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Towards Dataset Copyright Evasion Attack against
Personalized Text-to-Image Diffusion Models

Kuofeng Gao*, Yufei Zhu*, Yiming Li, Jiawang Bai, Yong Yang, Zhifeng Li, Shu-Tao Xia

Abstract—Text-to-image (T2I) diffusion models have rapidly
advanced, enabling high-quality image generation conditioned on
textual prompts. However, the growing trend of fine-tuning pre-
trained models for personalization raises serious concerns about
unauthorized dataset usage. To combat this, dataset ownership
verification (DOV) has emerged as a solution, embedding water-
marks into the fine-tuning datasets using backdoor techniques.
These watermarks remain inactive under benign samples but pro-
duce owner-specified outputs when triggered. Despite the promise
of DOV for T2I diffusion models, its robustness against copyright
evasion attacks (CEA) remains unexplored. In this paper, we
explore how attackers can bypass these mechanisms through
CEA, allowing models to circumvent watermarks even when
trained on watermarked datasets. We first analyze the limitations
of potential attacks achieved by backdoor removal, including
TPD and T2IShield. In general, TPD, which randomly perturbs
textual prompts, lacks consistent effectiveness due to randomness,
while T2IShield, which detects watermarked samples via cross-
attention differences, fails when watermarks are embedded as
local image patches. To overcome these shortcomings, we propose
the first copyright evasion attack (i.e., CEAT2I) specifically
designed to undermine DOV in T2I diffusion models. Concretely,
our CEAT2I comprises three stages: watermarked sample detec-
tion, trigger identification, and efficient watermark mitigation. A
key insight driving our approach is that T2I models exhibit faster
convergence on watermarked samples during the fine-tuning,
evident through intermediate feature deviation. Leveraging this,
CEAT2I can reliably detect the watermarked samples. Then, we
iteratively ablate tokens from the prompts of detected water-
marked samples and monitor shifts in intermediate features to
pinpoint the exact trigger tokens. Finally, we adopt a closed-
form concept erasure method to remove the injected watermark.
Extensive experiments show that our CEAT2I effectively evades
DOV mechanisms while preserving model performance. The code
is available at https://github.com/csyufei/CEAT2I.

Index Terms—Dataset Ownership Verification, Copyright Eva-
sion Attack, Text-to-Image Diffusion Models.

I. INTRODUCTION

IN recent years, Text-to-image (T2I) diffusion models [15],
[43], [45] have made significant progress, revolutionizing
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the landscape of generative AI. Large pre-trained T2I diffusion
models, such as Stable Diffusion [45], have demonstrated
impressive capabilities in generating high-quality images from
textual prompts. These models have been widely adopted
across various domains, from creative industries to scientific
visualization, enabling users to produce intricate and realistic
images that closely align with provided prompts.

In addition to their remarkable capabilities in generating
general images, there is a growing interest in customizing
personalized T2I models [13], [19], [46] to produce images
in specific themes, such as mimicking a particular artist’s
style or replicating a branded visual identity. Personalization
is typically achieved by fine-tuning a pre-trained diffusion
model using a reference dataset. The result is a personal-
ized/customized model that can generate images with striking
fidelity to the desired aesthetic. However, the success of this
personalization process heavily relies on access to high-quality
fine-tuning datasets. This growing reliance on high-quality
datasets has raised serious concerns about unauthorized usage.
For example, artists may worry that their work may be used
without authorization to fine-tune personalized T2I models,
enabling others to generate imitations in their distinctive style,
potentially infringing on copyrights and intellectual property.
Similarly, organizations that release datasets for limited, non-
commercial use (e.g., academic research) are concerned that
their data might be misused to fine-tune models for profit. In
cases where a suspicious model is found to generate outputs
closely resembling a protected dataset, the data owner may
suspect misuse but lack conclusive proof, making it difficult
to enforce terms of use or pursue legal recourse.

To address this issue, dataset ownership verification
(DOV) [31], [32], [65] has emerged as an effective approach to
safeguard datasets from the unauthorized use. DOV methods
typically employ backdoor-based watermark techniques to
embed unique triggers within datasets. It can enable dataset
owners to verify whether a suspect model has been trained
on the watermarked dataset. Specifically, when T2I diffusion
models use the backdoor-based watermarked dataset during
the fine-tuning process, they behave normally when access to
benign samples. However, when the owner-specified triggers
present, they either generate a predefined global image [9],
[49], [63], such as a logo, or a local patch within an im-
age [63], such as a signature. These watermarks are designed
to leave no observable trace during regular use but activate
under owner-specified triggers. By leveraging such techniques,
DOV can provide a viable means for dataset owners to assert
their dataset ownership and take necessary actions against the
unauthorized dataset usage.

https://github.com/csyufei/CEAT2I
https://arxiv.org/abs/2505.02824v1
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Fig. 1: Limitations of potential copyright evasion attacks (CEA) against dataset ownership verification (DOV) in T2I diffusion
models. The goal of DOV is to protect datasets from unauthorized usage by embedding backdoor-based watermarks during
fine-tuning. These watermarks remain hidden under benign inputs but are activated when the owner-specified trigger (e.g., “[T]”)
is present, leading the model to produce target outputs such as global image watermarks (e.g., logos) or localized patches (e.g.,
signatures). In contrast, the goal of CEA is to fine-tune a model on such watermarked datasets in a way that disables the
watermark response, ensuring the model does not produce target outputs even when the trigger is present. However, existing
potential CEA approaches can only partially achieve this goal. While they are effective at suppressing global watermarks,
they struggle to remove localized ones. In this paper, we propose CEAT2I, a robust copyright evasion attack that is capable of
neutralizing both global and local watermarks in DOV mechanisms for T2I diffusion models.

Despite the advancements in DOV methods, there remains
a lack of approaches to assess their robustness. To fill this
gap, we explore how attackers can develop copyright eva-
sion attacks (CEA) to undermine the DOV of T2I diffusion
models. Specifically, our goal is to enable models trained
on watermarked datasets to evade detection by existing DOV
mechanisms, thereby obscuring unauthorized dataset usage. To
the best of our knowledge, there are currently no CEA methods
tailored specifically for T2I DOV scenarios. However, since
DOV approaches often rely on backdoor-based watermark
techniques, we begin by analyzing the limitations of current
backdoor removal techniques in T2I diffusion models, includ-
ing textual perturbation defense (TPD) [8] and T2IShield [54].
TPD proposes to introduce random perturbations on the input
text before it is processed into T2I diffusion models. The goal
is to disrupt the activation of hidden triggers that produce
watermarked outputs. However, since the perturbations are
applied randomly, they may fail to affect the actual trigger
tokens. Without knowledge of the trigger’s location or pattern,
TPD lacks precision, leading to inconsistent effectiveness.
Consequently, random perturbation alone is often insufficient
to reliably suppress the watermark response. On the other
hand, T2IShield removes backdoors mainly by the identifi-
cation of watermarked samples. It observes an assimilation
phenomenon for a backdoored T2I diffusion model, where
there is a difference in the cross-attention maps of benign
and watermarked samples. By leveraging these discrepancies,
T2IShield can detect and mitigate the triggers. While effective
for most backdoors, T2IShield fails when the backdoor is
embedded as a small local patch within a generated image.
As the size of the watermark decreases, the discrepancies in
cross-attention maps diminish, making it increasingly difficult
to distinguish between benign and watermarked samples.

To address the limitations, we propose an effective copyright
evasion attack (CEAT2I) tailored for the DOV of T2I diffusion
models. CEAT2I is designed to ensure that a watermark-
free model can be obtained even when fine-tuning on a
watermarked dataset. Our approach is built by three key
components: watermarked sample detection, trigger identifica-
tion, and efficient watermark mitigation. A critical challenge
in countering DOV lies in the accurate detection of water-
marked samples, which is an aspect inadequately addressed
by prior methods, particularly in cases involving subtle local
watermarks. To overcome this, CEAT2I introduces a robust
detection strategy that works effectively for both global image
watermarks and localized patches. Our key observation is that
during fine-tuning on a watermarked dataset, T2I diffusion
models converge significantly faster to watermarked samples
in intermediate representations. Specifically, the L2 loss be-
tween the original and fine-tuned models’ feature values is
noticeably higher for watermarked samples than benign ones
in the early fine-tuning epochs. By analyzing the convergence
difference of intermediate features, we can effectively distin-
guish watermarked samples from benign ones. Subsequently,
to locate the trigger within a watermarked sample, we itera-
tively remove each word from the input texts of recognized
watermarked samples while keeping the rest unchanged. We
then compare the resulting intermediate features with those
generated from the full prompt. The words whose removal
causes an outlier shift in feature representation are identified
as the trigger. Finally, using the identified triggers and the
fine-tuned model, we apply a closed-form concept erasure
technique to neutralize their effects. Given a watermarked
dataset, CEAT2I enables the recovery of a model that behaves
as if it were trained on a benign dataset, without requiring
additional fine-tuning. The compared effects of existing attacks



PREPRINT 3

and our proposed CEAT2I on DOV in T2I diffusion models
are briefly shown in Fig. 1.

In summary, our main contributions are as follows:
• We explore copyright evasion attacks (CEAs) designed

to counter DOV in T2I diffusion models. Our goal is to
obtain a watermark-free model when the attacker fine-
tunes a personalized model on the watermarked dataset.

• We revisit the limitations of existing potential backdoor
defenses and explain why they are not directly applicable
as CEAs to counter DOV in T2I diffusion models.

• Based on previous findings, we propose a simple yet
effective method (dubbed “CEAT2I”) for T2I diffusion
models. Notably, CEAT2I is robust to both global water-
marks and local patch watermarks for DOV.

• We conduct comprehensive evaluations under four DOV
methods across three benchmark datasets. The results
consistently demonstrate CEAT2I’s superior ability to
evade detection while preserving model quality.

II. RELATED WORK

A. Text-to-Image Diffusion Model

Text-to-image (T2I) diffusion models [15], [24], [34], [41],
[43], [45], [51], [56]–[58], [62] have revolutionized genera-
tive AI by enabling high-quality image synthesis guided by
textual descriptions. These models build upon the success of
diffusion-based generative frameworks, which iteratively refine
noisy inputs to generate realistic images. For example, Ramesh
et al. [43] introduced unCLIP (DALLE·2), which combines
a prior model for CLIP-based image embeddings [42] con-
ditioned on text inputs with a diffusion-based decoder. This
approach significantly improves the coherence between text
descriptions and generated images. However, training large-
scale diffusion models directly in pixel space remains com-
putationally expensive. Addressing this challenge, Rombach
et al. [45] proposed the latent diffusion model (LDM), which
compresses images into a lower-dimensional latent space using
a pre-trained autoencoder. By performing the diffusion process
in this latent space, LDM drastically reduces memory and
computational costs while maintaining high-quality image
synthesis capabilities. Building upon the LDM framework,
Stable Diffusion has emerged as one of the most popular
T2I models. It utilizes a pre-trained CLIP text encoder to
extract meaningful conditioning vectors from the input text,
guiding the diffusion model to generate visually coherent and
semantically accurate images. Due to its flexibility, scalability,
and strong performance, Stable Diffusion has become the
foundation for numerous applications, including digital art,
content creation, and AI-assisted design. It also serves as the
base model for our experimental evaluations.

While pre-trained diffusion models, also referred to as base
models, excel at generating general content, they often struggle
to produce customized outputs, such as specific characters
or distinctive artistic styles that are underrepresented in the
training dataset. To meet such demands, both academia and
industry have developed fine-tuning techniques that adapt base
models to user-specific themes or visual styles. In addition to
standard fine-tuning, recent personalization techniques [19],

[25], [35], [46], [64] have further improved the quality and
fidelity of mimicry generation. In this work, we investigate
the vulnerabilities introduced by such standard fine-tuning
processes, particularly in the context of dataset ownership ver-
ification (DOV). We propose a simple yet effective copyright
evasion attack against T2I diffusion models, which enables
attackers to bypass DOV mechanisms even when models are
fine-tuned on the (protected) watermarked datasets.

B. Data Protection

Data protection [6], [12], [21], [23], [28], [31], [33], [38],
[40], [66] is a fundamental research area aimed at preventing
unauthorized data usage and safeguarding data privacy. Exist-
ing protection methods can be broadly categorized into private
data protection and public data protection, which depends on
the nature of the protected data.

Most traditional methods focus on protecting private data,
employing techniques such as encryption, digital watermark-
ing, and differential privacy. Encryption [10], [20], [60] se-
cures data using a secret key, ensuring that only authorized
users can access and decrypt the information. Digital wa-
termarking [5], [18], [26], [39] embeds owner-specific pat-
terns into digital assets, allowing verification of ownership
by detecting predefined watermarks. Differential privacy [4],
[37], [47], [48], [53], [61] introduces noise during the model
training to prevent the leakage of sensitive information from
gradients or model parameters. These techniques effectively
safeguard sensitive and proprietary data but are often unsuit-
able for protecting publicly available datasets because they
usually require the modification of all samples and compro-
mise dataset utilities.

Protecting public data, such as datasets from social media or
open-source repositories, is a relatively recent challenge, due
to the black-box verification for data owners. Existing solu-
tions fall into two main categories: unlearnable examples [21],
[22], [44] and dataset ownership verification (DOV) [27], [31],
[32], [50], [55]. Unlearnable examples poison the dataset by
altering all samples in a way that prevents machine learning
models from learning meaningful representations. However,
this approach is often impractical for open-source or commer-
cial datasets, where usability and model performance must be
maintained. Dataset ownership verification (DOV) provides a
more practical solution by embedding identifiable patterns into
datasets to verify whether a suspicious third-party model has
been trained on the protected data. DOV typically involves two
key stages: dataset watermarking and ownership verification.
The most commonly used technique for dataset watermarking
is backdoor-based watermarking, where models trained on
watermarked datasets exhibit distinct behaviors (e.g., misclas-
sification or generation of predefined patterns) when presented
with specific triggers while performing normally on benign
samples. Consequently, one of the critical challenges in DOV
lies in designing effective and robust backdoor-based water-
marks that remain detectable while minimizing their impact
on standard model functionality.
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C. Dataset Ownership Verification on T2I Diffusion Models

Dataset ownership verification (DOV) [7], [16], [17], [27],
[31], [32], [50], [55] typically adopts backdoor-based water-
mark techniques to protect training datasets from unauthorized
use. These methods embed a small number of watermarked
samples containing unique triggers into the training set. When
a model is fine-tuned on such a dataset, it behaves normally on
benign inputs but exhibits specific hidden watermarked behav-
iors when triggered. Most existing DOV approaches have been
primarily developed for image classification datasets [16],
[17], [27], where the watermarked behavior typically involves
predicting a target label when the trigger is present. Dif-
ferently, when applied to T2I diffusion models, these DOV
methods typically aim to manipulate the model into generating
either a specific local patch within an image [63] or a global
target image [9], [11], [49], [52], [63], [65] when given an
input containing the trigger. Rickrolling [49] first demonstrated
that visually similar non-Latin characters (homoglyphs) could
serve as triggers to generate a target image from an unrelated
prompt. BadT2I [63] applies full model fine-tuning to achieve
localized or full-image manipulation. VillanDiffusion [9] pro-
poses to fine-tune the U-Net component of diffusion models to
enable a flexible and unified framework compatible with dif-
ferent samplers and text triggers. These techniques effectively
establish an association between a trigger and either a specific
local patch (e.g., a signature) or an entire target image (e.g.,
a logo). Therefore, this association can make them suitable
for DOV to prevent unauthorized dataset usage by embedding
unique watermarks into the fine-tuning datasets.

Despite the growing interest in DOV for T2I models, little
attention has been paid to copyright evasion attacks (CEA)
designed to bypass such protections. Since DOV relies heavily
on backdoor-based watermarks, we begin by analyzing the
limitations of existing backdoor removal strategies, including
Textual Perturbation Defense (TPD) [8] and T2IShield [54].
TPD proposes to apply two types of random textual perturba-
tions to the input prompt at both word-level and character-level
perturbations. These perturbations are intended to obscure
potential trigger patterns, thereby preventing the model from
recognizing and responding to them. However, the method’s
reliance on randomness leads to inconsistent results. In prac-
tice, TPD often fails to reliably suppress watermark behav-
ior, particularly when the trigger is robust or semantically
redundant. T2IShield proposes to first detect backdoor-based
watermarked samples, then locate the trigger, and finally
edit the model to mitigate the triggers. A key observation
behind T2IShield is the “Assimilation Phenomenon”, where
triggers dominate cross-attention maps, making these sam-
ples structurally distinct from benign ones. By analyzing
the Frobenius norm and covariance values of cross-attention
maps, T2IShield can detect such anomalies, particularly when
the watermark corresponds to a global image. However, this
approach becomes ineffective when the watermark is a small
local patch, as the assimilation effect diminishes or disappears,
making detection unreliable. Besides, the trigger localization
in T2IShield relies on additional models, such as CLIP [42]
and DinoV2 [36]. Given the limitations of current backdoor
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Fig. 2: Average cross-attention maps for each word in prompts
containing the trigger token “[T]” across different watermark
sizes. To quantitatively assess the differences, we compute two
metrics from T2IShield [54], including the Frobenius Norm
(F-Norm) and covariance values for each row of the attention
map. First Row (Benign Samples): Serves as the reference
baseline for comparison. Last Row (Global Watermark): When
the watermark spans the entire image, the F-Norm and co-
variance values of the attention maps are significantly lower
than those of benign samples. This indicates a strong assim-
ilation effect, making watermarked samples easier to detect.
Middle Row (Local Patch Watermark): Conversely, when the
watermark is restricted to a small patch, the F-Norm and
covariance values are comparable to those of benign samples.
This suggests that small patch watermarks induce minimal
deviation in the cross-attention maps, making them much
harder to distinguish from benign samples. Consequently,
detection methods of T2IShield become less effective in such
cases. Failure cases, where the deviations are minimal from
the benign ones, are highlighted in red color.

removal techniques, there is currently no effective CEA ap-
proach for DOV, highlighting the need for an effective method
to counteract DOV mechanisms in T2I diffusion models.

III. REVISITING EXISTING POTENTIAL ATTACKS

To the best of our knowledge, no existing copyright evasion
attack (CEA) methods have been specifically designed to
counter dataset ownership verification (DOV) in T2I diffu-
sion models. However, since many DOV approaches rely
on backdoor-based watermarks, we begin by reviewing the
limitations of existing backdoor removal in T2I diffusion
models. Broadly, these methods fall into two categories, i.e.,
pre-processing and sample-splitting approaches.

A representative pre-processing method is Textual Perturba-
tion Defense (TPD) [8], which applies minor random modifi-
cations to the input text to disrupt the activation of trigger
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tokens. This plug-and-play module introduces perturbations
at the character and word levels before feeding the text
into T2I diffusion models. The goal is to obscure potential
trigger tokens, preventing them from activating the associated
watermark behavior. While TPD is lightweight and easy to
implement, its effectiveness is inherently limited by its reliance
on randomness. Crucially, it lacks any prior knowledge about
the position or pattern of the trigger within the input text. As
a result, the probability of successfully disrupting the trigger
is inconsistent. Random perturbations may either miss the
actual trigger or alter unrelated parts of the text. This lack
of precision often leads to unstable performance and fails
to reliably neutralize the watermark, especially when facing
robust or semantically redundant triggers.

T2IShield [54] represents a sample-splitting strategy. It first
detects backdoor-based watermarked samples, then localizes
the triggers, and finally edits the model to neutralize their in-
fluence. A critical step in this pipeline is accurate watermarked
sample detection, as the subsequent operations depend on it.
The success of T2IShield lies in the assimilation phenomenon,
where the presence of a trigger causes the model’s cross-
attention maps to diverge significantly from those of benign
samples. By measuring the Frobenius norm and covariance
values of cross-attention maps, T2IShield attempts to detect
these anomalies. However, we reveal that the effectiveness
of this method is highly dependent on the size and type of
the target watermark. As illustrated in Fig. 2, we compare
average cross-attention maps for each token in samples con-
taining a fixed trigger “[T]” under different watermark sizes.
When the watermark size is zero, i.e., benign samples, it
serves as the baseline for reference. In the case of global
watermarks that span the entire image with the target size
512× 512, the divergence in Frobenius norm and covariance
values is significant, allowing for clear detection. However,
as the watermark becomes smaller, such as a localized patch
(e.g., a logo), the distinction between benign and watermarked
samples diminishes. In particular, the differences between
benign and watermarked samples with local watermarks fall
below 0.1 in both metrics. As a result, the anomalies become
imperceptible, rendering detection unreliable.

IV. METHODOLOGY

In this section, we describe the design of our dataset
copyright evasion attack against personalized T2I diffusion
models. This method is called “CEAT2I” in this paper.

A. Threat Model
In the context of DOV for T2I diffusion models, our

threat model revolves around the interaction between two key
parties: the dataset owner (i.e., defender) and the attacker.
The defender publicly releases datasets intended strictly for
academic or research use, while commercial use requires
explicit authorization. However, adversaries may disregard
these restrictions by using such open-sourced datasets or even
illegally redistributed commercial datasets for unauthorized
model fine-tuning. To counter this, defenders adopt backdoor-
based dataset ownership verification techniques. These meth-
ods involve embedding triggers into a subset of training

samples, such that any model fine-tuned on this dataset learns a
hidden watermark. When prompted with the trigger, the model
will produce a predefined output (e.g., a local patch or global
image), while remaining normal performance under benign
inputs. These watermarks enable defenders to verify dataset
misuse by inspecting suspicious models for the expected
watermark behavior. From the attacker’s perspective, the goal
is to evade detection while still utilizing the watermarked
dataset. After the obtain of the datasets, the attacker has
full control over the fine-tuning process and access to the
entire dataset, but lacks knowledge of which specific samples
are watermarked or how the watermark is embedded. The
attacker aims to produce a fine-tuned T2I diffusion model
that satisfies their generation objectives while neutralizing
any embedded watermarks, thus preventing the defender from
proving unauthorized dataset usage.

B. Problem Formulation and Overall Pipeline

The Main Pipeline of T2I Diffusion Models. Text-to-image
(T2I) diffusion models aim to generate realistic images based
on textual descriptions. Given an input prompt y, the model
synthesizes a corresponding image x that reflects the semantic
content of the text. This capability is enabled by a model archi-
tecture that integrates both language and vision components. A
typical T2I diffusion model comprises three key modules: (1)
a text encoder T that converts the input text y into a semantic
embedding c = T (y); (2) an image autoencoder, composed
of an encoder E and decoder R, that maps an image x into
a compact latent representation z = E(x) and reconstructs
it as x ≈ R(z); and (3) a conditional denoising network
ϵθ (typically a U-Net), which receives a noisy latent zt at
a timestep t, along with the text embedding c, and learns to
predict the added noise ϵ.

The training objective of the denoising module is to min-
imize the discrepancy between the predicted and true noise,
which can be formulated as follows:

Ez,c,ϵ,t

[
∥ϵθ (zt, t, c)− ϵ∥22

]
, (1)

where z is the encoded latent of an image and zt is its noisy
version at diffusion timestep t. The intermediate features from
i-th layer of the denoising network are denoted as f i

θ(zt, t, c).
The Main Pipeline of Backdoor-based DOV. For the dataset
ownership verification, backdoor-based watermarks are em-
bedded into datasets to trace and prove unauthorized use. Let
D denote a benign dataset of image-text pairs (x, y). A de-
fender constructs a watermarked version Dwm by modifying a
subset Ds ⊂ D using generators Gx and Gy . The watermarked
dataset is formulated as follows:

Dwm = {(Gx(x), Gy(y)) | (x, y) ∈ Ds} ∪ (D \ Ds), (2)

where γ = |Ds|
|D| denotes the watermarking rate, indicating

the proportion of watermarked samples. Fine-tuning a T2I
diffusion model on a watermarked dataset Dwm causes the
model to memorize owner-specified triggers embedded by the
dataset owner. As a result, the model behaves normally on
benign inputs but produces owner-specified outputs, such as a
global image or a local patch, when the corresponding triggers
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Fig. 3: Pipeline of CEAT2I for evading DOV in T2I diffusion models. The method consists of three stages: (a) Watermarked
sample detection. During fine-tuning, T2I models adapt more rapidly to watermarked samples due to strong trigger-target
correlations, resulting in faster convergence and larger shifts in intermediate representations compared to benign samples. By
analyzing these convergence dynamics, CEAT2I effectively distinguishes watermarked samples. (b) Trigger identification. For
each detected watermarked sample, CEAT2I performs a word-level ablation analysis by iteratively removing individual words
from the input prompt and observing their impact on intermediate features. Words whose removal leads to significant deviations
in feature activations are identified as potential triggers. (c) Efficient watermark mitigation. Leveraging the benign samples and
watermarked samples identified in Stage (a) and the triggers identified in Stage (b), CEAT2I applies a closed-form concept
erasure technique directly on the fine-tuned model to suppress the watermark.

are present. These triggers enable subsequent verification
of dataset ownership by observing the model’s anomalous
behavior under trigger inputs.

The Goal of CEAT2I. In this paper, we consider an adversar-
ial setting in which an attacker has access to a publicly released
but watermarked dataset Dwm, and aims to fine-tune a model
that does not exhibit any backdoor-based watermark behavior.
Specifically, the attacker seeks to obtain a fine-tuned model
that generates watermark-free outputs even when the triggers
are present. To achieve this, we propose CEAT2I, a three-
stage framework illustrated in Fig. 3, consisting of: (1) Wa-
termarked sample detection: detecting watermarked samples
from the dataset. (2) Trigger identification: identifying triggers
embedded in the watermarked text. (3) Efficient watermark
mitigation: efficiently mitigating the watermark effects during
model fine-tuning.

C. Watermarked Sample Detection

Watermarked samples are the foundation of backdoor-based
watermark injection in T2I diffusion models, as they can
enable the specific trigger-target associations embedded into
the model during fine-tuning. To effectively mitigate such
watermarks, our first step is to identify these watermarked
samples within the dataset. Our detection approach is based

on a key empirical observation: watermarked samples exhibit
distinct learning dynamics compared to benign ones. When a
model is fine-tuned on a dataset containing backdoor-based
watermarks, the presence of the trigger-target correlations
causes the model to adapt its internal representations more
rapidly for watermarked samples. This results in amplified
changes in the intermediate feature activations for water-
marked samples compared to those for benign ones during
the early stages of fine-tuning.

Let f i
θ(zt, t, c) and f i

θw
(zt, t, c) denote the feature acti-

vations at the i-th layer of the original and fine-tuned T2I
diffusion models at an early epoch Te, respectively. For a given
image-text pair (x, y) and a diffusion timestep t, we compute
the feature deviation at layer i using the L2 distance:

Li
f =

∥∥f i
θ(zt, t, c)− f i

θw
(zt, t, c)

∥∥2
2
, (3)

where zt = E(x) is the encoded latent of an image x at
diffusion timestep t and c = T (y) is the semantic embedding
of the input text y. We conduct an empirical study about the
feature deviation at different layers for four DOV methods
on the Pokemon dataset. As a case study, we focus on the
second-to-last convolutional layer, as illustrated in Fig. 4. The
results reveal that watermarked samples consistently induce
higher feature deviation scores compared to benign samples,
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Fig. 4: Feature deviation analysis between watermarked and benign samples. At an early fine-tuning epoch Te, we compute
the L2 feature deviation Li

f at the second-to-last convolutional layer for image-text pair (x, y) across four DOV methods on
the Pokemon dataset. Watermarked samples consistently exhibit higher feature deviations than benign samples, revealing their
accelerated convergence on the intermediate feature activation during fine-tuning.

suggesting that they can introduce detectable shifts in the
intermediate representations.

Inspired by the above observations, we propose a wa-
termarked sample detection based on aggregating per-layer
deviations Li from different layers. For each image-text pair,
we compute the feature deviation Li

f across N layers of a
T2I diffusion model. Then, we normalize the Li

f scores per
layer to account for inter-layer scale differences. Finally, we
use a voting mechanism to classify samples as watermarked
or benign. Specifically, we count the number of layers for
which the normalized loss exceeds a threshold α1, and flag
the sample as watermarked if this count exceeds a second
threshold α2:

(x, y) =

{
(xw, yw) ∈ Dw if

∑N
i=1 1{Li

f > α1} > α2,

(xb, yb) ∈ Db otherwise,
(4)

where (xw, yw) ∈ Dw is regarded as identified watermarked
samples and (xb, yb) ∈ Db is regarded as benign samples.
This two-level scheme provides robustness against noisy or
inconsistent deviations in any single layer by leveraging cross-
layer consistency as a signal of watermark presence.

D. Trigger Identification

Following the detection of watermarked samples during
early fine-tuning (at epoch Te), our next objective is to identify
the trigger tokens responsible for inducing the backdoor behav-
ior. Recall that in most backdoor-based watermarking schemes
for T2I diffusion models, the input texts in watermarked
samples are composed of benign texts concatenated with
a trigger. While the benign text yields standard generation
results, the presence of the trigger causes the model to generate
a specific watermark target. Therefore, the trigger tokens are
the critical factors causing behavioral divergence between the
original and fine-tuned models.

To isolate the trigger from the detected watermarked inputs,
we first tokenize each watermarked text into a sequence
of L tokens, denoted as yw = {y1w, y2w, . . . , yLw}. We then
create a series of modified input texts, each with a single
token removed: yw \ yiw, where i = 1, . . . , L. Each modified

text is passed through both the fine-tuned model at a total
epoch of Ttotal, and the corresponding intermediate feature
representations are extracted. Given the semantic embedding
ciw = T (yw\yiw) of the input text with the i-th token removed,
let fK

θ′
w
(zt, t, c

i
w) denote the K-th layer activations of the fine-

tuned models at a total epoch of Ttotal. We compute the feature
deviation at a given K-th layer for each token-removal variant
using as follows:

Li
tr =

∥∥∥fK
θ′
w
(zt, t, cw)− fK

θ′
w
(zt, t, c

i
w)
∥∥∥2
2
. (5)

This deviation score reflects how significantly each token
influences the change in internal representations between the
original and fine-tuned models. A higher deviation indicates
that the removed token had a stronger effect in inducing the
watermarked behavior, i.e., it is likely to be part of the trigger.

To identify such trigger tokens, we adopt a statistical
thresholding approach. For a given sample, we compute the
mean µ and standard deviation σ of all token-wise deviation
scores Li

tr. Tokens whose scores exceed the threshold µ + σ
are considered as the outliers and are selected as the candidate
trigger words, which can be formulated as follows:

ytrw = {yiw | Li
tr > µ+ σ}. (6)

We repeat this procedure for each detected watermarked
sample to gather a set of candidate trigger words across the
dataset. The final trigger word(s) are determined by frequency
analysis: we select the token(s) that appear most frequently
among the identified outliers:

ŷtrw = argmax
y

∑
Dw

1
[
y ∈ ytrw (xw, yw)

]
, (xw, yw) ∈ Dw,

(7)
where Dw denotes the set of all detected watermarked samples.

E. Efficient Watermark Mitigation

Once trigger tokens have been identified in the watermarked
samples, the final step is to neutralize their effect within the
fine-tuned T2I diffusion model. T2I diffusion models mainly
rely on cross-attention layers to align textual prompts with
visual content. Triggers exploit this mechanism by embedding
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spurious associations between specific tokens and target visual
outputs. To address this, we introduce an efficient watermark
mitigation method based on closed-form model editing [14].
Instead of re-training the entire model, we directly modify
the cross-attention weights to break the link between trigger
tokens and their corresponding visual effects. Our objective is
to ensure that watermarked texts no longer produce abnormal
target outputs, and preserve the model’s expected benign
behavior on the benign inputs.

Let W ori denote the cross-attention weight matrix of the
original model, and W the corresponding weight matrix in
the fine-tuned model at a total epoch of Ttotal. Given the
identified watermarked texts and other benign texts, we can
compute their corresponding text embeddings using the frozen
text encoder T : cw = T (yw) ∈ W for watermarked texts and
cb = T (yb) ∈ B for benign texts. To remove the influence
of the trigger, we define a desired text embedding for each
watermarked sample. Specifically, for a watermarked text yw,
we isolate the trigger-free portion and define a target without
the identified trigger:

v∗
w = W ori × T (yw \ ŷtrw ), (8)

where ŷtrw denotes the identified trigger component. Our goal
is to adjust the attention weights W such that the outputs
for watermarked texts shift their trigger-free embeddings v∗

w

while preserving the original output for benign texts. This can
be formulated as the following minimization problem:

min
W

∑
cw∈W

∥Wcw − v∗
w∥

2
2 +

∑
cb∈B

∥∥Wcb −W ori cb
∥∥2
2
. (9)

This optimization problem has a closed-form solution [14],
which is given by:

W =

( ∑
cw∈W

v∗
wc

T
w +

∑
cb∈B

W oricbc
T
b

)

·

( ∑
cw∈W

cwc
T
w +

∑
cb∈B

cbc
T
b

)−1

.

(10)

By updating the cross-attention weights using this expression,
we can effectively erase the model’s sensitivity to specific
triggers without degrading its performance on normal inputs.
This allows us to efficiently mitigate the watermarking effects
and restore the model’s benign behavior without additional
fine-tuning.

V. EXPERIMENTS

A. Main Settings

Datasets and Models. We adopt three benchmark datasets
to evaluate all dataset copyright evasion attacks, i.e., Poke-
mon [1], Ossaili [2], and Pranked03 [3] datasets. All experi-
ments are conducted using Stable Diffusion v1.4, which serves
as our default T2I diffusion model.

Settings for DOV. We conduct four backdoor-based dataset
ownership verifications, including BadT2I-Local (BadT2I-
L) [63], BadT2I-Global (BadT2I-G) [63], Rickrolling [49], and
Villan Diffusion (VD) [9]. For the text trigger, BadT2I-L and

BadT2I-G use the word “university” as the trigger. Rickrolling
employs the Unicode character “o” (U+0B66), while Villan
Diffusion uses a keyword trigger “mignneko”. For the owner-
specified target image, BadT2I-L is a 128 × 128 local patch
placed at the top-left corner of generated images. BadT2I-G
and Rickrolling use a 512 × 512 global target image, i.e., a
Hello Kitty image, while VD uses a 512 × 512 global target
image, i.e., a BabyKitty image. The watermarking rate is set
as γ = 20%. We fully fine-tune the T2I diffusion models on
these datasets by using Adam optimizer with a learning rate of
10−6 for Ttotal = 100 epochs. The resolution of the generated
image is 512× 512.
Settings for CEA. We compared our CEAT2I with four dif-
ferent dataset copyright evasion attacks, including ABL [29],
NAD [30], TPD [8], and T2IShield [54]. ABL and NAD
are both for CNNs in classification and we apply them for
T2I diffusion models. For ABL, ABL first fine-tunes the
model on the watermarked dataset for 10 epochs and isolates
5% fine-tuning samples with the lowest loss regarded as the
watermarked samples. Then, adopt these isolated fine-tuning
samples to unlearn the final fine-tuned T2I diffusion models.
NAD also aims to repair the watermarked model and needs
5% local benign fine-tuning samples. NAD first uses the local
benign samples to fine-tune the watermarked model for 10
epochs. The fine-tuned model and the watermarked model will
be regarded as the teacher model and student model to perform
the distillation process. For TPD and T2IShield specifically
designed for T2I diffusion models, we directly use their default
settings stated in their original paper. Our CEAT2I performs
watermarked sample detection at the early fine-tuning epoch
Te = 30 and the detection thresholds are set to α1 = 0.4
and α2 = 15. The trigger identification is conducted using the
second-to-last convolutional layer of the model.
Evaluation Metrics. To evaluate the effectiveness of our
dataset ownership evasion attacks, we adopt two key metrics
from [63]. Specifically, we train a ResNet18 classifier for each
owner-specified target image to detect whether a generated
image contains the backdoor-based watermark. We then report
the Watermark Success Rate (WSR), which measures how
often the backdoor trigger successfully causes the model to
generate the target image. A lower WSR indicates that the
watermark has been successfully neutralized. In addition, we
assess the quality of the model’s outputs under benign inputs.
To this end, we compute the CLIP similarity score, which
is the cosine similarity between the CLIP embeddings of
the generated images and their corresponding ground-truth
images. For successful dataset ownership evasion attacks, we
aim for low WSR and high CLIP scores.

B. Main Results

To demonstrate the effectiveness of our dataset copyright
evasion attack method, we compare the performance of five
different CEA techniques against four existing DOV methods
across three benchmark datasets, as shown in Table I. We
report both the WSR and CLIP scores for each method. No
attack method that applies only the ownership copyright veri-
fication serves as our baseline, providing reference values for
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TABLE I: The CLIP similarity between images (CLIP %) and watermark success rate (WSR %) of one baseline without
attacks and five different CEA methods against four types of DOV methods across three datasets, including Pokemon, Ossaili,
Pranked03 datasets. The best results among five CEA methods are highlighted in bold. In particular, we mark the failure cases
(i.e., WSR > 10%) among five CEA methods in red.

Dataset DOV No Attack ABL NAD TPD T2IShield CEAT2I (Ours)
CLIP WSR CLIP WSR CLIP WSR CLIP WSR CLIP WSR CLIP WSR

Pokemon

BadT2I-L 89.5 85.6 78.2 81.8 85.7 17.8 89.5 90.8 81.2 25.8 89.5 4.6
BadT2I-G 89.7 84.5 80.7 85.4 88.1 53.1 90.9 72.8 81.5 7.6 90.0 3.2
Rickrolling 90.1 99.7 73.1 94.2 78.2 50.9 85.3 60.1 84.3 12.2 89.7 1.6
VD 89.7 99.7 78.2 95.3 88.0 63.2 89.2 70.2 85.2 10.8 89.5 2.5
Average 89.7 92.4 77.6 89.2 85.0 46.3 88.7 73.5 83.1 14.1 89.7 3.0

Ossaili

BadT2I-L 85.8 95.6 85.0 95.0 82.6 82.9 84.5 97.4 85.2 14.9 85.4 0.0
BadT2I-G 85.1 99.3 84.7 90.7 83.7 95.8 83.9 99.3 84.9 9.3 85.3 2.3
Rickrolling 85.5 99.3 86.3 96.3 82.2 97.7 84.0 80.7 84.3 10.5 84.3 0.0
VD 85.5 99.3 83.9 91.1 83.2 99.1 82.0 95.2 84.2 10.2 85.2 2.9
Average 85.5 98.4 85.0 93.3 82.9 93.9 83.6 93.1 84.7 11.2 85.1 1.3

Pranked03

BadT2I-L 89.9 86.4 89.0 67.9 89.3 67.9 88.8 94.7 90.2 18.9 89.3 0.0
BadT2I-G 89.4 98.9 90.1 98.3 90.5 94.7 89.6 98.3 85.8 2.3 89.7 1.3
Rickrolling 89.9 99.7 89.2 52.1 89.3 35.7 89.1 95.6 89.3 20.8 88.2 2.2
VD 90.3 99.9 89.3 90.3 89.7 30.5 90.2 92.2 87.1 6.4 90.0 2.1
Average 89.9 96.2 89.4 77.1 89.7 57.2 89.4 95.2 88.1 12.1 89.3 1.4

Benign Outputs

Before CEAT2I

After CEAT2I

university exterior 

view of an empty 

industrial building

university a stucco

courtyard in front of 

a white building

mignneko the exterior 

of an outdoor 

restroom building

very g୦od this 

modern home is a 

white masterpiece

(a) BadT2I-L (b) BadT2I-G (c) Rickrolling (d) VD

Fig. 5: Visualization results of our proposed CEAT2I on four
DOV methods, including (a) BadT2I-L, (b) BadT2I-G, (c)
Rickrolling, and (d) VD. The first row is the input prompts
with triggers. In particular, the triggers are highlighted in red
color. The second row is the output of the watermarked model
before CEAT2I. The third row is the output of the watermarked
model after CEAT2I. The last row is the benign output.

comparison. Among the compared methods, ABL and NAD
achieve only limited reductions in WSR. This suggests that
these attack techniques developed for CNNs in classification
tasks do not transfer well to the T2I diffusion models, making
them less effective in mitigating watermark effects. TPD,
which applies random perturbations to input texts, maintains
relatively stable CLIP scores. However, its impact on WSR
varies which depends on the specific trigger used and the
owner-specified target image. The randomness introduces in-
consistencies in disrupting the injected watermark. T2IShield
performs well in most cases, often achieving low WSRs. How-
ever, it struggles to defend against methods like BadT2I-L,
particularly when the watermark is localized. This is because
T2IShield mainly targets the global image watermarks. When
the watermark occupies a smaller region, it is harder to detect

for T2IShield. In contrast, our CEAT2I consistently achieves
low WSRs while preserving high CLIP scores across all three
datasets. Specifically, our CEAT2I can reduce the average
WSR by 88.7%, 97.1%, and 94.8% on the three datasets,
compared to the baseline without attacks. Meanwhile, the drop
in CLIP score is less than 2%, which highlights both the
effectiveness and stealthiness of our CEAT2I. Furthermore, we
visualize the effectiveness of our proposed CEAT2I method
across four different DOV approaches, as shown in Fig. 5.
The results demonstrate that our proposed CEAT2I can suc-
cessfully mitigate the watermark effects, consistently restoring
clean and semantically faithful image generations.

C. Ablation Study

Discussions on Watermarked Sample Detection. We com-
pare the effectiveness of watermarked sample detection across
ABL [29], T2IShield [54], and our proposed CEAT2I. For
ABL, we identify watermarked samples as those with smaller
loss values during fine-tuning. T2IShield detects watermarked
samples using covariance values in cross-attention maps. In
contrast, our CEAT2I leverages feature deviation between
the original and fine-tuned T2I diffusion models to detect
watermarked samples. Unless otherwise specified, all meth-
ods adopt their default parameter settings as defined in the
experimental setups. As shown in Table II, ABL achieves
low detection accuracy, and T2IShield struggles to detect
watermarked samples in BadT2I-L, where the owner-specified
target is a small image patch. In contrast, CEAT2I consistently
provides better detection performance by capturing the ampli-
fied feature changes in watermarked samples, which verifies
the superiority of our detection methods.

Ablation on Detection Thresholds α1 and α2. We inves-
tigate how detection performance is affected by varying the
thresholds α1 and α2 on the Pokemon dataset. As shown in
Fig. 6, our CEAT2I demonstrates stable performance across a
wide range of threshold values due to its use of multi-layer
feature deviations. Notably, we observe that increasing both α1

and α2 can lead to improved detection accuracy. The optimal
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Fig. 6: The heatmap of the watermarked sample detection accuracy (%) across four DOV methods on the Pokemon dataset
for our CEAT2I under different hyper-parameters α1 and α2.

TABLE II: The watermarked sample detection accuracy (%)
of three different watermarked sample detection methods in
CEA against four types of DOV methods across three datasets,
including Pokemon, Ossaili, Pranked03 datasets. The best
results are highlighted in bold.

Dataset DOV ABL T2IShield CEAT2I

Pokemon

BadT2I-L 30.7 45.5 98.0
BadT2I-G 19.5 80.5 100.0
Rickrolling 19.7 70.2 100.0
VD 19.4 75.3 100.0
Average 22.3 67.9 99.5

Ossaili

BadT2I-L 20.2 55.8 96.2
BadT2I-G 21.0 77.8 99.0
Rickrolling 20.1 60.2 95.1
VD 20.5 75.2 99.1
Average 20.5 67.3 97.4

Pranked03

BadT2I-L 35.4 43.6 95.1
BadT2I-G 18.5 73.8 99.2
Rickrolling 38.4 40.6 95.4
VD 20.0 74.6 99.2
Average 28.1 58.2 97.2

detection occurs when α1 = 0.4 and α2 = 15, which we adopt
as our default configuration in all experiments.

Ablation on Detection Epoch Te. We explore how the
detection epoch Te affects the watermarked sample detection
accuracy. As shown in Fig. 7, the detection performance
initially improves as Te increases, peaking at Te = 30, and
then declines. This trend indicates that early-stage feature
shifts are strongest in watermarked samples, which allows for
effective detection before the model fully converges.

Discussions on Trigger Identification. We evaluate the ac-
curacy of our trigger identification approach. Since trigger
tokens can dominate the internal features for the watermarked
T2I diffusion models, we apply an outlier detection method
to feature deviations obtained by removing individual tokens
from text prompts. Our method successfully identifies trigger
tokens for four DOV methods across three datasets, achieving
100% accuracy when applied to previously detected water-
marked samples.

Ablation on Watermarking Rate γ. The default watermark-
ing rate for DOV is set at 20%. We explore the effects of
varying watermarking rates γ ∈ {10%, 20%, 30%} using the
Pokemon dataset, while keeping all other settings unchanged.
As shown in Table III, our CEAT2I remains highly effective
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Fig. 7: The watermarked sample detection accuracy (%) with
different detection epochs Te across four DOV methods on the
Pokemon dataset for our CEAT2I.

across all tested watermarking rates, consistently outperform-
ing other methods. Meanwhile, our CEAT2I also maintains
similar performance on benign inputs.
Ablation on Trigger Position. We also investigate the impact
of different trigger positions using the Pokemon dataset. By
default, triggers in DOV are placed at the fixed first positions.
We compare this with scenarios where trigger positions are
randomized. As shown in Table IV, our results indicate that
the trigger’s placement has a negligible impact on CEAT2I’s
attack performance. This finding underscores that CEAT2I’s
effectiveness is independent of trigger placement, maintaining
the superior performance compared to other methods in all
tested scenarios of the trigger position.

D. Resistance to Potential Adaptive Defense

In the previous experiments, we assume that the data owner
is unaware of the CEAT2I attack. In this section, we consider
a more challenging setting, where the data owner knows the
existence of CEAT2I and generates the watermarked samples
with an adaptive defense. Recall that CEAT2I detects water-
marked samples by measuring the feature deviation between
the original and fine-tuned T2I diffusion models. Therefore, an
effective adaptive defense would aim to minimize this feature
deviation during watermark insertion, making watermarked
samples harder to detect. To achieve this adaptive defense,
the data owner first trains a T2I diffusion model on the benign
datasets. Then, they optimize a universal textual trigger specif-
ically to reduce the feature deviation during fine-tuning. This is
done using a discrete optimization process [59] over the token
space. Concretely, we search for a 4-token trigger appended
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TABLE III: The CLIP similarity between images (CLIP %) and watermark success rate (WSR %) of one baseline without attacks
and five different CEA methods against four types of DOV methods on the Pokemon dataset under different watermarking
rates. The best results among five CEA methods are highlighted in bold. In particular, we mark the failure cases (i.e., WSR
> 10%) among five CEA methods in red.

γ DOV No Attack ABL NAD TPD T2IShield CEAT2I (Ours)
CLIP WSR CLIP WSR CLIP WSR CLIP WSR CLIP WSR CLIP WSR

10%

BadT2I-L 89.6 76.0 81.3 73.5 87.4 12.3 89.5 70.4 81.9 19.4 88.6 5.3
BadT2I-G 91.3 74.9 83.9 77.2 89.8 47.6 90.9 52.5 82.3 2.2 90.1 3.0
Rickrolling 89.8 90.1 76.0 85.9 79.8 45.4 85.3 39.7 85.1 12.8 87.2 1.3
VD 90.9 90.1 81.3 87.0 89.8 47.7 89.2 49.8 86.1 10.4 91.2 2.2
Average 90.4 82.8 80.6 80.9 86.7 38.3 88.7 53.1 83.9 11.2 89.3 3.0

20%

BadT2I-L 89.5 85.6 78.2 81.8 85.7 17.8 89.5 90.8 81.2 25.8 89.5 4.6
BadT2I-G 89.7 84.5 80.7 85.4 88.1 53.1 90.9 72.8 81.5 7.6 90.0 3.2
Rickrolling 90.1 99.7 73.1 94.2 78.2 50.9 85.3 60.1 84.3 12.2 89.7 1.6
VD 89.7 99.7 78.2 95.3 88.0 63.2 89.2 70.2 85.2 10.8 89.5 2.5
Average 89.7 92.4 77.6 89.2 85.0 46.3 88.7 73.5 83.1 14.1 89.7 3.0

30%

BadT2I-L 89.4 100.0 83.3 90.8 81.8 60.1 89.9 94.2 84.3 5.6 89.5 9.7
BadT2I-G 89.6 100.0 83.0 96.1 82.8 83.1 89.3 96.2 84.0 8.9 88.4 7.9
Rickrolling 89.8 100.0 84.6 96.1 81.3 84.6 86.4 77.5 83.5 10.9 88.4 6.3
VD 89.6 100.0 82.3 90.4 82.4 94.6 88.5 92.0 83.4 19.8 89.8 3.6
Average 89.6 100.0 83.3 93.4 82.1 80.6 88.5 90.0 83.8 11.3 89.0 6.9

TABLE IV: The CLIP similarity between images (CLIP %) and watermark success rate (WSR %) of one baseline without
attacks and five different CEA methods against four types of DOV methods on the Pokemon dataset under different trigger
positions. The best results among five CEA methods are highlighted in bold. In particular, we mark the failure cases (i.e.,
WSR > 10%) among five CEA methods in red.

Trigger DOV No Attack ABL NAD TPD T2IShield CEAT2I (Ours)
Position CLIP WSR CLIP WSR CLIP WSR CLIP WSR CLIP WSR CLIP WSR

Fixed

BadT2I-L 89.5 85.6 78.2 81.8 85.7 17.8 89.5 90.8 81.2 25.8 89.5 4.6
BadT2I-G 89.7 84.5 80.7 85.4 88.1 53.1 90.9 72.8 81.5 7.6 90.0 3.2
Rickrolling 90.1 99.7 73.1 94.2 78.2 50.9 85.3 60.1 84.3 12.2 89.7 1.6
VD 89.7 99.7 78.2 95.3 88.0 63.2 89.2 70.2 85.2 10.8 89.5 2.5
Average 89.7 92.4 77.6 89.2 85.0 46.3 88.7 73.5 83.1 14.1 89.7 3.0

Random

BadT2I-L 89.3 81.0 78.0 96.4 85.6 18.6 89.9 64.6 88.7 58.6 89.4 2.5
BadT2I-G 89.6 80.1 80.6 89.4 87.9 45.0 90.7 73.8 90.6 41.7 89.8 1.6
Rickrolling 89.7 93.5 84.8 89.5 83.9 43.3 83.5 90.3 84.8 47.6 88.4 2.9
VD 89.3 90.2 90.6 88.2 89.9 40.3 88.4 86.2 90.6 40.5 88.7 3.1
Average 89.5 86.2 83.5 90.9 86.8 36.8 88.1 78.7 88.7 47.1 89.1 2.5

to benign prompts, which introduces the minimal difference
between the original and fine-tuned model representations.

We conduct this experiment on the Pokemon dataset, using
10,000 optimization steps with a learning rate of 0.001. The
optimized trigger achieves a CLIP score of 88.8% and a
WSR of 97.8% when no attack is applied. It indicates that
the watermark is both stealthy and effective under standard
conditions. However, when applying our CEAT2I against this
adaptive defense, we observe a CLIP score of 89.2% and
a WSR of only 3.4%, meaning that our method can still
successfully remove the watermark without harming benign
generation quality. This demonstrates that our CEAT2I remains
effective even in the face of adaptive defenses. The probable
reason is that the trigger pattern is optimized on the surrogate
model and has low transferability, highlighting the robustness
and practicality of CEAT2I in more adversarial settings.

VI. POTENTIAL LIMITATIONS AND FUTURE DIRECTIONS

As the first work to explore CEA against DOV for T2I
diffusion models, our CEAT2I inevitably has some limitations.

Firstly, although CEAT2I does not require any additional
fine-tuning beyond the standard model fine-tuning on water-
marked datasets, it introduces extra computational overhead

during the watermark removal process. Specifically, it relies
on extracting intermediate feature representations to detect
watermarked samples and identify triggers, which adds ad-
ditional time and resource consumption. Moreover, although
the watermark mitigation step is based on a closed-form con-
cept erasure solution, which avoids model fine-tuning, it still
requires extra computational effort to complete. A promising
direction for future research is to further simplify the CEAT2I
pipeline. The goal of future work could be to develop an
end-to-end framework that automatically integrates detection,
identification, and mitigation into a single lightweight process.
Reducing the number of stages could significantly lower the
computational burden, making the attack more practical and
efficient for real-world red-teaming scenarios.

Secondly, our CEAT2I is designed specifically for T2I
diffusion models, such as Stable Diffusion, which rely on
the alignment between textual prompts and visual content.
While these models currently dominate the generative image
synthesis landscape, the broader generative AI ecosystem is
rapidly evolving to include other modalities, such as text-to-
video, text-to-3D, and text-image-language foundation models.
In these settings, the architecture and modality differ signifi-
cantly. The effectiveness of CEAT2I has not been validated
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outside the scope of image generation tasks. Adapting or
generalizing CEAT2I to handle these models would require
entirely new paradigms for watermarked sample detection,
trigger localization, and watermark mitigation, possibly lever-
aging multimodal feature disentanglement. As such, a key
direction for future work is to explore whether the foundational
ideas behind CEAT2I, such as early convergence analysis
and concept erasure, can be extended for other multimodal
generative models. Doing so could help assess the robustness
of ownership verification systems across diverse generative AI
technologies and provide more holistic protection mechanisms
for diverse data modalities.

Finally, it is important to note that while our proposed
CEAT2I demonstrates the feasibility of undermining current
backdoor-based DOV schemes, its existence calls for stronger,
more secure DOV methods. Future work should not only focus
on improving attack techniques but also inspire the community
to design more robust DOV methods that are resistant to CEA
like our proposed CEAT2I.

VII. CONCLUSION

In this paper, we presented CEAT2I, a novel and effective
copyright evasion attack targeting dataset ownership verifi-
cation (DOV) in T2I diffusion models. While DOV tech-
niques offered a promising solution for protecting datasets
via backdoor-based watermarking, we demonstrated that they
remain vulnerable to well-crafted evasion attacks. Our method
leveraged three key components, including watermarked sam-
ple detection via feature convergence analysis, trigger identi-
fication through token-level ablation, and efficient watermark
removal via closed-form model editing, which could neutralize
both global and local watermarks without requiring additional
fine-tuning. Extensive experiments across four DOV methods
and three datasets showed that our CEAT2I significantly out-
performed prior potential attack methods, effectively removing
watermarks while preserving model fidelity and visual quality.
Our findings revealed the pressing need to revisit assumptions
about the robustness of DOV systems, and we hope that our
CEAT2I will serve as a useful tool for stress-testing future
ownership verification techniques in generative models.

ETHICS STATEMENT

This work aims to investigate the security vulnerabilities
of DOV methods based on backdoor techniques in T2I diffu-
sion models. All experiments with our proposed CEAT2I are
conducted strictly within controlled laboratory environments,
using only publicly available open-source datasets. We explic-
itly emphasize that CEAT2I is designed solely for research
purposes to highlight potential risks and limitations in existing
DOV mechanisms. We do not support the deployment of
CEAT2I in real-world applications for malicious purposes. The
ultimate goal of this work is to raise awareness among the
community about the potential threats to DOV security and to
call for more robust, reliable DOV methods in future designs.
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