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ABSTRACT

The advancement and adoption of Artificial Intelligence (AI) models across diverse domains have
transformed the way we interact with technology. However, it is essential to recognize that while AI
models have introduced remarkable advancements, they also present inherent challenges such as their
vulnerability to adversarial attacks. The current work proposes a novel defense mechanism against one
of the most significant attack vectors of AI models - the backdoor attack via data poisoning of training
datasets. In this defense technique, an integrated approach that combines chaos theory with manifold
learning is proposed. A novel metric - Precision Matrix Dependency Score (PDS) that is based on the
conditional variance of Neurochaos features is formulated. The PDS metric has been successfully
evaluated to distinguish poisoned samples from non-poisoned samples across diverse datasets.

INTRODUCTION
The last few decades have witnessed remarkable advancements and an unprecedented transformation of
Artificial Intelligence (AI) systems. The advent of Large Language Models (LLMs) such as Generative
Pretrained Transformer (GPT), has given rise to their diverse applications including content generation,
machine translation, code completion, chatbots, virtual assistants and thus have seamlessly integrated into
various aspects of daily life. As the adoption of these technologies continues to grow, their applications
continue to extend across industries from healthcare, finance to education, making them an indispensable
part of modern society.

Although AI models have shown remarkable abilities in language generation and processing, these AI
models are also highly vulnerable to various forms of adversarial attacks such as data poisoning (Biggio
et al., 2012), prompt injection (Clusmann et al., 2025), model weight poisoning (Hitaj et al., 2022) and
evasion attacks (Oprea et al., 2022). The extensive use of Pre-trained Language Models, and unvetted
publicly available datasets for training, pose as significant security vulnerabilities that can be expoited
by an adversary to mount adversarial attacks on AI models. Therefore, there are continued concerns
regarding the safe, secure, and ethical deployment of AI systems in the real world. The current work
focuses on defending an AI model’s system integrity against a sophisticated type of data poisoning attack,
called the backdoor attack.

In a backdoor attack, an adversary deliberately inserts subtle backdoors into a small subset of training
dataset with the objective of maliciously modifying the classification or prediction of the AI model when
deployed in the real world. A backdoor trigger in the Natural Language Processing (NLP) domain can be
words or phrases that are carefully crafted to remain stealthy when blended with the legitimate training
data (Li et al., 2022). At the same time, the backdoor triggers are chosen to effectively mislead the model
into predicting an incorrect target label, once the backdoor trigger occurs in the input (in a real-time
application). Additionally, when the AI model is trained on such maliciously modified samples, the model
misclassification occurs for the samples with the backdoor triggers alone, while the model maintains a
normal model accuracy for the samples without the presence of backdoor triggers. An adversary can
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leverage carefully crafted backdoor triggers that can lead to potential malicious outcomes which include
evasion of toxic content detection, or system redirecting users to Phishing sites via a backdoored Neural
Machine Translation (NMT) system. Given the extensive use of publicly available training datasets
for training AI models, the backdoor attacks mounted via data poisoning pose a significant threat to
the functional integrity of an AI model. Therefore, safeguarding against backdoor triggers in publicly
available datasets during the pre-training phase is crucial to preserving the trustworthiness and reliability
of AI models trained on such data.

The current work formulates a novel chaos-based metric for backdoor trigger detection, where the
aspects of the Neurochaos Learning (NL) algorithm (Balakrishnan et al., 2019) are combined with the
model-agnostic approach described in (Surendrababu and Nagaraj, 2024). The Neurochaos Learning
approach is a brain inspired machine learning algorithm (mimicking the chaotic bursting and spiking
behaviour of neurons in the brain) that has been successfully employed for diverse classification tasks.
However, the utility of using the neurochaos features in the context of backdoor detection has never
been explored before. To this end, the current work focuses on detecting static backdoor triggers in the
poisoned trining datasets by using features obtained via chaotic transformations.

RELATED WORK
Existing backdoor trigger defense mechanisms in the NLP domain work by detecting backdoor triggers in
the poisoned datasets during the pretraining stage (Tran et al., 2018; Chen et al., 2018) of the model or
detect if a model is backdoored or not during the inference stage (Yang et al., 2021; Chen et al., 2022; Qi
et al., 2020; Gao et al., 2019). However, the former approach requires training a specific model on the
poisoned dataset to detect backdoor triggers, whereas the latter approach requires the defender to have
access to a small set of a trusted verified dataset. Both assumptions may be impractical in real-world
scenarios, as obtaining a trustworthy dataset—especially when sourced from unverified data repositories,
web crawlers, and other uncontrolled channels—is often infeasible (Surendrababu and Nagaraj, 2024). In
addition, training a model on the poisoned dataset, detecting the backdoor triggers, and retraining the
model on the sanitized training dataset would require significant computational resources.

To overcome the limitations mentioned above, the authors of this article had previously proposed a
model-agnostic approach to backdoor trigger detection (Surendrababu and Nagaraj, 2024; Surendrababu,
2023), which can detect static backdoor triggers in training datasets from diverse domains.

Contribution of Our Work
The current work proposes a novel backdoor detection methodology, by leveraging features obtained
via chaotic transformations in conjunction with manifold learning. This integrated approach utilizes the
neurochaos features to detect static backdoor triggers during the pre-training phase. To this end, we
propose a novel chaos-based metric called the Precision Matrix Dependency Score (PDS), that can be
used to distinguish between the poisoned class and the non-poisoned class samples in the training data.

To the best of the authors’ knowledge, the current work is the first of its kind that uses features
obtained via chaotic transformations to detect potential backdoor triggers in training datasets from the
NLP domain.

Additionally, the efficacy of the novel Precision Matrix Dependency Score (PDS) was successfully
tested on various NLP datasets, and further validated using the Shannon Entropy measure.

METHODS
Backdoor Attack Experimental Setup
An overview of the backdoor attack experimental setup is depicted in Figure 1.

For the current study, the datasets that were analyzed included the Toxic Content Detection (Peller,
2022), Fake news Detection (Ahmed et al., 2018), and the SST-2 text datasets (Socher et al., 2013) from
the NLP domain. The sentence embeddings for each of the text datasets was obtained by using pretrained
models from the Sentence Transformer library (Reimers and Gurevych, 2019). For text datasets which
have lengthy news articles as text inputs, the BERT-uncased model (Devlin et al., 2019) was used to
generate the sentence embeddings. Each of these datasets have samples of two classes with the class
labels being the positive and the negative class. A backdoor attack is imitated by inserting static backdoor
triggers or phrases into a small subset of legitimate training dataset as described in (Chen et al., 2021).
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Figure 1. Backdoor Attack Experimental Setup.

The class label for the corresponding poisoned samples was changed to a specific target label. In the
current analysis, the target label for the poisoned samples was chosen to be the positive class. In other
words, the backdoor attack constitutes inserting triggers into a fraction of samples from the negative class
and changing their corresponding class label to the positive class. The poisoned samples that are thus
generated become part of a training dataset. In the event, a model is trained on such a poisoned dataset,
the model makes an incorrect prediction/classification for the poisoned samples, while maintaining the
model accuracy on the samples that do not have the backdoor trigger. For the current study, we used the
static NLP backdoor triggers as described in (Chen et al., 2021; Surendrababu and Nagaraj, 2024).

To understand the effectiveness of the backdoor triggers used, and their effect on the model perfor-
mance the analysis included the Attack Success Rate (ASR) as described in (Surendrababu and Nagaraj,
2024). The ASR can be defined as “the proportion of the total number of successful backdoor attacks
relative effectiveness to the total count of backdoor attacks to the total count of backdoor attacks mounted
by an adversary using the poisoned model.” (Surendrababu and Nagaraj, 2024)

The poisoning ratio in the context of backdoor attacks can be defined as “the proportion of training
samples that have been poisoned and injected into the training dataset, with the intention of influencing
the model’s behaviour during inference time.” (Surendrababu and Nagaraj, 2024). The poisoning ratios
used to simulate a backdoor attack for the current analysis are in the range of 5% to 10%.

Chaos based Approach for Backdoor Trigger Detection
The overarching idea of using a chaos-based methodology for backdoor trigger detection is to utilize
features obtained via chaotic transformations to distinguish between the poisoned and the non-poisoned
samples. While the Neurochaos Learning (NL) approach has been successfully tested for various
classification tasks over diverse classes, the efficacy of leveraging the neurochaos features to derive
intra-class separations has never been explored before. As the poisoned samples with the backdoor
trigger are inserted into the non-poisoned samples of a legitimate training dataset, the fundamental idea
underpinning the backdoor detection is to make distinctions between the samples within a class. To this
end, the chaos-based methodology fine tunes the features from the NL algorithm via the manifold learning
technique – Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) and the
Density-based Spatial Clustering with Applications of Noise technique (DBSCAN) (Ester et al., 1996).

It should be noted that for the given objective of static backdoor trigger detection, the poisoned
datasets are generated by inserting the poisoned samples (with their original class label being negative)
into the positive class and their corresponding label changed to the positive class. Given this fact, the NL
approach for classification, where the hyperparameters are fine-tuned based on using the macro F1 score
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Figure 2. Methodology for the Chaos based Precision Matrix Dependency Score for Backdoor Trigger
Detection.

(which is in turn dependent on having the correct class labels) as a metric of evaluation does not suffice for
the current objective of backdoor trigger detection. This is because the current threat model assumes that
the class label is compromised by an adversary. To this end, the NL approach is modified in an ingenious
way by adapting the hyperparameter tuning part of the NL to extract the intra class separation between
samples. In other words, the chaos-based methodology fine tunes the features from the NL algorithm
via the non-linear dimensionality reduction technique Uniform Manifold Approximation and Projection
(UMAP) and the Density-based Spatial Clustering with Applications of Noise technique (DBSCAN). The
details of the chaos-based methodology is described next.

A Primer on NL
As described in the Neurochaos Learning algorithm (Balakrishnan et al., 2019), the input dataset is
normalized to values in the interval [0,1]. Each of the normalized input features is transformed into a
chaotic feature space via an input layer consisting of the 1-D Generalized Lüroth Series (GLS) neurons.
Once the neural traces are obtained for the input stimuli of a particular training instance, various features
such as firing time, firing rate, energy, entropy are extracted from the neural traces corresponding to each of
the input features. For the classification task, various hyperparameters of the GLS map such as the initial
neuronal activity (q), discrimination threshold for the chaotic map (b) and noise intensity (ε) are tuned
via a grid search (across 5-fold crossvalidation setup) to find the best possible hyperparameters for the
classification task. Macro F1 Score is used as the metric of evaluation for fine tuning the hyperparameters
for the classification task in the NL approach. The reader is referred to (Balakrishnan et al., 2019) for a
detailed description, architecture and the key principles behind the Neurochaos Learning Architecture.
NL yields state-of-the-art performance in classification across a number of benchmark datasets and also
preserves causality (Harikrishnan et al., 2022; Harikrishnan and Nagaraj, 2021).

Methodology of Chaos based Precision Matrix Dependency Score (PDS) for Backdoor Detection
An overview of the methodology used in the Chaos based PDS approach is depicted in Figure 2 and is
elaborated next.

1. For each class in the poisoned dataset, the input features are normalized and passed into the
hyperparameter tuning part of the NL pipeline. The normalized input feature vectors can be
represented as x1,x2,x3, . . . ,xN .

2. For the various hyperparameters of the NL approach which include the initial neural activity (q), the

4/14



discrimination threshold (b), and the noise intensity (epsilon) of the GLS neuron, the normalized
features are transformed using the NL feature transformation to find the corresponding neurochaos
feature vectors which are represented as f1, f2, f3, . . . , fN .

3. The neurochaos features obtained for the positive poisoned class are subsequently transformed using
the nonlinear dimensionality reduction technique Uniform Manifold Approximation and Projection
(UMAP) as described in the model agnostic approach (Surendrababu and Nagaraj, 2024). The
UMAP transformation step detects any possible distinct clusters that can arise due to the presence
of backdoor triggers in the training dataset.

4. Following UMAP transformation, a DBSCAN clustering algorithm (Ester et al., 1996) is used to
separate the potential poisoned clusters from the non-poisoned samples.

5. A Calinski Harbasz Index [CHI] (Caliński and Harabasz, 1974) is computed to evaluate the
clustering output obtained from the DBSCAN algorithm.

6. A grid search is carried out to obtain the best possible NL hyperparameters by iterating over
steps 1 through 5 above . The CHI is used as a metric of evaluation to find the best possible NL
hyperparameters that can in turn be used to detect potential backdoor triggers in the training dataset.

7. The best possible NL hyperparameters are used to transform the poisoned samples and the non
poisoned samples from the poisoned positive class to generate their neurochaos features which can
be represented as fp1 , fp2 , fp3 , . . . , fpN and fnp1 , fnp2 , fnp3 , . . . , fnpN respectively.

8. The neurochaos feature matrix corresponding to the samples in the poisoned and the non-poisoned
clusters that are obtained using the above approach can be represented in the matrix form as
Fp = [ fp1 , fp2 , fp3 , . . . , fpN ] and Fnp = [ fnp1 , fnp2 , fnp3 , . . . , fnpN ] respectively respectively.

9. A Precision Matrix Dependency Score (PDS) is formulated and computed for each class of the
neurochaos feature matrix as described next.

• The Precision Matrix θ is mathematically defined as the inverse of the covariance matrix Σ

(Morrison et al., 2022; Balmand and Dalalyan, 2016),

θ = Σ
−1. (1)

• In the scenarios, where the covariance matrix is too ill conditioned to compute the inverse of
the covariance matrix directly, or when the number of features in the covariance matrix is
greater than the number of available samples, the precision matrix is computed via a graphical
lasso approach. The reader is referred to (Friedman et al., 2008) for a detailed theoretical
treatment of the Precision Matrix computed via the Graphical Lasso approach.

• The data matrix corresponding to the neurochaos feature vectors for each of classes is mean
centered, the three classes being the non-poisoned samples and the poisoned samples of the
positive class, and the non-poisoned samples of the negative class. The mean centered data
matrix for the poisoned samples from the positive class is represented as below,

Fpcentered = Fp −µ, (2)

where µ is the mean vector of shape 1×N, where each element in µ corresponds to mean of
a single feature vector fp from the poisoned class.

• The sample covariance matrix Σ is computed for the mean centered neurochaos feature matrix
for each of the classes in the poisoned training dataset and is given below,

Σ =
1

m−1
[Fpcentered FT

pcentered
], (3)

where Fpcentered is the mean centered neurochaos feature matrix of shape m×N matrix with m
samples and N features, that is obtained following the UMAP and DBSCAN transformation
and clustering step.
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• The Precision Matrix θ for each distinct class is calculated by computing the pseudo inverse
of the corresponding sample covariance matrix as below,

θ = Σ
−1. (4)

• Precision Matrix Dependency Score PDS is defined as the trace of the diagonal elements of
the Precision Matrix as described below,

PDS =
N

∑
i=1

θii, (5)

where,

– θ = Σ−1 is the Precision Matrix

– θii are the diagonal elements of the Precision Matrix

– N is the number of features

– PDS is the sum of the diagonal elements of the Precision Matrix

• The PDS is computed for the features corresponding to each of the three distinct classes, i.e.
the non-poisoned samples of the positive class, the poisoned samples of the positive class
and the non-poisoned samples of the negative class.

The experimental evaluation of the chaos based approach for backdoor detection in diverse datasets is
described in Section 4.

RESULTS
Experimental Evaluation of Chaos-based Precision matrix Dependency Score (PDS)
The experimental evaluation of finetuning the NL hyperparameters via the UMAP and DBSCAN trans-
formation steps on the SST – 2 dataset is depicted in Figure 3 through Figure 5. As observed from
Figure 3 through Figure 5, distinct clusters corresponding to the poisoned and the non-poisoned samples
in the poisoned positive class start emerging during the NL hyperparameter tuning stage. The distinct
clusters obtained are indicative of presence of backdoors and suggest that the neurochaos features can be
used to detect potential backdoors in the training dataset. The NL hyperparameters used for the analysis
include the initial neural activity (q), discrimination threshold (b), and noise intensity threshold (ε). The
hyperparameter (ε) represents the neighborhood used by the GLS neuron to come to a halt or stop firing
after starting from an initial neural activity. The best NL hyperparameters q, and b were found to be
0.93 and 0.499 respectively, whereas ε ranged from 0.3 to 0.4 for the NLP datasets. As observed from
Figure 3 through Figure 5 , while holding q and b constant, and by tuning the ε hyperparameter, the
UMAP transformation starts detecting poisoned clusters from the neurochaos features.

Upon the computation of the optimal neurochaos features, the corresponding Precision Matrix
Dependency Score (PDS) is computed for the neurochaos features. This work formulates Precision Matrix
Dependency Score (PDS) which is computed as the trace or sum of the diagonal elements of the Precision
Matrix. The Precision Matrix, which is mathematically calculated as the inverse of the Covariance Matrix,
helps in identifying the conditional dependencies and the conditional variance among various feature
variables. While the off-diagonal elements of the Precision Matrix represent conditional dependencies,
i.e., any existing correlation between two features after accounting for all other feature variables (Morrison
et al., 2022), the diagonal elements of the precision matrix represent the conditional variance of a feature
after accounting for all other variables. The precision matrix has been extensively used in identifying
spurious correlations among various feature variables as described in (Das et al., 2017). The negative off
diagonal elements of the precision matrix have been used to identify local group membership in a dataset
after accounting for the dominant factors in the feature variables as described in (Oh and Kim, 2024).

However, the utility of the Precision Matrix as a tool to distinguish poisoned and non poisoned samples
in training datasets has never been explored before. The Precision Matrix Dependency Score (PDS)
metric formulated in this work quantifies the conditional variance of neurochaos features for distinct
classes in the poisoned training datasets and is depicted in Table 1 through Table 3.
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Figure 3. UMAP transformation on the Neurochaos features generated for the poisoned positive class
samples of the SST-2 dataset with 5% poisoning ratio. NL Hyperparameters Initial Neural Activity =
0.930, Discrimination threshold = 0.499, ε = 0.05.

Figure 4. UMAP transformation on the Neurochaos features generated for the poisoned positive class
samples of the SST-2 dataset with 5% poisoning ratio. NL Hyperparameters Initial Neural Activity =
0.930, Discrimination threshold = 0.499, ε = 0.1.
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Figure 5. UMAP transformation on the Neurochaos features generated for the poisoned positive class
samples of the SST-2 dataset with 5% poisoning ratio. NL Hyperparameters Initial Neural Activity =
0.930, Discrimination threshold = 0.499, ε = 0.3.

Poisoning
Ratio

Epsilon PDS of Poisoned Sam-
ples (Positive Class)

PDS of Non-Poisoned
Samples (Positive Class)

PDS of Non-Poisoned
Samples (Negative Class)

5% 0.3 117790 52470 53278
10% 0.4 7224 2317 2288

Table 1. SST-2 dataset, Precision Matrix Dependency Score (PDS).

Poisoning
Ratio

Epsilon PDS of Poisoned Sam-
ples (Positive Class)

PDS of Non-Poisoned
Samples (Positive Class)

PDS of Non-Poisoned
Samples (Negative Class)

5% 0.3 2477268 49525 51191
10% 0.4 3639 2183 2213

Table 2. Jigsaw Toxicity dataset, Precision Matrix Dependency Score (PDS).

Poisoning
Ratio

Epsilon PDS of Poisoned Sam-
ples (Positive Class)

PDS of Non-Poisoned
Samples (Positive Class)

PDS of Non-Poisoned
Samples (Negative Class)

5% 0.4 37718 34068 11667
10% 0.4 66094567 307042 624660

Table 3. Fakenews Detection dataset, Precision Matrix Dependency Score (PDS).

Complementary Analysis via Shannon Entropy
The computed PDS values for the poisoned class samples are significantly higher than the non-poisoned
class samples, thereby indicating greater predictability and less uncertainty amongst the features. There-
fore, a complementary analysis via the Shannon Entropy was performed to validate this finding. Experi-
mental evaluations reveal that the Shannon Entropy computed on the Energy neurochaos feature acts as
an effective distinguisher between the poisoned and non-poisoned class. Henceforth the Shannon Entropy
analysis was conducted exclusively using the Energy neurochaos feature. The results of the statistical
t-tests and Mann Whitney U test performed on the Shannon Entropy for the various classes in the poisoned
dataset are depicted in Table 4 through Table 8 and Figure 6 through Figure 9.

The Shannon Entropy distributions for the poisoned class and the non-poisoned class are depicted in
Figure 8 and Figure 9.

An additional measure of spread or dispersion Dp of neurochaos features across dimensions was
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Dataset Mean Shannon
Entropy (Positive
Class–Non-Poisoned
Samples)

Mean Shannon En-
tropy (Positive Class-
Poisoned Samples)

t-statistic p value Significant
differ-
ence

SST-2 0.95±0.05 0.76±0.12 40.69 3.96e −
217

Yes

Jigsaw Toxicity 0.93±0.05 0.81±0.09 33.82 4.2e−167 Yes
Fakenews Detection 0.46±0.15 0.42±0.22 13.83 8.01e−41 Yes

Table 4. t- Test result on on Shannon Entropy of Positive Class (Non-Poisoned Samples) and Positive
Class (Poisoned Samples), significance level =0.05, 5% poisoning ratio.

Dataset Mean Shannon
Entropy (Positive
Class–Non-Poisoned
Samples)

Mean Shannon En-
tropy (Negative Class-
Non Poisoned Sam-
ples)

t-statistic p value Significant
differ-
ence

SST-2 0.95±0.05 0.95±0.05 0.08 0.93 No
Jigsaw Toxicity 0.93±0.05 0.94±0.05 −0.78 0.43 No
Fakenews Detection 0.46±0.15 0.56±0.18 11.56 1.12e−29 Yes

Table 5. t- Test result on on Shannon Entropy of Positive Class (Non-Poisoned Samples) and Negative
Class (Non-Poisoned Samples), significance level =0.05, 5% poisoning ratio.

Dataset Mean Shannon
Entropy (Negative
Class–Non-Poisoned
Samples)

Mean Shannon
Entropy (Positive
Class–Poisoned
Samples)

t-statistic p value Significant
differ-
ence

SST-2 0.95±0.05 0.76±0.12 40.5 1.12e −
216

Yes

Jigsaw Toxicity 0.94±0.05 0.81±0.09 33.29 1.09e −
170

Yes

Fakenews Detection 0.46±0.15 0.42±0.22 3.27 0.01 Yes

Table 6. t- Test result on Shannon Entropy of Positive Class (Poisoned Samples) and Negative Class
(Non-Poisoned Samples), significance level =0.05, 5% poisoning ratio.

Dataset Mean Shannon En-
tropy (Negative Class
– Non-Poisoned Sam-
ples)

Mean Shannon En-
tropy (Positive Class
– Poisoned Samples)

U statistic p value Significant
differ-
ence

SST-2 0.95±0.05 0.76±0.12 573285 4.56e −
225

Yes

Jigsaw Toxicity 0.94±0.05 0.81±0.09 548880 1.1e−187 Yes
Fakenews Detection 0.56±0.18 0.42±0.22 315899 0.01 Yes

Table 7. Mann-Whitney U Test result on Shannon Entropy of Positive Class (Poisoned Samples) and
Negative Class (Non-Poisoned Samples), significance level =0.05, 5% poisoning ratio.

computed by applying the below transformation to all the normalized neurochaos features from each
distinct class. The neurochaos features studied for this analysis include the Energy, Entropy, FiringTime
and FiringRate.

Dp =−
N

∑
i=1

f pi log f pi, (6)
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Dataset Mean Shannon En-
tropy (Negative Class
– Non-Poisoned Sam-
ples)

Mean Shannon En-
tropy (Positive Class
– Non-Poisoned Sam-
ples)

U statistic p value Significant
differ-
ence

SST-2 0.95±0.05 0.95±0.05 295814 0.91 No
Jigsaw Toxicity 0.94±0.05 0.93±0.05 302903 0.35 No
Fakenews Detection 0.56±0.18 0.46±0.15 200253 1.27e−27 Yes

Table 8. Mann-Whitney U Test result on Shannon Entropy of Positive Class (Non-Poisoned Samples)
and Negative Class (Non-Poisoned Samples), significance level =0.05, 5% poisoning ratio.

Figure 6. Shannon Entropy computed on the neurochaos features of the SST-2 dataset, 5% poisoning
ratio.

where f pi represents the normalized neurochaos feature vectors corresponding to the poisoned class, and
N represents the total number of features in the poisoned class.

The measure of dispersion is computed across the three classes and the results are depicted in Figure 10.
As observed from Figure 10.

DISCUSSION

Analysis and Interpretation of PDS
As observed from Table 1 through Table 3, the PDS that is calculated for positive class poisoned samples
is significantly higher than both the positive class and negative class non-poisoned samples for various
poisoning ratios. This observation holds good for all of the NLP datasets. The PDS effectively quantifies
the conditional variance of the neurochaos features for each distinct class in the poisoned training dataset.
Given this fact, the extremely high values of PDS observed for the poisoned class samples in comparison
to the non-poisoned class samples are indicative of very high precision for the neurochaos features from
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Figure 7. Shannon Entropy computed on the neurochaos features of the Jigsaw Toxicity dataset, 5%
poisoning ratio.

Figure 8. Shannon Entropy distribution computed on the neurochaos features of the SST-2 dataset, 5%
poisoning ratio.

the poisoned class. High Precision in the diagonal elements of the Precision Matrix in turn implies that
there is very low conditional variance for the corresponding features. This finding suggests that in the
Precision Matrix of the poisoned class, the conditional variance of the diagonal elements has very little
variability when all other features are accounted for. Hence the neurochaos features for the poisoned class
samples have less variability and are more predictable once all the other features are known/ conditioned
upon. This implies that the neurochaos features corresponding to the poisoned class samples have high
dependency amongst them, when compared to the non-poisoned class samples.
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Figure 9. Shannon Entropy distribution computed on the neurochaos features of the Jigsaw Toxicity
dataset, 5% poisoning ratio.

Figure 10. Dispersion Measure computed on the neurochaos features of the Jigsaw Toxicity dataset,
10% poisoning ratio.

Interpretation of Shannon Entropy
As observed from Figure 6 and Figure 7, the mean Shannon Entropy of the poisoned class neurochaos
features is comparatively less than the mean Shannon Entropy of the non-poisoned class neurochaos
features across datasets indicating less uncertainty for the poisoned class samples. Therefore, the mean
Shannon Entropy can be employed to validate the PDS measure of dependency and low conditional
variability observed for the poisoned class samples. Thus, the neurochaos features obtained via the Chaos
based – PDS approach can be potentially used to detect backdoor triggers in the training datasets.
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Additionally, the Shannon Entropy distribution plots in Figure 8 and Figure 9 for the poisoned class
and the non-poisoned class support the finding that the Shannon Entropy computed on the neurochaos
features can be utilized to separate the poisoned and the non-poisoned classes in the training datasets.

The measure of dispersion is computed across the three classes and the results are depicted in Figure 10.
As observed from Figure 10, the dispersion measure which indicates the variability in the neurochaos
features aligns well with the computed Shannon Entropy measures depicted in Figure 6 and Figure 7.

CONCLUSIONS
The assumptions of the threat models used by existing defense mechanisms include the defender’s reliance
on trusted datasets, and/or model training to detect backdoor triggers in the training dataset. Given these
limitations, the current work proposes a novel integrated approach based on chaos theory and manifold
learning to distinguish poisoned samples from the non-poisoned samples of the training dataset. In the
chaos based approach for backdoor detection, a novel backdoor defense mechanism is proposed to address
and overcome the existing limitations inherent in the existing backdoor defense measures. It should be
noted that this defense mechanism operates without the necessity to train an ML model or requiring access
to a training data set.To this end, a novel Precision Matrix Dependency Score (PDS) metric based on the
conditional variance of the neurochaos features was formulated.

The experimental evaluation of the proposed PDS metric demonstrates the efficacy of the proposed
measures in detecting static backdoor triggers across diverse datasets from the NLP domain. The validity
of the PDS metric was further verified using the Shannon Entropy measure. Future work will include
extending the Chaos based approach to other diverse forms of backdoor triggers.
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