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Explainable Artificial Intelligence (XAI) has emerged as a pillar of Trustworthy AI and aims to bring transparency in complex models 
that are opaque by nature. Despite the benefits of incorporating explanations in models, an urgent need is found in addressing the privacy 
concerns of providing this additional information to end users. In this article, we conduct a scoping review of existing literature to elicit 
details on the conflict between privacy and explainability. Using the standard methodology for scoping review, we extracted 57 articles 
from 1,943 studies published from January 2019 to December 2024. The review addresses 3 research questions to present readers with 
more understanding of the topic: (1) what are the privacy risks of releasing explanations in AI systems? (2) what current methods have 
researchers employed to achieve privacy preservation in XAI systems?  (3) what constitutes a privacy preserving explanation? Based on 
the knowledge synthesized from the selected studies, we categorize the privacy risks and preservation methods in XAI and propose the 
characteristics of privacy preserving explanations to aid researchers and practitioners in understanding the requirements of XAI that is 
privacy compliant. Lastly, we identify the challenges in balancing privacy with other system desiderata and provide recommendations for 
achieving privacy preserving XAI. We expect that this review will shed light on the complex relationship of privacy and explainability, 
both being the fundamental principles of Trustworthy AI. 
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1 INTRODUCTION 

1.1 Paradigm shift in technology and the need for explanations 

Traditional software development processes have metamorphosed into stable and reliable frameworks through decades of 
fine tuning by software experts. These software systems are built on human designed algorithms and produce a trace of the 
logic used to generate an output. Even in complex systems, it is possible for software experts to analyze the logic and 
generate an explanation for a specific result. During the software development lifecycle, engineers focus on creating the 
algorithm and validating using well designed test cases that closely replicate real world scenarios. In contrast, modern AI 
systems do not have an underlying human-written algorithm and learn from data fed to them. This data-driven nature 
creates dependence of the system on data quality [111] and introduces problems such as lack of fairness when data is 
biased, or irrelevant results when data is incomplete or outdated [173]. During the AI development phase, engineers access 
training datasets, which may contain personally identifiable or sensitive information about individuals. For neural network 
systems, the development process is primarily a trial-and-error approach, where high accuracy is targeted by tweaking the 
hyperparameters such as the learning rate, epochs, batch sizes or architecture of the system, such as the number or type of 
layers or activation functions. The lack of an algorithm prevents engineers from tracing through the AI system and 
interpreting the results. Thus, the basic ability to be explainable and understand input-output behaviors, which is critical to 
all computer systems [162], is often out of reach of AI systems. Explanations are crucial in high-risk applications [117] in 
domains such as healthcare [43, 50, 191], finance [50, 200], defense [50], justice [42], energy and power [105] where the 
impact on human life and well-being is significant [88, 109, 128] and the inability to do so deters their successful 
implementation [128, 153, 191]. 

Trustworthy AI strives to mitigate risks arising from AI systems due to possible harms from their data-driven nature. 
Trustworthiness is based on foundation principles of reliability, validity, robustness, privacy, explainability, fairness [5, 
165] and other fundamental qualities that boost user confidence in the system outputs. Among these principles, 
explainability aims to bring the much-needed transparency in opaque models and can be considered as a non-functional 
requirement of a software system to mitigate opacity [30]. There are numerous benefits of including explanations in AI 
models. Besides aiding data scientists in getting a better understanding of the data [76] and performing required data 
cleansing [32], explanations can help developers in detecting errors in input and determining features that can be modified 
to change the outcome [41]. When multiple models are available with similar accuracy, an explanation method can help to 
choose between models [44]. Interpretable models can enable knowledge discovery by detecting knowledge or patterns 
that were missed by uninterpretable ones [89]. Since humans remain an important component in the decision-making 
process as end-users and consumers of automated decisions [167], explanations can give them an understanding of the 
model outcome especially when they are adversely affected by the decisions [4]. It can also facilitate privacy awareness in 
end-users [23], enabling them to make right choices for their personal data and aid regulators and compliance officers to 
understand the compliance of models [109] with applicable regulations. With generative AI (Gen-AI) and large language 
models (LLMs) entering mainstream, explanations constitute an important design principle [183] in enabling a better 
mental model for users [160] and in communicating its capabilities and limitations to them [183]. It can also support users 
in effective prompt engineering to determine the words that impact the output of a model [115] and in verification of 
generated content to mitigate the problem of hallucinations [146].  
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1.2 Challenges for privacy in explainability 

In many application domains of AI such as healthcare, finance and justice, training models on sensitive personal 
information is inevitable for usefulness of these systems [176]. For instance, a lung cancer detection model would require 
training on chest X-ray images, which constitutes personal information of patients. Similarly, a loan evaluation model of 
a bank, would require training on the financial health of customers, which is also personal to individuals. Usage of personal 
data impacts the privacy of individuals when they are subject to intentional or unintentional identification and exposure 
through these systems. Some models are found to memorize data contained in the input [156] which can be exploited by 
adversaries for extraction of personal information. Gen-AI models create new content from large datasets in text, audio 
and image formats [160] which could potentially contain sensitive personal information [112]. LLMs are also found to 
leak the privacy of the data used in prompts during in-context learning [48, 166]. Due to such privacy risks involved, when 
personal data is used in training, testing, or inferencing on AI models, they become subject to data regulation and privacy 
acts [78].  

Explainability is a foundation principle of Trustworthy AI, however, introducing explanations in AI systems is found 
to create a tension with the privacy of the system. Explanation interfaces are found to give adversaries an additional attack 
surface [49, 99] to mine the information contained in the model. Researchers have demonstrated privacy attacks targeting 
explanations to retrieve information about membership in the training set [99, 126, 151], build surrogates of the target 
model [3, 181, 190], infer sensitive attributes of individuals [49, 103] and reconstruct the complete training set [151]. These 
attacks are demonstrated across different types of XAI methods including those that are currently used in commercial 
production systems. In addition to privacy attacks, the content of explanations may also inadvertently expose information 
that is proprietary [114] and hence valuable and confidential to organizations [185] or sensitive to individuals, thus causing 
breach of data and privacy regulations. Hence researchers have highlighted the urgent need of mitigating privacy leakage 
through explanation interfaces [103, 133, 190]. Due to these concerns of the privacy vulnerabilities of explanations, 
necessary privacy preservation measures are required in XAI systems [3, 151, 203].  

1.3 Main contributions 

Previous research has identified that the privacy issues in explainability are insufficiently studied [99, 103, 126] despite its 
criticality in achieving safety in AI transparency. To the best of our knowledge, there is currently no work that provides an 
in-depth understanding of the conflict between privacy and explainability in AI. Hence, we focus this article on these two 
fundamental desiderata of Trustworthy AI and explore the landscape of privacy risks and preservation methods proposed 
in literature in the context of XAI. The key questions that we have designed to define the scope of this article are: 
RQ1: What are the privacy risks of releasing explanations in AI systems? 
RQ2: What current methods have researchers employed to achieve privacy preservation in XAI systems?  
RQ3: What constitutes a privacy preserving explanation?  

We conducted a scoping review guided by RQ1 and RQ2. Based on the knowledge gathered from the extracted studies, 
we propose characteristics of privacy preserving XAI and outline them with the help of practical use cases to answer RQ3. 
Our main contributions in this article are as follows: 

- Categorization of reported privacy risks in XAI. We review the conflict between privacy and explainability 
in current literature and categorize the risks. 

- Exploration of applicable privacy preservation methods in XAI. We determine the privacy preserving 
methods that are applicable to XAI and report the progress achieved by researchers in integrating them in 
XAI systems. 
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- Privacy preserving XAI characteristics. We propose the desirable characteristics of privacy preserving XAI 
to provide researchers and practitioners a checklist for achieving the tradeoff between privacy, utility and 
explainability. 

The rest of this article is organized as follows. Section 2 presents a brief background on XAI including its definition, 
evolution, categorization of explanation approaches and related reviews. In Section 3, we present the details of our scoping 
review methodology for extracting studies relevant to our research questions. Sections 4 and 5 synthesize the results from 
the scoping review. In Section 4, we consolidate both intentional and unintentional privacy risks of explanators to answer 
RQ1. In Section 5, we elaborate the use of privacy preserving methods on explanators and the existing works that utilize 
them in response to RQ2. Section 6 proposes the characteristics of privacy preserving XAI and answers RQ3. We conclude 
the article by discussing the results and highlight the open issues, challenges, and recommendations for future work in 
Section 7 and conclusions in Section 8.  

2 BACKGROUND 

2.1 Definition of XAI 

In 2017, DARPA kickstarted its 4-year XAI program to accelerate research in the development of explanation methods 
and interfaces that enhance understanding and trust of end-users [68]. The program defined XAI as “AI systems that can 
explain their rationale to a human user, characterize their strengths and weaknesses, and convey an understanding of how 
they will behave in the future” [68]. The study established users’ preference for systems with explanations over systems 
that provided only decisions. Ribeiro et al. [140] refer to explanations of predictions as qualitative artifacts that provide 
the relationship between an input instance and the output prediction.  
 

 

Figure 1: Important milestones and inception of privacy attacks/defenses in XAI. 

2.2 Evolution of XAI and corresponding privacy issues 

The field of explainability can be traced to the early 1990s, driven by the lack of clarity on the outputs of black-box models. 
Early works [12, 37, 96, 113, 170] have used different approaches for extracting rules from these systems. The rise of deep 
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learning and the improvement in the accuracy of black-box systems, propelled complex uninterpretable systems into 
mainstream usage. However, their use in critical domains remains a challenge due to their lack of transparency. 
Regulations, such as the GDPR’s rights related to automated decision-making including profiling [63], contributed to 
bringing the urgent need for explanations and hence the field of XAI into the forefront and resulted in an exponential 
growth in proposed explainability methods. However, the introduction of transparency through XAI methods also 
introduced privacy leakage through explanation interfaces described in early works [114, 150, 151] in the form of privacy 
attacks on the training data and the underlying model. Correspondingly, researchers have also explored defenses and 
pioneering works in this field [71, 133] have proposed different strategies for generating privacy preserved explanations. 
Currently the privacy issues in XAI are far from being resolved, with new attacks being discovered and researchers 
proposing corresponding mitigation measures to alleviate the risks. Figure 1 summarizes the main milestones in the field 
of XAI and indicates the timeline of discovery of privacy issues and proposed defenses.  

2.3 Categorization of XAI 

In recent years, several different XAI methods have been proposed. Broadly, explainability can be achieved using 
inherently interpretable models or applying post-hoc methods on trained models [71]. Methods specific to certain model 
types and capabilities, are referred to as model-specific while those independent of the model are referred to as model-
agnostic [50]. In this subsection, we discuss the main categories into which XAI methods are grouped in existing literature 
(Table 1), based on the underlying mechanism used to derive explanations. Since there is a broad spectrum of available 
explainability methods, we limit ourselves to a selection of methods to give readers sufficient understanding of the 
terminologies used in subsequent sections. For a comprehensive review of XAI categories and methods, we refer the reader 
to other related reviews listed in Section 2.4. 

2.3.1 Interpretable methods 

These AI models are understandable by design [8]. They have embedded rules or transparent architecture that facilitates 
the understanding of the input-output logic of the system. They are also referred to as white-box or transparent models. 
Decision trees, Bayesian networks, linear/logistic regression, k-nearest neighbours, rule based systems and general additive 
models [8, 120, 138] are some examples of interpretable models. According to Arrieta et al. [8], different transparent 
models possess different degrees of transparency given by the properties of simulatability, decomposability and algorithmic 
transparency.  

Though interpretable models are promising in aiding the understandability of a system, they have limitations. A major 
setback to their successful adoption as explainable-by-design methods, is their lower accuracy [16, 53, 68] compared to 
better performing black-box models such as deep learning systems. When the accuracy gains between these model types 
is substantial, there is an unwillingness to trade performance with interpretability. Interpretable models also lack natural 
language explanations, making them unsuitable for use by non-technical users [15]. For models such as decision trees, the 
understandability deteriorates as the complexity, i.e., the depth of the tree increases [145]. Nonetheless, due to their 
intrinsically transparent architecture, interpretable models are often used as surrogates for black-box models [109]. The 
use of multiple surrogate models facilitates the availability of different types of explanations [50] improving the overall 
interpretability of the system. For trustworthy explanations, surrogates are expected to generate accurate approximations 
of black-box models, failing which the usefulness of the explanations can deteriorate [191]. 
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2.3.2 Example-based methods 

These methods use examples, i.e., data instances as samples to explain the model [109]. The instances may be from the 
training set or generated by the method [84, 95]. These methods are also referred to as record-based [150], instance-based 
[65] or case-based [122] methods in literature. They can complement feature-based methods to aid understandability of the 
end users [83] and also improve the interpretability of complex distributions [89]. They are intuitive and natural in their 
ability to provide explanations to humans [84]. Some methods in this category are anchors [141], contrastive explanations 
[44], counterfactuals [178] , influence functions [90] and prototypes and criticisms [89]. 

Example-based explanations, though easily interpretable by end-users, can cause breach of privacy when datapoints are 
revealed as explanations [151, 176]. Among the different example-based methods, counterfactuals are effective for 
understandability, however, they can aid adversaries in determining the change in input required to alter an output to a 
different classification. Such manipulation of output can have undesirable consequences in critical domains [105]. 

2.3.3 Knowledge-based methods 

These methods utilize knowledge representation techniques in machine learning (ML) models [168]. The integration of 
background knowledge [74] facilitates the inclusion of context [93, 132], thus increasing the trustworthiness of 
explanations. Neuro-symbolic [74] or in-between methods [79] is an emerging field that explores integration of symbolic 
AI approaches from knowledge representation and reasoning with subsymbolic or connectionist based approaches [73]. A 
neuro-symbolic hybrid can enable the integration of the resilience of neural approaches with the interpretability of symbolic 
approaches. Semantic web technologies offer tools for semantic interpretation and reasoning from knowledge bases [147]. 
Knowledge graphs, expressed using Resource Description Framework, and ontologies, expressed using Web Ontology 
Language, are the common tools that can be deployed for explainability. Knowledge graphs have applicability as pre-
model and post-model XAI for extracting features and relations from data as well as for inferencing and reasoning [137]. 
The field of semantic web technologies in explainability is attractive because of its potential of creating knowledge-rich 
explanations without adversely affecting the performance of the system [147]. 

2.3.4 Feature-based methods 

These explanation methods score or measure the effect of individual input features on the output of the model [8, 14, 50, 
159]. They are also referred to as feature importance [109], feature relevance [8] or attribution-based [99] methods. They 
are based on the attribution problem which is the distribution of the output of a model for a specific input to its base features 
[161]. Two important categories of feature-based methods identified in literature are perturbation and backpropagation-
based methods [7, 109]. 

- Perturbation-based methods remove, alter, or mask an input feature or set of features and observe the difference 
with the original output [109]. Some perturbation-based methods are LIME [140], permutation feature 
importance [22], SHAP [101] and MASK [59]. 

- Backpropagation-based methods compute input attributions in forward and backward passes of the network [7]. 
The use of the gradient of the output with the respective input features [109, 159] is a common approach in these 
methods and is referred to as gradient-based approach. Methods used on images that determine the global 
importance of pixels, generate saliency maps, and are referred to as pixel-level attribution methods [86, 120]. 
Some examples of backpropagation-based methods are gradient [155], gradient x input [154], guided 
backpropagation [158] and integrated gradients [162]. 
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Compared to backpropagation, perturbation-based methods require running the model with different sets of input, hence 
they are slower [7] and increasing the number of features increases the performance time [86]. Moreover, when 
perturbation-based methods are used in neural networks, obtaining reliable results for all permutations is challenging due 
to non-linearity and dependence of the outcome on the exact set of features [86]. Though feature-based explanations are 
popular and used by many Machine Learning as a Service (MLaaS) platforms [103], the explanations though useful to 
researchers, are found to be difficult to understand by end-users [176]. 

Table 1: Broad XAI categories and a selection of early works. 

XAI Category XAI Method Model-specific/agnostic Study 
Interpretable Decision trees, Bayesian networks, linear/logistic regression, 

k-nearest neighbours, rule-based systems, general additive 
models 

Model-specific - 

Example-based Anchors Model-agnostic [141] 
Contrastive explanations Model-agnostic [44] 
Counterfactuals Model-agnostic [178] 
Influence functions Model-agnostic [90] 
Prototypes and criticisms Model-agnostic [89] 

Knowledge-based Semantic web technologies Model-agnostic [147] 
Neuro-symbolic approaches Model-specific [74] 

Feature-based Perturbation-based LIME Model-agnostic [140] 
Permutation Feature Importance Model-agnostic [22] 
SHAP Model-agnostic [101] 
MASK Model-agnostic [59] 

Backpropagation-based Gradient Model-specific [155] 
Gradient x Input Model-specific [154] 
Guided Backpropagation Model-specific [158] 
Integrated Gradients Model-specific [162] 

2.4 Related reviews on XAI  

XAI is currently an active research area and detailed reviews have captured the state of the art in the field. Though current 
literature has reviews covering different aspects of XAI, to the best of our knowledge there is a lack of comprehensive 
review that considers the tension of privacy with explainability. Our work fills this gap and is unique in comparison to 
other existing reviews. In this subsection, we identify related reviews on XAI and summarize their focus areas.  

An in-depth overview of the core concepts and taxonomies in XAI was provided by Arrieta et al. [8]. Mohseni et al. 
[118] executed an interdisciplinary survey and provided a framework for XAI design and evaluation methods. Dwivedi et 
al. [50] covered a wide breadth of explanation algorithms, programming frameworks and software toolkits for XAI 
development. Ali et al. [4] surveyed explainability through the lens of trustworthiness and elaborated on evaluation metrics, 
packages and XAI datasets. Bodria et al. [19] categorized explanation methods and benchmarked popular methods using 
quantitative metrics. Muralidar et al. [125] reviewed transparency elements from HCI in the context of explanations while 
Cambria et al. [25] explored the presentation methods and usage of natural language with XAI. In addition to these broad 
surveys on explainability, researchers have also surveyed specific application domains such as healthcare [135, 191],  
cybersecurity [27] and energy and power systems [105]. Reviews on specific XAI categories and methods also exist, such 
as counterfactuals [67], data-driven knowledge-aware XAI systems [95], knowledge-graph based XAI [137, 168] and 
semantic web technologies for explanations [147]. The use of XAI with federated learning, termed as Federated XAI (Fed-
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XAI), was reviewed by López-Blanco et al. [100]. H. Zhao et al. [201] surveyed explainability for transformer-based 
language models and categorized methods based on training paradigms.  

The review in this article differs from the above reviews in that it explores the risks to privacy arising from including 
explainability in AI systems. Further, we review strategies used by researchers in mitigating the privacy leakage in XAI. 
We use an established scoping review strategy guided by well-defined research questions. Our taxonomy of XAI, privacy 
risks and corresponding mitigation methods are distilled from the widely accepted understanding of the privacy and XAI 
community in existing literature. Our review methodology facilitates the answering of the identified research questions 
from the extracted studies. 

3 METHOD 

We conducted a scoping review based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses 
extension for Scoping Reviews (PRISMA-ScR) [172]. In this section, we elaborate the process followed and the identified 
research trends. 

3.1 Literature Selection and Extraction  

We followed a 4-step process comprising of identification, screening, eligibility, and extraction as depicted in Figure 2. In 
the first step, namely, identification, Elsevier Engineering Village [54] search platform was used and the search was 
conducted on Compendex and Inspec databases, which indexes publications from major computer science publishers 
including IEEE, ACM, Springer and Elsevier. A search string was formulated using the two main concepts of privacy and 
explainability and applied on the title, subject, and abstract fields. For reproducibility, the search and inclusion criteria 
used to retrieve the relevant studies is as follows: 

- Search string: (privacy OR confidential* OR “membership inference” OR “model inversion” OR “model 
extract*” OR “model reconstruct*” OR “property inference”) AND (explainab* OR explanat* OR interpretab* 
OR XAI OR recourse OR “transparency report”). 

- Period of publication: January 1, 2019, to December 31, 2024. The start year was chosen based on the seminal 
works [114, 150, 151] published on this topic. 

- Date of most recent search: Jan 6, 2025 
- Type of publications included: journal articles, conference articles, book chapters, articles in press. 
- Type of publications excluded: preprints, unpublished papers, dissertations, books, standards, report chapters, 

notes, report reviews, editorials, erratum, retracted documents. 
- Language: English  
- Inclusion criteria: Study should describe at least one privacy risk or privacy preservation method in XAI. 
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Figure 2: Scoping review process as per PRISMA-ScR.  

The search results comprising of 3,766 studies were exported from Engineering Village and imported into Covidence 
[205] review management software. During the import process, the software eliminated duplicate studies retrieved from 
both databases, retaining only unique records. After deduplication, 1,943 studies were forwarded for screening. A 
researcher screened the title and abstract to determine relevance to RQ1 or RQ2 considering the inclusion criteria. Out of 
1,943 studies, 69 studies were moved to the next step to determine eligibility wherein the full text of the identified articles 
were examined with respect to RQ1 and RQ2. During this stage, those that addressed only security issues in explainability, 
privacy issues in ML, or survey papers were eliminated. This resulted in removal of 17 studies. During this stage, 5 relevant 
studies that did not appear in the original search results, were found through forward and backward searches. These were 
added to the pool resulting in extraction of 57 studies. 

3.2 Research Trends 

Each extracted study was categorized under the appropriate research question. The distribution of these studies for RQ1 
(i.e., XAI privacy risks) and RQ2 (i.e., XAI privacy preservation) by year, can be seen in Figure 3 (a). As observed, there 
is an increase in reported privacy risks in XAI methods in the period considered. Correspondingly, there is also an increase 
in the number of studies on the use of various privacy preservation methods in XAI as observed from Figure 3 (b). 
Differential privacy and anonymization are the popular privacy preservation methods used with XAI methods. Among the 
privacy risks identified, 3 attacks, namely, membership inference, model inversion and model extraction, have similar 
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proportion of studies as seen in Figure 3 (c). One privacy attack, namely, property inference, is not tested in XAI systems. 
Figure 3 (d) shows the categories of XAI targeted by different attacks. As observed, feature-based and example-based XAI 
are mainly targeted for privacy attacks in comparison to interpretable methods. To the best of our knowledge, no attacks 
are reported on knowledge-based methods. 
 

 

 

 

 

Figure 3: Research trends identified from extracted studies. 

4 PRIVACY RISKS IN XAI 

Traditionally privacy is referred to as the “right to be left alone” [182] and the “claim of individuals, groups, or institutions 
to determine for themselves when, how, and to what extent information about them is communicated to others" [184]. In 
the modern context, with availability, collection, and collation of copious information about individuals through online 
and offline sources, the concept of information privacy is more applicable and refers to the ability of individuals to exert 
control on their own data [38]. Clarke has defined information privacy as the “claims of individuals that data about 
themselves should generally not be available to other individuals and organizations, and that, where data is possessed by 
another party, the individual must be able to exercise a substantial degree of control over that data and its use” [34]. In this 
article, we refer to the last definition of privacy. 

During the training process, ML models feed on large amounts of data. More data is provided to the models, in the form 
of queries, during inference time. If a model uses or creates personal data, it falls within the scope of data protection 
regulations [78]. Consider an example of a model that makes decisions on the credit card application of an individual. The 



11 

model would typically require query data in the form of personal details such as annual salary, age, credit rating and other 
sensitive fields to determine an approval or rejection. In this case, the outcome of the application is a decision made on the 
individual and is also considered as personal data. Usage of personal data in the training or inferencing process of models, 
make them subject to privacy regulations. In XAI, the output is accompanied by an explanation of the result, also referred 
to as transparency report, and provides further insights into the decision-making process of the model [151]. When the 
explanation contains or leaks personal data, it constitutes a privacy risk [203]. 

Trustworthy AI is built on explainability as one of its ingrained principles. Explainability assists in gaining insights into 
the functionalities of a black-box AI system [165], however, the relationship between privacy and explainability has 
contrasting aspects. Explainability aids privacy in several ways such as, in creating privacy awareness in users [23], in 
ascertaining that privacy of a system is achieved [46, 124], and in determining correlations with identifiable data for 
removal [76]. On the downside, explanations can reveal sensitive information contained in models and training data [71, 
138, 203] thus leading to privacy risks [92]. Thus, there are conflicting outcomes [30, 66, 130, 144, 157] of including 
explainability as a non-functional requirement in AI systems. In the following subsections, we answer RQ1 by discussing 
the threat model of XAI to elaborate the assets, actors, and the type of privacy risks, AI systems with explanations are 
vulnerable to. 

4.1 System Assets 

To understand the privacy risks in XAI, we first focus on the assets (Figure 4) that need privacy protection. Assuming that 
the model has been trained on personal data and that the model also needs personal data in the form of queries for generation 
of outputs and explanations, the following potential artifacts are vulnerable to privacy breaches: 

1. training data 
2. query data 
3. model outputs (prediction or classification or recommendation in discriminative models or generated content in 

generative models [160]) 
4. explanation of outputs (i.e., transparency reports) 
5. model architecture and hyperparameters 

The first four assets above, can be intuitively understood as containing personal data to different degrees. If the model 
is not trained on personal data and does not output any personally identifiable or sensitive information, it falls outside the 
scope of privacy risks [78]. The fifth asset, i.e., model architecture and hyperparameters, is susceptible to loss of 
confidentiality. Organizations spend manpower, time, and effort in collecting and curating data and in training and 
deploying their models. Hence it holds commercial value [198] and an exposure would breach intellectual property [16, 
139, 198], proprietary value [114] and confidentiality [105, 176]. Since models can be argued as sources of data, allowing 
data to be estimated from them with different degrees of accuracy [175], a breach of the model can lead to breach of 
training and query data, thus leading to privacy risk. 
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Figure 4: Assets that pose privacy risks in XAI. 

4.2 System Actors 

The AI lifecycle [129, 149] (Figure 5) consists of a data acquisition phase where pertinent datasets are explored and 
preprocessed as needed. This is followed by model development where the appropriate model is chosen and 
hyperparameters decided. The model is trained on the datasets, and its performance evaluated on criteria such as accuracy 
and training time. Finally, the model is deployed in the real-world setting. Most AI models require monitoring and 
appropriate tuning while in this phase. Models eventually become obsolete and require appropriate retirement at the end 
of the cycle. XAI, being an AI system, follows the phases of the AI lifecycle. Data curators, developers, software architects 
and quality engineers [30] are the main actors involved in the initial phases involving development and evaluation. Once 
the system is deployed in production, it is accessible by various end-users through APIs or GUIs as needed. While in 
production, valid actors such as developers and quality engineers may need to see transparency reports when end-users 
challenge results and during calibration of AI systems [10]. 
 

 

Figure 5: Different phases of AI lifecycle. 
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During different phases, the system can become accessible to adversaries. These may secure different levels of access 
to an XAI. In white-box access, adversaries possess information about the model internals such as architecture and 
hyperparameters [97, 198]. In black-box access, adversaries access the input/output of the system [97] without any 
knowledge of the training process or model internals [142]. Any intermediate access between white-box and black-box is 
referred to as gray-box [80]. While unintentional privacy leaks may occur during the different lifecycle phases or during 
the course of an explanation [138], adversaries are associated with intentional privacy breaches. They may act as passive 
observers [80] and use the model outputs for launching privacy attacks, or they may actively interfere in the training process 
of the model [127]. Thus, XAI systems require adequate protection mechanisms from both intentional and unintentional 
privacy leakage (Figure 6). 

 

Figure 6: Categorization of privacy risks in XAI. 

4.3 Intentional Privacy Leakage 

In this subsection, we review intentional privacy risks in the form of privacy attacks by adversaries. Since XAI systems 
are essentially AI systems with an additional asset, i.e., explanations, they are vulnerable to malicious attacks applicable 
to AI models. Previous research has determined security attacks targeting AI, such as evasion and poisoning [136]. 
However, in our review we differentiate from these security attacks and focus on privacy attacks that target personal data 
of individuals or model confidentiality. Below we summarize these attacks in the XAI context where model explanations 
further aid [203] the identification or exposure of personal information of individuals or the intellectual property of the 
model owner. Table 2 summarizes these risks and the works detailing them. 

4.3.1 Membership Inference 

This is a privacy risk of identification of an individual in the training set of a model [152, 196] (Figure 7). In this attack, 
the adversary can have black-box or white-box access to the model [175] after it has been deployed in production. This 
risk is significant since datasets used in critical domains, may reveal sensitive information about individuals used in training 
the model [152]. An example of membership inference is when an individual’s personal details, such as age, gender, 
medical conditions, and other attributes, are known to an adversary and is used to determine if he/she was part of the 
training data of a disease detection model, thus indicating the individual may have the disease with a high chance [77]. 
Overfitting of the target model is identified as a main cause of membership inference [82, 194]. 
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Figure 7: Membership inference exploiting explanations. 

The seminal work on membership inference on feature-based and example-based XAI systems was demonstrated by 
Shokri et al. [150, 151]. The study used various backpropagation and perturbation methods to show the vulnerability of 
feature-based systems. The proposed attack used variances in the prediction and explanation vectors to differentiate 
between members and non-members. H. Liu et al. [99] proposed membership inference on feature-based XAI using model 
performance and robustness metrics. The study observed higher loss in confidence on perturbation of important features 
for members and utilized this observation in training an attack model, in addition to using the performance loss from the 
model. Ma et al. [104] used Shapley value explanations to improve label-only membership inference, that employs hard 
prediction labels instead of confidence scores for determining membership [33]. Explanations were used to improve 
neighbourhood sampling thus reducing the number of queries. 

In the example-based category, Shokri et al. [150, 151] considered influence functions on logistic regression models. 
Since the explanations from influence functions consist of actual datapoints, the study observed that attackers could obtain 
certainty about membership, thus leading to stronger attacks. Cohen and Giryes [35] considered self-influence functions 
instead, that show the influence of a datapoint on its own prediction. The demonstrated attack required white-box access 
to the target neural network parameters, activations, and gradients. The choice of a good threshold range for self-influence 
scores for members was crucial for this attack and was achieved by maximizing the balanced accuracy on the training set. 

Kuppa and Le-Khac [92] used a different type of example-based explanation, namely, counterfactuals, for membership 
inference. The authors trained shadow models using counterfactual samples and auxiliary datasets. The use of a threshold, 
on the difference in predictions of the attack and target models, was employed to determine membership. Pawelczyk et al. 
[134] also targeted counterfactuals and proposed two types of attacks. The first relied on the distances between data points 
and their counterfactuals to differentiate between members and non-members. The second used a loss-based approach 
using a likelihood-ratio test [28] that improved the attack. 

Interpretable models using decision trees, and surrogate models created using Trepan algorithm [37], were evaluated 
for membership inference by Naretto et al. [126]. The authors also studied the effect of overfitting on the attack. The study 
found the success of membership inference higher on both interpretable and surrogate models in comparison to black-box 
models. The attack was also more successful on surrogates of overfitted models in comparison to well-regularized models. 

Membership inference in machine learning models has been explored extensively in existing literature [77] and attacks 
have exploited confidence scores and predictions [152]. However, the above attacks that exploit explanations, suggest that 
XAI interfaces provide a new avenue for adversaries to launch this attack. So far, the attack has targeted feature-based, 
example-based, and interpretable (including surrogates) XAI methods. Factors such as dataset type [151], dimension [134, 
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151], model architecture [151] and overfitting [134], influence the effectiveness of this attack. Some demonstrated attacks 
are also possible without knowledge of the training dataset or target architectures [99]. 

Interpretable models are often suggested as surrogates for explaining black-box models [109], however as demonstrated 
by these attacks, this layer of interpretability can introduce a backdoor to the target system and lead to privacy leaks [126]. 
In the example-based category, influence functions display training datapoints that are influential for a point of interest 
and are a direct breach of privacy of the training data [151]. They can also lead to exposure of outliers due to their distinct 
characteristics and higher influence on the training process [151]. Among feature-based methods, those using perturbations 
are comparatively resilient to membership inference due to use of out-of-distribution points, however, this can also impact 
explanation fidelity [151]. Feature-based methods with better explanation quality are also found to be susceptible to higher 
leakage [99] suggesting a conflict between privacy and utility. 

4.3.2 Model Inversion 

This type of privacy risk is found to be of two types, namely, data reconstruction and training class inference [198]. In this 
attack, the adversary can have black-box or white-box access to the model [60, 175] after it has been deployed in 
production. In data reconstruction (Figure 8), individuals’ data used in training or querying [203] the model is recovered 
partly or completely and constitutes a risk of exposure [45]. Attribute inference is a type of data reconstruction that can 
determine the values of certain attributes, generally those sensitive to individuals [65, 194] such as gender, age, race, and 
others. In the second type of model inversion, i.e., training class inference, it is possible to recover a representative record 
for a required target class [45, 192, 198]. 
 

 

Figure 8: Model inversion exploiting explanations. 

In XAI, model inversion attacks are reported on example-based, feature-based, and interpretable systems. Shokri et al. 
[150, 151] demonstrated a data reconstruction attack on influence functions in logistic regression models and found the 
attack dependent on data dimensionality. The authors designed different heuristics for low and high dimension data to 
improve coverage and efficiently recover more training points. Goethals et al. [64] showed an explanation linkage attack 
using native counterfactuals generated from actual instances of the training data. The attack demonstrated the vulnerability 
of counterfactuals in leaking private attributes. 

Private images were found to be susceptible to recovery through saliency maps by X. Zhao et al. [203] leading to 
inadvertent exposure. XAI systems that provided class-specific multiple explanations were prone to more leakage. The 
authors also used attention transfer to demonstrate the risk for non-explanation models. Other works, such as Duddu and 



16 

Boutet [49] and X. Luo et al. [103], have focused on attribute inference on tabular data using feature-based XAI. The 
former, trained attack models using predictions and explanations, to infer sensitive features. The latter used Shapley values 
and effectively executed the attack with limited number of queries on cloud ML services. Toma and Kikuchi [169] further 
showed that the efficacy of their proposed attack was dependent on the combination of black-box architecture and XAI 
method, with linear models using Shapley values, being more vulnerable to attribute inference. 

Ferry et al. [56] designed a probabilistic white-box attack applicable to transparent models, such as decision trees and 
rule lists, and quantified the information about the training data contained in the model. The work found that models built 
using greedy algorithms leak more information compared to those built using optimal strategies. The authors also observed 
the attack’s capacity for misuse in launching other inference attacks such as membership and property inference. 

The above attacks from current literature, demonstrate the leakage of privacy through XAI methods leading to exposure 
of personal data or sensitive attributes of individuals through explanations. Model explanations provide an effective attack 
surface compared to predictions [49, 203] and constitute a privacy risk indicating the contradiction between the need for 
explanations in Trustworthy AI and protecting privacy [203]. Data reconstruction attacks impact active users of AI systems 
rather than training data as in membership inference, putting end-users at risk [203] and thus having a higher impact. In 
certain proposed model inversion attacks, sensitive attributes can be retrieved from models trained on non-sensitive 
attributes [49] while other proposed attacks demonstrate higher leakage from more important attributes [103] and recovery 
of entire training datasets [151]. In addition, the above works highlight the misuse of XAI techniques even for models that 
do not provide explanations [203]. 

There is also a conflict of privacy seen with the utility of the system. For instance, synthetic counterfactuals created by 
perturbing actual samples can provide resilience to inversion in comparison to native counterfactuals, however, their use 
is found to affect the plausibility and runtime of explanations [64], suggesting degrading utility. Similarly, for improving 
understandability of end-users, multiple diverse explanations are usually recommended [177], however they are also found 
to contribute to leakage of privacy, suggesting that explanation APIs should be restricted [203] thus adversely affecting 
the utility to end-users. 

4.3.3 Model Extraction 

This type of risk breaches the confidentiality of the target model and is a threat to the intellectual property of the model 
owner (Figure 9). It is also referred to as model stealing since the functionality of the model can be replicated to a significant 
degree of accuracy and fidelity [80]. Since the extracted models can further leak personal data through membership 
inference and model inversion [156], model extraction can indirectly lead to identification and exposure of individuals. 
This attack is usually used as a starting point for initiating other types of attacks [3, 116]. In a typical model extraction 
attack, the adversary has black-box access to a victim model in production and uses an unlabeled dataset to query it, thus 
generating labels to build an attack dataset [190]. The labeled attack dataset is then used for training the cloned model. In 
data-free model extraction, the attacker does not need to collect the attack dataset and instead generative models can be 
used to build it, making it convenient for adversaries to run this attack when the input data is hard to find [116]. 
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Figure 9: Model extraction exploiting explanations. 

Model extraction using explanations is proposed on feature-based and example-based XAI methods. In the seminal 
work on the topic, gradient explanations, in the form of saliency maps, were found to be vulnerable by Milli et al. [114]. 
The use of explanations improved the attack by reducing the number of queries in comparison to using model predictions. 
Miura et al. [116] also leveraged gradient-based explanations but used data-free approach to train generative models for 
creating the attack dataset. Explanations were found to improve the quality of the generative model, and the accuracy of 
the cloned model improved with increase in the diversity of the generated attack dataset. The approach of Yan, Hou, et al. 
[189] was also based on data-free extraction, however the authors used explanation loss to guide the generative model. 
Accuracy of the cloned model was improved by matching the victim model’s predictions and explanations. A model 
agnostic extraction technique applicable to both gradient and perturbation-based XAI was proposed by Yan, Huang, et al. 
[190]. Explanations were found to provide auxiliary information to adversaries, leading to efficient attacks with improved 
query budgets, compared to those using predictions. The attack could also be applied to non-explanation models and 
achieved accuracy equivalent to those of explanation models. In another work, Yan et al. [188] used a multitask learning 
architecture to extract both classification and explanation tasks of the victim model. 

Besides the above extraction attacks targeting various feature-based XAI, from the example-based category, 
counterfactuals have been mainly targeted for this attack. In an extraction attack proposed by Aïvodji et al. [3], they were 
used to approximate the decision boundary of the victim model with high accuracy and fidelity under low query budgets. 
Multiple and diverse counterfactuals were found to aid the extraction process by divulging additional information to 
adversaries. An improvisation of the attack, to reduce the number of queries further, mitigate decision boundary shift and 
achieve higher agreement with the victim model, was proposed by Y. Wang et al. [181]. The method used the original 
counterfactual explanation with its counterfactual as training pairs, to extract additional datapoints to train the cloned 
model. Kuppa and Le-Khac [92] proposed iterative querying of the victim model to capture the training data distribution 
and utilization of distillation loss to transfer knowledge from the victim to the cloned model. The attack was found to be 
successful due to the optimization of various properties such as diversity, proximity, feasibility, and sparsity in the 
counterfactual method used. 

The misuse of XAI techniques for cloning models with high accuracy and fidelity, is a threat to the confidentiality of 
the model owner. The above attacks demonstrate the exploitation of XAI techniques to facilitate extraction of victim 
models efficiently with reduced number of queries in comparison to extraction attacks based solely on predictions [114, 
116]. The reduction in the number of queries to conduct this attack by using explanation interfaces without access to 
predictions, is a significant gain for attackers, especially in pay-by-query models. Certain attacks are also possible with 
partial knowledge of the data distribution [3] or even when the attack dataset has no overlap with the training dataset [188]. 
In addition, in scenarios where attackers do not possess the input datasets, data-free extraction attacks are possible and the 
use of explanations is shown to have improved accuracy of the attack [116]. The diversity of the generated input datasets 
in such attacks is also found to improve the accuracy of the cloned models [116]. 

In addition to the direct threat to explanation models, XAI techniques can be misused for extraction of non-explanation 
models [190]. The use of diverse explanations, that is useful to build trust of users in the explanations, can lead to further 
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leakage of privacy [3]. The optimization of counterfactuals to satisfy various properties to improve explanation quality, 
can provide more information to adversaries about class-specific decision boundaries thus aiding the attack [92] and leading 
to the conflict of explainability and privacy with utility. 

4.3.4 Property Inference 

This type of risk reveals properties from the training data such as global statistics or aggregates [106], which model owners 
did not intend on sharing [61] (Figure 10). The inferred property need not be a feature in the training data or correlated to 
any feature, for instance, deducing the ratio of different genders in the training set [126] or the aggregate employee 
sentiments through internal company emails used to train a spam classifier [106]. Thus property inferencing can lead to 
exposure of sensitive information and constitutes a privacy risk. Though this privacy risk is a known issue in AI models, 
to the best of our knowledge, no attacks are reported so far using explanations. 
 

 

Figure 10: Property inference exploiting explanations. 

 

Table 2: Studies on intentional privacy leakage in XAI systems. 

Privacy Risk XAI Category XAI Method Study 
Membership inference Interpretable Decision tree [126] 

Interpretable (surrogate)a Trepan [126] 
Example-based Influence functions [150, 151] 

Counterfactuals [92, 134] 
Self-influence functions [35] 

Feature-based Gradient, integrated gradients, guided backpropagation, 
LRP, LIME, SmoothGrad 

[150, 151] 

Integrated gradients, SmoothGrad, VarGrad, Grad-
CAM++, SHAP, LIME 

[99] 

Shapley values [104] 
Model inversion Interpretable Decision tree, rule list [56] 

Example-based Influence functions [150, 151] 
Counterfactuals (native) [64] 

Feature-based Gradient, gradient x input, class activation maps (CAM), 
Grad-CAM, LRP 

[203] 

Integrated gradients, DeepLIFT, GradientSHAP, 
SmoothGrad 

[49] 

Shapley values [103, 169] 
Model extraction Example-based Counterfactuals [3, 92, 181] 

Feature-based Gradient [114] 
Gradient, Grad-CAM, MASK [188] 
Gradient, Grad-CAM, MASK, LIME [190] 
Grad-CAM, LIME [189] 
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Privacy Risk XAI Category XAI Method Study 
Gradient, integrated gradients, SmoothGrad [116] 

Property inference Not reported Not reported - 
a Interpretable (surrogate) systems use an interpretable model as a surrogate for explaining the black-box. 

4.4 Unintentional Privacy Leakage  

In this subsection, we discuss unintentional privacy leakage in XAI that occurs without malicious intent [80]. Some leakage 
can occur due to the natural mechanisms of the training process while some can be caused through the content of 
explanations. 

4.4.1 Training issues  

Training issues such as, overfitting and memorization, identified in AI models can lead to privacy leakage. Overfitting 
occurs when the model performs better on the training data in comparison to test data [80] and is found to aid membership 
and attribute inference attacks [194]. Memorization refers to the model remembering subsets of training data [156] and 
occurs during training before overfitting begins [80]. It can cause leakage when data owners deploy models with code 
written by other parties, such as in MLaaS, allowing sensitive information to be leaked from training data [156]. 

4.4.2 Explanation content 

The content of transparency reports may contain values of sensitive fields. For instance, in example-based explanations 
such as influence functions, training datapoints potentially containing sensitive fields, are directly revealed to end-users. 
Karimi et al. [88] provide another example of unintentional leakage through contrastive explanations that can lead to 
inference of sensitive details of individuals whose partial attributes are known. Interpretable models used as surrogates, 
can reveal properties of the training data or additional information about the black-box than was intended to share [16]. In 
addition to this type of direct exposure, the explanation may be exposed to unintended users due to lack of appropriate 
access control [92]. For example, during troubleshooting of error cases, a developer or quality engineer may inadvertently 
access sensitive personal information in the explanation. Explanation content containing proxies or correlated fields can 
also lead to inferring of sensitive fields. 

5 PRIVACY PRESERVATION METHODS IN XAI 

To mitigate the privacy risks discussed in Section 4, many works have highlighted the need for privacy preserving XAI 
techniques [3, 151, 203]. In response to these calls for increasing safety in explanations by stemming privacy leakage, 
researchers have begun efforts in exploring algorithms that provide transparency reports in a privacy preserving manner. 
Many works have leveraged existing techniques from privacy preserving ML (PPML) and have studied their applicability 
to explanations. In this section, we consolidate the solutions proposed in literature for improvement of XAI methods in 
response to RQ2. We categorize these solutions under the main approaches in PPML. Table 3 summarizes these approaches 
and methods, and Figure 11 consolidates the proposed privacy preservation methods for specific privacy attacks. 
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Figure 11: Proposed privacy preservation methods for specific privacy attacks in XAI. 

5.1 Differential privacy 

Differential privacy (DP) [51] is a well-known technique that provides a quantifiable definition of privacy and the 
incremental privacy loss from publishing confidential data [110]. A mechanism is differentially private if it can hide the 
participation of any single individual in a dataset [71]. This can be achieved by using noise and is typically associated with 
an adverse effect on the accuracy of the system [71]. By adjusting the privacy budget, 𝜖, from 0 to ∞, practitioners can 
manage this trade-off between privacy and accuracy [110]. Because of its strong privacy guarantee, early works in privacy 
preserving explanations have adopted DP, using different strategies, to protect the training data in interpretable, feature-
based, and example-based XAI. In the context of XAI, an explanation is differentially private if it can obscure any single 
individual in the training dataset [133] of the model. The technique can be applied on the explanation generation algorithm 
[133], the training process of the target model [35, 99] or on the training data [21, 55]. 

Decision trees are popular due to their simplicity and inherent interpretable qualities, however they are prone to privacy 
leakage [56, 126]. Various algorithms for building decision trees based on DP guarantees are proposed in previous works 
[58] with different trade-offs in privacy and utility. The interpretability of private trees and hence their usefulness to XAI 
users, depend on factors such as the privacy budget per query, tree depth, pruning strategies and termination criteria [58]. 
Nori et al. [131] privatized another type of interpretable model, namely, Explainable Boosting Machines (EBM), using DP 
for prevention of privacy leakage of training data. The privatized system offered good accuracy at low privacy budgets, 
allowed rectification of errors introduced by noise, removal of bias and enforcing constraints such as monotonicity. Baek 
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and Chung [9] further enhanced the utilization of privacy budget in these models to improve accuracy, by optimization of 
gradient error and pruning of non-important features. 

An interpretable model using differentially private locally linear maps with Gaussian mechanism per output class was 
proposed by Harder et al. [71]. The filters learned by the model from input images were observed to have higher 
interpretability compared to feature-based methods, such as integrated gradients and SmoothGrad. However, increasing 
the number of such maps per class dropped accuracy due to the distribution of privacy budget over additional parameters. 
A different interpretable model, in the form of feedforward-designed convolutional neural network (FF-CNN), was made 
privacy preserving by D. Li et al. [94] using DP guarantees on subspace approximation with adjusted bias (Saab). The use 
of DP was found to be effective in mitigating the risk of reconstruction of input images while maintaining classification 
accuracy. 

For feature-based explanations generated by local linear approximations around the point of interest, Patel et al. [133] 
introduced a differentially private approach for loss calculation in the explanation algorithm. The work further proposed 
an adaptive method of reusing previous explanations for prudent usage of the privacy budget. Nguyen et al. [130] employed 
local DP to restrict adversaries from learning the top influential features through aggregated scores in feature-based XAI. 
Though, this was proposed as a solution to a backdoor security attack exploiting explanations [148], the random 
perturbation of influential features under local DP guarantees, was observed to preserve the privacy of those features while 
maintaining explanation fidelity. Bozorgpanah and Torra [21] also applied local DP to mask the training dataset and 
determine its impact on privacy and utility of feature-based explanations. An irregularity metric was defined to measure 
the feature distortion due to privatization of the original dataset and the change in explanation values. The use of additive 
noise on the training dataset was observed to introduce irregularities, reducing the utility of the explanations. Ezzeddine et 
al. [55] added calibrated noise to training datasets and evaluated the impact on SHAP explanations using various distance 
metrics. The change in SHAP values in the privatized systems was found to be correlated to the privacy budget and data 
dependent. Abbasi et al. [1] explored the use of DP for generation of synthetic data for training of different types of model 
architectures and used similarity score to track the change in explanations and utility loss to evaluate drop in accuracy, thus 
quantifying the triad of privacy, utility and explainability. 

Besides these works, some researchers have also explored the use of DP in the training process of the target model in 
feature-based [99] and example-based [35, 117] XAI, with mitigation observed against membership inference for high 
privacy budgets [35, 99]. DP noise enables the regularization of target models [131] and its mathematical guarantee enables 
quantification of privacy, making it an attractive privacy enhancing technology. In the context of XAI, in addition to its 
application in mitigating membership inference from explanations [35, 99, 133], it is also found to mitigate reconstruction 
of sensitive inputs [94]. However, the improvement in mitigation of attacks at high privacy budgets and hence degrading 
accuracy [35, 99] can be a setback to the use of this technique. In addition to adversely affecting accuracy, its introduction 
can also deteriorate explanation quality in terms of fidelity [99, 133]. This impact can be more pronounced for minority 
groups [133]. The technique is also ineffective against attribute inference attacks when there are existing strong correlations 
between different attributes [31]. 

Algorithms such as DPSaab [94], are observed to be better at accuracy and privacy trade-off than others. Strategies 
such as, reusing previously generated differentially private explanations, can be employed to utilize the privacy budget 
effectively [133]. Methods using local DP, are observed to achieve good faithfulness of explanations with privacy [130], 
thus demonstrating that it is possible to balance multiple desirable properties. Hence careful use of this technique is required 
in a way that privacy can be achieved while retaining reasonable utility of the model and explanations. 

 



22 

5.2 Cryptography 

Cryptographic protocols for privacy preservation in ML, use secure algorithms to protect the target model and data. Popular 
methods in this category include homomorphic encryption, secret sharing, and secure multi-party computation [195]. In 
XAI, this technique has been limitedly explored in interpretable and example-based systems. It has also been used in 
conjunction with other privacy preserving techniques such as federated learning [53, 119, 186, 187]. 

For interpretable tree-based models, J. Zhao et al. [202] proposed an additive homomorphic scheme for model owners 
and query users, to push the encrypted model and query data to cloud service providers for inferencing. Adding 
perturbations to the inference results and query data ensured privacy protection of these assets while producing accuracy 
comparable to non-private inference. In the example-based category, Veugen et al. [176] proposed a cryptographic method 
with secure multi-party computation to generate contrastive explanations, while protecting private training data and 
confidentiality of the model. The algorithm securely trained a binary decision tree, to generate fact and foil leaves, to create 
an explanation for a query data point. In addition, a synthetic data point from the foil leaf was provided to the end-user to 
enhance explainability. 

Cryptographic methods, such as homomorphic encryption, add to the computational complexity [97] of the system. The 
use of encryption also makes the model less transparent to data scientists for correction of errors, inspection of data, 
addition of features or fine tuning of the model [47], thus adversely affecting interpretability. Hence it is essential to 
implement cryptographic protocols in XAI system components in the right use cases to enhance other privacy preservation 
techniques or when other techniques are infeasible or costly. 

5.3 Anonymization 

Anonymization is a technique of transformation of data [107] to obscure the distinctive features of records, thus protecting 
their privacy. The process is associated with the removal or modification of direct and quasi-identifiers [107], that can 
uniquely identify individuals. Various methods of anonymization exist, such as k-anonymity, l-diversity, and t-closeness 
[195]. In XAI, different anonymization techniques have been proposed in example-based, feature-based, and interpretable 
methods. The use of techniques such as disentangled representation learning and lossy compression on sensitive images 
such as medical data, are found to generate privatized explainable-by-design images. 

A dataset is considered k-anonymous if every record is indistinguishable from k-1 other records [163] thus providing a 
measure of the risk of re-identification of records. K-anonymity can be achieved using methods such as suppression and 
generalization [164]. Though traditionally this technique is applied to target datasets for protection, Goethals et al. [64] 
proposed its usage on native counterfactuals, that are actual datapoints from the training dataset, for protection against 
model inversion attack through explanations. This strategy of generating k-anonymous counterfactuals was found to have 
lower information loss and higher validity; outperforming counterfactuals generated from k-anonymized datasets. Berning 
et al. [13] further analyzed k-anonymous counterfactuals and determined its effectiveness only in dense areas of the dataset. 
The study found its real privacy level disproportionate to the value of k. According to Vo et al. [177], the generation of k-
anonymous counterfactuals requires querying the explainer for a large number of counterfactuals and is computationally 
expensive. The authors suggest a different strategy of privatizing diverse counterfactuals through discretization of 
continuous features, a technique which is closely related to generalization in privacy preserving data mining, and effective 
against linkage attacks. 

K-anonymity’s application on the complete training dataset for feature-based XAI was implemented by Bozorgpanah 
and Torra [21] using microaggregation. The study found alignment in the explanations generated from non-private and 
private datasets, with few irregularities, indicating that utility was preserved after privatization. Blanco-Justicia et al. [16] 
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also applied microaggregation to build local tree-based surrogate explanations from clusters around a point to be explained. 
K-anonymity was enforced by restricting the cluster size and the usage of shallow trees in the method enabled 
comprehensibility. 

A line of work has focused on anonymization of images in the medical domain, where privacy protection of patients’ 
visual data is crucial. The main objective of such techniques is data transformation through removal of identifying features 
while retaining explanatory evidence. Strategies such as the use of autoencoders for disentanglement of identifiable and 
medical characteristics [121] and the use of Siamese network for increasing identity distance between original and 
privatized images [122] for generating case-based explanations are proposed. Campos et al. [26] proposed the generation 
of synthetic images using latent diffusion models and removing those similar to training data, thus creating a collection of 
synthetic images to use as explanations. In addition to these techniques, the use of lossy compression by pixel sampling, 
is found to remove identification information while being post-hoc explainable and without accessing the original images 
[62, 85]. The compression also has added advantage of reducing the size of images to a fraction of the original size, thus 
making medical training datasets smaller [62].  

For a critical domain, such as healthcare, anonymizing patients’ images can assist in protecting identifiable data. 
However, the applied techniques should preserve image quality for utility to medical practitioners and patients [26]. Image 
anonymization techniques, unlike DP, have unproven guarantees while despite DP’s guarantees, it is unable to scale beyond 
low resolution images [26]. Lossy compression provides a fast and effective way of privatizing images, with the benefits 
of achieving privacy and explainability while reducing training dataset sizes and enabling data sharing with multiple parties 
in non-private settings [62]. Thus, this method can be explored as a suitable alternative for generating explanations from 
sensitive image data. 

Anonymization techniques protect privacy of individuals by preventing re-identification and linkage attacks [177]. 
When using k-anonymity, the choice of k that gives both accuracy and acceptable privacy risk level is critical [21]. Higher 
values of k yield higher privacy but explainability may be adversely affected [13, 16]. The real level of privacy may also 
not scale with increasing values of k [13]. Hence the choice of k that gives the right balance of privacy, explainability and 
utility is important. In addition, k-anonymity has downsides, such as its dependence on data characteristics, susceptibility 
to homogeneity attack [13], and its vulnerability to privacy leakage when background knowledge is available or diversity 
is lacking in the private attributes [64]. Other techniques such as l-diversity and t-closeness may overcome these challenges 
but are yet to be explored with explanations. 

The generation of synthetic data for privacy preserving data analysis is explored in previous non-XAI works [20, 98]. 
Generating synthetic data that is private, accurate and preserves properties of the true data is a known challenge and NP-
hard in the worst case [174]. When models are trained on such data, the explanations through XAI tools are expected to be 
inherently privacy preserving, hence this can also be a promising future approach to safeguarding privacy in explainable 
systems. 

5.4 Perturbation 

Perturbation of sensitive data is a well-known technique in privacy preserving data publishing [171, 195]. When 
explanations contain sensitive information, obfuscating the contents can prevent direct exposure. Perturbation techniques 
can also be applied to stem indirect leakage from inferencing of sensitive attributes through explanations. 

C.-L. Chen et al. [31] proposed a generic privacy preserving mechanism applicable to different XAI types such as 
feature-based and interpretable surrogates. The proposed method perturbed the decision mapping of an algorithm prior to 
public release of transparency reports. To control privacy leakage while upholding utility, the authors defined a maximum 



24 

confidence measure in the inference of sensitive attributes of data subjects and a utility measure in terms of faithfulness or 
fidelity. Jeong et al. [81] proposed a defense framework against black-box model inversion attacks on saliency map 
explanations from image models. The framework comprised of two-player minimax game between inversion and noise 
injector networks, in which the inversion network attempts to reconstruct images from saliency maps and the noise injector 
perturbs explanations to counter the inversion. The use of multiple evaluation metrics to differentiate between the original 
and reconstructed images, was used to quantify the privacy of the defense mechanism. 

For prevention of privacy leakage in XAI, researchers have attempted perturbation of two types of model outputs, 
namely, predictions and explanations. Adding perturbations to model predictions, such as the strategy of adding noise to 
output confidence scores used by MemGuard [82], is found ineffective in mitigating membership inference through 
explanations [99]. Perturbation of explanations is also found insufficient in defending against data-free model extraction 
based on explanations [189]. However, the strategy has shown promising results in countering model inversion. The use 
of perturbation techniques at the explanation interface is attractive due to its ease of implementation, requiring no retraining 
of the model [81]. However, because the addition of large magnitude noise can degrade the usefulness of explanations 
[81], perturbations should be carefully calibrated to minimize any adverse impact on explanation quality. 

5.5 Federated Learning 

Among the privacy enhancing techniques available in PPML, Federated learning (FL) is an architectural solution [52] that 
enables training of local models on user devices and exchange of model parameters with a centralized server that co-
ordinates the training of a shared global model [91]. It thus enables collaborative learning while keeping users’ private data 
at the source [66] and mitigates the privacy risk of multiple parties sharing their sensitive data with other parties [53] or a 
centralized server [204]. In horizontal federated learning (HFL), local datasets have the same feature space but different 
samples while in vertical federated learning (VFL), the feature space is different but there are overlaps in samples [57]. 

To provide both privacy and explainability in Trustworthy AI, the combination of FL and XAI, i.e., Fed-XAI is 
suggested [11, 36, 100] and refers to the federated learning of XAI models. Many approaches of Fed-XAI using HFL and 
VFL are proposed in literature. Fiosina [57] used a HFL approach for forecasting taxi trip duration and applied feature-
based explainability methods post-hoc. P. Chen et al. [32] used an explainable VFL framework to optimize counterfactual 
explanations using a representative query distributed on multiple parties. Both setups demonstrate the use of post-hoc 
explainability tools in a distributed environment, with FL serving as a privacy preserving setup for collaborative learning 
of sensitive data owned by multiple parties. Fed-XAI architectures have also leveraged interpretable models locally, such 
as fuzzy rule-based classifiers [39], Takagi-Sugeno [204] and Takagi-Sugeno-Kang [36] fuzzy rule-based models. In these 
setups, interpretability is achieved using underlying explainable-by-design [36] models. 

Though FL aids privacy by default, it is prone to reconstruction and inferencing attacks [123, 199]. The sharing of 
gradients and model parameters, communication mechanism and aggregation process can lead to leakage of privacy of the 
participating clients [199]. Hence researchers have proposed integration of other privacy preserving techniques, such as 
cryptography, with FL methods. In one such work, Molhoek and Laanen [119] generated synthetic data on vertically 
partitioned data in a FL two-party setup. Counterfactuals built from this synthetic data using secure multi-party 
computation, were ranked, and shared with both parties and were found to be resilient to attribute inference. El Zein et al. 
[53] proposed a HFL structure using decision tree models, wherein a global decision tree was collaboratively trained by 
participants and aggregation of intermediate results used additive secret-sharing. A VFL technique, Falcon [187], utilized 
a hybrid approach consisting of partially homomorphic encryption (PHE) and additive secret sharing for exchange of 
intermediate computations. It used logistic/linear regression and multi-layer perceptron as local models. Another setup, 
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Pivot [186], proposed as part of Falcon, used classification and regression tree-based models. Threshold partially 
homomorphic encryption (TPHE) and additive secret sharing was used to protect privacy of intermediate exchanges. 
Though these works successfully integrate cryptographic techniques with FL, research has also found that the use of these 
methods in FL makes it difficult for the centralized server to differentiate the true model parameters, and this can lead to 
backdoor attacks by adversaries [69]. Hence appropriate defense frameworks, such as trust evaluation schemes [70], should 
be incorporated for protection of the FL system from malicious users. 

FL enables the training of AI models from diverse, private, and high-quality data [204] located at client systems. It 
reduces the footprint of user data in the network [123] by keeping data at the source and avoiding transmission and storage 
of sensitive information in a centralized location when multiple parties are involved [179]. Despite its benefits, in its current 
form FL faces challenges for its risk-free adoption [123] including ensuring privacy constraints, merging of local XAI 
models and dealing with large data streaming that can lead to concept drifts [11]. The introduction of XAI methods in the 
FL architecture, can also further increase the vulnerability of the system to privacy attacks through explanations. Thus Fed-
XAI presently cannot guarantee privacy preservation through XAI components and further research efforts in this area is 
necessary to stem inadvertent privacy leakage through explanations. 

5.6 Other techniques 

In addition to the main privacy preservation methods from PPML, certain non-standard techniques are also explored in 
certain types of XAI. Some of these methods include limiting access to training data, obscuring features, or providing an 
abstraction of the target models. 

A client-centric, data-driven approach of generating counterfactuals was proposed by An and Cao [6] by leveraging 
previous inferences retrieved by the model user. Due to the generation of counterfactuals locally at the client, the method 
was shown to be resilient to model extraction while achieving properties such as diversity and succinctness. Marton et al. 
[108] described a data-free approach of distilling the function represented by neural networks into interpretable models. 
The method used synthetic data to train a set of neural networks and extracted their parameters to train an Interpretation-
Net with an output representation in the form of surrogate decision trees. 

Using a knowledge-based approach, Rožanec et al. [143] applied semantic technologies in the form of domain specific 
ontology and knowledge graphs, to enhance explanations and describe features on a higher conceptual level. This enabled 
delinking explanations from features, thus preserving the confidentiality of the underlying model. Further, the integration 
of feature-based XAI such as LIME, enabled the system to determine features important for predictions. Terziyan and 
Vitko [167] described an approach to build semantic XAI consisting of decision trees and rules generated from targeted 
points around the decision boundary of black-box models, without accessing the original training data. Due to the 
interoperability of semantic rules, the method could be used in a decentralized setup for collaborative decision making, 
without individual parties sharing private local data. 

The above works demonstrate the use of data-free and knowledge-driven techniques of XAI to build privacy- by-design 
systems. These approaches are applicable for protection of training data and the confidentiality of the model. The approach 
of disconnecting features from the model, enables the creation of an abstraction layer [143] for generation of explanations, 
thus protecting the underlying assets. 
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Table 3: Privacy preserving methods applied to XAI systems. 

Privacy 
Preservation 
Category 

Privacy Preserving 
Algorithm 

Protected Asset XAI Category (Method) Study 

Differential privacy Various DP training 
algorithms 

Training data Interpretable (decision trees) [58] 

DP locally linear maps Training data Interpretable (locally linear maps) [71] 
DPSaab Training data Interpretable (FF-CNN) [94] 
DP-EBM Training data Interpretable (EBM) [9, 131] 
DP explanation 
generation 

Training and query 
data 

Feature-based methods using local 
linear approximations (LIME, etc.) 

[133] 

Local DP Training data Feature-based methods that aggregate 
scores (SHAP, etc.) 

[130] 

DP trained SVM Training data Example-based (counterfactuals) [117] 
DP-SGD Training data Feature-based (Grad-CAM) [99] 
DP-RMSProp Training data Example-based (self-influence 

functions) 
[35] 

Local DP Training data Feature-based (TreeSHAP) [21] 
Local DP Training data Feature-based (SHAP) [55] 
DP-WGAN 
(Wasserstein GAN) 

Training data Various XAI methods from DALEX 
frameworka 

[1] 

Cryptography Privacy preserving foil 
trees 

Training data, model Example-based (contrastive 
explanations) 

[176] 

Additive 
homomorphic 
encryption 

Query data, inference 
results, model 

Interpretable (tree-based models) [202] 

Anonymization Microaggregation 
(MDAV) 

Training data, model Interpretable (decision trees) [16] 

Privacy preserving 
generative model 

Training data Example-based (case-based) [122] 

HeartSpot 
(lossy compression) 

Training data Feature-based 
(saliency maps) 

[85] 

Discretization of 
features 
(generalization) 

Training data Example-based (counterfactuals) [177] 

CF-K 
(k-anonymity of 
counterfactuals) 

Training data Example-based (native 
counterfactuals) 

[13, 64] 

DeepFixCX 
(lossy compression) 

Training data Feature-based (saliency maps) [62] 

Microaggregation 
(MDAV) 

Training data Feature-based (TreeSHAP) [1] 

Disentangled 
representation learning 

Training data Example-based (case-based) [121] 

Latent diffusion 
models 

Training data Example-based (case-based) [26] 

Perturbation GNIME Training and query 
data 

Feature-based (saliency maps) [81] 

Linear-Time Optimal 
Privacy Scheme 

Training and query 
data 

Various XAI methods (interpretable 
surrogates, feature-based, etc.) 

[31] 
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Privacy 
Preservation 
Category 

Privacy Preserving 
Algorithm 

Protected Asset XAI Category (Method) Study 

Federated Learning Pivot (VFL, additive 
secret sharing, TPHE) 

Training data Tree-based models (transparent) [186] 

HFL Training data Feature-based methods (DeepLIFT, 
integrated gradients, LIME, etc.) 

[57] 

HFL Training data Interpretable (Takagi-Sugeno,Takagi– 
Sugeno–Kang, fuzzy rule-based 
classifier) 

[36, 39, 204] 

VFL Training data Counterfactuals [32] 
Falcon (VFL, additive 
secret sharing, PHE) 

Explanations and 
training data 

Feature-based (LIME) [187] 

PrivaTree 
(HFL, additive secret 
sharing) 

Training data Decision trees (transparent) [53] 

VFL, SMC, Synthetic 
data 

Query data Example-based (counterfactuals) [119] 

Other techniques Semantic XAI Training data Interpretable (decision trees, semantic 
rules) 

[167] 

Semantic technologies 
(knowledge graphs, 
ontologies) 

Model Feature-based (LIME, etc.) [143] 

Guarded 
counterfactuals 

Training data, model Example-based (counterfactuals) [6] 

Interpretation-Nets Training data Interpretable (decision trees) [108] 
a DALEX framework is available on https://github.com/modeloriented/dalex.  

6 PRIVACY PRESERVING XAI CHARACTERISTICS 

In the previous sections, we have seen the privacy risks in XAI due to intentional and unintentional causes. We have also 
reviewed applicable privacy preserving methods to protect the additional attack surface that explanations expose, in 
addition to the existing privacy related vulnerabilities in AI systems. In this section, based on the answers to RQ1 and RQ2, 
we attempt to answer RQ3 and identify desirable characteristics in XAI for mitigation of the identified risks. These 
characteristics shed light on the properties of privacy preserving XAI by considering the vulnerable assets that need 
protection and the users involved during the AI lifecycle. The characteristics intend to provide researchers and practitioners, 
a checklist for validation of existing privacy preserving XAI methods to aid in the design of new methods that target 
privacy by default. By reflecting these qualities, XAI can aspire to achieve the triad of privacy, explainability and utility. 

We explain the characteristics (Figure 12) by considering three use cases outlined in Table 4. To facilitate 
understanding, a simplified example of an online loan application system that makes automated decisions using an AI 
model with XAI capabilities, is considered. The system uses 7 input features with salary, net worth, and age, being 
protected features that require privacy preservation. The use cases describe the following scenarios: 

• Use Case 1 deals with intentional privacy leakage through an adversary. 
• Use Case 2 involves interaction of a layman end-user, i.e., a bank’s customer, who is provided an explanation of 

an automated decision directly through the system and indirectly through a human. Let’s assume that in this use 
case, the loan was denied because of the applicant salary being < 40K and age > 50 years. 
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• Use Case 3 considers the interaction of technical support, in the roles of AI developer and quality engineer, with 
the XAI system. 

Table 4: Use cases for privacy preserving XAI in an online loan application system. 

Property Details 
System Online loan application system 
Model owner Bank 
Model input features salary, net worth, age, length of credit history, occupation, working hours per week, education 
Sensitive features salary, net worth, age 
Use Case 1 Adversary with black-box access to the system. 
Actors Adversary 
Overview An adversary secures black-box access to the bank’s model through the online application system. 

The adversary attempts different queries and observes the outputs generated by the system. 
Query data (i) randomly generated queries. 

(ii) targeted queries using prior information. 
Use Case 2 Customer accessing explanation of the application outcome. 
Actors Customer, bank executive 
Overview A customer submits an online application for a loan and is given a denied result. The customer is 

provided with: 
(i) an automated explanation. 
(ii) a consultation with a bank executive to discuss the result. 

Query data salary = $35K, net worth = $75K, age = 55 years, length of credit history = 30 years, occupation = 
office executive, working hours per week = 25, education = diploma. 

Use Case 3 AI developer accessing explanation for troubleshooting a reported error case and a quality engineer 
subsequently validating the system updates. 

Actors AI developer, quality engineer 
Overview An error is reported on a specific query and a developer updates the model during debugging. The 

developer accesses the explanation of the error case to verify the results. Finally, a tester validates the 
system updates with another round of testing. 

Query data Synthetic query similar to the error case requiring troubleshooting. 

 
We propose 10 characteristics that XAI should demonstrate. The first 6 are derived from privacy attacks and 

unintentional leakage reviewed in Section 4. The remaining 4 are derived from performance issues and regulatory 
compliance. The proposed characteristics are as follows: 

6.1.1 Prevent training data identification: 

XAI tools should not aid identification of individuals used in training the model. In Use Case 1, if the adversary has access 
to a specific individual’s input details and retrieves the corresponding outputs including the outcome and explanations, no 
additional advantage should be provided through explanations in determining if the individual was used in training the 
bank’s model. Thus, the explanations should be resilient to membership inference (Section 4.3.1). 

6.1.2 Prevent sensitive data inference: 

XAI tools should not aid reconstruction or inference of sensitive attributes of individuals. In Use Case 1, if the adversary 
knows the non-sensitive features of an individual and the outcome of the loan application but is unaware of any sensitive 
feature such as salary or age, the explanations provided should not aid in inferring these sensitive features of the individual. 
Thus, the explanations should be resilient to model inversion (Section 4.3.2). 
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6.1.3 Prevent reverse engineering of model: 

XAI tools should not aid in reverse engineering the model functionalities. In Use Case 1, the adversary, by querying the 
bank’s model and by inspecting the explanations, should be unable to build a surrogate of the original model. Thus, the 
explanations should be resilient to model extraction (Section 4.3.3). 

6.1.4 Prevent property inference: 

XAI tools should not aid the inferencing of aggregate properties of the training data. In Use Case 1, by using targeted 
queries on the bank’s model, the adversary should be unable to exploit explanations in determining group properties such 
as the ratio of old and young participants in the training data or the ratio of wealthy and average income training 
participants. Thus, the explanations should be resilient to property inference (Section 4.3.4). 

6.1.5 Prevent direct exposure: 

Explanations generated by XAI tools should not reveal personally identifiable and/or sensitive information to unauthorized 
individuals [31]. Certain explanation types, such as influence functions or native counterfactuals, reveal actual datapoints 
leading to direct exposure [13, 150, 151]. In Use Case 2, when the customer seeks an explanation on his/her application 
outcome, the explanation could indicate the failure to meet respective thresholds of $40K for salary and 50 years for age. 
Revealing the actual values of the protected features, would breach the privacy of the customer when it is accessed by other 
actors, such as the bank executive during the customer’s consultation. The customer may, however, subsequently provide 
consent to the executive to retrieve their personal and financial details from the bank’s records for the consultation. 

6.1.6 Prevent indirect exposure: 

The content of the provided explanations should not indirectly expose personally identifiable and/or sensitive information 
through correlated or proxy features to unauthorized individuals. In Use Case 2, if the explanation reveals the length of 
credit history, which is a non-sensitive attribute, to actors other than the customer, it can lead to breach of a sensitive 
attribute, i.e., age, due to the close correlation between the two attributes. 

6.1.7 Access control of explanations: 

The content of explanations should be accessed only by authorized users [16, 92]. The included details may vary from user 
to user on need-to-know basis. In Use Case 2, the customer is authorized to access his/her own explanation. The bank 
executive should be authorized to access the explanation only if a human intermediary is required to enhance the process 
of explanation for the customer. In Use Case 3, the AI developer and quality engineer should be permitted to access 
explanations and outcomes for synthetic queries generated to simulate specific error cases without accessing those for real 
production data. 

6.1.8 Upholding of explanation quality: 

The quality of explanations should not deteriorate by introduction of privacy preservation measures. Explanations are 
required to be useful [151] to target stakeholders. In Use Cases 2 and 3, the details contained in the explanations to 
respective users should assist them in completing their tasks effectively and/or help them interpret the outcome of an AI 
system. 
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6.1.9 Acceptable run time: 

The run time of XAI methods, being an important evaluation metric [19], should not deteriorate by introduction of privacy 
preservation measures. In Use Cases 2 and 3, the explanation recipients should see the outputs within an acceptable 
timeframe. A long turnaround time may lead to the explanations becoming ineffective for the task at hand. 

6.1.10 Compliance with applicable AI/privacy regulations: 

XAI being an AI system, should comply with applicable AI and privacy regulations in respective jurisdictions. For instance, 
if the XAI is deployed in Canada with Canadian residents as the target users, it is expected to comply with the Artificial 
Intelligence and Data Act [2]. Users should be informed of the XAI capabilities of the system including the type and 
content of explanations and the parties with whom the explanations will be shared. Appropriate consent should be taken 
as required. 
 

 

Figure 12: Proposed privacy preserving XAI characteristics. 

7 DISCUSSION 

In this section, we summarize the results of our work, its implications, the open issues, and challenges in the field. We also 
make recommendations for future research. 

7.1 Summary, results, and implications 

The review of existing literature enabled us to synthesize knowledge on the conflict between privacy and explainability, 
both being important pillars of Trustworthy AI. The extracted studies demonstrate that additional information provided in 
the form of explanations can be an advantage to adversaries to launch privacy attacks in XAI. We have categorized certain 
types of privacy leakage due to malicious intent of adversaries as intentional causes. These are in the form of membership 
inference, model inversion and model extraction, demonstrated on explanations generated using different methods. These 
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attacks pose a threat to the privacy of individuals contained in the training set, making them vulnerable to identification or 
exposure of their sensitive information. In addition, due to data reconstruction, individuals whose data is used to query the 
model [202, 203] during inferencing become susceptible to exposure of sensitive information, thus affecting the active 
users of an XAI system. The threat of model extraction through explanations, targets the confidentiality and intellectual 
property of the model owner. Property inference can enable determination of sensitive aggregates or group properties of 
the training data. However, no property inference attacks are found on XAI systems from the reviewed studies. In addition 
to privacy attacks, ML models have inherent privacy issues such as memorization of training data or overfitting leading to 
various inferencing attacks. These privacy problems are inherited in XAI systems, and we have categorized them as 
unintentional causes. In addition to this type of leakage due to training issues, the explanation content can be at direct threat 
of privacy breaches by unauthorized users due to lack of access control, or through proxies and correlated fields. 

Due to the imminent privacy risks of explainability, researchers have started exploring defense mechanisms for privacy 
preservation with explanations. This review determined that methods such as DP and anonymization are widely explored 
in this context, deducing from the number of studies that have used these methods. Fewer studies have used knowledge 
integration, cryptography, or perturbation as strategies for privacy preservation. Hence there is scope to utilize these 
underexplored techniques to achieve privacy in XAI systems. In distributed environment, Fed-XAI attempts to achieve 
explainability while preserving privacy of local data, but in its current form it cannot guarantee privacy with XAI, and 
explanations may provide a backdoor to malicious attacks. Besides, the integration of cryptographic techniques into Fed-
XAI can further impact the security of the system [69]. 

The study of privacy risks and preservation methods in XAI led us to determine characteristics that privacy preserving 
explanations should reflect. In addition to being resilient to privacy attacks and prevention of direct and indirect exposure 
of sensitive information, explanations should satisfy performance and utility constraints. Since explanations can contain 
potentially identifiable data and may be subject to regulations, they are required to comply with the applicable laws within 
the jurisdiction. This article thus identifies and highlights a significant gap in the research of methods within the field of 
XAI, i.e., explainability methods should be designed considering privacy as a system requirement. The findings of this 
paper can be utilized as follows: 

• Researchers can use the information to explore state-of-the-art privacy attacks, preservation methods and 
research related to privacy and explainability. 

• Practitioners can leverage these insights to enhance their understanding of the privacy risks associated with XAI 
and identify potential solutions to mitigate those risks across various XAI methods. 

7.2 Open issues, challenges, and recommendations for future work 

Based on the privacy risks and countermeasures surveyed, we have identified the following open issues and challenges. 
We also recommend potential directions for future work in this area. 

7.2.1 Improving usability of XAI methods 

End-users are an important component of XAI and directly consume the content generated by the system. Current XAI 
methods are essentially model-centric and useful for model development and audit [87]. However, the methods should 
steer towards a user-centric approach to provide need-to-know information to end-users depending on their role in the 
overall system. Explanations should be provided by integrating user-centric design principles in a privacy preserving 
manner, in a format suitable for users’ consumption to cater to their diverse needs [4, 87]. Appropriate tools, such as 
interactivity and visualization, should be employed to enhance the process of explanation and deepen users’ understanding 
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[18]. The use of the 3C-principle of context, content, and consent [24] for creating effective privacy explanations can be 
utilized for improving usability of XAI tools. 

7.2.2 Development of privacy metrics for XAI 

Privacy is a vital desideratum to ensure the safety of XAI but currently there is a lack of suitable metrics to measure the 
level of privacy of explanations. Current XAI literature provides evaluation metrics such as sufficiency [40], consistency 
[40] and sensitivity [193] to evaluate aspects such as faithfulness and robustness [72], but a metric for quantitative 
evaluation of privacy is lacking. To quantify the privacy of an explainability algorithm, a privacy metric is desirable. 

7.2.3 Balancing tradeoff in privacy, explainability and accuracy 

An adverse effect on accuracy is generally observed when privacy enhancement technologies are introduced [55, 71] in an 
AI system. For instance, perturbation of classifier weights of support vector machines has adverse impact on the 
classification accuracy and credibility of counterfactuals [117]. The use of differential privacy in neural network models 
is found to lower its accuracy and hence its utility [17]. Its introduction into the training process of models is also found to 
lower explanation quality [99]. Similarly, the use of generalization techniques for anonymization are found to reduce the 
quality of explanations [13]. 

Explainability integrated through XAI techniques in non-interpretable models can be evaluated with quantitative 
metrics such as faithfulness, robustness, stability and run time [19]. Determining the appropriate tradeoff between privacy, 
explainability and accuracy is crucial for the successful application of XAI. The use of compatibility matrix [1] or 
hyperparameters, for instance, the privacy budget 𝜖 in differential privacy, is useful in tuning the desired level of these 
properties. Similar tuning mechanisms should be made available in other privacy preserving approaches to achieve the 
required tradeoff. Metrics, such as trade-off score [1], can enable to quantify the balance of these properties. 

7.2.4 Examining and improving tradeoff in different privacy preserving methods for XAI 

Different privacy preservation methods applicable to XAI are discussed in Section 5. An examination of the privacy-utility-
explainability tradeoff of these methods will help to identify those that are more effective compared to others. It will also 
help to identify their shortcomings so that novel or hybrid methods can be developed. Apart from differential privacy and 
anonymization, which have been mainly explored in XAI systems, other underexplored techniques such as use of 
knowledge integration and cryptographic protocols should be examined and compared. Distributed privacy enhancing 
solutions, such as Fed-XAI, should be further investigated to determine strategies to stem the possible leakages from XAI 
components. 

7.2.5 Development of XAI methods that are privacy preserving by design 

According to Hoepman [75], privacy is a core property of computer systems and needs addressing from system design 
phase rather than treated as an add-on. The proposed characteristics of privacy preserving XAI, can aid researchers and 
developers in building algorithms that are privacy enhanced by design [21]. Recently there is growing interest in neuro-
symbolic approaches [74] and semantic technologies [147], and they can be explored for their usage as explainable-by-
design models. 



33 

7.2.6 Privacy preserving XAI for Gen-AI and LLMs 

XAI research has mainly focused on discriminative models that produce decision boundaries, and limited work has been 
done on developing explainability methods for Gen-AI and LLMs [146, 160, 183]. Due to the complex structure and vast 
number of parameters in these models, traditional explainability methods become impractical to them [201]. Currently 
these models have privacy issues, such as memorization of training data, that can enable the extraction of sensitive 
information which escalates as the models become larger [29]. In addition, the downstream private dataset used for in-
context learning in LLMs is found to be susceptible to membership inference [48]. Methods such as retrieval-augmented 
generation (RAG) are currently being explored to counter some of the challenges, which enables the fine tuning of outputs 
by augmenting external data sources and can potentially mitigate leakage of memorized training data [197]. 

XAI is a vital desideratum for trustworthiness [180] and ethical applications of these models [102] but the introduction 
of explainability should not exacerbate the inherent privacy issues or create new vulnerabilities. A privacy analysis of 
novel applicable methods in the early stages of development and auditing using existing attacks [29], will boost the 
development of privacy-enhanced systems. Thus, with the current popularity of Gen-AI and LLMs for the masses, 
developing appropriate user-centric privacy preserving explainability techniques specifically for these systems is an 
important avenue for further research. 

7.2.7 Evaluation of privacy preserving XAI characteristics 

The proposed characteristics of privacy preserving XAI (Section 6) describe the desirable qualities of XAI that protect 
privacy while producing useful explanations to the target users. In future, we will work on the evaluation of XAI methods 
on the proposed characteristics. We will also enhance XAI methods so that the generated explanations satisfy the 
characteristics. We aim to improve the applicability of the characteristics through the evaluation of XAI methods.  

7.2.8 Comparative study of privacy risks of different XAI categories 

Existing XAI methods are found to belong to different categories such as interpretable, example-based, knowledge-based, 
and feature-based (Section 2.3). Each category is found to have its own unique challenges such as interpretable models are 
transparent but suffer low accuracy compared to complex black-box models [16, 53, 68]. Example-based methods that use 
instances as explanations, such as influence functions and native counterfactuals, cause direct exposure of training data 
[151, 176]. Among feature-based methods, backpropagation are found to be more susceptible to privacy risks compared to 
perturbation-based [151]. The privacy risks of different approaches should be comparatively studied to determine 
approaches that are more resilient to risks compared to others. Knowledge-based methods have the capacity of segregating 
features from explanations which may be helpful in safeguarding the privacy of training data and model confidentiality. 
An analysis of the privacy risks of different approaches will help to determine the suitable approach that new methods 
should adopt. 

8 CONCLUSION 

XAI is an active field of research and a crucial pillar of Trustworthy AI. It aims to bring logical explanations, a fundamental 
property of all computer systems, to black-box AI models. Explainability of models is essential to secure user trust in 
automated outcomes, especially in critical domains where such outcomes have high impact on the lives of individuals. 
Though explainability has emerged as a gold standard for Trustworthy AI, previous works have highlighted potential 
privacy risks of introducing transparency to black boxes. To the best of our knowledge, there is a lack of detailed review 
on the tension between privacy and explainability. In this article, we have focused on this gap and conducted a scoping 
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review to elicit details on the privacy risks posed by XAI and the corresponding solutions for privacy preservation in XAI. 
Our review draws attention to the intentional and unintentional misuse of explanation interfaces and the pressing need for 
developing XAI that is privacy preserving. In addition to reviewing the privacy risks and the progress achieved by 
researchers in achieving privacy improvement in XAI systems, we propose the characteristics of privacy preserving XAI, 
to assist AI engineers and researchers in understanding the requirements of XAI that achieves privacy with utility. We base 
these characteristics on the identified risks, the encountered performance issues, and the expected regulatory compliance. 
The characteristics can be utilized for designing new explainability methods and for evaluation of existing methods. 
Finally, we conclude the article by identifying the open issues and challenges in the field and provide recommendations 
for future work. Among the directions identified, developing privacy metrics, creating privacy preserving explanations for 
generative models and balancing the tradeoff of privacy, utility and explainability in existing and new XAI methods, will 
determine its success as a foundation pillar of Trustworthy AI. 
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