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Abstract—This study investigates whether large language mod-
els (LLMs) can function as intelligent collaborators to bridge
expertise gaps in cybersecurity decision-making. We examine
two representative tasks—phishing email detection and intrusion
detection—that differ in data modality, cognitive complexity,
and user familiarity. Through a controlled mixed-methods user
study, n = 58 (phishing, n = 34; intrusion, n = 24), we
find that human-AI collaboration improves task performance,
reducing false positives in phishing detection and false negatives
in intrusion detection. A learning effect is also observed when
participants transition from collaboration to independent work,
suggesting that LLMs can support long-term skill development.
Our qualitative analysis shows that interaction dynamics—such
as LLM definitiveness, explanation style, and tone—influence
user trust, prompting strategies, and decision revision. Users
engaged in more analytic questioning and showed greater reliance
on LLM feedback in high-complexity settings. These results
provide design guidance for building interpretable, adaptive,
and trustworthy human-AI teaming systems, and demonstrate
that LLMs can meaningfully support non-experts in reasoning
through complex cybersecurity problems.

Index Terms—Phishing, Intrusion Detection, LLMs, Human-
AI Teaming

I. INTRODUCTION

Cybersecurity operations increasingly rely on timely, accu-
rate decision-making in the face of growing data complexity,
threat diversity, and skill shortages [1]. Whether identifying
phishing emails or detecting network intrusions, analysts must
interpret ambiguous signals, often under time pressure and
with incomplete context [2], [3]. While expert knowledge re-
mains indispensable, the demand for such expertise continues
to outpace supply, leaving many organisations reliant on less
experienced personnel [4], [5]. This widening gap between
the growing complexity of cybersecurity tasks and the limited
availability of expert analysts raises a critical question: Can
large language models (LLMs) serve as intelligent collabora-
tors to help bridge this gap?

Recent advancements in generative AI and conversational
agents, particularly LLMs such as GPT-4 [6] and LLaMA [7],
offer a unique opportunity to augment human decision-
making [1], [8]–[11]. Their ability to parse natural language
queries, explain their reasoning, and synthesise diverse data
inputs makes them promising candidates for assisting users
in high-stakes environments [12]. However, integrating LLMs
into human workflows—especially in domains like cyberse-

curity that demand rigorous analytical judgement—introduces
new challenges [13]. Beyond output accuracy, we must con-
sider how users interpret, question, and rely on these systems
[14], [15]. A key concern—and central question—is whether
non-expert users can effectively collaborate with LLMs to
improve decision quality without falling prey to over-reliance
or misinterpretation1.

In this study, we investigate the role of LLMs in supporting
non-expert users across two cybersecurity tasks of varying
complexity—phishing email detection and intrusion detection.
The former is highly relevant for everyday security practices,
and the latter is a critical task in security operations centres
(SOCs). These tasks differ not only in their technical require-
ments but also in their cognitive demands [16], [17]2. Phishing
is largely text-based and context-sensitive, benefiting from
commonsense reasoning and familiarity with communication
norms [16], [18], [19]. In contrast, intrusion detection is more
data-intensive and abstract (including tabular data), requiring
pattern recognition across complex system behaviours and
familiarity with low-level network traffic patterns and anomaly
indicators [20], [21]. By analysing both tasks within a unified
experimental framework, we examine how LLM collabora-
tions impact user performance and interaction dynamics across
tasks with different cognitive and technical demands.

To explore these questions, we conducted a controlled user
study involving 58 participants: 34 in the phishing task and
24 in the intrusion detection task3. Each participant com-
pleted their assigned task in two phases: independently and in
collaboration with an LLM-powered assistant. To holistically
evaluate the effectiveness of LLM-assisted decision-making in
cybersecurity contexts, it is critical to consider both outcome-
oriented metrics and interactional dynamics [22]–[24]. Prior
work in human-AI collaboration emphasises that task perfor-
mance alone does not capture the complexities of collaboration
quality, user experience, or decision-making behaviour [13],
[25], [26]. Therefore, our study examined two key dimensions:
(i) quantitative improvements in task performance (precision,
recall, F1-score), and (ii) qualitative aspects of human-AI

1In context of this paper, a cybersecurity analyst is considered an expert and
individuals with limited knowledge of the cybersecurity task (e.g., phishing
or intrusion detection) are considered as non-experts.

2See Appendix Section A for justification and discussion on task selection.
3A few participants participated in both studies, but in separate sittings.
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interaction, including the types of questions asked, the nature
of LLM responses, and behavioural indicators of trust and
reliance [27].

Our results suggest several noteworthy findings. In phishing
detection, LLM collaboration significantly improves precision
by helping users filter out false positives, whereas in intrusion
detection, it improves recall by reducing missed detections.
However, performance gains are strongly modulated by the
perceived definitiveness of LLM responses: users tend to
accept AI suggestions more readily when the model appears
confident, regardless of its objective correctness [28]. This
highlights the dual potential and risk of LLMs—while they
can enhance human performance, poorly calibrated confidence
may lead to either over-reliance or missed opportunities for
correction [29].

In addressing these dynamics, our work contributes to a
growing body of research that explores not just whether AI
can outperform humans, but how AI can enhance human
decision-making [30], [31]. Unlike prior efforts that evaluate
AI performance in isolation or treat humans as passive re-
cipients of AI output [32], our study aligns closely with the
human-AI collaboration works that treat the human and AI as
a collaborative unit [33], [34]. This perspective allows us to
examine not only decision accuracy, but also how decisions
are made, revised, or resisted in response to AI suggestions.

The primary objectives of our work are twofold, defined by
the following RQs:

RQ1: IMPACT ON PERFORMANCE: How does human-AI collaboration
influence performance in cybersecurity tasks such as phishing email
detection and intrusion detection, compared to when humans work
independently? We assess this using precision, recall and F1-score.

RQ2: INTERACTION DYNAMICS: What are the key qualitative aspects of
human-AI interactions during cybersecurity tasks? We analyse the
types of questions posed by participants, potential biases in them,
the AI’s responses, and the overall conversational dynamics between
humans and AI.

In addressing these RQs, our findings make the following
contributions to the field of human-AI collaboration in cyber-
security:

• Empirical evidence of performance gains through human-
AI collaboration. Across both phishing and intrusion de-
tection tasks, we show that non-expert users improve clas-
sification outcomes when supported by LLM-powered as-
sistants. Notably, LLMs offer greater performance benefits
in the more complex intrusion detection task, highlighting
their potential as analytical partners in data-driven decision-
making.

• Qualitative insights into human-AI interaction dynamics.
Through qualitative analysis of user-LLM interactions, we
identify key behavioural patterns—including question fram-
ing, reliance tendencies, and trust signals—that shape the
effectiveness of LLM collaboration. We find that definitive-
ness in AI responses can not only improve accuracy but also
amplify user errors when the AI is incorrect, underscoring
the need for calibrated confidence, confirming prior research
[28], [35]–[38].

• Design implications for trustworthy AI systems in cy-
bersecurity. Based on our findings, we highlight implica-
tions for building LLM-based assistants that support human
reasoning without fostering over-reliance. These include
the importance of actionable explanations, AI’s feedback
on uncertainty, and interaction mechanisms that encourage
reflective decision-making.
Together, these contributions advance our understanding of

how LLMs can serve not only as automation tools, but as
collaborative assistants that enhance cybersecurity decision-
making for non-expert users. In the next section, we situate
our work within the broader context of existing literature on
AI in cybersecurity and human-AI collaboration.

II. BACKGROUND AND RELATED WORKS

A. AI in Cybersecurity

AI has been increasingly leveraged for various cybersecu-
rity tasks, including phishing email detection and intrusion
detection. Gualberto et al. [39] and Nguyen et al. [40] em-
ployed content analysis techniques to identify phishing emails,
utilising natural language processing and machine learning
methods to enhance detection rates. Similarly, for intrusion
detection, researchers have proposed advanced predictive mod-
els utilising deep learning, anomaly detection, and supervised
learning to identify malicious network activities [41], [42].
These approaches focus on improving the accuracy and speed
of detecting potential intrusions in real-time environments.
Beyond these, AI has also been utilised for tasks such as
malware analysis, data leakage prevention, and automated
threat hunting, showcasing its versatility and transformative
potential in cybersecurity [43].

B. Human-AI Collaboration in Cybersecurity

Human-AI collaboration has gained significant attention in
recent years, particularly in the field of cybersecurity [44]. The
integration of AI systems into cybersecurity workflows aims to
enhance the capabilities of human analysts, enabling them to
handle the increasing volume and complexity of cyber threats
more effectively [1], [45], [46]. AI can assist in various tasks,
such as malware detection [47], cybersecurity training [48],
[49], and vulnerability assessment [50]. Recently, there has
been a growing interest in using Large Language Models
(LLMs) for cybersecurity tasks, including phishing email
detection [51] and intrusion detection [52]. Our work delves
deeper into this aspect by examining it through the lens of
human-AI collaboration via user studies, an area that, to the
best of our knowledge, has not been previously explored.

C. LLMs in Cybersecurity

The advent of LLMs has opened new avenues in cyberse-
curity applications. Koide et al. [51] introduced ChatSpamDe-
tector, leveraging LLMs for effective phishing email detection,
achieving high accuracy and providing detailed reasoning for
its determinations. Similarly, Kheddar et al. [52] explored the
use of transformers and LLMs for efficient intrusion detec-
tion, highlighting their potential in identifying complex cyber



Study Format B

Col laborat ive 
Task Complet ion

Set 1
Set  2

Problem
Sets

Independent  
Task Complet ion

Col laborat ive 
Task Complet ion

Set 1

Problem 
Sets

Independent  
Task Complet ion
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Fig. 1. Study Design: In format A, participants complete the task inde-
pendently first, followed by collaboration with AI. In format B, the order is
reversed, starting with AI collaboration before working independently. Both
formats are followed by a questionnaire.

threats. These studies underscore the capabilities of LLMs in
understanding and analysing unstructured data, making them
valuable tools in the cybersecurity domain.

D. Human-AI Interaction Dynamics

Understanding the dynamics of human-AI interaction is
crucial for effective collaboration. Studies have shown that
the perceived definitiveness of AI responses can significantly
influence user trust and decision-making [28], [29]. Over-
reliance on AI outputs, especially when presented with high
confidence, can lead to errors if the AI is incorrect [36], [37],
[53]. Conversely, under-reliance may result in missed oppor-
tunities for accurate decision-making. Designing AI systems
that provide calibrated confidence and actionable explanations
is essential to mitigate these risks and enhance collaborative
outcomes [35], [54], [55].

E. Our Study

While existing research has demonstrated the potential of
AI and LLMs in various cybersecurity tasks, there is a lack
of studies focusing on the collaborative dynamics between
non-expert users and AI systems in practical settings. Our
work addresses this gap by conducting user studies to evaluate
how LLMs can support non-expert users in phishing and
intrusion detection tasks, analysing both performance metrics
and interaction patterns. This approach provides insights into
the design of AI systems that effectively augment human
decision-making in cybersecurity contexts.

III. STUDY DESIGN

To investigate the effectiveness of LLMs as collaborative
assistants in cybersecurity tasks, we conducted a mixed-
methods user study comprising two task domains: phishing
email detection and intrusion detection. Our study examines
how human-AI collaboration influences task performance and
explores the interaction patterns that shape decision outcomes.
The methodology combines quantitative analysis of classifica-
tion accuracy with qualitative analysis of interaction dynamics.

A. Overview and Objectives

We focused on two representative tasks with distinct cog-
nitive and technical demands:

a) Phishing Email Detection: This task involves natural
language text and centres on a relatively familiar classifica-
tion problem. It requires participants to apply common-sense
reasoning and interpret contextual cues within potentially
deceptive communications.

b) Intrusion Detection: In contrast, this task is grounded
in structured, tabular data and demands analytical reasoning
over low-level network traffic features. It presents a higher
cognitive load and is typically less familiar to non-expert users,
reflecting its greater technical complexity.

Both tasks were implemented using a within-subjects de-
sign, wherein participants first performed them independently,
and then in collaboration with an LLM-based assistant. Each
session concluded with a post-study questionnaire.

B. AI Assistant Configuration and Persona Design

Participants interacted with LLMs that were configured to
simulate the role of domain-specialised cybersecurity assis-
tants. Each model was tailored through prompt engineering
and interaction constraints to reflect distinct personas opti-
mised for each task:
• Phishing Email Detection Assistant. We employed Llama2-

7B to support participants in classifying emails as either
phishing or legitimate. The assistant was prompted to
analyse both the content and headers of emails, cite specific
indicators (e.g., links, domain names), and avoid premature
alignment with user hypotheses. It was designed to be
cautious, objective, and self-contained in its reasoning.

• Intrusion Detection Assistant. We utilised GPT-4 due to
its superior reasoning capabilities and support for code
execution. This assistant was configured to embody the
persona of a security operations centre (SOC) analyst,
trained to treat each event as potentially malicious unless
convincingly proven otherwise. It was directed to minimise
false negatives and reason about anomalies using known
intrusion patterns, while also accommodating the possibility
of novel attack signatures absent from training data.
These personas were developed based on insights from

pilot studies, in which overly agreeable models tended to
bias participant decisions. To mitigate this, we instructed the
LLMs to maintain analytical independence and justify their
conclusions through feature-level reasoning (see the Appendix
Section B for more details, including our rationale for LLM
model selection).

C. Tasks and Experimental Procedure

In our study, each participant engaged in a three-phase
process, as shown in Figure 1:
PHASE 1): Independent Task Completion. Participants classi-

fied a set of examples without any AI assistance.
PHASE 2): Collaborative Task Completion. Participants clas-

sified a new set of examples while interacting with



TABLE I
PARTICIPANT DEMOGRAPHICS. THE LLM EXPERIENCE LEVELS ARE

SELF-EXPRESSED BY THE PARTICIPANTS.

Attribute Phishing Email Study Intrusion Study
PARTICIPANTS 34 24
AGE RANGE 20–60 20–60
GENDER 9M / 25F, 9M / 15 F
EDUCATION 22 PhDs, 6 M.S., 6 B.S. 12 PhDs, 9 M.S., 3 B.S.

DOMAINS
CS (15), STEM (7),
Admin (8), Humanities (4) CS (24)

LLM EXPERIENCE
None (3), Low (4),
Medium (12), High (15) Medium (6), High (18)

STUDY DURATION 30 mins 60 mins

Fig. 2. Phishing email detection study interface used for human-AI collabo-
ration.

an LLM-powered assistant. They were encouraged
to ask questions, request explanations, and revise
their classifications if needed.

PHASE 3): Post-Study Questionnaire. Participants provided
both structured and open-ended feedback on their
experience, including their perceptions of the AI
assistant’s utility, confidence, and usability.

For phishing detection, participants reviewed a set of six
emails (three phishing and three legitimate). In the intrusion
detection task, participants analysed historical network traffic
data and were asked to identify whether the given samples
(two normal and two intrusion) represented an intrusion or
normal behaviour. The samples were equally divided across
Phase 1 and Phase 2.

D. Participants

A total of 58 participants were recruited across both studies,
with recruitment designed to represent varying levels of task
complexity and domain familiarity (see Table I for detailed
demographics):

• Phishing Email Detection. 34 participants with varied
academic and professional backgrounds, including com-
puter science (CS), STEM (excluding CS), humanities,
and administration, participated in this study. This diver-
sity reflects the general accessibility of phishing detection
as a user-facing task.

• Intrusion Detection. 24 participants, all with prior knowl-
edge of computer science and currently studying or
doing research on cybersecurity participated in the study.
However, none were professional security analysts. The
majority held advanced degrees (12 PhDs, 9 M.S.), and all
had at least medium experience with LLMs (6 medium,
18 high). While all participants had a basic understanding
of what intrusion detection is, none had hands-on expe-
rience with the task.

It is important to acknowledge that the varied backgrounds
of phishing participants versus the more homogeneous, com-
puter science-oriented intrusion detection group might limit
direct comparability between groups. However, this design was
intentional: phishing detection participants were representative
of typical end-users, while intrusion detection participants mir-
rored non-expert but technically knowledgeable cybersecurity
trainees.

E. Counterbalancing and Task Order

To mitigate learning effects and order bias, we implemented
two experimental formats for the phishing study:

STUDY FORMAT A): Independent → Collaborative
STUDY FORMAT B): Collaborative → Independent

Participants were randomly assigned to one of the two formats.
This allowed us to assess whether interaction with the LLM
influenced subsequent unaided performance. Given the analyt-
ical complexity of the intrusion detection task, we intentionally
employed a fixed task order—avoiding counterbalancing to
avoid participant fatigue and prevent confounding effects un-
der high cognitive load. This decision prioritised engagement,
interaction clarity, and data reliability in a demanding setting.
Future studies can build on this foundation by incorporating
counterbalanced designs to more rigorously investigate learn-
ing effects in similarly complex domains.

F. Data Collection and Instrumentation

We collected three types of data during the different phases
of this study:

1) Classification Outputs. Participants’ labels from each task
phase were recorded and scored against ground truth
labels using precision, recall, and F1-score.

2) Interaction Logs. All user-LLM conversations were cap-
tured and analysed to identify patterns in question
framing, LLM response characteristics, and revision be-
haviour.

3) Questionnaire Responses. Post-task feedback was gath-
ered through structured questions, open-ended reflection
prompts and the system usability scale (SUS).

All participants interacted with a web-based interface—
designed to support real-time LLM queries and annotations—
to complete the tasks (see Figure 2 for phishing study and
Figure 3 for intrusion study).



Fig. 3. Intrusion detection study interface used for human-AI collaboration.

G. Ethical Considerations

The study protocol was reviewed and approved by the
Anonymised institutional review board (XXX/XX). Informed
consent was obtained from all participants. Anonymity and
data confidentiality were ensured. Participants could withdraw
at any time without penalty.

IV. DATA ANALYSIS SETUP

To address our research questions, we employed a multi-
layered analysis strategy that integrates quantitative perfor-
mance metrics (RQ1) with qualitative insights into interaction
patterns (RQ2).

A. Quantitative Analysis Settings

Classification accuracy was evaluated using precision, re-
call, and F1-score for both the independent and collaborative
phases. Additionally, we plotted learning curves to visualise
performance trends over successive task examples, allowing
us to evaluate possible improvement effects attributable to AI
collaboration.

B. Qualitative Analysis Settings

We conducted qualitative analysis on the interaction logs
to examine the nature of user-LLM interactions across both
tasks. Specifically, the analysis focused on the types of ques-
tions posed by participants, the characteristics of the LLM
responses, and the conversational flow and dynamics to better
understand how humans and AI communicate and collaborate.
We employed inductive content analysis [56] with one author

leading the coding process. A second author independently
coded a random sample of 36% of the interactions, yielding
a 90% agreement rate. Disagreements—primarily related to
the type of analysis the participants were seeking and the
definitiveness of the LLM responses—were resolved through
discussion.

1) Data Familiarisation: A preliminary familiarisation
phase was conducted to identify key aspects of the data that
would inform our understanding of the factors influencing
decision-making. This involved two authors engaging in mul-
tiple readings of the participant questions and corresponding
LLM responses. During this process, the authors actively
reflected upon the nature of the questions, the characteristics
of the LLM responses, and the research question, RQ2.
After these individual reflections, the two authors engaged in
collaborative discussions to reach a consensus on the following
attributes, related to participant questions and LLM responses,
that aligned with the paper’s objectives and the research
questions. This phase laid a crucial foundation for guiding
subsequent stages of analysis.

2) Question Attributes: For each question posed by partic-
ipants, we identified the following attributes based on RQ2:

• Nature of Inquiry. This attribute captured what the par-
ticipant was seeking from the LLM, e.g., whether they
were seeking a direct classification, e.g., Is this a phishing
email? (P12) or requesting an analysis of specific ele-
ments, e.g., Is there an increase in traffic in comparison
to usual? (I5).

• Inclusion of Participant Classification. We examined
whether participants explicitly included their own clas-
sification of the intrusion event or the email within
their question, e.g., Tell me your opinion on the email
received; I see it as a “phishing” email (P21) and Is there
anything suspicious in this email? Could it be “phish-
ing”? It doesn’t appear to me to be suspicious (P25).
This attribute was used to assess whether such framing
could introduce potential bias towards the questioner’s
initial classification, potentially influencing the LLM’s
subsequent response.

• Class-Specific Focus. We noted whether questions primar-
ily emphasised one specific class, which may have shaped
the LLM’s classification, e.g., “Hi there, do you think this
email is a phishing email? (P19)” or “Do you think this
email is legitimate? (P30)” compared to “Please check
if this email is phishing or legitimate (P7)”.

3) LLM Response Attributes: We focused on three key
attributes of the LLM responses—explanation, definitiveness
(confidence), and accuracy—as these have been identified as
critical factors impacting effective human-AI team perfor-
mance [57]. For each response, we analysed:

• Explanation of Classification. The analysis determined
whether the LLM identified and linked specific compo-
nents of the email or intrusion event to its classification,
e.g., “Suspicious link: The email contains a link that asks
you to click on it to restore your account access. This



Is the 
quest ion 
object ive?

Biased
13/138 (9.4%)

The user includes their classificat ion or judgement within the quest ion.  Examples: 
1. Is there anything suspicious in this email? Could it be phishing? It doesn't appear to 
me to be suspicious.  
2. Tell me your opinion on the email received; I see it as a phishing email.

Objective 
125/138 (90.6%)

The user is looking for a factual response without insert ing personal judgements 
or classificat ions.  Examples:
1. Is this email a phishing email?  
2. Are there signs this is a legitimate email?

What 
type of 
quest ion 
is the 
user 
asking 
from the 
LLM?

Classification 
Requests
68/138 (49.3%)

The user seeks AI classificat ion. It  may be possible that the user may be certain 
but requests AI validat ion for reassurance. Examples:  
1. Is this a phishing email?  
2. Would you label this email as a phishing email or not?  
3. Hi, is this email malicious?

Analysis of
Components
54/138 (39.1%)

The user requests analysis or reasoning based on specific components or 
indicators.  Examples:    
1. What does +RR2 mean?  
2. Why do you consider the link in the email to be suspicious?  
3. Is dnc.org a legitimate domain name? 
4. Are there any indications that would suggest this is legitimate?

Open-ended
16/138 (11.6%)

The user asks an open-ended or vague quest ion, often seeking exploratory or 
broad answers. Examples:
1. Do you have any information on Trump's tax plans?  
2. Are there inconsistencies in the email content?  
3. What is the URL or domain address of PayPal?

Which 
class is 
listed in 
the user?s 
quest ion?

Phishing
59/138 (42.8%)

The user explicit ly refers to phishing in their quest ion.  Example: Hi there, do you 
think this email is a phishing email?

Legitimate
23/138 (16.7%)

The user explicit ly refers to legit imacy in their quest ion. Example: Do you think this 
email is legitimate?

Both Classes
12/138 (8.7%)

The user refers to both phishing and legit imacy in their quest ion.  
Example: Please check if this email is phishing or legitimate.

Neither
44/138 (31.9%)

The user does not refer to either phishing or legit imacy. Example: Is there an 
American organization whose domain name is dnc.org?

Does the 
user list  
specific
components 
of the email 
in the 
quest ion?

Yes 
56/138 (40.6%)

The user mentions specific parts of the email, such as subject lines, links, or 
headers, in their quest ion. Examples:  
1. Does it count as phishing if there is no request in the email?  
2. Is there anything suspicious in this email? I think the subject line, misspelled drug 
names, and link look dodgy.  
3. Is this domain, accounts.net, related to Citi Cards or Bank?

No
82/138 (59.4%)

The user does not specify any part icular parts of the email in their quest ion. 
Examples:
1. Is this email a phishing email?  
2. Check if this is a phishing email and tell me why.

Fig. 4. Codebook for user questions in phishing email detection study.

could potentially lead to a phishing page or malware
download (AI)”. This would demonstrate the LLM’s
ability to explain its decision-making process effectively.

• Definitiveness (or Confidence) of Classification. The level
of definitiveness expressed by the LLM in its classifica-
tion was carefully assessed. This assessment was based
on the specific phrases employed within the response.
A definitive classification would be characterised by
statements such as “I can confidently say this is not
a phishing email (AI)”. In contrast, responses such as
“we cannot conclusively label this as an intrusion (AI)”
would be categorised as less definitive, indicating a
degree of uncertainty within the LLM assessment. The
analysis aimed to investigate whether the LLM’s level of
definitiveness exerted a significant impact on the user’s
subsequent performance.

• LLM Classification. We coded LLM classifications, mark-
ing instances with high uncertainty—such as “I will not
make any definitive conclusions about the legitimacy of
this email (AI)”—as inconclusive to avoid misinterpreting
the LLM’s assessment.

4) Codifying Questions and LLM Responses: The code
generation process involved examining the questions and the
LLM’s responses to identify patterns, recurring themes, or
specific types of information. In this context, a code refers to
a label or category representing a particular idea, concept, or
intent that emerges from the data. For example, if a participant

Does the 
LLM 
highlight  
specific
email 
components?

Yes
136/138 (98.6%)

The LLM explicit ly refers to specific components of the email, such as headers, 
links, or content.  Example:
1. Legitimate sender: The email is sent from 'Freundlich, Christina' 
<FreundlichC@dnc.org>, which appears to be an official email address from the 
Democratic National Committee (DNC). This suggests that the email is coming from a 
legitimate source.  
2. Clear subject line: The subject line 'to blast? -- RE: To Pitch: Trump Paying Bridgegate 
Debt' indicates that the email is related to a specific news story and not an attempt to 
deceive or trick the recipient into revealing sensitive information.

No
2/138 (1.4%)

The LLM does not refer to any specific components of the email.

Does it  link 
the
components 
to the
conclusion?

Yes
124/135 (91.9%)

The LLM connects ident ified components to its conclusion, providing reasoning 
for its classificat ion. Example:  After analyzing both the header and content of the 
email, I have some concerns that suggest it might be a phishing attempt. ...

No or N/A
11/135 (8.1%)

The LLM does not connect specific components to its classificat ion or conclusion.

Does it  
provide
act ionable
informat ion?

Yes
73/138 (52.9%)

The LLM provides clear recommendations or next steps for the user to take. 
Examples:  
1. Exercise caution and verify information through other reputable sources.  
2. To further verify the email's authenticity, I recommend contacting authorities.

No or N/A
65/138 (47.1%)

The LLM does not provide specific recommendations or act ionable advice.

Is its 
classificat ion
definit ive?

Yes 
71/129 (51.1%)

The LLM expresses high confidence in its classificat ion.  Examples:  
1. I can confidently say that this is not a phishing email.  
2. I don't see any obvious signs of phishing.

No(54) or
Inconclusive(14) 
68/129 (49.9%)

The LLM expresses uncertainty or includes caveats in its classificat ion. Examples:
1. I have some concerns that suggest it may not be legitimate.  
2. I believe that this email might be a phishing attempt, but there could be legitimate 
explanations.

LLM?s 
classificat ion
indicated in 
its response.

Phishing
58/113 (51.3%) The LLM classifies the email as phishing.

Inconclusive
13/113 (11.5%)

The LLM does not provide a definit ive classificat ion and leaves the quest ion 
open-ended.  Example:
1. It makes me wonder if this email is indeed a phishing attempt.  
2. I will not make any definitive conclusions about the legitimacy of this email.

Legitimate
42/113 (37.2%)

The LLM classifies the email as legit imate.

Fig. 5. Codebook for LLM responses in phishing email detection study.

asks, “Is this email a phishing attempt?”, the intent behind
the question could be labelled or “coded” as a Classification
Request because the user is asking the LLM to classify the
email. The process involved the identification and highlighting
of key phrases and terms within the participants’ questions and
the LLM’s responses that aligned with the above attributes.
These highlighted phrases were systematically coded into
distinct codes. Finally, a concise and representative phrase
or term was selected to encapsulate each group of phrases,
thereby establishing the final set of codes. The codebooks for
the phishing email detection study are provided in Figure 4 and
Figure 5, while Figure 8 and Figure 9 present the codebooks
for the intrusion detection study.

5) Quantitative Analysis of Codes: A quantitative analysis
was conducted to ascertain the impact of the identified codes
on user accuracy. Linear regression models examined whether
specific codes significantly influenced participants’ final clas-
sification decisions. One-hot encoding was applied to represent
each code-value pair to facilitate this analysis.

V. RESULTS

A. Quantitative Results (RQ1)

Table II presents a summary of the quantitative performance
across both tasks. Key observations and insights are discussed
below.

1) Phishing Email Detection Performance: In the phishing
task, participants achieved a mean F1-score of 0.8087 during
independent task completion (Precision = 0.7266; Recall =
0.9118). When collaborating with the LLM, performance
improved across all metrics: F1-score = 0.8448; Precision =
0.7656; Recall = 0.9423. The consistent gains in both precision
and recall suggest practical value. In particular, the increased



TABLE II
QUANTITATIVE ANALYSIS. PRECISION, RECALL, AND F1-SCORE FOR PHISHING AND INTRUSION DETECTION TASKS ACROSS LLM-ONLY, HUMAN-ONLY,

AND HUMAN–LLM COLLABORATION SETTINGS. AS THE TASK BECOMES MORE DIFFICULT (I.E., FROM PHISHING TO INTRUSION DETECTION), WE
OBSERVE A LARGER GAP BETWEEN THE INDEPENDENT AND COLLABORATION SETTINGS’ PERFORMANCE.

User
Study

Precision Recall F1-score
LLM-only Human-only

(Independent)
Human-LLM

(Collaboration)
LLM-only Human-only

(Independent)
Human-LLM

(Collaboration)
LLM-only Human-only

(Independent)
Human-LLM

(Collaboration)
Phishing 0.6000 0.7266 0.7656 1.0000 0.9118 0.9423 0.7500 0.8087 0.8448
Intrusion 1.0000 0.7273 0.7826 0.5000 0.5854 0.7500 0.6667 0.6486 0.7660

precision—reflecting a reduction in false positives—is notable,
as it demonstrates the LLM’s effectiveness in helping users
avoid over-classifying legitimate emails, a common and costly
error in real-world systems.

Insight. These results highlight that LLMs can serve as
effective second opinions, especially for borderline or ambigu-
ous cases. The increase in precision is operationally significant
for phishing prevention, where false alarms degrade user trust
in alerting systems.

2) Intrusion Detection Performance: The intrusion task,
which was more technically complex, showed a stronger
effect. Independent performance was lower overall (F1-score
= 0.6486; Precision = 0.7273; Recall = 0.5854), indicating
the difficulty of the task for human users—even those with
relevant backgrounds. In contrast, during collaboration, per-
formance increased markedly (F1-score = 0.7660; Precision =
0.7826; Recall = 0.7500).

Insight. Collaboration had a disproportionately large benefit
on recall—participants missed fewer attacks when working
with the LLM. This suggests that the LLM was particularly
helpful in identifying subtle indicators of intrusions that users
may have otherwise overlooked. The LLM’s conservative bias
(treating samples as suspicious unless proven otherwise) likely
contributed to this effect.

3) Comparative Interpretation: The magnitude of collab-
orative improvement was larger in intrusion detection than
in phishing detection. We attribute this to the difference in
cognitive load: phishing classification relies on language-based
reasoning familiar to most users, whereas intrusion detection
involves abstract, unfamiliar feature sets (e.g., port behaviours,
connection counts). In such contexts, the LLM’s role as an
analytical partner becomes more critical.

4) Learning Effects: We observed a consistent upward
trend in performance across both formats, i.e., study format A:
independent → collaborative (Question index 1,2,3 indepen-
dently and 4,5,6 collaboratively) and study format B: collab-
orative → independent (Question index 1,2,3 collaboratively
and 4,5,6 independently), as shown in the learning curve (Fig-
ure 6). However, collaborative task completion consistently
outperformed independent task completion across all emails,
irrespective of the order in which they were presented.

Insight. Interaction with the LLM may have instructional
value. Even when users began with AI support and later
worked independently, their accuracy improved. This suggests
that LLMs can act as embedded training tools, accelerating
task-specific learning.
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Fig. 6. Learning Curve Analysis: Average F1-Score over study stages in
phishing email detection task.

B. Qualitative Results (RQ2)

We now present findings from the qualitative analysis of
user-LLM interaction logs, which reveal how collaboration
dynamics differ by task and influence outcomes. We report
results thematically: user question types, LLM response char-
acteristics, and patterns of over-/under-reliance.

1) Interaction Patterns in Phishing Task: Across 138 ques-
tion–response pairs, most participant queries were objective
(90.6%) and fell into either classification requests (49.3%)
or component-level analysis (39.1%). Participants referenced
specific email elements (e.g., URLs, sender addresses) in 41%
of cases. Open-ended queries were rare (11.6%).

Insight. The prevalence of direct classification requests
reflects phishing’s conceptual simplicity. Users often sought
binary decisions rather than nuanced discussion. This suggests
that LLMs used in phishing contexts should prioritise clear
decisions while still offering traceable rationales to enhance
user understanding.

LLM responses were accurate 79% of the time, inconclusive
in 12%, and incorrect in 9%. Notably, 98% of responses
referenced specific email components, but only 49% were
definitively phrased (e.g., “This is a phishing email”). Lo-
gistic regression revealed that definitiveness strongly predicted
whether users followed the AI’s advice (β = 1.57, p = 0.026).

Insight. Participants were more likely to accept LLM advice
when it was expressed confidently—even when incorrect.
This highlights the double-edged nature of confident LLM
output: it can aid decision-making, but also amplify errors if
uncalibrated.

2) Interaction Patterns in Intrusion Task: In 48 intrusion
task sessions, user queries were predominantly analysis-driven



(44.4%), followed by anomaly detection (18.5%) and model-
based requests (e.g., “run isolation forest”) at 18.5%. Only
one user asked for a simple classification. This shift in question
type reflects the greater data complexity and abstraction of
intrusion detection.

We observed that 55.6% of user queries referenced specific
features (e.g., duration, port numbers), and 70% avoided men-
tioning a class (e.g., “intrusion” or “normal”), thus reducing
potential framing bias.

LLM response accuracy was lower than in the phishing task
(56%), with 31% inconclusive and 13% incorrect. This drop
is likely due to the noisier feature space and higher ambiguity
of tabular network data. Nonetheless, responses that were
confident and correct had the strongest influence on participant
accuracy.

Insight. Users in more complex tasks posed exploratory
questions and sought analytical assistance, not just binary
answers. LLMs in such contexts should be equipped with
reasoning scaffolds—e.g., comparing similar samples, high-
lighting anomalies—rather than merely returning labels.

3) Trust Calibration and Reliance Patterns: We observed
three distinct trust-related behaviours:

• Alignment. Participants revised their incorrect labels to
match correct LLM predictions in 14 phishing and 14
intrusion cases.

• Over-reliance. In 3 phishing and 5 intrusion cases,
users adopted incorrect AI advice, despite being initially
correct.

• Under-reliance. In 8 phishing and 6 intrusion cases, users
ignored correct AI advice and retained incorrect answers.

Insight. These behaviours were often influenced by the
LLM’s tone. Confident yet wrong responses led to harm-
ful over-reliance, while cautious but correct answers were
sometimes ignored. This underscores the need for calibrated
confidence communication in AI systems [54].

4) Summary of RQ2 Findings:
• Users ask simpler, direct questions in phishing tasks, and

more complex, analytic queries in intrusion detection.
• LLM definitiveness influences trust and accuracy more

than correctness alone.
• Participants benefit from explanations that link specific

features to classifications.
• LLMs need to adapt their interaction styles based on task

complexity and user expertise.
These insights suggest that effective human-AI collaboration

depends not only on model performance, but also on how
models explain, justify, and communicate their reasoning.

C. Insights from Structured Question Responses

To complement the performance and interaction analyses,
we examined participants’ reflections on their experience using
the AI collaborator. Responses were collected through a post-
study questionnaire using Likert-style items, allowing us to
compare perceptions across both the phishing and intrusion
tasks (see Figure 7).
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Fig. 7. Responses to the structured questions in the post-study survey.

1) Overall Experience and Perception: The majority of
participants across both studies reported a positive experience
collaborating with the AI. Among phishing participants, 79%
rated their experience as “Excellent” or “Good”, while this
figure rose to 90% in the intrusion group. Similarly, 84%
of phishing participants and 90% of intrusion participants
characterised their emotional response to the collaboration
as “Positive” or “Very positive.” These findings suggest that
LLM-based systems are generally well-received, with users in
complex tasks such as intrusion detection potentially deriving
greater perceived benefit.

2) Usability and Interface Experience: Participants in the
phishing task consistently rated the interface as more intu-
itive and accessible. 70% described it as “intuitive and user-
friendly”, and 73% found it “very easy” to use. In contrast,



only 55% of intrusion participants found the interface highly
intuitive, and only 30% rated it “very easy”. These differences
are likely attributable to the task modality: phishing detection
involves natural language comprehension, whereas intrusion
detection requires navigation of structured data and analytic
models. These results underscore the importance of tailoring
interfaces to the demands of the domain.

3) Perceived Efficiency and Productivity: While phishing
users generally found the AI helpful, the impact on perceived
productivity was stronger in the intrusion study. Half of
the intrusion participants reported that the AI “significantly
enhanced” their efficiency, compared to only 18% in the
phishing group. This gap reinforces the idea that LLMs offer
the greatest utility in cognitively demanding or unfamiliar
domains, where users benefit from the AI’s capacity to surface
patterns, suggest models, and reduce cognitive load.

4) Perception of Collaboration: The degree to which partic-
ipants viewed the AI as a collaborative partner varied between
the two tasks. In the phishing study, 61% described the
interaction as “semi-collaborative,” with only 27% reporting a
fully “collaborative” experience. By contrast, 45% of intrusion
participants characterised the interaction as “collaborative,”
and an equal proportion perceived the AI as a partner rather
than a tool. These results suggest that the perceived role of the
AI shifts with task complexity: in more abstract, data-driven
tasks like intrusion detection, participants are more inclined to
view the AI as a co-analyst rather than a decision aid.

5) Trust and Confidence in AI: Trust in the AI was gen-
erally high, though more consistent in the phishing study. A
majority of phishing participants (58%) reported high trust in
the AI’s suggestions, with none expressing low trust. In the
intrusion study, trust was more distributed, with 5% indicating
complete trust, 50% high trust, and 40% neutral trust. This
variability reflects the increased demand for explanation and
evidence in complex tasks, where users are less likely to
defer blindly to AI recommendations and more sensitive to
inconsistencies or ambiguous reasoning.

6) Accuracy and Reliability: Most participants felt that
the AI’s performance met or exceeded expectations. In the
phishing study, 70% reported that the AI met expectations
and 24% said it exceeded them. For the intrusion study, 75%
felt their expectations were met, though only 10% said they
were exceeded. These results reflect a moderate baseline of
satisfaction but highlight a need for more decisive and context-
sensitive responses in high-stakes analytic tasks.

7) Learning and Insight: Notably, participants in the in-
trusion study were more likely to report learning something
new from the collaboration. While only 15% of phishing
participants reported significant learning, this figure was 40%
for intrusion. These findings reinforce the value of AI systems
not only as decision aids but as instructional tools, particularly
when users face unfamiliar problem spaces.

8) Outlook on Continued Use: When asked whether their
collaboration would improve with practice, responses were
overwhelmingly affirmative. 91% of phishing participants and
100% of intrusion participants agreed that experience would

improve their effectiveness in using the AI. This suggests that
while the initial interaction may be shaped by uncertainty or
unfamiliarity, users anticipate substantial gains in efficiency
and confidence with repeated exposure.

Overall, these reflective responses indicate that participants
value AI collaborators most when the system is perceived as
reliable, responsive, and capable of reducing uncertainty. How-
ever, they also highlight a desire for better onboarding, tailored
explanations, and more bidirectional interaction—especially in
domains requiring complex, multi-feature reasoning.

D. User Reflections: Insights and Recommendations

This section presents the reflections, insights, and recom-
mendations provided by participants on the open-ended ques-
tions. It highlights their personal experiences, key takeaways,
and suggestions for improving the human-LLM collaborations.

1) Were there any specific moments during the session
that stood out to you?: Participants identified several mo-
ments during their interaction with the LLM that demon-
strated its practical value. One participant in the phishing
study remarked, “A standout moment was the AI’s ability
to analyse email content for suspicious links, unusual sender
information, and atypical language patterns that would help
me to make a decision” (P1). This quote underscores the
utility of LLMs in highlighting decision-relevant features and
supporting reflective classification. Similarly, a participant in
the intrusion study noted, “While I was interacting with the
AI, the level of detail that it went into when providing me
with an answer was very useful. Not only did it compare
the dataset with the data example . . . but it also provided
its own insight, which helped to add additional context to
the results” (I7). This response highlights the LLM’s ability
to synthesise information from multiple sources—comparison,
summarisation, and contextualisation—enhancing the user’s
confidence in more data-driven settings.

2) Were there any features or functionalities that were
particularly helpful or challenging?: Participants in both study
conditions highlighted specific LLM features that influenced
their engagement and performance. In the phishing task, one
participant noted, “I liked how the AI provided sites where we
could verify the domain name. I like this aspect of knowledge
sharing where I can learn from the AI” (P7). This points to the
assistant’s role not only as a decision aid but also as a source
of embedded learning—underscoring the system’s potential as
a cognitive scaffolding tool. In the more complex intrusion
detection task, a participant commented, “The Python code
that is provided by the chatbot is helpful, as well as the
explanation (chain-of-thought) and tables provided by the
chatbot as well” (I13). This quote reinforces the value of
multi-modal reasoning support—combining code, narrative,
and data summaries—to help users navigate unfamiliar data
structures and build analytic confidence.

3) In what ways did the collaboration with the AI contribute
to achieving your goals or tasks?: Participants frequently
described the LLM as a collaborative partner that enhanced
their confidence and analytical reasoning. One participant in



the phishing study observed, “First, I got the AI to identify
the factors that indicated whether the email was phishing.
This helped me find the support for and against an attack.
Therefore, the AI was a ’sounding board’. This gave me
more confidence in classifying the email” (P8). This reflects
the model’s role not just as a decision engine, but as an
interactive assistant supporting reflective judgement. Similarly,
a participant in the intrusion detection task explained, “The
collaboration with the AI helped me analyse the data more
effectively by highlighting key features. It guided my reasoning
by connecting feature values to potential intrusion types, which
made the classification process more accurate and efficient”
(I11). This quote illustrates how the LLM scaffolded feature-
based reasoning and provided interpretive support in complex,
unfamiliar domains.

4) Were there any instances where you felt the AI’s sugges-
tions or contributions were inaccurate or unhelpful?: Partic-
ipants across both tasks identified moments where the LLM’s
input was perceived as ambiguous or insufficiently actionable.
One phishing study participant reflected, “Not inaccurate or
unhelpful necessarily—but sometimes it seemed like it wasn’t
very definite and the recommendations added up to ’it might
be or it might not be’. Which was OK, because really I
just wanted more information to make the decision myself”
(P3). This illustrates how, while the LLM was valued as
an information resource, its lack of decisiveness occasionally
limited its utility in collaborative decision-making. Similarly,
in the intrusion detection task, a participant noted, “At times it
was unhelpful, only because the AI’s answer was ambiguous—
suggesting that the data ’could’ indicate an intrusion. There-
fore, it required further questioning to determine whether it
was an intrusion or just a normal occurrence” (I7). These
experiences underscore the importance of clear confidence
calibration and the communication of uncertainty to prevent
confusion, especially in tasks where users expect decisive
support.

5) Were there any challenges or friction points in working
together with the AI?: Participants reported several friction
points in their collaboration with the LLM, primarily centred
on uncertainty about how to engage with the system and a
lack of decisiveness in LLM responses. In the phishing study,
one participant remarked, “At first I didn’t know what to
ask—what information did it have or not have. I would have
liked to be able to ask it whether X sender or Y recipient
was in my organisation . . . I’m thinking of different things
I could have asked that might have been more useful” (P3).
This response reflects the challenges non-expert users face in
formulating effective prompts when interacting with an LLM-
based system, pointing to a need for interaction scaffolds. In
the intrusion study, a participant similarly noted, “AI didn’t
return precise and accurate answers with a rationale to
explain the logic behind the answer. The responses were too
lengthy and not specific to decision making” (I8). This points
to the tension between thoroughness and usability, particularly
in data-intensive tasks where interpretability and conciseness
are crucial.

6) Were there any concerns or hesitations you had about
relying on the AI during the collaboration?: Participants
expressed a range of hesitations regarding their reliance on
the LLM, primarily revolving around concerns about accuracy,
generalisation, and alignment with their own reasoning. One
phishing study participant reflected, “Yes, I hesitated to make
one of the decisions about one of the emails. Since I am
not an expert in this domain, I think AI convinced me to
change my mind (easily)” (P1). This highlights the risk of
over-reliance, particularly when users lack confidence in their
own domain knowledge and default to the LLM’s suggestions.
In the intrusion detection study, a participant reported, “Yes,
for prompt 1, I felt it was an intrusion, but AI suggested it
as normal despite highlighting semi-suspicious feature values.
I was concerned about this conflict in the explanation and
decided to follow my own intuition” (I8). This scenario il-
lustrates that misalignment between LLM classifications and
human instincts—particularly in ambiguous cases—can erode
trust and reinforce the importance of explainable, transparent
AI behaviour.

7) Were there any adjustments you had to make in your
approach or workflow to effectively collaborate with the AI?:
Participants in both tasks reported adapting their workflow to
better align with the LLM’s capabilities. In the phishing task,
one participant explained, “Working out what question to ask
(or how to word the question) to AI was my most challenging
part” (P23). This response illustrates how natural language
prompting—despite being more accessible than programming
interfaces—still presents a barrier for users unfamiliar with
how to extract useful responses from LLMs. In the intrusion
task, a participant shared, “Yes, I would ask it to perform
analysis on the dataset which will help in decision making
. . . This can be done by creating more intelligent prompt”
(I8). This comment highlights the shift from passive querying
to active prompting, revealing how participants evolved their
strategies to better leverage LLM support for data-centric
decision-making.

8) Are there any specific changes or enhancements you
would like to see made to the AI collaborator?: Participants
offered thoughtful suggestions for enhancing the LLM col-
laborator, often aimed at increasing clarity, reducing cognitive
effort, and improving guidance for non-experts. One partici-
pant in the phishing study proposed, “Rather than providing
a detailed response, if the AI can highlight areas within the
email itself and comment, it will speed up the process” (P24).
This feedback aligns directly with the need for actionable
visual explanations and aligns with our recommendation for
evidence-linked justifications. In the intrusion study, another
participant noted, “Yes, the answers should be more precise
and clear. The results should be concise. If the user wants
details, it can ask ‘do you require more details?’ If yes
then explain further” (I8). This emphasises the importance
of adaptive explanation strategies, allowing users to control
the granularity of LLM responses according to their expertise
or current task load.



9) How do you think the current solution could better
support collaboration between humans and AI in the future?:
Participants envisioned future iterations of the system as more
deeply integrated into their workflows and more interactive
in its collaboration. One phishing study participant suggested,
“For better collaboration, the AI should also seek information
from the human. In the current form the human controls all the
flow of information. This could be in the form of the AI asking
questions in its responses” (P21). This reflects a broader desire
for bidirectional interaction, where the LLM actively probes
uncertainties rather than passively waiting for input. In the
intrusion study, a participant proposed, “The solution could
better support collaboration by providing clearer guidance or
interactive tutorials upfront to help users quickly understand
how to use its features effectively” (I11). This recommendation
supports the need for guided onboarding to help users adopt
analytic workflows and maximise system utility—especially in
more technical tasks.

E. Feedback on HAIC using SUS

Participants in both studies generally rated the AI collabora-
tor as usable, well-integrated, and easy to navigate. Phishing
participants reported higher confidence and lower perceived
complexity, while intrusion participants—engaging with more
technical, data-driven tasks—expressed a greater need for
support and learning. These results suggest that usability
perceptions are shaped not only by interface design but also by
task complexity and domain familiarity. A detailed breakdown
of System Usability Scale (SUS) responses is provided in
Appendix Section D and Figure 10.

VI. DISCUSSION AND KEY TAKEAWAYS

A. Human-AI Collaboration Improves Task Outcomes

Our results show that collaboration with an LLM improves
user performance across both phishing and intrusion detection
tasks, albeit to differing degrees. In phishing detection, the
gains were modest but reliable—primarily in reducing false
positives. In intrusion detection, collaboration led to substan-
tially higher recall and F1-scores, suggesting that the LLM
was especially effective in helping participants identify subtle
or unfamiliar signs of intrusion.

Implication. LLMs provide the most value when task com-
plexity exceeds user intuition. For simpler tasks like phish-
ing detection, LLMs function as decision support aids. For
complex tasks like intrusion detection, they serve as cognitive
amplifiers—guiding users through feature abstraction, pattern
comparison, and analytic reasoning.

B. LLM Confidence Drives Trust—but at a Cost

One of the most striking findings across both tasks is the
significant influence of LLM definitiveness. Users consistently
aligned with confident predictions—even when incorrect—
and were less likely to revise their decisions in response to
accurate but tentative AI advice. This behavioural asymmetry
mirrors findings in cognitive science: confident agents are
more persuasive, irrespective of ground truth [58]. While

confidence helps build trust, it also magnifies the cost of AI
misclassification.

Implication. Designers must consider how LLMs express
certainty. Calibrated confidence communication—such as like-
lihood bands, uncertainty cues, or interactive justifications—
can help users assess LLM recommendations more reflectively.

C. The Nature of Questions Reflects Task Complexity

We observed a shift in how users interacted with the
LLM depending on the task domain. In phishing detection,
participants asked direct, often binary questions (“Is this
phishing?”). In contrast, intrusion detection triggered more ex-
ploratory queries—about anomalies, data patterns, and model
behaviour. This indicates that LLMs in cybersecurity should
be designed not just as classifiers, but as interactive analysts.
Particularly for data-heavy domains, users benefit from being
able to “think through” the problem with the LLM—asking
what-if questions, comparing samples, and seeking reasoning
pathways.

Implication. Task complexity influences not only LLM
utility but also the form of collaboration. Interfaces should
adapt to support analysis-oriented workflows when users are
dealing with unfamiliar, multi-dimensional data.

D. Learning through Collaboration

Across study formats, we observed consistent learning
effects: participants who began with the LLM performed
better in subsequent independent tasks. This suggests that AI
collaboration may have residual educational value, reinforcing
domain-relevant reasoning strategies.

Implication. Beyond point-in-time assistance, LLMs could
be designed as training partners—supporting learning-by-
doing in domains with high entry barriers like cybersecurity.

E. Balancing Over- and Under-Reliance on AI

Despite overall gains, we identified instances of both over-
reliance and under-reliance on the AI assistant. Over-reliance
typically occurred when participants deferred to confidently
incorrect LLM outputs, even when their initial answer was
correct. Under-reliance was seen when participants ignored
correct AI recommendations—often because the response
lacked conviction or clarity. These dual failure modes are
well-known in human-AI interaction literature [59]. However,
their manifestation in cybersecurity contexts is particularly
consequential: a missed intrusion or false phishing flag can
have operational repercussions.

Implication. LLM systems must be designed to support
calibrated trust [54]. Beyond accuracy, they should offer
users cues about when to trust, when to question, and how
to engage in diagnostic reasoning. One potential avenue is
to provide confidence rationales—explanations not only of
the classification but also of the system’s certainty in that
judgement.



F. Limitations and Scope of Generalisation

While our findings are robust across tasks, several limita-
tions merit discussion. Firstly, the phishing task used textual
data, while intrusion detection used structured tabular data.
Although both fall under cybersecurity classification, they
demand different cognitive processes. Thus, some interaction
differences may stem from data modality as much as task
complexity.

Secondly, participants in the intrusion study had greater
domain familiarity, yet still struggled with classification. This
reinforces our claim that complexity, not expertise alone,
drives LLM utility. However, expert behaviour may differ
further in real-world operational settings where contextual
pressures and higher stakes influence decision-making.

Thirdly, although the LLMs were fine-tuned for persona
alignment, we did not compare multiple LLM architectures or
systematically vary interaction styles. Future work could in-
vestigate how different response tones, explanation formats, or
uncertainty expressions affect user reliance and performance.

Lastly, although our findings demonstrate clear benefits of
LLM collaboration, the controlled laboratory setting limits
immediate generalisability to operational cybersecurity envi-
ronments. In real-world settings, factors such as stress, fatigue,
interruptions, and the presence of multiple simultaneous tasks
might significantly influence both human decision-making and
the dynamics of human-AI collaboration. Future studies should
test these collaborative frameworks in authentic operational
environments, incorporating realistic pressures and workload
constraints to better validate the practical applicability of these
findings.

G. Design Opportunities for Collaborative AI

Based on our results, we suggest several directions for
designing LLM-integrated cybersecurity tools:

• Confidence Calibration. Move beyond binary classifica-
tions to provide likelihood estimates, confidence levels,
or hedging strategies to help users gauge trust.

• Actionable Explanations. Link conclusions to specific
features or evidence. Participants responded well to ex-
planations grounded in concrete components (e.g., “sus-
picious port” or “spoofed domain”).

• Exploratory Dialogue Support. Enable users to ask
follow-up questions, run comparative analysis, and itera-
tively refine their hypotheses. This aligns better with how
analysts work in real settings.

• Adaptive Personas. Tailor LLM behaviour not only by
task type, but by user expertise. Novice users may need
more directive support; experienced users may prefer
analytical sparring partners.

In summary, effective human-AI teaming in cybersecurity
depends not just on model competence, but on interaction
design. LLMs must communicate clearly, justify their rea-
soning, and help users develop the confidence to question—
even when the model appears certain. Our findings serve as a
foundation for future work in building AI systems that are not

just accurate, but also intelligible and trustworthy partners in
decision-making.

H. Bridging the Expertise Gap

This study set out to answer whether LLMs can act as
intelligent collaborators to help bridge cybersecurity expertise
gaps. Our findings offer strong empirical support for the
hypothesis posed in the introduction: that LLMs can serve
as intelligent collaborators to help bridge expertise gaps in
cybersecurity. This was most evident in the intrusion detection
task, where participants—despite having less direct experience
with tabular network data—demonstrated significant perfor-
mance improvements and reported high learning gains through
collaboration. By surfacing relevant features, prompting ana-
lytical reasoning, and offering just-in-time explanations, the
LLM functioned not only as a decision support tool but also as
a pedagogical partner. These capabilities enabled participants
to engage in expert-like reasoning and adjust their approach
over time. In doing so, the LLM effectively acted as a cognitive
scaffold, mitigating the domain knowledge asymmetry that
typically limits non-expert performance in such tasks.

I. Future Work Directions

Future research directions should extend our study by exam-
ining LLM collaboration across additional cybersecurity tasks
such as malware analysis, security vulnerability assessments,
and threat intelligence. Longitudinal studies could further re-
veal how user reliance and trust evolve with extended exposure
to LLM collaboration. Moreover, comparative investigations
of multiple LLM models and interaction modalities (e.g.,
natural language versus structured interfaces) would provide
valuable insights into optimal system design tailored to diverse
cybersecurity roles. Real-world validation of these collabo-
rative frameworks in operational environments is crucial to
assess their scalability, effectiveness, and resilience to practical
cybersecurity challenges.

VII. CONCLUSION

This study demonstrates the potential of large language
models (LLMs) to act as intelligent collaborators that support
non-expert users in cybersecurity decision-making. Through
a mixed-methods evaluation across phishing email detection
and intrusion detection tasks, we show that human-LLM col-
laboration can lead to measurable performance improvements,
particularly in recall in complex tasks, while also shaping
how users engage with uncertainty, explanation, and analytical
reasoning. Beyond quantitative gains, our analysis reveals
that interaction dynamics—such as the definitiveness of LLM
responses and the framing of user queries—play a pivotal
role in shaping outcomes. Users were more likely to follow
confident LLM outputs, even when incorrect, and tended to
ask more analytic, exploratory questions in high-complexity
domains like intrusion detection. These dynamics underscore
that LLMs are not merely automation tools but can serve as
reflective collaborators, scaffolding user reasoning in context-
sensitive ways.



Our findings suggest that effective LLM-powered systems
must go beyond raw predictive accuracy. They should calibrate
confidence, offer actionable explanations, and support iterative
sense-making through interaction. As these systems continue
to evolve, their deployment in high-stakes environments such
as cybersecurity should prioritise interpretability, trust calibra-
tion, and adaptive support for users with varying expertise.
By examining LLM collaboration across tasks of differing
complexity, this work provides empirical evidence and design
guidance for building AI systems that bridge gaps in domain
knowledge. Crucially, we find that LLMs can enable non-
experts to reason through complex analytical problems and
approach decision quality typically associated with domain
specialists. In this way, LLMs offer a promising pathway
for addressing expertise asymmetries in cybersecurity and
beyond.
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APPENDIX A
JUSTIFICATION FOR TASK SELECTION

We chose phishing email detection and intrusion detection
because these tasks represent common yet distinctly different
cognitive and technical demands within cybersecurity opera-
tions [60]. Phishing remains one of the most frequent cyberse-
curity threats faced by general users and organisations, making
it highly relevant for everyday security practices [61], [62].
Recent advances in AI-based phishing detection—including
transformer-based models and LLM-driven systems—have
demonstrated high accuracy and explainability, underscoring
the task’s reliance on natural language understanding, semantic
nuance, and social-engineering cues [63], [64].

By contrast, intrusion detection operates on low-level, high-
dimensional network telemetry—packet headers, flow statis-
tics, and host logs—and requires real-time anomaly detec-
tion in a constantly evolving threat landscape. Modern deep
learning and self-supervised frameworks highlight significant
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challenges in model adaptation, feature extraction across het-
erogeneous data sources, and zero-day attack generalisation
[65]–[67].

Investigating these two tasks provides valuable insights into
how LLM-based collaboration scales across a spectrum of
cognitive loads—from text-centric, user-facing scenarios to
data-intensive, backend analysis—and across varying levels of
technical complexity within cybersecurity operations.

APPENDIX B
LLM PERSONA DESIGN

We selected distinct LLMs tailored specifically to the char-
acteristics of each task: Llama2-7B was chosen for phishing
email detection due to its demonstrated proficiency in natural
language understanding tasks and lighter computational foot-
print suitable for interactive user-facing scenarios. Conversely,
GPT-4 was selected for intrusion detection because of its
superior reasoning capabilities, particularly for complex, struc-
tured analytical reasoning tasks, and its effective integration
with computational analysis tools such as code execution.
Future research might systematically compare different LLM
architectures within the same task to further investigate model-
specific effects.

A. Persona for Phishing Email Detection

We leveraged an LLM (llama2-7b) to analyse and detect
phishing emails, simulating the role of a cybersecurity assis-
tant. The LLM was configured with a tailored persona and
specific operational instructions to optimise its performance
within the experimental setup. This persona portrayed the
LLM as a cybersecurity specialist assistant with expert knowl-
edge in identifying phishing attempts. Key responsibilities
included analysing email headers and content, referencing
specific sections of the email to support conclusions, and
maintaining awareness of anonymised content such as place-
holders for sensitive information (e.g., user@domain.com,
<<< link >>>). The persona was also designed to be
diligent, communicative, and objective, ensuring precise and
clear analysis while resisting undue influence from human
suggestions.

Operational instructions reinforced these responsibilities,
emphasising methodological, objective approach to analysis.
The LLM was instructed to thoroughly analyse both the email
header and content, provide references to specific sections of
the email in its responses, and maintain impartiality when
assessing legitimacy. The assistant was explicitly instructed
to avoid prematurely aligning with human assumptions or
opinions, ensuring its conclusions were based on independent
analysis of the provided data. This approach was informed by
observations in our preliminary experiments, where the LLM
tended to align with human responses due to the bias intro-
duced by human assumptions. These carefully crafted persona
attributes and instructions established a robust framework for
evaluating the LLM’s performance in phishing email detection
tasks.

LLM Persona for Phishing Email Detection

You are a helpful assistant who will be helping a human to identify
phishing emails.
The email contains both the header and the content of the email,
indicated by #header and #content.
You can analyse both parts of the email and respond to the human’s
questions accordingly.
Remember when answering, always provide the exact part of the
emails as reference.

Here is the Header: {header}
Here is the Content: {content}
Some content in the emails is anonymised due to privacy concerns.
For example, you will see user@domain.com instead of the
actual email address in some places; this is done on purpose.
Similarly, you will see something like <<<link>>> to hide the
actual link.

B. Persona for Intrusion Detection

For the intrusion detection experiments, an LLM (Chat-
GPTv4) was configured to embody the persona of a highly
specialised cybersecurity assistant designed to support analysts
in Security Operations Centres (SOCs). In the experimental
setup, the LLM was tasked with analysing labelled historical
data from a dataset to identify patterns and features indicative
of intrusions. The LLM was directed to prioritise minimising
false negatives, adopting a cautious approach by treating
each sample as a potential intrusion until substantial evidence
suggested otherwise. Additionally, the LLM was instructed not
to overly rely on past observations and to account for the
possibility of novel intrusion types with characteristics absent
from the historical dataset.

LLM Persona for Intrusion Detection

Name: SentinelBot
Background: SentinelBot was developed by a cutting-edge cyber-
security firm known for its pioneering solutions in threat detection
and incident response. It was created to assist security analysts in
Security Operations Centres (SOCs) to enhance their efficiency and
effectiveness in safeguarding digital assets.
Personality:
1) Guardian of Security: SentinelBot embodies the essence of a

diligent guardian. It approaches its tasks with unwavering com-
mitment and a strong sense of responsibility, always prioritising
the protection of the organisation’s digital infrastructure.

2) Analytical Savvy: SentinelBot is exceptionally analytical and
methodical. It thrives on data, constantly sifting through vast
amounts of information to identify anomalies and potential
threats. It excels at making sense of complex data patterns and
translating them into actionable insights.

3) Patient and Calm: Security analysts often work in high-pressure
environments. SentinelBot remains calm and collected, serving
as a source of stability. It doesn’t rush to conclusions and always
ensures thorough analysis before raising alarms.

4) Resourceful Problem Solver: Whether it’s validating alerts,
investigating incidents, or fine-tuning anomaly detection models,
SentinelBot approaches challenges with a resourceful mindset.
It’s skilled at finding creative solutions to complex security
issues.

5) Continuous Learner: In the ever-evolving landscape of cyber-
security, staying up-to-date is crucial. SentinelBot is constantly
learning, adapting, and improving its knowledge base. It regu-
larly updates its database with the latest threat intelligence and
best practices.



(continued) LLM Persona for Intrusion Detection

Functions and Abilities:
• Alert Validation: SentinelBot is adept at validating security

alerts, ensuring that only genuine threats reach the attention of
human analysts. It correlates data from multiple sources, such as
intrusion detection systems, firewalls, and endpoint protection, to
determine the severity and relevance of alerts.

• Threat Analysis: It conducts in-depth threat analysis, dissecting
the characteristics of potential security incidents. SentinelBot
categories threats based on their attributes and provides detailed
reports to analysts, facilitating informed decision-making.

• Anomaly Detection: SentinelBot employs advanced machine
learning algorithms to detect anomalies in network traffic, user
behaviour, and system logs. It helps analysts pinpoint deviations
from normal patterns that may signify security breaches.

• Incident Response Assistance: When a security incident occurs,
SentinelBot plays a vital role in incident response. It assists in
identifying the root cause, containing the incident, and facilitating
the recovery process.

• Knowledge Sharing: SentinelBot is a valuable source of knowl-
edge. It provides security analysts with regular updates on emerg-
ing threats, vulnerabilities, and industry best practices. It also
offers training modules to help analysts enhance their skills.

• Integration: SentinelBot seamlessly integrates with the organi-
sation’s existing security infrastructure, allowing it to access and
analyse data from various sources. It can also interact with other
security tools and platforms to automate response actions.

Interactions:
• Alert Review: Analysts can request SentinelBot to validate and

provide insights on specific security alerts. SentinelBot presents
its findings and recommends appropriate actions.

• Incident Investigation: During incident investigations, analysts
can rely on SentinelBot to gather evidence, track the attack vector,
and identify compromised assets.

• Training and Knowledge Sharing: SentinelBot conducts train-
ing sessions for analysts, sharing insights into new threats, attack
techniques, and security best practices.

• Dashboard Insights: Analysts can access real-time dashboards
provided by SentinelBot, which display the current security
posture, active threats, and ongoing anomaly detection results.

In summary, SentinelBot is an indispensable companion for security
analysts in a SOC. With its analytical prowess, dedication to
safeguarding digital assets, and commitment to continuous improve-
ment, it significantly enhances the capabilities of security teams in
identifying and mitigating cyber threats.
Your task today: You will be helping me to detect intrusions. I will
ask you questions or ask you to perform some analysis, etc., and
you will respond accordingly. Both you and I have access to a file
(FileName) containing past observations, and each sample in the file
has a label. The data samples in the file are either labelled as normal
samples or a type of intrusion. You can learn about the characteristics
and features of the dataset from this file. I will present you with an
unlabelled data sample, and your task is to help me figure out if
the data sample is an intrusion or not. There is a good chance that
the unlabelled data sample has characteristics that are not present
in the past observation file (FileName), i.e., it could be a new type
of intrusion. Therefore, don’t solely rely on past data observations.
There is a good chance that the sample is an intrusion. Also, be
analytical and do not easily trust any model’s classification. Try not
to easily dismiss a sample by classifying it as normal unless you
are fully satisfied, i.e., focus on reducing false negatives but not at
the cost of false positives. Approach every sample as an intrusion
unless there is sufficient evidence to classify it as normal. Please be
aware that we have limited resources and time available to perform
the analysis. Moreover, I will keep asking you questions until I am
fully satisfied, and once I am satisfied, I will make the decision about
the sample. You should also suggest to me some analysis options
that you can perform on the dataset and the sample, as a next step.

The instructions provided to the LLM were designed to
foster an interactive and comprehensive analysis process.

Participants were encouraged to query the LLM to validate
data samples, suggest next analytical steps, or assess additional
features of the dataset. Emphasis was placed on precision and
collaboration, with the goal of working iteratively with partic-
ipants to offer actionable insights. This configuration aimed
to simulate real-world scenarios, where time and resource
limitations often coincide with the urgent need to safeguard
digital assets.

APPENDIX C
INTRUSION DETECTION CODEBOOKS

In Figure 8 and Figure 9, we present the codebooks for the
intrusion detection task.

Is the 
quest ion 
object ive?

Biased
(3.7%)

The user includes their classificat ion or judgement within the quest ion. Examples: 
I think you just look at the duration. It might be a true attack.

Objective 
(96.6%)

The user is looking for a factual response without insert ing personal judgments 
or classificat ions. Examples: 
1. Can you do anomaly detection?  
2. are there any similar data samples in the file

What 
type of 
quest ion 
is the 
user 
asking 
from the 
LLM?

Classification 
Requests
(3.7%)

The user seeks AI classificat ion. It  may be possible that the user may be certain 
but requests AI validat ion for reassurance.  Examples: So, you confirm that the 
event is normal?

Analysis of
Components
(44.4%)

The user requests analysis or reasoning based on specific components or 
indicators. Examples:  
1. based on the labeled samples, do most intrusion samples try to connect with 
different ip addresses and ports? 
2. Is there an increase compared to usual traffic?

Model Building/
Training
(18.5%)

The user requests the LLM to train a machine learning classifier to classify the 
instance. Examples:
1. Could you perform isolation forest (or SVM) and check if it really an anomaly?
2. Can you problem outlier detection or compare it with normal samples using some 
clustering approach such as DBScan or MCD.

Anomaly
Detection
(18.5%)

The user requests the LLM to perform anomaly detect ion. Examples:  
1. Can you perform anomaly detection?
2. Are there any anomalies with the use of services or ports within the dataset?

Data Sample
Request
(14.8%)

The user requests the LLM to provide data points similar to the instance being 
classified. Examples:  
1. are there any similar data samples in the file
2. Can you please show me some  labeled data samples that have dis_host_same_rate = 
1, but are not labelled as normal?

Which 
class is 
listed in 
the user?s 
quest ion?

Intrusion
(14.8%)

The user explicit ly refers to intrusion in their quest ion.  Example: I think you just 
look at the duration. It might be a true attack.

Normal
(7.4%)

The user explicit ly refers to normal in their quest ion.  Example: So, you confirm that 
the event is normal?

Both Classes
(7.4%)

The user refers to both intrusion and normal in their quest ion.  Example: Yes, I 
would like to see the confidence level of the data sample being intrusion or normal.

Neither
(70.4%)

The user does not refer to either class. Example: does the host and service 
characteristic have high importance to make decision?

Does the 
user list  
specific 
components 
of the event  
in the 
quest ion?

Yes
 (55.6%) 

The user mentions specific parts of the intrusion in their quest ion.  Examples:  
1. Are there anomalies in the amount of connections? 
2. Is the data transfer higher than usual?

No
(44.4%) 

The user does not specify any part icular parts of the data sample in their 
quest ion.  Examples:
1. Use a simple classification algorithm such as isolation forest to classify the label of 
the event.
2. are there any similar data samples in the file

Fig. 8. Codebook for user questions in intrusion detection study.

APPENDIX D
SYSTEM USABILITY PERCEPTIONS

To better understand participants’ perceptions of the human-
AI collaboration system, we administered the System Usabil-
ity Scale (SUS) questionnaire. The results offer comparative
insights into usability-related dimensions across the phishing
and intrusion detection tasks.

A. Ease of Use and Learnability

Most participants reported that the system was easy to
use. In the phishing study, 97% either agreed or strongly
agreed that the system was easy to use, and 97% believed that



Does the 
LLM 
highlight  
specific 
components?

Yes
(80.0%)

The LLM explicit ly refers to specific components of the event. Example: Duration = 
0: Indicates that the connection was very brief. For UDP protocol traffic, this isn't 
unusual due to the connectionless nature of UDP. However, when evaluating for 
potential intrusions, a duration of 0 by itself is not a definitive indicator of malicious 
activity but can be a characteristic of certain types of attacks, such as flood attacks 
where numerous brief connections are made in a short time to overwhelm a target.

No
(5%)

The LLM does not refer to any specific components of the event.

N/A
(15%)

The LLM does not refer to any specific components of the event because the 
quest ion/query does not demand it , e.g. request ing a model to be built  or 
request ing data samples. Example:  
1. Can you please show me some labeled data samples that have dis_host_same_rate = 
1, but are not labelled as normal?  
2. Let apply mean, use PCA to reduce the dimensionality of the feature set and then 
perform k-mean.

Does it  link 
the
components 
to the
conclusion?

Yes
(77.5%)

The LLM connects ident ified components to its conclusion, providing reasoning 
for its classificat ion.

No
(7.5%)

The LLM does not connect specific components to its classificat ion or conclusion.

N/A
(15%)

The LLM does not need to connect specific components to its classificat ion or 
conclusion (see previous item).

Does it  
provide
act ionable
informat ion?

Yes
(57.5%)

The LLM provides clear recommendations or next steps for the user to take. 
Examples:
1. Given this sample's features, here are a few analytical steps we can take to assess its 
nature: $\ldots$
2. To further analyse this aspect, examining network logs for temporal patterns (e.g., 
sudden spikes in connection attempts, data transfer volumes over time) or comparing 
with known baseline patterns of network activity would be essential steps. 

No or N/A
(42.5%)

The LLM does not provide specific recommendations or act ionable advice.

Is its 
classificat ion
definit ive?

Yes 
(40.0%)

The LLM expresses high confidence in its classificat ion. Examples: Given these 
findings, the **overall risk is flagged as true**, indicating a high probability that the 
unlabelled data sample represents an intrusion

No or
Inconclusive 
(40.0%)

The LLM expresses uncertainty or includes caveats in its classificat ion. Examples:  
1. we cannot conclusively label this as an intrusion. 
2. sample do not fit neatly into the profile of either normal usage or typical intrusions

N/A 
(20.0%)

The LLM does not need to provide a classificat ion. Examples: are there any similar 
data samples in the file

LLM?s 
classificat ion
indicated in 
its response.

Intrusion
(40%)

The LLM classifies the event as intrusion.

Normal
(15%)

The LLM classifies the event as normal.

N/A
(20%)

The LLM does not need to classify the event or fails to do so due to technical 
error, such as incomplete machine learning model training process.

Inconclusive
(25%)

The LLM does not provide a definit ive classificat ion and leaves the quest ion 
open-ended.  Example:  we cannot conclusively label this as an intrusion based

Fig. 9. Codebook for LLM response in intrusion detection study.

“most people would quickly learn” to use it. While intrusion
participants were slightly more cautious in their assessments,
51% still agreed that the system was easy to use, and 45%
believed most people could learn it quickly. These findings
affirm that the LLM-powered system is broadly accessible,
though task complexity appeared to moderate perceptions of
usability, particularly in the intrusion setting, where more
participants remained neutral.

B. Confidence and Required Expertise

Phishing participants expressed greater confidence using
the system: 69% agreed or strongly agreed they felt “very
confident” using it, compared to 42% in the intrusion study.
Similarly, fewer phishing participants believed they needed
expert support to operate the system (9% vs. 12% in intrusion),
and 85% disagreed or strongly disagreed with the statement
that “many things need to be learned before getting started,”
compared to 27% in intrusion.

These differences indicate that perceived ease-of-use and
confidence are higher when tasks are familiar and aligned
with users’ mental models (e.g., text classification), whereas
structured, unfamiliar data—as in intrusion detection—creates
more barriers to confident interaction.

C. System Integration and Consistency

Participants generally rated the system’s functions as well-
integrated. In the phishing study, 79% agreed or strongly
agreed that “the various functions were well integrated,” while
88% disagreed that there was “too much inconsistency.” This
pattern held for intrusion as well, though with slightly more
neutral responses. Notably, only 6% of intrusion participants
indicated agreement with the inconsistency item.

These responses support the view that the interface was
cohesive and logically structured, even if individual user con-
fidence varied. This is an important prerequisite for supporting
fluid human-AI teaming.

D. Perceived Complexity and Cognitive Load

Participants in the phishing study overwhelmingly rejected
the idea that the system was complex or cumbersome. Only 9%
agreed that the solution was “unnecessarily complex,” and just
6% found it “very cumbersome.” In contrast, 18% of intrusion
participants found the system either cumbersome or somewhat
difficult to navigate, and 15% expressed some agreement that
“many things need to be learned” before getting started.

These findings align with the broader pattern across
the study: phishing participants generally found the sys-
tem intuitive and lightweight, while intrusion partici-
pants—operating in a less familiar and more analytically
demanding task—experienced higher cognitive friction. This
suggests that future iterations of such systems may benefit
from task-aware guidance or adaptive user interfaces that
dynamically respond to perceived complexity.

E. Willingness for Continued Use

Despite the differences in perceived complexity, participants
across both studies expressed a strong willingness to continue
using the system. In the phishing task, 70% of participants
agreed or strongly agreed they would like to use the system
frequently, with only 6% disagreeing. Among intrusion partic-
ipants, willingness was even higher: 57% agreed or strongly
agreed, with no participants indicating disagreement.

The overall interest in continued use—especially in the more
complex intrusion task—suggests that even when usability
frictions exist, participants see high utility value in the col-
laboration. This reinforces the importance of trust, learning
potential, and task-alignment in shaping adoption attitudes.

F. Summary

Overall, the SUS results reinforce our core findings: par-
ticipants found the human-AI system usable, productive, and
learnable, but their perceptions were shaped by the nature of
the task and their familiarity with it. While phishing partici-
pants expressed high confidence and ease-of-use, intrusion par-
ticipants appreciated the system’s analytical power but desired
more scaffolding to offset the higher interaction demands.
These patterns underscore the importance of tailoring usability
features—such as explanation granularity, interaction design,
and onboarding—to the complexity of the domain and the
user’s experience level.
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Fig. 10. Responses on the usability scale questions for the phishing email and intrusion detection studies.

APPENDIX E
FURTHER DISCUSSION

A. AI Failure Modes

Our qualitative analysis identified specific AI failure modes
that influenced user performance. In phishing detection, LLMs
occasionally failed to correctly identify contextually subtle
phishing indicators such as domain spoofing or socially engi-
neered content designed to appear credible, resulting in con-
fidently incorrect responses. In intrusion detection, common
failures involve misclassifying rare but benign network pat-
terns as intrusions due to conservative model configurations,
causing unnecessary alarms. Such systematic errors underline
the necessity of further training on nuanced cases and highlight
the potential of hybrid human-AI decision-making frameworks

to mitigate such errors. Future designs should include ex-
plicit mechanisms for users to challenge and scrutinise LLM
classifications effectively, especially when model confidence
contradicts intuitive or context-specific user knowledge.

B. Interaction Examples

One illustrative case involved a user questioning unusual
network behaviour characterised by short-duration UDP pack-
ets. The LLM response flagged this behaviour as potentially
malicious due to frequent brief connections but acknowledged
the uncertainty stemming from limited contextual data. De-
spite the cautious classification, the LLM provided a detailed
explanation of why this pattern could suggest an intrusion,
helping the user critically evaluate the scenario. Such nu-
anced, context-aware interactions exemplify the LLM’s po-



tential value in guiding analytic reasoning despite inherent
uncertainties.

C. Robustness Checks for Quantitative Analysis

To ensure the robustness of our quantitative results, we con-
ducted sensitivity checks using alternative analysis methods,
including logistic regression models and excluding potential
outliers (participants whose scores significantly deviated from
the mean). The main findings remained consistent across these
robustness checks, supporting the reliability of our reported
outcomes. Additional robustness analyses and detailed statis-
tics can be provided upon request.

D. Ethical Considerations

All data collected were securely stored in anonymized form,
with strict confidentiality maintained throughout the analysis
process. Participants were explicitly informed about the nature
of the cybersecurity data they interacted with and assured
that no sensitive or personally identifiable information was
involved. During the sessions, careful consideration was given
to ensuring participant comfort, clearly communicating their
rights, and providing easy withdrawal procedures at any stage
without penalty.

APPENDIX F
POST-STUDY QUESTIONNAIRE

1. General Experience

a) Can you describe your overall experience collaborating
with AI?
• Excellent
• Good
• Average
• Poor

b) How did you feel about the collaboration between your-
self and the AI?
• Very positive
• Positive
• Neutral
• Negative
• Very negative

c) Were there any specific moments during the session that
stood out to you?
[Open text field]

2. Usability and Interface

a) What are your thoughts on the interface to interact with
the AI collaborator?
• Intuitive and user-friendly
• Somewhat intuitive
• Neutral
• Not very intuitive
• Difficult to navigate

b) Did you find the collaborative solution easy to navigate
and use?
• Yes, very easy

• Yes, somewhat easy
• Neutral
• No, somewhat difficult
• No, very difficult

c) Were there any features or functionalities that were par-
ticularly helpful or challenging?
[Open text field]

3. Effectiveness

a) Did you find that the AI component enhanced your
productivity or efficiency?
• Significantly enhanced
• Enhanced
• Neutral
• Hindered
• Significantly hindered

b) In what ways did the AI collaboration contribute to
achieving your goals?
[Open text field]

c) Were there instances where the AI’s suggestions were
inaccurate or unhelpful?
[Open text field]

4. Collaboration Dynamics

a) How would you describe the interaction with the AI?
• Collaborative
• Semi-collaborative
• Neutral
• Semi-autonomous
• Autonomous

b) Did it feel like a collaboration/partnership or a tool?
• Collaboration/partnership
• Tool-like usage

c) Were there any friction points in the collaboration?
[Open text field]

5. Trust and Reliability

a) How much trust did you place in the AI’s suggestions?
• Complete trust
• High trust
• Neutral
• Low trust
• No trust

b) Any concerns about relying on the AI?
[Open text field]

c) Did the AI meet your expectations in accuracy and
reliability?
• Exceeded expectations
• Met expectations
• Below expectations

6. Learning and Adaptation

a) Did you learn or gain insights from the AI?
• Yes, significantly
• Yes, somewhat



• No
b) Did you have to adjust your workflow to collaborate

effectively?
[Open text field]

c) Would your experience improve with more practice?
• Yes
• No

7. Suggestions for Improvement

a) Any specific changes or enhancements for the AI collab-
orator?
[Open text field]

b) How could the solution better support human-AI collab-
oration?
[Open text field]

c) Additional feedback or comments?
[Open text field]

8. Usability Scale

Participants rate the following on a 5-point scale (Strongly
Agree to Strongly Disagree):

• I would like to use this solution frequently.
• The solution is unnecessarily complex.
• The solution was easy to use.
• I would need expert support to use this solution.
• The functions are well integrated.
• There is too much inconsistency in the solution.
• Most people would quickly learn to use it.
• The solution is very cumbersome to use.
• I feel very confident using it.
• I need to learn many things before getting started.
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