on this analysis, the LLM designs a mutation strategy
that includes generating malformed PPM headers, manipulating
key variables (e.g., maxval and aindex), and targeting boundary
conditions to trigger the vulnerability. The custom mutator gener-
ated by the LLM implements this strategy by mutating input files
to include unexpected dimensions, non-standard pixel values, and
insufficient data sizes. This allows the fuzzing engine to efficiently

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hanxiang Xu, Yanjie Zhao, and Haoyu Wang

explore paths leading to the vulnerability, reducing randomness
and improving the likelihood of triggering the overflow condition.

3.6 Implementation
We implemented HGFuzzer using approximately 3,400 lines of
Python code and 500 lines of bash scripts. Our implementation
is based on AFL++ [2] due to its extensibility and robust feature
set. For our LLM selection, we utilize Anthropic’s API to access
Claude-3.5-Sonnet [9]. For static analysis, we used CodeQL [3] and
Tree-Sitter [7] to extract information about call chains and source
code of functions. Additionally, we employed LlamaIndex [5] to
build the RAG engine, enabling an efficient construction of prompts
and retrieval of relevant program context.

4 Evaluation
In this section, we evaluate HGFuzzer using real-world vulnerabili-
ties and aim to answer the following research questions:

• RQ1: How effective is HGFuzzer in triggering known vul-
nerabilities?
• RQ2: Can HGFuzzer effectively constrain execution paths
to hit the target functions more frequently?
• RQ3: How do the individual components of HGFuzzer con-
tribute to its overall performance?
• RQ4: Can HGFuzzer detect new real-world vulnerabilities?

Baselines. For evaluation, we compared HGFuzzer against three
state-of-the-art greybox directed fuzzers: AFLGo [10], Beacon [21],
and SelectFuzz [39].

• AFLGo: Awidely used directed fuzzer that guides the fuzzing
process toward the target location by leveraging distance
metrics to prioritize execution paths.
• Beacon: This fuzzer focuses exclusively on execution paths
that can reach the target location, prioritizing exploration of
relevant code paths.
• SelectFuzz: This fuzzer detects code regions related to the
target location and focuses on exploring these regions to
improve the likelihood of reaching the target.

Since HGFuzzer is built on AFL++, we also included AFL++, a
coverage-guided fuzzer, as a baseline to evaluate the effectiveness
of our enhancements. We also attempted to compare HGFuzzer
with state-of-the-art directed fuzzers such as Titan [22], PGDF [62],
and DeepGo [35]. However, Titan is designed for multi-target sce-
narios and encountered compatibility issues when applied to our
single-target benchmark. Additionally, PGDF and DeepGo do not
provide source code or documentation, making it infeasible for us
to reproduce them.
Benchmark Dataset.We constructed our benchmark dataset by
collecting 20 CVE vulnerabilities sourced from prior fuzzing re-
search work [10, 21, 39] and open-source libraries integrated with
OSS-Fuzz [6]. These vulnerabilities span 12 versions of 9 open-
source C/C++ libraries. As shown in Table 1, the dataset includes
common vulnerability types in C/C++ programs and covers diverse
functionalities of open-source libraries. These vulnerabilities were
used to evaluate the ability of the baselines to perform directed
fuzzing on specific targets. To ensure a fair comparison, we used

the same compilation options and execution commands for all ex-
periments. To mitigate the effects of fuzzing randomness on the
results, each experiment was repeated 5 times, with a time budget
of 24 hours per run.
Environment.All experimentswere conducted on a server equipped
with an AMD 64-Core Processor and 1TB of RAM, running a 64-bit
version of Ubuntu 22.04 LTS.

4.1 RQ1: Effectiveness in Triggering Known
Vulnerabilities

To answer RQ1, we evaluated the effectiveness of HGFuzzer against
the baselines on the benchmark. We used the time to exploit
(TTE) as the metric for evaluating effectiveness. Additionally, we
compared the time spent on static analysis (TS) between HG-
Fuzzer, AFLGo, and Beacon. Since SelectFuzz performs seed execu-
tion to detect code regions related to the target during the fuzzing
process, and both SelectFuzz and AFL++ only perform compilation
and instrumentation during the preparation phase, their TS was not
recorded. We also evaluated the time for HGFuzzer to guide the
execution path to the target function (TTR). For evaluating the
performance of the baselines on the benchmark, we collected the
vulnerable library programs mentioned in the CVE reports or the
fuzz drivers provided by the libraries as the fuzzing entry points.
The initial inputs for the baselines were set to the test inputs or
fuzz inputs provided by the libraries.

As detailed in Table 1,HGFuzzer successfully triggered 17 out
of 20 vulnerabilities within the 24-hour time budget, the high-
est among all evaluated methods. In contrast, the baselines showed
significantly lower success rates, with AFLGo and SelectFuzz each
triggering 5 vulnerabilities and Beacon triggering 6, representing a
2.2x to 2.3x improvement in the number of successfully triggered
vulnerabilities by HGFuzzer. The baselines also encountered cases
where certain CVEs were marked as unavailable due to static anal-
ysis errors or runtime failures. For instance, AFLGo and Beacon
failed to process CVE-2018-20330 due to block distance calculation
errors, while SelectFuzz and AFL++ successfully initiated fuzzing
on CVE-2018-20330 but encountered runtime errors, with their exe-
cution paths remaining constant at 1. This highlights the robustness
of HGFuzzer in handling a wider range of vulnerabilities.

Among the vulnerabilities successfully triggered by HGFuzzer,
11 were exploited within the first minute of fuzzing, show-
casing its efficiency in reaching and triggering vulnerabilities. For
example, in CVE-2016-9831, HGFuzzer exploited the vulnerability
in under one minute, significantly faster than AFL++’s 0.45 hours,
while the TTE for all other baselines exceeded 1 hour for this vul-
nerability. These results demonstrate that HGFuzzer achieves lower
TTEs compared to the baselines, with differences often spanning
orders of magnitude. This efficiency is primarily attributed to HG-
Fuzzer’s ability to generate precise execution conditions and custom
mutators tailored to the target function. By reducing randomness in
input mutation and focusing on paths relevant to the vulnerability,
HGFuzzer significantly accelerates the fuzzing process.

TS and TTR are influenced by factors such as project size, the
complexity of the target function’s call relationships, and the re-
sponse time of the LLM API. However, experimental results show

Directed Greybox Fuzzing via Large Language Model Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 1: Comparison of effectiveness with baselines on our benchmark. The “Total” row represents the number of vulnerabilities
successfully triggered within the time budget.

Library CVE ID Vulnerability Location Vulnerability Type
HGFuzzer AFLGo Beacon

SelectFuzz AFL++
TS TTR TTE TS TTE TS TTE

libming 0.4.7 CVE-2016-9831 util/parser.c:parseSWF_RGBA Buffer Overflow 6.96s 104s I.E. 2,290s 6.7h 16s 4.3h 1.1h 0.45h

libming 0.4.8 CVE-2017-9988 util/parser.c:parseABC_NS_SET_INFO NULL Pointer Dereference 6.24s 179s 10.1h 3,265s T.O. 404s T.O. T.O. T.O.
CVE-2018-13066 util/parser.c:parseSWF_DEFINETEXT Memory Leak 6.28s 94s I.E. 3,473s T.O. 131s 5.8h T.O. T.O.

libpng 1.6.34
CVE-2018-13785 pngrutil.c:png_check_chunk_length Integer Overflow 6.78s 89s 0.27h 563s T.O. 43s T.O. T.O. T.O.
CVE-2018-14048 png.c:png_free_data Segmentation Violation 6.79s 96s T.O. 573s T.O. 78s T.O. T.O. T.O.
CVE-2019-7317 pngerror.c:png_safe_execute Use-after-free 7.12s 107s I.E. 607s T.O. 98s T.O. T.O. T.O.

libjpeg-turbo 2.0.1 CVE-2018-20330 turbojpeg.c:tjLoadImage Buffer Overflow 6.2s 71s 2.17h U.A. / U.A. / U.A. U.A.
libjpeg-turbo 2.0.4 CVE-2020-13790 rdppm.c:get_rgb_row Buffer Overflow 6.25s 77s 3.12h 91s T.O. 22s T.O. T.O. T.O.
libjpeg-turbo 2.0.9 CVE-2021-46822 rdppm.c:get_word_rgb_row Buffer Overflow 6.52s 82s T.O. 697s T.O. 14s T.O. T.O. T.O.

lcms2.9 CVE-2018-16435 src/cmscgats.c:AllocateDataSet Integer Overflow 6.57s 98s I.E. 950s T.O. 82s T.O. T.O. T.O.

libxls 1.4.0

CVE-2017-2896 src/xls.c:xls_mergedCells Out-of-bounds Write 6.33s 102s I.E. 41s I.E. 11s 0.35h 3.7h 0.85h
CVE-2017-2897 src/ole.c:read_MSAT Out-of-bounds Write 6.31s 99s I.E. 55s 0.35h 9s I.E. 0.25h 0.23h
CVE-2017-2910 src/xls.c:xls_addCell Out-of-bounds Write 6.09s 104s 0.13h 64s 1.2h 15s I.E. 0.73h 1.1h
CVE-2021-27836 src/xls.c:xls_getWorkSheet Segmentation Violation 6.22s 103s I.E. 112s 0.45h 16s 0.5h 2.43h 1.23h

libzip 1.2.0 CVE-2017-12858 lib/zip_dirent.c:_zip_dirent_read Use-after-free 6.12s 82s 1.1h 251s T.O. 14s T.O. T.O. T.O.

libgd 2.3.2 CVE-2021-38115 src/gd_tga.c:read_header_tga Out-of-bounds Read 7.36s 79s I.E. U.A. / 23s T.O. U.A. T.O.
CVE-2021-40812 src/gd_bmp.c:_gdImageBmpCtx Out-of-bounds Read 6.41s 112s I.E. 543s T.O. 24s T.O. T.O. T.O.

cjson 1.7.16 CVE-2023-50471 cJSON.c:cJSON_InsertItemInArray Segmentation Violation 6.59s 69s I.E. U.A. / U.A. / T.O. T.O.
CVE-2023-50472 cJSON.c:cJSON_SetValuestring Segmentation Violation 6.57s 67s I.E. 11s T.O. U.A. / T.O. T.O.

libmodbus 3.1.6 CVE-2024-36844 src/modbus.c:send_msg Use-after-free 6.09s 98s T.O. 113s T.O. 10s T.O. T.O. T.O.
Total 17/20 5/20 6/20 5/20 5/20

I.E.: Imiediately Exploit (Trigger the vulnerability in one minute), T.O.: Time Out (>24 hours), U.A.: Unavailable (Static analysis or runtime error)

Table 2: Comparison of target function hit rates with baselines on our benchmark.

CVE ID HGFuzzer AFLGo Beacon SelectFuzz AFL++

CVE-2016-9831 79.16%(38/48) 15.71%(383/2,437) 23.21%(13/56) 34.88%(30/86) 14.64%(115/785)
CVE-2017-9988 53.76%(256/476) 3.68%(126/3,420) 1.57%(17/1,080) 0%(0/428) 1.39%(73/5,223)
CVE-2018-13066 81.82%(9/11) 3.57%(118/3,298) 5.56%(36/647) 0.76%(3/390) 9.48%(452/4,763)
CVE-2018-13785 94.73%(18/19) 94.10%(319/339) 90.09%(100/111) 97.63%(124/127) 96.71%(294/304)
CVE-2018-14048 99.63%(270/271) 90.15%(119/132) 94.07%(127/135) 96%(120/125) 93.03%(187/201)
CVE-2019-7317 100%(3/3) 100.00%(208/208) 100.00%(126/126) 100.00%(58/58) 100.00%(199/199)
CVE-2018-20330 100.00%(320/320) U.A. U.A. U.A. U.A.
CVE-2020-13790 7.94%(29/365) 1.00%(21/2,094) 8.07%(39/483) 14.10%(22/156) 4.19%(137/3,264)
CVE-2021-46822 9.91%(36/363) 1.03%(16/1,543) 3.07%(18/585) 0%(0/146) 0.74%(20/2,669)
CVE-2018-16435 22.47%(20/89) 9.26%(39/421) 2.52%(11/436) 5.77%(3/52) 14.29%(7/49)
CVE-2017-2896 92.96%(66/73) 2.42%(8/330) 13.19%(76/576) 4.72%(35/742) 13.69%(66/482)
CVE-2017-2897 95.83%(69/72) 83.75%(299/357) 90.84%(119/131) 94.77%(290/306) 79.91%(346/433)
CVE-2017-2910 56.25%(36/64) 38.96%(247/634) 30.88%(42/136) 43.99%(267/607) 36.42%(287/788)
CVE-2021-27836 73.53%(50/68) 69.43%(602/867) 73.45%(498/678) 46.87%(1047/2,234) 75.42%(801/1,062)
CVE-2017-12858 88.14%(721/818) 90.77%(492/542) 75.70%(349/461) 99.28%(139/140) 95.65%(22/23)
CVE-2021-38115 100.00%(17/17) U.A. 100.00%(5/5) U.A. 100.00%(5/5)
CVE-2021-40812 100.00%(13/13) 44.10%(202/458) 37.70%(204/541) 68.60%(59/86) 42.04%(206/490)
CVE-2023-50471 80%(8/10) U.A. U.A. 0%(0/114) 0%(0/37)
CVE-2023-50472 100.00%(3/3) 0%(0/612) U.A. 0%(0/102) 0%(0/39)
CVE-2024-36844 98.75%(79/80) 4.65%(2/43) 7.14%(3/42) 14.29%(1/7) 18.75%(12/64)

AVG 64.75%(2,061/3,183) 18.05%(3,201/17,735) 28.62%(1,783/6,229) 37.22%(2,198/5,906) 15.46%(3,229/20,880)

that our approach has an advantage in processing time dur-
ing the preparation phase. Unlike AFLGo and Beacon, which
incur significant computational overhead from calculating block
distances during static analysis, HGFuzzer only requires query-
ing the call chains of the target function within the library.
This results in lower computational overhead and faster processing

speed. For example, in libming, the average static analysis time
for AFLGo exceeds 3000 seconds, while for Beacon, it exceeds 183
seconds. In contrast, our approach completes static analysis in just
6–7 seconds. Additionally, HGFuzzer guides the execution path to
the target function within an average of 95.6 seconds, avoiding the
need for fuzz region guidance based on path distance calculations.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hanxiang Xu, Yanjie Zhao, and Haoyu Wang

In conclusion, HGFuzzer effectively balances success rate, effi-
ciency, and computational overhead in triggering known vulnerabil-
ities. It outperforms baselines in both the number of vulnerabilities
triggered and the time required to exploit them. Its ability to avoid
costly block distance calculations during static analysis further high-
lights its efficiency, completing preparation phases significantly
faster than baselines. These results emphasize HGFuzzer’s practi-
cality in triggering known vulnerabilities for open source libraries.

4.2 RQ2: Effectiveness in Constraining
Execution Paths

To evaluate whether HGFuzzer can effectively constrain execu-
tion paths to hit target functions more frequently, we examined
how explicit path constraints generated by the LLM influence the
fuzzing process. These path constraints are designed to reduce un-
necessary exploration of non-target regions, potentially lowering
performance overhead and improving the success rate of triggering
vulnerabilities. For our analysis, we need to examine the execution
paths explored during the experiments in Section 4.1.

During fuzzing, each unique execution path discovered generates
a new seed that is preserved in the fuzzer’s queue. Therefore, by
analyzing these seeds, we can determine what proportion of the
fuzzer’s exploration successfully reached our target functions. We
compared the target function hit rate across all approaches by using
afl-cov to determine whether each generated seed hit the target
function, then calculated the overall hit rate. This metric directly
measures how effectively each approach guides execution toward
the vulnerable code regions.

As illustrated in Table 2, HGFuzzer achieved the highest tar-
get function hit rate on 14 out of 20 CVEs. For example, in CVE-
2016-9831, HGFuzzer achieved a hit rate of 79.16%, significantly
outperforming SelectFuzz (34.88%) and AFL++ (14.64%). Similarly,
for CVE-2018-14048, HGFuzzer reached a hit rate of 99.63%, which
is higher than SelectFuzz (96%) and other baselines. These results
confirm the ability of HGFuzzer to guide execution paths effectively
toward target functions. In contrast, the baselines demonstrated
very low or even zero hit rates on certain CVEs, such as CVE-2018-
13066 and CVE-2023-50472. This suggests that the library programs
or their built-in fuzz drivers struggled or failed to reach the target
functions, leading to poor performance of the baselines.

HGFuzzer also generated the smallest number of seeds across
the benchmark dataset, with a total of 3,183 seeds. This indicates
significantly fewer explored paths, demonstrating that HGFuzzer
effectively constrained the execution paths during fuzzing.
Compared to the best-performing baseline, SelectFuzz, which gen-
erated 5,906 seeds, HGFuzzer reduced the number of explored paths
by 46%. Despite exploring fewer paths, HGFuzzer achieved the high-
est average target function hit rate of 64.75%, representing a 27.5%
improvement over SelectFuzz (37.22%).

These results highlight three key findings: (1) HGFuzzer sig-
nificantly constrains the execution paths during directed fuzzing,
reducing unnecessary exploration of non-target regions and improv-
ing efficiency. (2) HGFuzzer achieves the highest target function
hit rate, enabling it to fuzz the target functions more frequently,
which correlates with its high success rate and low TTE observed
in the Section 4.1 experiments. (3) The use of LLM to explicitly

generate target harnesses as fuzzing entry points demonstrates
great flexibility, providing a significant advantage even in scenarios
where open-source library programs struggle to reach the target
functions. This flexibility ensures the effectiveness of HGFuzzer
across a diverse range of programs and CVEs.

4.3 RQ3: Ablation Study
HGFuzzer leverages the generative power of LLM to improve multi-
ple key steps in existing directed fuzzing techniques. To evaluate the
contributions of each component, we conducted an ablation study
by defining three variations of HGFuzzer: (1) HGFuzzer without the
reachable input generation component, using the same initial in-
puts as the baselines in Section 4.1 (Without Input); (2) HGFuzzer
without the target-specific mutator generation (Without Muta-
tor); and (3) HGFuzzer without both reachable input generation
and target-specific mutator generation, relying solely on the target
harness generation (Harness-only). We evaluated the TTE of these
variations across the benchmark to measure their effectiveness.

Table 3: Comparison of effectivenesswith differentHGFuzzer
variations.

CVE ID Without Input Without Mutator Harness-only

CVE-2016-9831 0.28h 0.1h 0.25h
CVE-2017-9988 T.O. T.O. T.O.
CVE-2018-13066 T.O. T.O. T.O.
CVE-2018-13785 9.8h 10.65h 13.7h
CVE-2018-14048 T.O. T.O. T.O.
CVE-2019-7317 T.O. T.O. T.O.
CVE-2018-20330 5.32h 2.3h T.O.
CVE-2020-13790 7.65h 9.1h 17.5h
CVE-2021-46822 T.O. T.O. T.O.
CVE-2018-16435 T.O. 0.12h T.O.
CVE-2017-2896 I.E. I.E. I.E.
CVE-2017-2897 I.E. 0.16h 0.22h
CVE-2017-2910 I.E. 0.11h 0.15h
CVE-2021-27836 I.E. 0.27h 0.25h
CVE-2017-12858 7.5h 2.45h 7.9h
CVE-2021-38115 I.E. 0.13h 0.05h
CVE-2021-40812 I.E. 0.08h 0.1h
CVE-2023-50471 I.E. I.E. I.E.
CVE-2023-50472 I.E. I.E. I.E.
CVE-2024-36844 T.O. T.O. T.O.

Total 13/20 14/20 12/20

As shown in Table 3, the removal of individual components led
to significant degradation in performance. The Without Input varia-
tion successfully triggered vulnerabilities in only 13 out of 20 CVEs,
with longer TTE compared to the full HGFuzzer (e.g., 5.32h for
CVE-2018-20330 compared to 2.17h in Section 4.1). The Without
Mutator variation performed slightly better, exposing vulnerabili-
ties in 14 out of 20 CVEs, but its TTE was also noticeably higher
(e.g., 10.65h for CVE-2018-13785 compared to 0.27h in Section 4.1).
The Harness-only variation showed the weakest performance, suc-
cessfully exposing vulnerabilities in only 12 out of 20 CVEs, and
often failed to reduce TTE to a practical level (e.g., timing out on
CVE-2018-20330).

Directed Greybox Fuzzing via Large Language Model Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

By comparing the results in Table 1 and Table 3, the ablation
experiments demonstrate the essential contributions of each com-
ponent in HGFuzzer. The absence of reachable input generation
significantly reduces the ability to guide execution toward the tar-
get function, as it ensures the satisfaction of execution conditions
derived from the call chain analysis. Similarly, removing the target-
specific mutator generation hinders efficient mutation of inputs
to satisfy vulnerability-triggering conditions; the fuzzer relies on
random mutations, leading to excessive exploration of irrelevant
paths and increased TTE (e.g., 5.32h vs. 2.17h in CVE-2018-20330).
The Harness-only variation, which lacks both components, per-
forms the worst, as the harness alone cannot ensure correct path
traversal or condition satisfaction, leading to lower success rates
and frequent timeouts. We observe that for CVE-2023-50471 and
CVE-2023-50472, the three variations exhibit no significant differ-
ences compared to the results in Section 4.1, as their exploitability
heavily depends on specific library execution paths. HGFuzzer ef-
fectively captures these features and incorporates them into the
target harness, achieving good performance even with the Harness-
only variation. These results highlight that reachable input gen-
eration and target-specific mutators are essential to reducing
randomness and improving directed fuzzing efficiency, with the
full integration of all components providing the best performance.

4.4 RQ4: Vulnerability Detection
In this section, we apply HGFuzzer to detect new vulnerabilities.
We selected two open-source libraries from the benchmark dataset
(libming and lcms) and tested their latest versions after compi-
lation. Since directed fuzzers require specific fuzzing targets, we
adopted two strategies to define these targets. First, we investi-
gated the most recent vulnerabilities in these libraries from the
CVE database [4] and used their root cause locations as fuzzing
targets, which is based on the observation that certain vulnerable lo-
cations may contain multiple related bugs [52]. Second, we invited
a security expert to manually review the code of the target libraries
to identify additional suspicious locations. We applied HGFuzzer
to each target for 24 hours of fuzzing. As a result, HGFuzzer dis-
covered 9 new vulnerabilities across the two open-source libraries.
All 9 vulnerabilities were assigned CVE IDs, demonstrating the
real-world impact of our approach. The details of these findings are
summarized in Table 4.

Table 4: Vulnerabilities identified by HGFuzzer.

Library Vulnerability Location Vulnerability Type CVE

libming 0.4.8

util/parser.c:parseSWF_EXPORTASSETS Memory Leak CVE-2025-26304
util/parser.c:parseSWF_SOUNDINFO Memory Leak CVE-2025-26305
util/read.c:readSizedString Memory Leak CVE-2025-26306
util/parser.c:parseSWF_IMPORTASSETS2 Memory Leak CVE-2025-26307
util/parser.c:parseSWF_FILTERLIST Memory Leak CVE-2025-26308
util/parser.c:parseSWF_DEFINESCENEANDFRAMEDATA Memory Leak CVE-2025-26309
util/parser.c:parseABC_FILE Memory Leak CVE-2025-26310
util/parser.c:parseSWF_CLIPACTIONS Memory Leak CVE-2025-26311

lcms2.16 cmsgamma.c:smooth2 Buffer Overflow CVE-2025-29070

To further demonstrate the effectiveness to detect unknown vul-
nerabilities of HGFuzzer, we provide two representative examples
of the vulnerabilities it identified, as shown in Figure 8. First, HG-
Fuzzer identified a memory leak vulnerability in the readSizedStr

339 char *readSizedString(FILE *f,int size)
340 {
341 int len = 0, buflen = 256, i;
342 char c, *buf, *p;
343
344 buf = (char *)malloc(sizeof(char)*buflen);
345 p = buf;
346
347 for(i=0;i<size;i++)
348 {
349 c=(char)readUInt8(f);
350 if(len >= buflen-2)
351 {
352 buf = (char *)realloc(buf, sizeof(char)*(buflen+256));
353 buflen += 256;
354 p = buf+len;
356 }
... ...
374 return buf;
375 }

(a) A memory leak case (CVE-2025-26306) in libming 0.4.8.

1137 static cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[],
1138 cmsFloat32Number z[], cmsFloat32Number lambda, int m)
1139 {
1140 int i, i1, i2;
1141 cmsFloat32Number *c, *d, *e;
1142 cmsBool st;
1143
1144 c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1145 d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1146 e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1147
1148 if (c != NULL && d != NULL && e != NULL) {
... ...
1185
1186 i1 = m - 2; i2 = m - 3;
1187
1188 d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
1189 c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1];
1190 z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2];
1191 i1 = m - 1; i2 = m - 2;
... ...
1201 }
1202 else st = FALSE;
1203
1204 if (c != NULL) _cmsFree(ContextID, c);
1205 if (d != NULL) _cmsFree(ContextID, d);
1206 if (e != NULL) _cmsFree(ContextID, e);
1207
1208 return st;
1209 }

(b) A buffer overflow case (CVE-2025-29070) in lcms2.16.

Figure 8: Examples of identified vulnerabilities.

ing function of libming 0.4.8. The issue arises from insufficient
error handling during dynamic memory allocation. The function al-
locates a buffer using malloc (line 344) and resizes it with realloc
(line 352) when the buffer size is exceeded. However, in cases where
realloc fails, the previously allocated memory is not freed, leading
to a memory leak. Additionally, the function lacks proper cleanup
logic in error conditions, such as when readUInt8 fails during the
loop (lines 347–356). This vulnerability was assigned CVE-2025-
26306. Second, HGFuzzer revealed a buffer overflow vulnerability
in the smooth2 function of lcms2. The function dynamically allo-
cates memory for the c, d, and e arrays using _cmsCalloc (lines
1144–1146) and subsequently accesses elements based on the input
parameter m. At lines 1188–1190, the function performs calcula-
tions that access d[m-1], d[m-2], and d[m-3] without validating
whether m is large enough to ensure safe access. If the input m is
less than 4, these array accesses result in a buffer overflow.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hanxiang Xu, Yanjie Zhao, and Haoyu Wang

5 Discussion
HGFuzzer demonstrates the effectiveness of applying LLM to DGF.
To explore more effective DGF approaches, we discuss core aspects
of our approach and identify promising future directions.

Selection of LLM. In our implementation of HGFuzzer, we
utilized Claude-3.5-Sonnet as the underlying LLM. However, the
performance of different LLMs may vary significantly, leading to
discrepancies in outputs and results. More advanced LLMs gener-
ally exhibit a deeper understanding of the instructions provided
in prompts and are capable of generating higher-quality harnesses
and initial inputs. This suggests that the performance of HGFuzzer
could be further enhanced by employing more powerful LLMs. Ad-
ditionally, we observed during our experiments that hallucinations
in the LLM could produce incorrect all-chain analysis results [24].
This issue can lead to the generation of reachable inputs that fail
to satisfy specific constraints. For example, in the case of complex
conditional branches, as illustrated in Figure 2, the LLM might
mistakenly interpret a condition requiring maxval to be less than
255 as requiring maxval to be greater than or equal to 255. Such
misinterpretations negatively impact the effectiveness of HGFuzzer,
especially in scenarios with intricate logic or constraints. A val-
idation mechanism that cross-checks LLM-generated constraint
interpretations against the original code could be implemented to
address this issue, which we leave as a direction for future work.

Expanding Applicability. The benchmark libraries used in our
evaluation are open-source, with their source code publicly avail-
able. These libraries are also likely included in the training data of
the selected LLM. As a result, applying HGFuzzer directly to closed-
source libraries might yield different evaluation outcomes. Inspired
by AFGen’s approach of generating harnesses for whole functions
of applications [37], we also consider leveraging internal function
call relationships as a reference for generating target harnesses.
This could enable HGFuzzer to be applied in a broader range of soft-
ware scenarios, such as Linux-based systems and web frameworks.
Expanding the scope of HGFuzzer to these domains would require
addressing challenges related to analyzing closed-source code and
handling complex system-level dependencies, which presents an
interesting direction for future work.

6 Related Work
6.1 Directed Greybox Fuzzing
DGF has recently gained attention due to its ability to efficiently
locate specific target sites or trigger certain program behaviors.
Böhme et al. [10] proposed AFLGo, a pioneering DGF tool that
utilizes a distance-based fitness metric to prioritize seeds closer to
target locations. AFLGo calculates target distances during compile
time and uses this information at runtime to guide the fuzzing pro-
cess, achieving significant efficiency improvements in tasks such
as bug reproduction. Building on AFLGo, tools like Hawkeye [12]
introduced function-level trace similarity to enhance seed prioriti-
zation, while tools such as UAFL [49] and UAFuzz [44] focused on
detecting complex behavioral bugs like use-after-free vulnerabili-
ties using sequence-aware fitness metrics. Berry [33] extended this
concept by incorporating execution context into target sequences,
improving the accuracy of target coverage.

To improve target identification, recent tools have integrated
advanced techniques. SUZZER [63], V-Fuzz [32], and DeepGo [35]
employ deep learning models to predict vulnerable code regions,
enabling the automatic labeling of potential targets without manual
effort. AFLChurn [65] and DeltaFuzz [61] leverage code changes
from version control systems to identify patch-related targets, mak-
ing them suitable for regression testing scenarios. Additionally,
tools like FuzzGuard [67] and BEACON [21] use lightweight static
analysis or deep learning to filter out unreachable inputs, signifi-
cantly improving fuzzing efficiency. For example, FuzzGuard has
been shown to reduce unnecessary path executions by over 80%,
while BEACON combines symbolic execution with filtering mecha-
nisms to further optimize performance. These advancements high-
light the diverse approaches in DGF, focusing on improved target
identification, advanced fitness metrics, and optimization strategies
to enhance fuzzing performance across a variety of scenarios.

6.2 LLM for Fuzzing
Recent advancements in integrating LLM with fuzzing have demon-
strated their potential to address challenges in generating meaning-
ful and context-aware test cases for complex software systems [25,
27, 55]. Unlike traditional fuzzing methods, which often rely on
simple input generation techniques, LLM enable more sophisticated
approaches by leveraging their generative capabilities. Tools such as
TitanFuzz [14], FuzzGPT [15], WhiteFox [58], and ParaFuzz [57] uti-
lize models like GPT [8] and Codex [18] to improve input diversity
and quality. These approaches incorporate LLM into prompt engi-
neering and seed mutation processes, enhancing the effectiveness
of fuzzing. Furthermore, LLMs have been applied to refine mutation
strategies, beyond conventional techniques such as bit-flipping [50].
E.g., CovRL-Fuzz [17] employs LLM to perform coverage-guided
mutations while maintaining input validity, increasing the proba-
bility of uncovering unexpected software behavior.

In addition to improving fuzzing inputs, LLM are increasingly
employed to automate and simplify fuzzing workflows, particularly
in the generation of fuzz drivers. InputBlaster [38] demonstrates the
use of LLM to create specialized text inputs for mobile applications,
achieving higher bug detection rates compared to conventional
methods. Similarly, ChatAFL [43] and ChatFuzz [20] integrate LLM
to enhance fuzzing for web applications and network protocols,
resulting in greater code coverage and better vulnerability identifi-
cation. LLM have also proven effective in automating fuzz driver
generation, which is critical for targeting specific APIs or software
functions. Zhang et al. [60] employ GPT-3.5 and GPT-4 to auto-
mate the creation of fuzz drivers for complex library APIs, reducing
manual effort and achieving over 60% automation. Similarly, CK-
GFuzzer [54] leverages LLM along with a code knowledge graph
to iteratively generate high-quality fuzz drivers, enabling deeper
exploration of previously untested library code and improving code
coverage. These advancements demonstrate the potential of in-
tegrating LLM with knowledge-driven frameworks to streamline
fuzzing processes and enhance their overall effectiveness.

7 Conclusion
In this work, we present HGFuzzer, a novel and automatic frame-
work that integrates LLM to enhance DGF. By transforming path

Directed Greybox Fuzzing via Large Language Model Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

constraint analysis into code generation tasks, HGFuzzer systemat-
ically generates target harnesses and reachable inputs, effectively
reducing unnecessary path exploration. Additionally, it employs
custom mutators tailored to specific vulnerabilities, minimizing
randomness in input mutation and improving fuzzing precision.
Evaluated on 20 real-world vulnerabilities, HGFuzzer outperformed
state-of-the-art fuzzers, successfully triggering 17 vulnerabilities,
11 of which were triggered within the first minute, and achiev-
ing a speedup of at least 24.8× compared to baselines. Moreover,
HGFuzzer discovered 9 previously unknown vulnerabilities, all of
which received CVE IDs. These results demonstrate the effective-
ness of HGFuzzer in improving fuzzing efficiency and precision.

References
[1] 2018. afl-cov. https://github.com/mrash/afl-cov
[2] 2025. AFL++. https://github.com/AFLplusplus/AFLplusplus
[3] 2025. CodeQL documentation. https://codeql.github.com/docs/
[4] 2025. CVE Database. https://cve.mitre.org/
[5] 2025. LlamaIndex Documents. https://docs.llamaindex.ai/en/stable/
[6] 2025. OSS-Fuzz. https://github.com/google/oss-fuzz/tree/master/projects
[7] 2025. Tree-Sitter documentation. https://tree-sitter.github.io/tree-sitter/
[8] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[9] Anthropic. 2024. Claude 3.5 Sonnet. https://www.anthropic.com/news/claude-
3-5-sonnet

[10] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 2329–2344.
doi:10.1145/3133956.3134020

[11] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and Wenqian
Liu. 2018. A systematic review of fuzzing techniques. Computers & Security 75
(2018), 118–137. doi:10.1016/j.cose.2018.02.002

[12] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. 2018. Hawkeye: Towards a Desired Directed Grey-box Fuzzer. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). Association for Computing Machinery, New
York, NY, USA, 2095–2108. doi:10.1145/3243734.3243849

[13] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-
Learning Libraries via Large Language Models. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (Seattle, WA,
USA) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA,
423–435. doi:10.1145/3597926.3598067

[14] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large language models are zero-shot fuzzers: Fuzzing deep-learning
libraries via large language models. In Proceedings of the 32nd ACM SIGSOFT
international symposium on software testing and analysis. 423–435.

[15] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shu-
jing Yang, and Lingming Zhang. 2024. Large language models are edge-case
generators: Crafting unusual programs for fuzzing deep learning libraries. In Pro-
ceedings of the 46th IEEE/ACM International Conference on Software Engineering.
1–13.

[16] Zhengjie Du, Yuekang Li, Yang Liu, and Bing Mao. 2022. Windranger: A Directed
Greybox Fuzzer driven by Deviation Basic Blocks. In 2022 IEEE/ACM 44th In-
ternational Conference on Software Engineering (ICSE). 2440–2451. doi:10.1145/
3510003.3510197

[17] Jueon Eom, Seyeon Jeong, and Taekyoung Kwon. 2024. Fuzzing JavaScript Inter-
preters with Coverage-Guided Reinforcement Learning for LLM-Based Mutation.
In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis (Vienna, Austria) (ISSTA 2024). Association for Computing
Machinery, New York, NY, USA, 1656–1668. doi:10.1145/3650212.3680389

[18] James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The robots are coming: Exploring the implications of openai
codex on introductory programming. In Proceedings of the 24th Australasian
Computing Education Conference. 10–19.

[19] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2024. Large Language Models for
Software Engineering: A Systematic Literature Review. ACM Trans. Softw. Eng.
Methodol. 33, 8, Article 220 (Dec. 2024), 79 pages. doi:10.1145/3695988

[20] Jie Hu, Qian Zhang, and Heng Yin. 2023. Augmenting greybox fuzzing with
generative ai. arXiv preprint arXiv:2306.06782 (2023).

[21] Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles
Zhang. 2022. BEACON: Directed Grey-Box Fuzzing with Provable Path Pruning.
In 2022 IEEE Symposium on Security and Privacy (SP). 36–50. doi:10.1109/SP46214.
2022.9833751

[22] Heqing Huang, Peisen Yao, Hung-Chun Chiu, Yiyuan Guo, and Charles Zhang.
2024. Titan : Efficient Multi-target Directed Greybox Fuzzing. 2024 IEEE Sympo-
sium on Security and Privacy (SP) (2024), 1849–1864. https://api.semanticscholar.
org/CorpusID:268386913

[23] Heqing Huang, Anshunkang Zhou, Mathias Payer, and Charles Zhang. 2024.
Everything is Good for Something: Counterexample-Guided Directed Fuzzing
via Likely Invariant Inference. In 2024 IEEE Symposium on Security and Privacy
(SP). 1956–1973. doi:10.1109/SP54263.2024.00142

[24] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian
Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2025. A Survey on Hallucination in Large Language Models: Principles,
Taxonomy, Challenges, and Open Questions. ACM Trans. Inf. Syst. 43, 2, Article
42 (Jan. 2025), 55 pages. doi:10.1145/3703155

[25] Linghan Huang, Peizhou Zhao, Huaming Chen, and Lei Ma. 2024. Large Language
Models Based Fuzzing Techniques: A Survey. arXiv:2402.00350 [cs.SE] https:
//arxiv.org/abs/2402.00350

[26] Zhenlan Ji, Pingchuan Ma, Zongjie Li, and Shuai Wang. 2023. Benchmarking and
Explaining Large Language Model-based Code Generation: A Causality-Centric
Approach. arXiv:2310.06680 [cs.SE] https://arxiv.org/abs/2310.06680

[27] Yu Jiang, Jie Liang, Fuchen Ma, Yuanliang Chen, Chijin Zhou, Yuheng Shen,
Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Shanshan Li, and Quan Zhang. 2024.
When Fuzzing Meets LLMs: Challenges and Opportunities. In Companion Pro-
ceedings of the 32nd ACM International Conference on the Foundations of Software
Engineering (Porto de Galinhas, Brazil) (FSE 2024). Association for Computing
Machinery, New York, NY, USA, 492–496. doi:10.1145/3663529.3663784

[28] Zongze Jiang, Ming Wen, Jialun Cao, Xuanhua Shi, and Hai Jin. 2024. Towards
Understanding the Effectiveness of Large Language Models on Directed Test
Input Generation. In Proceedings of the 39th IEEE/ACM International Conference
on Automated Software Engineering (Sacramento, CA, USA) (ASE ’24). Association
for Computing Machinery, New York, NY, USA, 1408–1420. doi:10.1145/3691620.
3695513

[29] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2123–2138. doi:10.1145/3243734.
3243804

[30] Gwangmu Lee, Woochul Shim, and Byoungyoung Lee. 2021. Constraint-guided
Directed Greybox Fuzzing. In 30th USENIX Security Symposium (USENIX Secu-
rity 21). USENIX Association, 3559–3576. https://www.usenix.org/conference/
usenixsecurity21/presentation/lee-gwangmu

[31] Tsz-On Li, Wenxi Zong, Yibo Wang, Haoye Tian, Ying Wang, Shing-Chi Che-
ung, and Jeff Kramer. 2023. Nuances are the Key: Unlocking ChatGPT to Find
Failure-Inducing Tests with Differential Prompting. In 2023 38th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 14–26. doi:10.
1109/ASE56229.2023.00089

[32] Yuwei Li, Shouling Ji, Chenyang Lyu, Yuan Chen, Jianhai Chen, Qinchen Gu,
Chunming Wu, and Raheem Beyah. 2022. V-Fuzz: Vulnerability Prediction-
Assisted Evolutionary Fuzzing for Binary Programs. IEEE Transactions on Cyber-
netics 52, 5 (2022), 3745–3756. doi:10.1109/TCYB.2020.3013675

[33] Hongliang Liang, Lin Jiang, Lu Ai, and Jinyi Wei. 2020. Sequence directed hybrid
fuzzing. In 2020 IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 127–137.

[34] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018.
Fuzzing: State of the Art. IEEE Transactions on Reliability 67, 3 (2018), 1199–1218.
doi:10.1109/TR.2018.2834476

[35] Peihong Lin, Pengfei Wang, Xu Zhou, Wei Xie, Gen Zhang, and Kai Lu. 2024.
DeepGo: Predictive Directed Greybox Fuzzing. In Proceedings of the Network and
Distributed System Security Symposium.

[36] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is
Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. arXiv:2305.01210 [cs.SE] https://arxiv.
org/abs/2305.01210

[37] Yuwei Liu, YanhaoWang, Xiangkun Jia, Zheng Zhang, and Purui Su. 2024. AFGen:
Whole-Function Fuzzing for Applications and Libraries. In 2024 IEEE Symposium
on Security and Privacy (SP). 1901–1919. doi:10.1109/SP54263.2024.00011

[38] Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Xing Che,
Dandan Wang, and Qing Wang. 2023. Testing the Limits: Unusual Text In-
puts Generation for Mobile App Crash Detection with Large Language Model.
arXiv:2310.15657 [cs.SE] https://arxiv.org/abs/2310.15657

[39] Changhua Luo, Wei Meng, and Penghui Li. 2023. SelectFuzz: Efficient Directed
Fuzzing with Selective Path Exploration. In 2023 IEEE Symposium on Security and
Privacy (SP). 2693–2707. doi:10.1109/SP46215.2023.10179296

https://github.com/mrash/afl-cov
https://github.com/AFLplusplus/AFLplusplus
https://codeql.github.com/docs/
https://cve.mitre.org/
https://docs.llamaindex.ai/en/stable/
https://github.com/google/oss-fuzz/tree/master/projects
https://tree-sitter.github.io/tree-sitter/
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1016/j.cose.2018.02.002
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3510003.3510197
https://doi.org/10.1145/3510003.3510197
https://doi.org/10.1145/3650212.3680389
https://doi.org/10.1145/3695988
https://doi.org/10.1109/SP46214.2022.9833751
https://doi.org/10.1109/SP46214.2022.9833751
https://api.semanticscholar.org/CorpusID:268386913
https://api.semanticscholar.org/CorpusID:268386913
https://doi.org/10.1109/SP54263.2024.00142
https://doi.org/10.1145/3703155
https://arxiv.org/abs/2402.00350
https://arxiv.org/abs/2402.00350
https://arxiv.org/abs/2402.00350
https://arxiv.org/abs/2310.06680
https://arxiv.org/abs/2310.06680
https://doi.org/10.1145/3663529.3663784
https://doi.org/10.1145/3691620.3695513
https://doi.org/10.1145/3691620.3695513
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu
https://doi.org/10.1109/ASE56229.2023.00089
https://doi.org/10.1109/ASE56229.2023.00089
https://doi.org/10.1109/TCYB.2020.3013675
https://doi.org/10.1109/TR.2018.2834476
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://doi.org/10.1109/SP54263.2024.00011
https://arxiv.org/abs/2310.15657
https://arxiv.org/abs/2310.15657
https://doi.org/10.1109/SP46215.2023.10179296

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hanxiang Xu, Yanjie Zhao, and Haoyu Wang

[40] Yunlong Lyu, Yuxuan Xie, Peng Chen, and Hao Chen. 2024. Prompt Fuzzing for
Fuzz Driver Generation. In Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security (Salt Lake City, UT, USA) (CCS ’24).
Association for Computing Machinery, New York, NY, USA, 3793–3807. doi:10.
1145/3658644.3670396

[41] Valentin J.M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2021. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering 47,
11 (2021), 2312–2331. doi:10.1109/TSE.2019.2946563

[42] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024.
Large Language Model guided Protocol Fuzzing. Proceedings 2024 Network and
Distributed System Security Symposium (2024). https://api.semanticscholar.org/
CorpusID:265296188

[43] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024.
Large language model guided protocol fuzzing. In Proceedings of the 31st Annual
Network and Distributed System Security Symposium (NDSS).

[44] Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and
Matthieu Lemerre. 2020. Binary-level Directed Fuzzing for Use-After-Free
Vulnerabilities. In 23rd International Symposium on Research in Attacks, In-
trusions and Defenses (RAID 2020). USENIX Association, San Sebastian, 47–62.
https://www.usenix.org/conference/raid2020/presentation/nguyen

[45] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020.
ParmeSan: Sanitizer-guided Greybox Fuzzing. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, 2289–2306. https://www.usenix.org/
conference/usenixsecurity20/presentation/osterlund

[46] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2021. Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. arXiv:2108.09293 [cs.CR] https://arxiv.org/abs/
2108.09293

[47] RuizhongQiu,WeiliangWill Zeng, Hanghang Tong, James Ezick, and Christopher
Lott. 2024. How Efficient is LLM-Generated Code? A Rigorous & High-Standard
Benchmark. arXiv:2406.06647 [cs.SE] https://arxiv.org/abs/2406.06647

[48] Wenxuan Shi, Yunhang Zhang, Xinyu Xing, and Jun Xu. 2024. Har-
nessing Large Language Models for Seed Generation in Greybox Fuzzing.
arXiv:2411.18143 [cs.CR] https://arxiv.org/abs/2411.18143

[49] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao
Qin, Hongxu Chen, and Yulei Sui. 2020. Typestate-guided fuzzer for discovering
use-after-free vulnerabilities. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association
for Computing Machinery, New York, NY, USA, 999–1010. doi:10.1145/3377811.
3380386

[50] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
aware greybox fuzzing. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE). IEEE, 724–735.

[51] Pengfei Wang, Xu Zhou, Tai Yue, Peihong Lin, Yingying Liu, and Kai Lu. 2023.
The progress, challenges, and perspectives of directed greybox fuzzing. Software
Testing, Verification and Reliability 34, 2 (Dec. 2023). doi:10.1002/stvr.1869

[52] YanhaoWang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, DinghaoWu, and
Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by Coverage
Accounting for Input Prioritization. Proceedings 2020 Network and Distributed
System Security Symposium (2020). https://api.semanticscholar.org/CorpusID:
211268394

[53] Yi Xiang, Xuhong Zhang, Peiyu Liu, Shouling Ji, Hong Liang, Jiacheng Xu, and
Wenhai Wang. 2024. Critical Code Guided Directed Greybox Fuzzing for Com-
mits. In 33rd USENIX Security Symposium (USENIX Security 24). USENIX As-
sociation, Philadelphia, PA, 2459–2474. https://www.usenix.org/conference/
usenixsecurity24/presentation/xiang-yi

[54] Hanxiang Xu,WeiMa, Ting Zhou, Yanjie Zhao, Kai Chen, QiangHu, Yang Liu, and
Haoyu Wang. 2024. CKGFuzzer: LLM-Based Fuzz Driver Generation Enhanced
By Code Knowledge Graph. arXiv:2411.11532 [cs.SE] https://arxiv.org/abs/2411.
11532

[55] Hanxiang Xu, Shenao Wang, Ningke Li, Kailong Wang, Yanjie Zhao, Kai Chen,
Ting Yu, Yang Liu, and Haoyu Wang. 2024. Large Language Models for Cyber
Security: A Systematic Literature Review. arXiv:2405.04760 [cs.CR] https://arxiv.
org/abs/2405.04760

[56] Yijiang Xu, Hongrui Jia, Liguo Chen, Xin Wang, Zhengran Zeng, Yidong Wang,
Qing Gao, Jindong Wang, Wei Ye, Shikun Zhang, and Zhonghai Wu. 2024.
ISC4DGF: Enhancing Directed Grey-box Fuzzing with LLM-Driven Initial Seed
Corpus Generation. arXiv:2409.14329 [cs.SE] https://arxiv.org/abs/2409.14329

[57] Lu Yan, Zhuo Zhang, Guanhong Tao, Kaiyuan Zhang, Xuan Chen, Guangyu Shen,
and Xiangyu Zhang. 2024. Parafuzz: An interpretability-driven technique for
detecting poisoned samples in nlp. Advances in Neural Information Processing
Systems 36 (2024).

[58] Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jab-
barvand, and Lingming Zhang. 2023. WhiteFox: White-Box Compiler Fuzzing
Empowered by Large Language Models. arXiv preprint arXiv:2310.15991 (2023).

[59] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao, Pan Bian, and
Bin Liang. 2017. SemFuzz: Semantics-based Automatic Generation of Proof-of-
Concept Exploits. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (Dallas, Texas, USA) (CCS ’17). Association for
Computing Machinery, New York, NY, USA, 2139–2154. doi:10.1145/3133956.
3134085

[60] Cen Zhang, Mingqiang Bai, Yaowen Zheng, Yeting Li, Wei Ma, Xiaofei Xie,
Yuekang Li, Limin Sun, and Yang Liu. 2023. Understanding large language model
based fuzz driver generation. arXiv e-prints (2023), arXiv–2307.

[61] Jia-Ming Zhang, Zhan-Qi Cui, Xiang Chen, Huan-Huan Wu, Li-Wei Zheng, and
Jian-Bin Liu. 2022. DeltaFuzz: historical version information guided fuzz testing.
Journal of Computer Science and Technology 37, 1 (2022), 29–49.

[62] Yujian Zhang, Yaokun Liu, Jinyu Xu, and YanhaoWang. 2024. Predecessor-aware
Directed Greybox Fuzzing . In 2024 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, Los Alamitos, CA, USA, 1884–1900. doi:10.1109/SP54263.
2024.00040

[63] Yuyue Zhao, Yangyang Li, Tengfei Yang, and Haiyong Xie. 2020. Suzzer: A
Vulnerability-Guided Fuzzer Based on Deep Learning. In International Conference
on Information Security and Cryptology.

[64] Zhuotong Zhou, Yongzhuo Yang, Susheng Wu, Yiheng Huang, Bihuan Chen,
and Xin Peng. 2024. Magneto: A Step-Wise Approach to Exploit Vulnerabilities
in Dependent Libraries via LLM-Empowered Directed Fuzzing. In 2024 39th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
1633–1644.

[65] Xiaogang Zhu and Marcel Böhme. 2021. Regression greybox fuzzing. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 2169–2182.

[66] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing: A
Survey for Roadmap. ACMComput. Surv. 54, 11s, Article 230 (Sept. 2022), 36 pages.
doi:10.1145/3512345

[67] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai
Chen. 2020. FuzzGuard: filtering out unreachable inputs in directed grey-box
fuzzing through deep learning. In Proceedings of the 29th USENIX Conference on
Security Symposium (SEC’20). USENIX Association, USA, Article 127, 15 pages.

https://doi.org/10.1145/3658644.3670396
https://doi.org/10.1145/3658644.3670396
https://doi.org/10.1109/TSE.2019.2946563
https://api.semanticscholar.org/CorpusID:265296188
https://api.semanticscholar.org/CorpusID:265296188
https://www.usenix.org/conference/raid2020/presentation/nguyen
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund
https://arxiv.org/abs/2108.09293
https://arxiv.org/abs/2108.09293
https://arxiv.org/abs/2108.09293
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2411.18143
https://arxiv.org/abs/2411.18143
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1002/stvr.1869
https://api.semanticscholar.org/CorpusID:211268394
https://api.semanticscholar.org/CorpusID:211268394
https://www.usenix.org/conference/usenixsecurity24/presentation/xiang-yi
https://www.usenix.org/conference/usenixsecurity24/presentation/xiang-yi
https://arxiv.org/abs/2411.11532
https://arxiv.org/abs/2411.11532
https://arxiv.org/abs/2411.11532
https://arxiv.org/abs/2405.04760
https://arxiv.org/abs/2405.04760
https://arxiv.org/abs/2405.04760
https://arxiv.org/abs/2409.14329
https://arxiv.org/abs/2409.14329
https://doi.org/10.1145/3133956.3134085
https://doi.org/10.1145/3133956.3134085
https://doi.org/10.1109/SP54263.2024.00040
https://doi.org/10.1109/SP54263.2024.00040
https://doi.org/10.1145/3512345

	Abstract
	1 Introduction
	2 Background
	2.1 Directed Greybox Fuzzing (DGF)
	2.2 LLM for Fuzzing
	2.3 Challenges and Motivations

	3 Methodology
	3.1 Call Chain Analysis
	3.2 Execution Conditions Analysis
	3.3 Target Harness Generation
	3.4 Reachable Input Generation
	3.5 Target-Specific Mutator Generation
	3.6 Implementation

	4 Evaluation
	4.1 RQ1: Effectiveness in Triggering Known Vulnerabilities
	4.2 RQ2: Effectiveness in Constraining Execution Paths
	4.3 RQ3: Ablation Study
	4.4 RQ4: Vulnerability Detection

	5 Discussion
	6 Related Work
	6.1 Directed Greybox Fuzzing
	6.2 LLM for Fuzzing

	7 Conclusion
	References

