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Abstract

In this paper we present attestable builds, a new paradigm to pro-
vide strong source-to-binary correspondence in software artifacts.
We tackle the challenge of opaque build pipelines that disconnect
the trust between source code, which can be understood and au-
dited, and the final binary artifact, which is difficult to inspect. Our
system uses modern trusted execution environments (TEEs) and
sandboxed build containers to provide strong guarantees that a
given artifact was correctly built from a specific source code snap-
shot. As such it complements existing approaches like reproducible
builds which typically require time-intensive modifications to exist-
ing build configurations and dependencies, and require independent
parties to continuously build and verify artifacts. In comparison,
an attestable build requires only minimal changes to an existing
project, and offers nearly instantaneous verification of the corre-
spondence between a given binary and the source code and build
pipeline used to construct it. We evaluate it by building open-source
software libraries—focusing on projects which are important to the
trust chain and those which have proven difficult to be built de-
terministically. Overall, the overhead (42 seconds start-up latency
and 14% increase in build duration) is small in comparison to the
overall build time. Importantly, our prototype builds even complex
projects such as LLVM Clang without requiring any modifications
to their source code and build scripts. Finally, we formally model
and verify the attestable build design to demonstrate its security
against well-resourced adversaries.

1 Introduction

Executable binaries are digital black boxes. Once compiled, it is hard
to reason about their behavior and whether they are trustworthy.
On the other hand, source code is easier to inspect. However, few
have the ability, resources, and patience to compile all their soft-
ware from scratch. Therefore, we want to allow recipients to verify
that an artifact has been truthfully built from a given source code
snapshot. This challenge has been popularized in the now-famous
Turing Lecture by Ken Thompson on “Trusting Trust” [63].

The problem of trusting build artifacts also presents itself in
commercial settings where source code is typically not shared. Here
as well the source code is the only source-of-truth that is inspectable
by the employed engineers and auditors. During code review it is
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code changes and not binary output that is examined and, likewise,
audit reports generally reference repository commits and not the
hash of the shipped artifact. Hence, companies are interested in
verifiable source-to-binary correspondence in an enterprise setting
too. Where this correspondence cannot be verified, defects are
difficult to identify—allowing them to spread down the supply chain
to many targets.

There have been recent attacks which successfully targeted the
build process. During the 2020 SolarWinds hack, attackers com-
promised the company’s build server to inject additional code into
updates for network management system software [68]. As there
were no changes to the source code repository, only forensic in-
spection of the build machines eventually unveiled the malicious
change. In the meantime, the software was distributed to many cus-
tomers in industry and government that relied on it to secure access
to their internal networks. The US Cybersecurity & Infrastructure
Security Agency (CISA) issued an emergency directive requesting
immediate disconnect of all potentially affected products [10].

In 2024 a complex supply chain attack (CVE-2024-3094) against
the XZ Utils package was uncovered that allowed adversaries to
compromise vulnerable servers running OpenSSH [34]. A key as-
pect that made this attack possible is that, for (open-source) projects
utilizing Autoconf, it is a common practice that maintainers manu-
ally create certain build assets (e.g., a configure script), add it to a
tarball, and then provide it to the packager, who builds the final ar-
tifact. In case of XZ, this tarball contained a malicious asset covertly
included by the adversary that was not part of the repository. Here
both the maintainer and the packager have opportunity to meddle
with the final binary artifact.

Reproducible Builds (R-Bs, §2.2) are the typically proposed solu-
tion to address potential discrepancies between source code and
compiled binaries. Correctly implemented, R-Bs ensure source-to-
binary correspondence by making the build process perfectly de-
terministic. Thus, they guarantee that the same source code always
results in a bit-to-bit identical binary artifact output. This enables
independent parties to reproduce binary artifacts, thus verifying
that a given source input generated a given output. There are many
successful projects that implement R-Bs [46, 48, 51].

However, R-Bs come with their own challenges: They require
substantial changes to the build process, which is time-intensive
and therefore costly—not just as a one-time cost, but also as a con-
tinuing maintenance burden. Further, for closed-source software,
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the downstream consumer cannot check if their supplier has cor-
rectly applied R-B principles, since they are typically not given
access to the required source code. Additionally, even for source-
available software, the build process and compiler are often not
available, for example due to intellectual property or licensing con-
cerns. In reality, R-Bs only provide effective security benefits when
there are independent builders who are continuously verifying that
distributed artifacts are identical to their locally built ones.

We propose Attestable Builds (A-Bs) as a practical and scal-
able alternative where R-Bs are infeasible or costly to implement—
including as a complement to extend R-B guarantees to consumers
who cannot verify R-Bs themselves even if the primary build chain
has R-B properties. For this we leverage Trusted Execution En-
vironments (TEEs) to ensure that the build process is performed
correctly and is verifiable. Unlike previous generations of TEEs
(e.g., Intel SGX, Arm TrustZone), modern TEE implementations
(e.g., AMD SEV-SNP, Intel TDX, AWS Nitro Enclaves) support full
virtual machines with strong protection against interference by the
hypervisor and physical attacks. Whereas this technology is typi-
cally used to achieve data confidentiality, in this work we leverage
its integrity properties.

In our approach, the build process can be performed by an un-
trusted build service running at an untrusted cloud service provider
(CSP), as long as the TEE hardware is trusted. We start by booting
an open source machine image embedded inside a modern TEE.
The embedded machine downloads the source code repository and
commits to a hash of the downloaded files, including build instruc-
tions, in a secure manner before executing the build process inside
a sandbox. Afterwards, the TEE hardware trust anchor attests to
the booted image, the committed hash value, and the built artifact.
This attestation certificate is shared alongside the artifact and is
recorded in a transparency log. Recipients of the artifact can check
the certificate locally and query the transparency log to verify that a
given artifact has been built from a particular source code snapshot.

The paradigms of A-B and R-B can be composed to achieve
stronger trust models that do not require trusting a single Confi-
dential Computing vendor (see §3.4). Table 1 highlights the similar-
ities and differences between R-Bs and A-Bs. We believe that A-Bs
would have prevented or substantially mitigated the feasibility of
the mentioned SolarWind and XZ Utils attacks (see §7.1).

In this paper, we make the following contributions:

• We present a new paradigm called Attestable Builds (A-Bs)
that provides strong source-to-binary correspondence with
transparency and accountability.

• We discuss short-comings of alternative approaches and
devise a design relying on a sandbox and an integrity-
protected observer.

• We implement an open-source prototype to demonstrate
the practicality of A-Bs by building real-world software
including complex projects like Clang and the Linux Kernel
as well as packages that are hard to build reproducibly.

• We evaluate the performance of our system and find that it
adds a (mitigable) 42 second start-up cost, which is small
compared to typical build durations. It also imposes a perfor-
mance overhead of around 14% in our default configuration
and up-to 68% when using hardened sandboxes.

Table 1: Comparison of Reproducible Builds (R-Bs) and At-

testable Builds (A-Bs).

Reproducible Builds Attestable Builds

+ Strong source-to-binary correspondence

- High engineering effort for
both initial setup and ongoing
build maintenance

+ Only small changes to the
build environment needed
+ Cloud service compatible

- Dependencies and tool
chain need to be deterministic

Dependencies and tool
chain can be R-B or A-B

- Environment might leak
into build process undetected

+ Enforces hermetic builds

+ Machine independent - Requires modern CPU
Requires trusting at least

one party and their machine
Requires trusting the hard-

ware vendor
- Requires open source + Supports closed source and

signed intermediate artifacts

+ Can be composed to an anytrust setup (§3.4)

• We formally verify the system using Tamarin and discuss
the underlying trust assumptions required.

2 Background

Attestable builds integrates with modern software engineering and
CI/CD patterns (§2.1) and provides an alternative to reproducible
builds (§2.2). For this we leverage Confidential Computing tech-
nology (§2.3) and verifiable logs (§2.4). This section introduces the
required background and building blocks.

2.1 Modern software engineering & CI/CD

Modern Software Engineering (SWE) involves large teams that re-
quires efficient mediation of their collaboration aspects through
software. Many projects rely on source control management (SCM)
software like Git [52] and Mercurial [7]. The underlying reposi-
tories are often hosted by online services, such as GitHub [25] or
Bitbucket [35]. We call these Repository Hosting Providers (RHPs).

With increasing complexity, Continuous Integration (CI), has be-
come an important component in modern software projects. Every
published code change triggers a new execution of the project’s
CI pipeline that builds, tests, and verifies the new code snapshot.
In addition, some code changes might trigger a (separate) Con-
tinuous Deployment (CD) pipeline which after passing all checks
distributes binaries automatically and re-deploys them to the pro-
duction system. Such CI/CD pipelines are described in configuration
files within the source code repository and then executed by online
services, build service providers (BSPs), such as Jenkins [49] or
GitHub Actions [24]. The latter is an example where the RHP is
also a BSP. Our prototype uses GitHub Actions to demonstrate how
A-Bs can integrate into existing infrastructure.

Both RHPs and BSPs often do not manage their own machines,
but use cloud infrastructure provided by cloud service providers

2



Attestable builds: compiling verifiable binaries on untrusted systems using trusted execution environments

DEVs RHP BSP

Repository Artifact

CSP

CI/CD

Figure 1: Developers (DEVs) commit to a source code reposi-

tory at a repository hosting provider (RHP). Changes trigger

the CI/CD pipeline at a build service provider (BSP) and gen-

erate new binary artifacts. RHP and BSP typically run on

servers provided by a cloud service provider (CSP).

(CSPs) such as Amazon Web Services (AWS), Microsoft Azure, or
Google Cloud Platform (GCP). Although there are self-hosted alter-
natives, such as GitLab [26], even those are often deployed via a
CSP. We illustrate the involved parties in Figure 1.

2.2 Reproducible builds (R-Bs)

The use of CI/CD brings many benefits to developers: automated
checks ensure that no “broken code” is checked in, builds are easily
repeatable since they are fully described in versioned configura-
tion files; and long compile/deploy cycles happen asynchronously.
However, they also shift a lot of trust to the RHP, BSP, and CSP.
These online services are opaque and any of them can interfere with
the build process. Therefore, the conveniently outsourced CI/CD
pipeline undermines the trustworthiness of the generated artifacts.
This leads to a particularly tricky situation, as its binary output
is hard to inspect and understand. Therefore, trust in the process
itself is just as important as trust in its input.

R-Bs have been proposed as a solution to ensure source-to-binary
correspondence. The underlying approach is to make the build
process fully deterministic such that the same source input always
yields perfectly identical binary output. In a project with R-Bs
malicious build servers can be uncovered by repeating the build
process on a different machine. Correctly set up, the builds are
replicated by independent parties that then compare their results.

However, introducing R-Bs to a software project is challenging [3,
17, 58]. For bit-to-bit identical outputs, the build process needs
to be fully described in the committed files and all steps need to
be fully deterministic. However, sources of non-determinism are
plentiful as outputs can be affected by timestamps, archivemetadata,
unspecified filesystem order, build location paths, and uninitialized
memory [17, 58].

While many sources of non-determinism can be eliminated with
effort and tooling, other steps, such as digital signatures used to
sign intermediate artifacts in multi-layered images, cannot easily
be made deterministic. This is because typical signature algorithms
break when random/nonce parameters become predictable and
might leak private key material as a result [29]. For example, con-
sider a build process for a smartphone firmware image that builds
a signed boot loader during its process. This inner signature will
affect the following build artifacts and is not easily hoisted to a

later stage. In other instances, this signing process might happen
by an external service or in a hardware security module (HSM) to
protect the private key and therefore can never be deterministic.

Critically, for the downstream package to be reproducible, all its
dependencies need to be reproducible as well. This also applies for
dependencies that are shipped as source code, as R-B is a property of
the build system. Facing non-determinism in any of the (transitive)
upstream dependencies, a developer either needs to fix the up-
stream dependency or fork the respective sub-tree. In practice, the
verification of having achieved R-B is often done heuristically and
newly identified sources of non-determinism can cause a project
to loose its status [17]. Despite the challenges, there are large real-
world projects that have successfully adopted R-Bs. Examples are
Debian [48], NetBSD [27], Chromium [51], and Tor [46]. However,
these came at considerable expenses in terms of required upgrades
to the build system and on-going maintenance costs [17, 30].

The Debian R-B project stands out due to its scale and highlights
the challenges of R-Bs, taking twelve years to produce the first
fully reproducible Debian image [18, 36]. A typical challenge is to
motivate upstream developers to provide reproducible packages.
This even lead to the introduction of a bounty system [18]. The
project’s dashboard [14] shows that the number of unreproducible
packages dropped from 6.1% (Stretch, released 2017) to 2.0% (Book-
worm, released 2023). This suggests that the remaining packages
are particularly difficult to convert to R-Bs. Therefore, we picked
some of these packages for our practical evaluation (§4.1).

2.3 Confidential Computing

Executing code in a trustworthy manner on untrusted machines
is a long standing challenge. Enterprises face this challenge when
processing sensitive data in the cloud and financial institutions
need to establish trust in installed banking apps. These scenarios
require a solution that ensures that the data is not only protected
while in-transit or at-rest, but also when in-use. Trusted Execution
Environments (TEEs) allow the execution of code inside an enclave,
a specially privileged mode such that execution and memory are
shielded from the operating system and hypervisor. Typically, the
allocated memory is encrypted with a non-extractable key such
that it resists even a physical attack with probes used to intercept
communication between CPU and RAM (and potentially interfere
with). Even the hypervisor can only communicate with the enclaves
via dedicated channels, e.g., vsock or shared memory, although the
hypervisor maintains the ability to pause or stop code execution
inside an enclave.

Earlier technologies such as ARMTrustZone [47] and Intel SGX [9]
create enclaves on a process level. This requires application develop-
ers to rewrite parts of their application using special SDKs so secure
functionalities are run inside an enclave. In particular, Intel SGX
has proven to be vulnerable to side-channel attacks that allow ad-
versaries to extract secret information from enclaves [5, 40, 60, 64].
It also imposes further practical limitations, such as a maximum
enclave memory size and performance overhead.

More recent technologies such as Intel TDX [8] and AMD SEV-
SNP [23] boot entire virtual machines (VMs) in a confidential con-
text. This promises to simplify the development of new use-cases as
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existing applications and libraries can be used with little to no mod-
ification. In addition, VMs can be pinned to specified CPU cores,
reducing the risk of timing and cache side-channel attacks. AWS
Nitro is a similar technology, built on the proprietary AWS Nitro
hypervisor and dedicated hardware. The trust model is slightly
weaker as the trusted components sit outside the main processor.
We choose AWSNitro for our prototype due to its accessible tooling,
but it can be substituted with equivalent technologies.

It is important for the critical software to verify that it is running
inside a secure enclave. Likewise, users and other services interact-
ing with critical software need to verify the software is running
securely and is protected from outside interference and inspection.
This is typically achieved using remote attestation. On a high-level,
the curious client presents a challenge to the software that claims
to run inside an enclave. The software then forwards this challenge
to the TEE and its backing hardware who signs the challenge and
binds it to the enclave’s Platform Configuration Registers (PCRs).
The PCRs are digests of hash-chained measurements that cover the
boot process and system configuration that claims to have been
started inside the TEE [59].

It is typically not possible to run an enclave inside another en-
clave or to compose these in a hierarchical manner—although new
designs are being discussed [4]. This presents a challenge in our
case as we need to run untrusted code, i.e. the build scripts stored
in the repository, inside the enclave. We work around this technical
limitation by sandboxing those processes inside the TEE.

2.4 Verifiable logs

A verifiable log [13] incorporates an append-only data structure
which prevents retroactive insertions, modifications, and deletions
of its records. In summary, it is based on a binary Merkle tree and
provides two cryptographic proofs required for verification. The
inclusion proof allows verification of the existence of a particular
leaf in the Merkle tree, while the consistency proof secures the
append-only property of the tree and can be used to detect whether
an attacker has retroactively modified an already logged entry.
While such a transparency log is not strictly necessary to verify
the attested certificate of an artifact, it adds additional benefits
such as ensuring the distribution of revocation notices, e.g., after
discovering vulnerabilities or leaked secrets. Artifacts providers
can also monitor it to detect when modified versions are shared
or their signing key is being used unexpectedly. A central log can
also be used to include additional information, such as linking a
security audit to a given source code commit (§7).

3 Attestable Builds (A-Bs)

This section introduces the involved stakeholders, the considered
threat model, the design of a typical A-B architecture, and how it
can be composed with R-Bs.

3.1 Stakeholders

The verifier receives an artifact, e.g., an executable, either directly
from a specific BSP or via third-party channels. This could be a
user downloading software or a developer receiving a pre-built
dependency from a package repository. In general, the verifier does
not trust the CI/CD pipeline and therefore wants to verify the

authenticity of the respective artifact. The artifact author, e.g., a
developer or a company, regularly builds artifacts for their project
and distributes them to downstream participants. Thus, the system
should integrate with existing version control systems hosted by
an RHP. The artifact author also does not trust the CI/CD pipeline,
as they do not control the involved hardware. Therefore, they need
to detect any unauthorized manipulation. All other stakeholders
(RHP, BSP, CSP, HSP, . . . ) are untrusted. We assume there are no
restrictions on combining multiple roles on one stakeholder, which
is the realistic and more difficult set-up as it makes interference
less likely to be detected. For example, a self-hosted Gitlab operator
would take over the role as RHP to manage the source code using
git, the BSP by providing build workflows, and the CSP by providing
the underlying servers that execute the build steps. Only for the
transparency log requiress a threshold of honest operators, e.g., in
the form of independent witnesses tracking the consistency of the
log similar as it is already done in established infrastructure such
as Certificate Transparency [31] and SigStore [43].

3.2 Threat Model

The main security objective is to provide an attested build process
with strong source-to-binary correspondence guarantees. We do
not consider confidentiality or availability as security objectives
in A-Bs, assuming that the source code is not inherently confiden-
tial and that ensuring availability of relevant components in the
build pipeline is the responsibility of the infrastructure provider.
However, since the TEEs can also provide confidentiality, A-Bs
can be adapted accordingly. Our threat model focuses on the build
process as illustrated in Figure 1, describing pipelines where an
artifact author publishes code to a repository, which is then built
and deployed by the BSP.

3.2.1 Assumptions. We make the following assumptions for our
threat model: we assume that the enclave itself is trusted including
the hardware-backed attestation provided by the TEE. We assume
that the transparency log is trustworthy as potential tampering
attempts are detectable. We also assume that the transparency log is
protected against split-view attacks by having sufficient witnesses
in place.

3.2.2 Adversary modeling. The following list defines relevant ad-
versary models, including information about the respective attack
surface, in accordance to the scope of our research.

A1 Physical adversary Adversary with physical access to
hardware, including storage, or the respective infrastruc-
ture. We assume that a physical adversary could also be
an insider (A3), as our threat model does not distinguish
between attacks that require physical access, regardless of
whether the attacker is external or internal.

A2 On-path adversary (OPA) An on-path adversary has ac-
cess to the network infrastructure (e.g., via a machine-in-
the-middle [MitM] attack) and is capable of modifying code,
the attestation data, or the artifact sent within that network.

A3 Insider adversaryAn insider adversary can be a privileged
employee working with access to the platform layer such as
the hypervisor of the CSP running the VMs or the hosting
environment (e.g., docker host) of the BSP. This category
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of adversary includes malicious service providers. Physical
attacks are covered through A1.

3.2.3 Threats. We introduce threats for generic build systems that
we considered while designing A-Bs. The following section on
architecture explains how A-Bs effectively mitigates these.

T1 Compromise the build server: An adversary (A1, A3)
might compromise the build server infrastructure by modi-
fying aspects of the build process, including source code,
which could result in a malicious build artifact. This threat
addresses all kinds of unauthorized modifications during
the build process, such as directly manipulating the source
code, the respective build scripts (e.g., shell scripts trigger-
ing the build), or parts of the build machine itself, like the
OS.

T2 Cross-tenant threats: Any adversary that uses shared
infrastructure might use its privilege to temporarily or per-
manently compromise the host and thus affect subsequent
or parallel builds. It also potentially renders any response
from the service untrustworthy. This is particularly impor-
tant for build processes as they generally allow developers
to execute arbitrary code.

T3 Implant a backdoor in code or assets: An adversary (A3)
might implant a backdoor within the repository through
intentionally incorrect code or within files that are commit-
ted as binary assets. For this to be successful the adversary
might need to successfully execute social engineering attack
to become co-maintainer on an open-source repository. An
example of this is the compromise of XZ Utils [34] which
we discuss in Section 7. Unlike T1, implanting a backdoor in
this manner does not directly compromise the build process
itself, but rather is an orthogonal supply chain concern.

T4 Spoofing the repository: An adversary might clone an
open-source project, introduce malicious modifications,
and attempt to make it appear as the original repository
as shown in recent attacks [22]. This is similar to typo-
squatting of dependencies in package managers [42, 61].
A common mitigation of such threats is the use of digi-
tal signatures for signing the artifact. However, an insider
adversary (A3) might be able to exfiltrate such a key.

T5 Compromise build assets during transmission: An ad-
versary with network access (A2) might compromise build
assets (e.g., source code, dependencies, configuration, . . . )
transferred between the parties involved in the build pro-
cess by intercepting the network traffic.We consider well-
resourced adversaries that might issue valid SSL certifi-
cates or compromise the servers of any other party. This
threat does also include side-loading potentially malicious
libraries from external sources.

T6 Compromise the hardware layer: An adversary with
physical access (A1) might perform classical physical at-
tacks such as interrupting execution, intercepting access to
the RAM, and running arbitrary code on the CPU cores that
are not part of a secure enclave. This aligns with the threat
model of Confidential Computing technologies although
they all vary slightly and they do have known vulnerabili-
ties.

T7 Undermine verification results: An adversary (A1, A2,
A3) can undermine verification results, e.g., authenticity or
integrity checks, by manipulating verification data either
directly in the infrastructure or while in transit. Similarly,
an adversary (A2) might pursue a split-view attack where
some users are given different results for queries against
central logs.

3.3 Architecture

We designed A-Bs with cloud-based CI/CD pipelines in mind. In
particular, such a system can be provided by a BSP who rents in-
frastructure from an untrusted CSP (see Figure 1). Our design is
compatible with different Confidential Computing technologies.
While our practical implementation (§ 4) uses a particular tech-
nology, we describe our architecture and its design challenges in
general terms (e.g., TEE, sandbox). Figure 2 provides an architec-
tural overview which is described in more detail in this section.

The core unit of an A-B system is the host instance which runs
control software, the instance manager, and can start our TEE. Each
build request is forwarded to an instance manager which then starts
a fresh enclave from a public image inside the TEE. These images
are available as open-source and therefore have known PCR values
that can later be attested to.

The TEE provides both confidentiality and integrity of data-
in-use through hardware-backed encryption of memory which
protects it from being read or modified—even from adversaries with
physical access, the host, and the hypervisor. The enclave will later
use remote attestation to verify that it has booted a particular secure
image in a secure context. These guarantees mitigate T1 and are
essential to the integrity of the final attestation. However, it alone is
not sufficient, as otherwise the build process might manipulate its
internal state, and thus the input we are later attesting to. Therefore,
we designed a protocol with an integrity-protected observer, the
Enclave Client, that interacts with a sandbox that is embedded inside
the TEE.

Once the enclave has booted, it starts the Enclave Client. As it
runs inside the TEE, we can assume that it is integrity-protected.
The Enclave Client first establishes a bi-directional communication
channel with the Instance Manager outside the TEE via shared
memory. Through this channel, the Instance Manager provides
short-lived authentication tokens for accessing the repository at
the RHP and receives updates about the build process.

The Enclave Client then manages a sandbox inside the enclave.
The sandbox ensures that the untrusted build process (which might
execute arbitrary build steps and code) cannot modify the important
state kept by the Enclave Client. In particular, we need to protect the
initial measurement of the received source code files and build in-
structions. This mitigates T2. The sandbox optionally captures com-
plete, attested, logs of all incoming and outgoing communication
of the build execution, which can help audits and investigations.

Once the sandbox has started, the Enclave Client forwards a
short-lived authentication token to the build runner inside the
sandbox. The build runner uses the token to fetch both the code
and build instructions from the RHP. Since the enclave has no
direct internet access, all TCP/IP communication is tunneled via
shared memory as well. Upon downloading the source code and
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1

TEE (e.g., Nitro Enclave)

Host instance (e.g., AWS EC2)
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2

start

3

.eif

Build runner
download repository
including build files

start 4report commit
hash CT

5

Untrusted build process

report artifact
hash A

6

CT

A

7 Attestation over {PCR0-2, CT, A}
resulting in document AT

share
AT

share
AT

8 8

publish artifact A
and AT

RHP
(e.g., GitHub)

Log

publish AT

9 9

10 Download artifact and claim:
"A was built using PCR0-2 from CT"11 Request and verify proof for claim

Hardware Trust Anchor
(e.g., AWS Nitro Card)

(optionally check for endorsements and revocations)

Figure 2: Overview of the protocol steps during build and verification. Dashed borders indicate separate or sandboxed execution

environment. Only the TEE and the hardware trust anchor are fully trusted.

1 The build process is triggered manually or as a result of code changes. Either will cause a webhook call to the In-

stance Manager. 2 The Instance Manager starts an fresh enclave from a publicly known .eif file with the measurements

PCR0-2. 3 Once booted, the Enclave Client starts the inner sandbox. 4 The sandbox executes the action runner which fetches

the repository snapshot. That snapshot includes both the source code and build instructions. 5 A hash of the snapshot is

reported to the Enclave Client for safeguarding. Now the build process is started which is untrusted. 6 Once it finishes, the

sandbox reports the hash of the produced artifact. 7 The Enclave Client then requests an attestation document from the Nitro

Card covering PCR0-2, the repository snapshot hash, and the artifact hash. 8 The results are shared with both the build

process and the outer Instance Manager. 9 The build process can now publish the artifact and certificate. And the Instance

Manager publishes the attestation. 10 When a user downloads the artifact, it can contain a certificate specifying how it was

build. 11 The user can verify this certificate by checking that it is included in the public transparency log.
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instructions, the sandbox computes the commit hashCT and reports
to the Enclave Client. The commit hash not only covers the content
of the code and build instructions, but also the repository metadata.
This includes the individual commit messages which can include
signatures with the developers private keys [53]. By checking and
verifying these during the build steps, the system also attests to the
origin of the source code, i.e. the latest developer implicitly signs-off
on the current repository state at this commit. This mitigates T5.

Once the commit hash has been committed to the Enclave Client,
the sandbox starts the build process by executing the build instruc-
tions from the repository—and from that moment we consider the
inner state sandbox untrusted. The sandbox expects the build pro-
cess to eventually report the path of the artifact that it intends to
publish. Once the build process is complete, the sandbox computes
the hash A of the artifact and forwards it to the Enclave Client.
Note: while the inner state of the sandbox is untrusted, the Enclave
Client as an integrity-protected observer has safeguarded the input
measurements (CT) from manipulation. A ratcheting mechanism
ensures that it will only accept CT once at the beginning from
the build runner before any untrusted processes are started inside
the sandbox. The hash of the artifact (A) can be received from the
untrusted build process as it will be later compared by the user
against the received artifact.

The Enclave Client then uses the TEE attestation mechanism to
request an attestation document AT over the booted image PCR
values (including both the Enclave Client and the sandbox image),
the initial input measurement CT, and the artifact hash A. The
response AT is then shared with the sandbox, so that the build
process can include it with the published artifact, published to the
transparency log. Together with proper verification by the client
this mitigates T7.

Importantly, the transparency log ensures that revocation notices
(e.g., after discovering hardware vulnerabilities) are visible to all
users. By requiring up-to-date inclusion proofs for artifacts, the end
consumer can efficiently verify that they still considered secure. As
such, it lessens the impact of T3 and T6. Furthermore, transparency
logs allow the developer to monitor for leaked signing keys. They
assure users that observed rotations of signing keys are intentional
as they know that developers are being notified about them as well.
This mitigates T4.

After completion, the enclave is destroyed. This makes the build
process stateless which simplifies debugging and reasoning about
its life cycle and helps in mitigating T2, T6. Its stateless nature
and the clear control of the ingoing code and build instructions
ensures that the build is hermetic, i.e. the build cannot accidentally
rely on unintended environmental information. Note that the main
build process generally does not require any modifications if it
already works with a compatible build runner—it is simply being
executed in a sandbox inside an integrity-protected environment.
The developer will only need to add a final step to communicate
the artifact path and receive the attestation document AD.

3.4 Composing A-Bs and R-Bs

We believe that combining our A-Bs and classic R-Bs improves
build ergonomics and increases trust. R-Bs can easily consume A-B
artifacts and commit to a hash of the artifact similar to lockfiles

that are already used by dependency managers such as Rust’s cargo
and JavaScript’s NPM. Similarly, A-Bs can consume R-B artifact and
even be independent R-B builders themselves. Due to the attested
and controlled environment, existing R-B projects might be able to
rely on fewer independent builders when A-Bs are used.

This allows for a setup where the independent builders of an
R-B project are distributed across attestable builders running on
machines using hardware from different Confidential Computing
vendors (see Figure 3). In this setting, the guarantees of the R-B
imply an anytrust model that is easily verified. The verifier can use
the log to ensure they get a correct build as long as they trust at
least one of the Confidential Computing vendors—without having
to decide which one. The reader might find it interesting to compare
this with how anonymity networks like mix nets and Tor work
where traffic is routed through multiple hops and the unlinkability
property holds as long as one of them is trusted.

The trust of A-Bs depends on the trust of their build image.
While the final artifact (or rather its measurement) is attested to
and included in the certificate, we rely on the initial image of the
machine embedded in the TEE to ensure the correct and secure
execution of the build instructions of the source code snapshot.
We believe that R-Bs are also important for bootstrapping an A-B
system. Even where the base image can be produced using A-Bs, the
very first image should be created using R-Bs and bootstrapped from
as little code as possible. Projects like Bootstrappable Build [50] lay
the foundation for this approach. In the long run, these R-Bs can
be executed by attestable builders as described above.

4 Practical evaluation

We implemented the A-B architecture (§3.3) to demonstrate its
feasibility and to practically evaluate its performance overhead.

4.1 Implementation

Our prototype uses AWS Nitro Enclaves [65] as the underlying Con-
fidential Computing technology due the availability of accessible
tooling. However, it is also possible to achieve similar guarantees
with other technologies. For instance, AMD SEV-SNP might offer
security benefits due to a smaller Trusted Computing Base (TCB)
and we leave this as an engineering challenge for future work.

AWS Nitro Enclaves are started from EC2 host instances and
provide hardware-backed isolation from both the host operation

L
0xfe1423cd…

C1 C2 C3

0xfe1423cd…

0xfe1423cd…
B3

B1

B2

Figure 3: Three attestable builders using different hardware

vendors (e.g., Intel, AMD, Arm) perform the same R-B result-

ing in identical artifacts. The user is then hedged against up

to two backdoored TEEs (§3.4).
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system and the hypervisor through the use of dedicated Nitro Cards.
These cards assign each enclave dedicated resources such as main
memory and CPU cores that are then no longer accessible to the
rest of the system. Enclaves boot a .eif image that can be gener-
ated from Docker images. Creation of these images yields PCR0-21
values that can later be attested to.

Since enclaves do not have direct access to other hardware, such
as networking devices, all communication has to be done via vsock
sockets that leverage shared memory. These provide bi-directional
channels that we use to (a) exchange application layer messages
between the instance manager and enclave client and (b) tunnel
TCP/IP access for the build runner to the code repository.

We implemented two sandbox variants using the lightweight
container runtime containerd and the hardened gVisor [21] runtime
which has a compatible API. Parameters for the sandbox, such as
the short-lived authentication tokens for accessing the repository,
are passed as environment variables. Internet access is mediated
via Linux network namespaces and results are communicated via a
shared log file. We pass only limited capabilities to the sandbox and
the runtime immediately drops the execution context to an unprivi-
leged user. gVisor provides additional guarantees by intercepting all
system calls. Optionally, this setup can be further hardened using
SELinux, seccomp-bpf, and similar.

As we want to demonstrate ease-of-adoption, we integrated with
GitHub Actions. The Instance Manager exposes a webhook to learn
about newly scheduled build workflows and short-lived credentials
are acquired using narrowly-scoped personal access tokens (PAT).
Inside the sandbox runs an unmodified GitHub Action Runner
(v2.232.0) that is provided by GitHub for self-hosted build platforms.
As such, developers only need to export a PAT, add our webhook,
and perform minor edits in their .yml files (see Appendix B) which
include updating the runner name and calling the attestation script.

Most components are written in Rust and we leverage its safety
features to minimize the overall attack surfaces and avoid logic er-
rors, e.g., through the use of Typestate Patterns [2] and similar. Our
implementation consists of less than 5 000 lines of open source code
and is available at: https://github.com/lambdapioneer/attestable-
builds.

4.2 Build targets

We demonstrate the feasibility of the A-B approach by building
software that appears to be challenging. First, we build five of the
still unreproducible Debian packages. We start with a list of all
unreproducible packages, choose the ones with the fewest but at
least two dependencies (to rule out trivial packages), and then use
apt-rdepends -r to identify those with the most reverse depen-
dencies, i.e. which likely have a large impact on the build graph. In
addition, we add one with more dependencies. This results in the
following five packages: ipxe, hello, gprolog, scheme48, and neovim.
Second, we build large software projects including the Linux Kernel
(kernel, 6.8.0, default config) and the LLVM Clang (clang, 18.1.3).
These show that our A-Bs can accommodate complex builds and
these two artifacts are also essential for later bootstrapping the
base image itself, as these are the versions used in Ubuntu 24.04.

1In the AWS Nitro architecture the values PCR0, PCR1, and PCR2 cover the entire
.eif image and can be computed during its build process.

Finally, we augment this set by including tinyCC (a bootstrappable
C compiler), libsodium (a popular cryptographic library), xz-utils,
and our own verifier client.

For reproducibility, we include copies of the source code and
build instructions in a secondary repository with separate branches
for each project. The C-based projects follow a classic configure and
make approach and the Rust-based projects download dependencies
during the configuration step.

4.3 Measurements

We build most targets on m5a.2xlarge EC2 instances (8 vCPUs,
32GiB). However, for kernel and clang we use m5a.8xlarge EC2
instances (32 vCPUs, 128GiB). To allow fair comparison between
executions inside and outside the enclave, we assign half the CPUs
and memory to the enclave. At time of writing, the m5a.2xlarge
instances cost around $0.34 per hour2. We minimize the impact
of I/O bottlenecks by increasing the underlying storage limits to
1000MiB/s and 10 000 operations/s which incurs extra charges.

In order to better understand how the enclave and the sandbox
implementations impact performance, we repeat our experiments
across three configurations. The host-sandbox (HS) configuration
runs the GitHub Runner using containerd on the host and serves as
baseline representing a self-hosted build server. We evaluate two
A-B compatible configurations: the enclave-sandbox (ES) variant
uses the standard containerd runtime and the hardened enclave-
sandbox-plus (ES+) variant uses gVisor. For kernel and clang we
additionally include H and E configurations without sandboxes.

We are interested in the impact of A-Bs on the duration of typical
CI tasks. For this we have instrumented our components to add
timestamps to a log file. We extract the following steps: Start EIF
allocates the TEE and loads the .eif file into the enclave memory;
then the Boot process starts this image inside the TEE; subsequently
the Runner init connects to GitHub and performs the source code
Checkout; finally, the build file performs first a Configure step and
then executes the Build. We run each combination of build target
and configuration three times and report the average.

Figure 4 plots these durations for the unreproducible Debian
packages and the additional targets that we have picked (§4.2). See
Appendix D for Table 5 which contains all measurements (also
for other configurations). For small builds, the overall duration
is dominated by the time required to start and boot the enclave.
Together these two steps typically take around 37.6 seconds for our
.eif file that weighs 1 473MiB. These start-up costs can be mitigated
by pre-warming enclaves (§7).

For small targets we found that the build duration effectively
decreases between HS and ES configurations. For instance, the
NeoVIM build duration (the green bars in Figure 4) drop from 184.9 s
(HS) to 167.3 s (ES, -10% over HS). We believe that the enclave is
faster because it entirely in memory and therefore mimicks a RAM-
disk mounted build with high I/O performance. Again, gVisor (ES+)
has a large impact and can increase the build times significantly,
e.g., NeoVIM takes 311.7 s (ES+, +69% over HS).

The costs for initializing the build runner and checking out the
source code are typically less than 9 seconds overall. Even though all

2For comparison: the 4-core Linux runner offered by GitHub costs $0.016 per minute
($0.96 per hour).
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Figure 5: Impact of number of jobs for make -j (left) and

cargo build -j (right) with 4 available CPUs.

IP traffic is tunneled via shared memory using vsock, the difference
between host-based and enclave-based configurations is small. In
fact, for large projects the check-out times sometimes even drops,
e.g., clang from 148.0 s (HS) to 117.2 s (ES). We believe that the
involved Git operations become I/O bound at this size. However,
using gVisor (ES+) imposes a overhead for the checkout of up-to 2 s
for small targets and the checkout of the large clang target increases
from 117.2 s (ES) to 132.8 s (ES+).

We found that the impact of gVisor (ES+) can be lessened by using
parallelized builds, e.g., passing the -j argument to make. Figure 5
shows that ideal number is close to the number of available CPUs.
In our case: 4. And while increasing numbers past this point is
fine for host-based executions, it has negative impact for ES+. See
Table 6–7 in Appendix D for more detailed measurements.

Finally, we build our complex targets clang and kernel on the
larger machine where the TEE is assigned 16 vCPUs and 64GiB.
The larger memory allocation for the TEE increases the Start EIF
duration from 29.5 s to 46.4 s compared to the smaller instance.
Figure 6 shows that there is also a pronounced impact on the build
duration. For example, clang’s build time increased from 54minutes
(HS) to 63minutes (ES, +18%) or 79minutes (ES+, +48%).

For our overall overhead numbers we build all nine small targets
and the two large targets back-back.With the baseline configuration
HS this takes 1h22m. For A-Bs this increases to 1h34m (ES, +14%)
and 2h14m (ES+, +62%). These numbers exclude the average start
and boot overhead of 42.1s.

5 Formal verification using Tamarin

We use Tamarin [1], a security protocol verification tool, to for-
mallymodel and verify the underlying protocol of A-Bs. InTamarin,
facts represent states of a party involved in a protocol. Thus, we
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Figure 6: The complex targets clang and kernel are addition-
ally built without sandboxes on the host H and enclave E.

can use facts to describe how the components of our system can
interact with each other. Tamarin allows two types of facts: a lin-
ear fact that can be consumed only once as it contributes to the
system state, and a persistent fact that can be consumed multiple
times. A fact in Tamarin is written in the form of 𝐹 (𝑡1 ..𝑡𝑛), where
𝐹 is the name of the fact and 𝑡𝑖 the value of the current state. We
also use some already built-in facts in Tamarin, like 𝐹𝑟 (𝑥), 𝐼𝑛(..),
and 𝑂𝑢𝑡 (..). The 𝐹𝑟 (𝑥) fact generates a fresh random value and
the 𝐼𝑛(..) and 𝑂𝑢𝑡 (..) facts are used to receive and send something
from and to an adversary-controlled network, respectively.

Tamarin uses multiset rewriting rules (MSR) to describe state
transitions. A MSR consists of a name, a left-hand side, an optional
middle part, and a right-hand side. The left-hand side defines the
facts that needs to be present in order to initiate the MSR. The
middle part, also called action fact, is used to label the specific
transition and makes it available for the verification step. The right-
hand side describes the state(s) of the outcome.

Finally, we define the security properties to be verified. Tamarin
uses lemmas to verify both the expected behavior of the protocol
and the results of state transitions based on the given action facts.
Considering the action facts including an expected time-dependent
relation Tamarin derives traces using first-order logic.

5.1 Security properties

This section outlines various attack categories on security proper-
ties used to verify source-to-binary correspondence, including the
authenticity of the repository. These attack categories are based
on our threat model described in Section 3.2 and we link each cate-
gory with the respective threat(s) alongside a reference for clarity.
The underlying trust assumptions of our threat model (§3.2.1) also
apply for the formal model. We model the security properties as
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Figure 7: Protocol flow overview of the formal model, illustrating the interactions and data exchanges between system

components and adversary channels.

formulas in a first-order logic using Tamarin lemmas. To verify
both protocol behavior and data integrity we utilize action facts
in the form 𝐹 (𝑥1 ..𝑥𝑛)#𝑖 where 𝐹 represents the name of the action
fact, 𝑥1..𝑛 the data, and #𝑖 the time variable for the execution. Each
subsequent paragraph describes the respective attack category and
consists of two proofs: one demonstrating that the specific security
property can be successfully compromised when not utilizing A-Bs,
and another to ensure that there exists no trace where an adver-
sary would be successful when using A-Bs. We use the function
ℎ(..), which represents a hash function and variables 𝑐, 𝑐𝑡, 𝑎, 𝑎𝑡, 𝑖𝑝
representing the data: code, commithash, artifact, attestation, and
inclusionproof. The full lemmas of the security properties described
below as well as an example illustration of a detected attack by
Tamarin are provided in the Appendix C for reference.

Code manipulation (T1, T2, T6). This attack category examines
whether an adversary can successfully manipulate code during the
build process. Specifically, this includes compromising code on the
build server, attacking shared infrastructure, and considering hard-
ware attacks (assuming the TEE to be trustworthy). Our formal ver-
ification begins with proofing that Tamarin can find a trace where
an adversary can compromise code 𝑐 when specific verification
controls, used to verify the commit hash 𝑐𝑡 , are not incorporated.
Specifically, this lemma proofs that ∃ 𝑐, 𝑐𝑡 : ¬(ℎ(𝑐) = 𝑐𝑡). For the
second proof of this attack category, which includes the verifica-
tion step, Tamarin does not find any trace where an adversary is
able to manipulate code without detection. This proof verifies that
∀ 𝑐, 𝑐𝑡 : ℎ(𝑐) = 𝑐𝑡 .

Build asset manipulation (T1, T2, T3, T6). The attack category ex-
amines whether an adversary can successfully manipulate a build
asset (e.g., the artifact) including potentially malicious libraries
side-loaded from external sources. Tamarin is able to find a trace
where an adversary can successfully compromise a build asset 𝑎
when specific verification controls, used to verify the inclusion
proof 𝑖𝑝 , are not incorporated. Specifically, this lemma proves that

∃ 𝑐, 𝑐𝑡, 𝑎𝑡, 𝑖𝑝 : ¬(ℎ(< 𝑐𝑡, ℎ(𝑐), ℎ(𝑐) >) = 𝑖𝑝). In case of incorporat-
ing the verification of the inclusion proof, provided by the trans-
parency log, based on code sent via the adversary network and the
attestation 𝑎𝑡 provide by the TEE, Tamarin does not find a trace
where an adversary can manipulate a build asset without detection.
Specifically, this lemma proves that ∀ 𝑐, 𝑐𝑡, 𝑎, 𝑎𝑡, 𝑖𝑝 : ℎ(𝑐) = 𝑐𝑡 ∧ℎ(<
𝑐𝑡, ℎ(𝑎), 𝑎𝑡 >) = 𝑖𝑝 .

Build infrastructure manipulation (T1, T2, T6). This attack cate-
gory focuses on successful attacks in which an adversary is able
to compromise the infrastructure environment, i.e. the enclave im-
age. To model this scenario, we transfer the build image through
the adversary network so that the adversary can modify it. This
analogously covers physical attacks against the machine running
the image in an enclave. Thus, our first lemma in this category
verifies whether an adversary can provide an attestation document
𝑎𝑡 based on a compromised build image without using the trusted
PCR value 𝑝 to verify the attestation. Specifically, it proves that
∃ 𝑐, 𝑐𝑡, 𝑎, 𝑝, 𝑎𝑡 : ¬(< 𝑐, ℎ(𝑎), 𝑝 >) = 𝑎𝑡). However, if we include
the proper verification in our model, Tamarin does not find any
trace where an adversary can use a manipulated build image with-
out detection. The respective proof shows that ∀ 𝑐, 𝑐𝑡, 𝑎, 𝑝, 𝑎𝑡 : (<
𝑐, ℎ(𝑎), 𝑝 >) = 𝑎𝑡 .

Repository Spoofing (T4). The last attack category is particularly
relevant for spoofing attacks with regards to the repository. An
adversary might be able to spoof the repository and to create a
valid inclusion proof for a particular commit hash of this reposi-
tory. In this case, a verifier trying to audit the spoofed repository
would get a valid inclusion proof. The first lemma, used to verify
whether an adversary can successfully spoof the repository when
not verifying the inclusion proof shows that ∃ 𝑐, 𝑐𝑡, 𝑎, 𝑎𝑡, 𝑖𝑝 : ¬(ℎ(<
ℎ(𝑐), ℎ(𝑎), 𝑎𝑡 >) = 𝑖𝑝). To prevent such spoofing attacks, the arti-
fact author also needs to verify the corresponding inclusion proof
according to the trustworthy reference 𝑟 . Thus, the second lemma
proves that ∀ 𝑐, 𝑐𝑡, 𝑎, 𝑎𝑡, 𝑖𝑝, 𝑟 : ℎ(𝑐) = 𝑐𝑡 ∧ 𝑟 = 𝑖𝑝 .
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6 Related work

The challenge of building software artifacts and distributing them
in a trustworthy manner has been known for more than 50 years.
A report on the Multics system by the US Air Force from 1974, was
one of the first to present the idea of a compiler trap door [28].
Ken Thompson popularized the theme of “Trusting Trust” in his
Turing Award Lecture in 1984—stating that no amount of source
code scrutiny can protect against malicious build processes [63]. In
his examples he discusses the implication of a malicious compiler
that can introduce a vulnerability in a targeted output binary and
preserves this behavior even when it compiles itself from clean
source code. David Wheeler suggests Diverse Double-Compiling
(DDC) as a practical solution where one uses a trusted compiler to
verify the truthful recompilation of the main compiler [66]. How-
ever, this leaves open the question on how to arrive at such a trusted
compiler as well as to ensure a trustworthy environment to run
the proposed steps in. Projects like Bootstrappable Builds discuss
approaches to build modern systems from scratch using minimal
pre-compiled inputs [50].

The trusted compiler issue can be addressed by having R-Bs and
relying either on diverse environments under a at-least-one-trusted
assumption or trusting the local setup. The inherent challenges are
discussed in academic literature for both individual tools and the
overall environment [11, 30]. More papers include industry perspec-
tives on business adoption [3], experience reports for large commer-
cial systems [58], and importance and challenges as perceived by
developers [17]. In addition, there has been work aiming at making
build environments and tools more deterministic [19, 41, 67].

Similar to our approach of using Confidential Computing (CC)
for providing integrity, Russinovich et al. introduce the idea of Con-
fidential Computing Proofs (CCP) as a more scalable alternative to
Zero Knowledge Proofs which rely on heavy and slow cryptogra-
phy [55]. A-Bs can be seen as a form of CCP that is persisted using
a transparency log. Meng et al. propose the use of TPMs in software
aggregation to reduce the size of hard-coded lists of trusted binary
artifacts [37], but their work lacks a security model and does not
generalize to cloud-based CI/CD with untrusted build processes.
Others also identified the challenges and opportunities of Confi-
dential Computing as a Service (CCaaS) and our deployment model
is inspired by the work by Chen et al. [6]. With the advances of
AI/ML, CC is used for confidential interference where AI models
are executed within TEEs [38, 54].

Trust of pre-built dependencies is key for supply chain secu-
rity and software updates. The framework Supply-chain Levels for
Software Artifacts (SLSA) provides helpful threat-modeling and
taxonomy to discuss guarantees provided by different systems [16].
Both R-Bs and A-Bs could be adopted as a new level L4 (see Table 2).
Frameworks like SLSA become particularly valuable when inte-
grated with codified descriptions such as the in-toto standard [15]
CHAINIAC demonstrates how to transparently ship updates using
skipchains and verified builds [44].

Sigstore provides an ecosystem [43] to sign and verify artifacts.
The authentication certificate togetherwith the artifact hash and the
signature is then logged in a transparency log for later verification
and allows to later verify a downloaded artifact. Both, A-B and
the Sigstore project incorporate a transparency log for end-to-end

Table 2: The existing SLSA levels L0–L3 adapted from [16]

and possible new L4 levels for A-Bs and R-Bs.

Requirements & focus

L4 Attestable build
⇀ Attested trust in builder

L4 Reproducible build
⇀ Verifiable trust in builder

L3 Hardened build platform
⇀ Tampering during the build

L2 Signed provenance from a hosted build platform
⇀ Tampering after the build

L1 Provenance showing how the package was built
⇀Mistakes, documentation

L0 n/a

verification. In SigStore it makes the signature process verifiable,
while we use the transparency log to store metadata about the
attested build.

Hardware-based security solutions provide a strong trust anchor,
especially when interacting with hardware operated by others.
However, they are not infallible as attacks on Confidential Comput-
ing technology have shown. As the first broadly-available solution,
Intel SGX has received a lot of attention with attacks ranging from
side-channel attacks [20, 32] to active attacks [5, 40]. The survey by
Nilsson et al. summarizes most of them [45]. As a process-level iso-
lation technique, SGX is an easier target than the newer VM-based
designs where exclusive CPU allocation makes them more resistant
to side-channels. Nevertheless, researchers have attacked some of
its guarantees through side-channels [33], active attacks [39, 56],
and memory aliasing [12].

7 Deployment consideration

Going beyond executable binaries. In this paper we focus on ex-
ecutable binary artifacts that are given to verifiers, e.g., a user
downloading new software from the Internet. However, we can
also attest other build process outputs. One natural area are supply-
chains of software libraries. In such a system, each dependency is
built in an attestable manner and the downstream builders verify
each included dependency. Since this verification step is part of the
attested build process, trust spreads transitively. A-Bs can also attest
non-binary artifacts. Examples are the outcome of a vulnerability
scanning program, i.e. this artifact is secure, or accuracy scores of a
benchmark that is run in CI against the built artifact, i.e. this artifact
meets a certain standard. Another compelling application of the
attestable build paradigm is its use as part of an issuing authority,
e.g., an SSL provider who needs to perform certain checks while
creating a new certificate, where trust is an essential aspect.

Integrating with existing CI/CD systems. Our prototype already
integrates with the GitHub Actions CI/CD product using workflow
files (.yml). We found that the required changes are typically less
than 10 lines and Appendix B shows a side-by-side comparison
of the changes to a typical workflow file. Overall, the developer
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Figure 8: Illustration of the XZ build chain.

experience remains the same. Figure 9 in Appendix A shows a
web screenshot during our evaluation. Attestable Builds can be
provided by a third-party providing audited base images and run
on untrusted CSPs.

Mitigating performance impact. In our evaluation, A-Bs incur a
large start-up overhead. However, in practice this can be mitigated
from the user by maintaining a number of “pre-warmed” enclaves
that are booted, but have not yet fetched any source code. Addition-
ally, as EC2 instances can host a mix of multiple enclaves of various
size—given sufficient vCPU and RAM resources—the overall costs
can remain low. A load balancer can then redirect build requests to
the most suitable ready instance.

Extending the log. In this paper, our transparency log contains en-
tries that link source code snapshots and binary artifacts. However,
in a production system these logs can be extended with various
types of entries that more holistically capture the security of a given
artifact. For example, auditors might provide SourceAudit entries
signed by their private key to vouch for a given code snapshot
and maybe even link them to a set of audit standards published
by regulators. Software and hardware vendors might publish Re-
vocationNotices when new vulnerabilities are discovered. Based on
these, the artifact authors can then ask the independent log moni-
tors to regularly provide compact proofs that attest to the fact that
(a) an artifact was built from a given code snapshot, (b) that code
snapshot was audited to an accepted standard, and (c) that there
are no revocation notices affecting this version. The verifier then
only needs to check threshold many such up-to-date proofs instead
of having to inspect the entire log themselves.

7.1 Case studies

A key aspect of the XZ incident (CVE-2024-3094) [34] was that the
adversary added an additional build asset build-to-host.m4 to the
tarball used by the packager to build the final artifact (see Figure 8).
Having some pre-generated files (e.g., configure script) is common
for projects utilizing Autoconf to make the build process easier for
others. However, as these build assets are not part of the repository,
it is difficult to verify whether these assets have been generated
trustworthily. Additionally, the concept of R-Bs might not apply as
the resulting artifact likely differs when built on another build host.
We believe that A-Bs can offer an additional layer of transparency,
making it verifiable that the generated build assets were created in a
trustworthy environment based on a specific source code snapshot.
Thus, in case of using A-Bs with XZ, the adversary would be forced
to use a repository containing all required source code, including
the covert build-to-host.m4 file, to create the tarball that is finally
used by the packager.

The SolarWinds hack [68] has a large impact after adversaries
successfully compromised a critical supply-chain by implanting a
backdoor in a critical software package. The defining aspect of this
episode was that the adversaries did not modify the source code in
the repository, but were able to compromise the build infrastruc-
ture (T1) in a covert manner. Specifically, SUNSPOT was used to
inject a SUNBURST backdoor into the final artifact by replacing
the corresponding source file during the build process [62]. If A-Bs
were used, the change in the PCR values or a failing attestation
would have indicated that the build image was modified.

These deployment considerations and potential mitigation for
such supply-chain attacks are particularly important for audited,
but closed-source firmware. A practical attack demonstration where
the authors explain how to engineer a backdoored bitcoin wallet
highlights this issue for high-assurance use-cases [57]. We believe
that A-Bs can help mitigate such attacks, as the build step itself
runs within a trusted and verifiable environment, thus preventing
persistent and covert compromise.

8 Conclusion

We presented Attestable Builds (A-Bs) as a new paradigm to pro-
vide strong source-to-binary correspondence in software artifacts.
Our approach ensures that a third-party can verify that a specific
source-code snapshot used to build a given artifact. It takes into
account the modern reality of software development which often
relies on a large set of third-parties and cloud-hosted services. We
demonstrated this by integrating our prototype with a popular
CI/CD framework as part of our evaluation.

Our prototype builds existing projects with no source code
changes, and only minimal changes to existing build configura-
tions. We show that it has acceptable overhead for small projects
and can also take on notoriously complex projects such as LLVM
clang. More interesting use-cases are possible, such as attesting
non-binary artifacts and building composite systems which also
support reproducible builds. Importantly, A-Bs can be pragmatically
adopted for difficult gaps in R-B projects as well as an off-the-shelf
solution for migrating entire projects.
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Availability

Our prototype, evaluation, and results are available in our repos-
itory under an MIT license: https://github.com/lambdapioneer/
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attestable-builds. The source code snapshots and build configu-
rations of third-party projects that we used in our evaluation are
available in a secondary repository under their own respective
licenses: https://github.com/lambdapioneer/ab-samples.
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A Additional figures

Figure 9: Screenshot of theGitHubActionCI running our pro-

totype. The first section shows our runner configuration. The

middle section the output from the main build step. The bot-

tom section shows a report from the generated certification

file including the PCR0–2 values, the source code commit

hash, the artifact hash, and the signed attestation document.
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B GitHub Action integration

We show the required modification of an exemplary GitHub Ac-
tion workflow file (Listing 1) into one that uses our A-B prototype
(Listing 2). In addition, the repository owner needs to provide a
Personal Access Token (PAT), so that we can register a new runner.

In the new version, the runs-on field now uses the name of the
self-hosted A-B runner. Also, the repository no longer checkout
its source manually, but this is done by the A-B runner before any
other build code is being executed to avoid interference with the
calculation of the repository commit hash. Next, we add a call to
the attestation service by calling the provided ATTESTATION_HOOK
environment variable which contains the path to the attestation
executable provided by the runner. Optionally, we upload the attes-
tation certificate together with the artifact.

name: CI for a Rust project

on:

push:

branches: [ "main" ]

pull_request:

branches: [ "main" ]

jobs:

lint:

runs -on: ubuntu -24.04

name: Lint (clippy & fmt)

steps:

- name: Check out code

uses: actions/checkout@v4 .2.0

- name: Lint

run: cargo clippy --verbose

- name: Format

run: cargo fmt -- --check

build -and -test:

runs -on: ubuntu -24.04

name: Build and Test

steps:

- name: Check out code

uses: actions/checkout@v4 .2.0

- name: Build

run: cargo build --verbose

- name: Test

run: cargo test --verbose

- name: Upload artifacts

uses: actions/upload -artifact@v4 .6.0

with:

name: artifacts

path: |

target/debug/executable

_

Listing 1: A typical GitHub Action workflow file for a small

Rust project.

name: CI for a Rust project

on:

push:

branches: [ "main" ]

pull_request:

branches: [ "main" ]

jobs:

lint:

runs -on: attested -build -runner

name: Lint (clippy & fmt)

steps:

- name: Lint

run: cargo clippy --verbose

- name: Format

run: cargo fmt -- --check

build -and -test:

runs -on: attested -build -runner

name: Build and Test

steps:

- name: Build

run: cargo build --verbose

- name: Test

run: cargo test --verbose

- name: Attestation

run: $ATTESTATION_HOOK target/debug/executable

- name: Upload artifacts

uses: actions/upload -artifact@v4 .6.0

with:

name: artifacts and certificate

path: |

target/debug/executable

target/debug/executable.cert

Listing 2: The modified version of the GitHub Action work-

flow file using our prototype and providing attestation.
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Table 3: Notations used in Tamarin lemmas

Notation Description

𝑐, 𝑐𝑡, 𝑎, 𝑎𝑡, 𝑝, 𝑖𝑝 c(code), ct(commit), a(artifact), at(attestation),
p(pcr0), ip(incl. proof)

𝐶𝑜𝑚𝑚𝑖𝑡 (𝑐) Artifact author commit code to RHP.
𝑃𝑢𝑏𝑙𝑖𝑠ℎ(𝑐) Publish code to adversary network.
𝐼𝑛𝑖𝑡𝐼𝑚𝑎𝑔𝑒 (𝑐) Initialize image with PCR and publish it via

the adversary network.
𝐼𝑛𝑖𝑡𝐵𝑢𝑖𝑙𝑑 (𝑐) Fetch Code from adversary network.
𝑆𝑒𝑐𝑢𝑟𝑒-
𝐶𝑜𝑚𝑚𝑖𝑡 (𝑐𝑡)

Store commit hash before entering untrusted
execution state.

𝐶𝑜𝑚𝑚𝑖𝑡−
𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑐, 𝑐𝑡)

Verify the commit hash (h(c) = ct).

𝐴𝑟𝑡𝑖 𝑓 𝑎𝑐𝑡 (𝑎) Provide build artifact.
𝐴𝑡𝑡𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝑎𝑡) Provide attestation document based on PCR

from adversary network.
𝐿𝑜𝑔𝐸𝑛𝑡𝑟𝑦 (𝑖𝑝) Provide incl. proof of given log entry.
𝐿𝑜𝑔𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑓 , 𝑖𝑝) Verify inclusion proof for given f where f =

<ct,h(a),at>
𝐴𝑇𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑓 , 𝑎𝑡) Verify attestation for given f where f =

<c,h(a),p>.

C Security Properties

This section outlines the lemmas used for our formal verification.
We use single letter variable names for better readability and to
keep lemmas short. See Table 3 for the used notation.

Code manipulation. The following lemma proofs that the adver-
sary is able to successfully compromise the code without detection
when the verification controls are not used.

∃ 𝑐, 𝑐𝑡, #𝑖, # 𝑗 . ((𝑃𝑢𝑏𝑙𝑖𝑠ℎ (𝑐) @#𝑖) ∧
(𝑆𝑒𝑐𝑢𝑟𝑒𝐶𝑜𝑚𝑚𝑖𝑡 (𝑐𝑡) @# 𝑗)) ∧ (¬ (h (𝑐) = 𝑐𝑡))

This lemma proofs that the adversary is not able to compromise
the code without detection when using the specific verification
controls.

∀𝑐, 𝑐𝑡, #𝑖, # 𝑗, #𝑘, #𝑙 . ((((𝐶𝑜𝑚𝑚𝑖𝑡 (𝑐) @#𝑖) ∧
(𝑃𝑢𝑏𝑙𝑖𝑠ℎ (𝑐) @# 𝑗)) ∧ (𝑆𝑒𝑐𝑢𝑟𝑒𝐶𝑜𝑚𝑚𝑖𝑡 (𝑐𝑡) @#𝑘)) ∧

(𝐶𝑜𝑚𝑚𝑖𝑡𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑐, 𝑐𝑡) @#𝑙) ⇒ (ℎ (𝑐) = 𝑐𝑡))

Build asset manipulation.

∃ 𝑐, 𝑐𝑡, 𝑎𝑡, 𝑖𝑝, #𝑖, # 𝑗, #𝑘, #𝑙 . (((((𝑃𝑢𝑏𝑙𝑖𝑠ℎ (𝑐) @#𝑖) ∧
(𝑆𝑒𝑐𝑢𝑟𝑒𝐶𝑜𝑚𝑚𝑖𝑡 (𝑐𝑡) @# 𝑗)) ∧ (Attestation (𝑎𝑡) @#𝑘)) ∧

(𝐿𝑜𝑔𝐸𝑛𝑡𝑟𝑦 (𝑖𝑝) @#𝑙)) ∧ (¬ (ℎ (𝑐) = 𝑐𝑡))) ∧
(¬ (ℎ (< 𝑐𝑡, ℎ (𝑐) , ℎ (𝑐) >) = 𝑖𝑝))

The lemma below verifies the inclusion proof using the action
fact 𝐿𝑜𝑔𝑉𝑒𝑟𝑖 𝑓 𝑦 (< 𝑐𝑡, ℎ(𝑎), 𝑎𝑡 >, 𝑖𝑝), and Tamarin does not detect
any trace, where such an attack is possible.

∀𝑐, 𝑐𝑡, 𝑎, 𝑎𝑡, 𝑖𝑝, #𝑖, # 𝑗, #𝑘.
(((𝑃𝑢𝑏𝑙𝑖𝑠ℎ (𝑐) @#𝑖) (𝐶𝑜𝑚𝑚𝑖𝑡𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑐, 𝑐𝑡) @# 𝑗)) ∧

(𝐿𝑜𝑔𝑉𝑒𝑟𝑖 𝑓 𝑦 (< 𝑐𝑡, ℎ (𝑎) , 𝑎𝑡 >, 𝑖𝑝) @#𝑘))
⇒ ((ℎ (𝑐) = 𝑐𝑡) ∧ (ℎ (< 𝑐𝑡, ℎ (𝑎) , 𝑎𝑡 >) = 𝑖𝑝))

Build infrastructure manipulation.
∃ 𝑐, 𝑐𝑡, 𝑎, 𝑝, 𝑎𝑡, #𝑖, # 𝑗, #𝑘, #𝑙, #𝑚.

(((((𝑃𝑢𝑏𝑙𝑖𝑠ℎ (𝑐) @#𝑖) (𝑆𝑒𝑐𝑢𝑟𝑒𝐶𝑜𝑚𝑚𝑖𝑡 (𝑐𝑡) @# 𝑗)) ∧
(Artifact (𝑎) @#𝑘)) ∧ (InitImage (𝑝) @#𝑙)) ∧

(Attestation (𝑎𝑡) @#𝑚)) ∧ (¬ (< 𝑐, ℎ (𝑎) , 𝑝 >= 𝑎𝑡))
The following lemma utilizes the verification control𝐴𝑇𝑉𝑒𝑟𝑖 𝑓 𝑦 (..)

provided by Attestable Builds. Tamarin cannot find any trace where
an adversary is able to successfully compromise the build image
without detection.

∀𝑐, 𝑐𝑡, 𝑎, 𝑝, 𝑎𝑡, #𝑖, # 𝑗, #𝑘, #𝑙, #𝑚, #𝑛.
((((((𝑃𝑢𝑏𝑙𝑖𝑠ℎ (𝑐) @#𝑖) (𝑆𝑒𝑐𝑢𝑟𝑒𝐶𝑜𝑚𝑚𝑖𝑡 (𝑐𝑡) @# 𝑗)) ∧

(Artifact (𝑎) @#𝑘)) ∧ (InitImage (𝑝) @#𝑙)) ∧
(Attestation (𝑎𝑡) @#𝑚)) ∧

(𝐴𝑇𝑉𝑒𝑟𝑖 𝑓 𝑦 (< 𝑐, ℎ (𝑎) , 𝑝 >, 𝑎𝑡) @#𝑛))
⇒ (< 𝑐, ℎ (𝑎) , 𝑝 >= 𝑎𝑡)

Repository spoofing. The following lemma proofs that an adver-
sary would be able to successfully spoof a repository when the
corresponding verification control is not involved.

∃ 𝑐, 𝑐𝑡, 𝑎, 𝑎𝑡, 𝑖𝑝, #𝑖, # 𝑗, #𝑘, #𝑙, #𝑚, #𝑜.
(((((((𝐶𝑜𝑚𝑚𝑖𝑡 (𝑐) @#𝑖) ∧ (𝑃𝑢𝑏𝑙𝑖𝑠ℎ (𝑐) @# 𝑗)) ∧

(𝑆𝑒𝑐𝑢𝑟𝑒𝐶𝑜𝑚𝑚𝑖𝑡 (𝑐𝑡) @#𝑘)) ∧
(𝐶𝑜𝑚𝑚𝑖𝑡𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑐, 𝑐𝑡) @#𝑙)) ∧ (𝐴𝑟𝑡𝑖 𝑓 𝑎𝑐𝑡 (𝑎) @#𝑚)) ∧

(𝐴𝑡𝑡𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 (𝑎𝑡) @#𝑛)) ∧ (𝐿𝑜𝑔𝐸𝑛𝑡𝑟𝑦 (𝑖𝑝) @#𝑜))
(¬ (ℎ (< ℎ (𝑐) , ℎ (𝑎) , 𝑎𝑡 >) = 𝑖𝑝))

Our model involves a verification step 𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦𝑉𝑒𝑟𝑖 𝑓 𝑦 (..) per-
formed by the artifact author to mitigate repository spoofing. The
following lemma proofs that an adversary cannot successfully spoof
a repository when using Attestable Builds.

∀𝑐, 𝑐𝑡, 𝑎, 𝑎𝑡, 𝑖𝑝, 𝑟, #𝑖, # 𝑗, #𝑘, #𝑙, #𝑚, #𝑜, #𝑝.
((((((((𝐶𝑜𝑚𝑚𝑖𝑡 (𝑐) @#𝑖) ∧ (𝑃𝑢𝑏𝑙𝑖𝑠ℎ (𝑐) @# 𝑗)) ∧

(𝑆𝑒𝑐𝑢𝑟𝑒𝐶𝑜𝑚𝑚𝑖𝑡 (𝑐𝑡) @#𝑘)) ∧
(𝐶𝑜𝑚𝑚𝑖𝑡𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑐, 𝑐𝑡) @#𝑙)) ∧ (𝐴𝑟𝑡𝑖 𝑓 𝑎𝑐𝑡 (𝑎) @#𝑚)) ∧

(𝐴𝑡𝑡𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 (𝑎𝑡) @#𝑛)) ∧ (𝐿𝑜𝑔𝐸𝑛𝑡𝑟𝑦 (𝑖𝑝) @#𝑜))
(𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑟, 𝑖𝑝) @#𝑝)) ⇒ ((ℎ (𝑐) = 𝑐𝑡) ∧ (𝑟 = 𝑖𝑝))
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Figure 10: This plot shows initial attack traces thatTamarin found. Traces like these show that our initial adversary assumptions

would affect regular build systems. When enabling the A-B constraints, Tamarin fails to find any.
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Figure 11: A variant of Figure 12. The complex targets clang
and kernel are additionally built without sandboxes on the

host H and enclave E.

Table 4: Selected unreproducible Debian packages based.

Package Number of
Dependencies

Number of Reverse
Dependencies

ipxe 3 2
hello 4 3
gprolog 4 2
scheme48 4 2
neovim 16 39

D Additional evaluation material

This appendix includes additional data and plots from our evalua-
tion (§4). Table 4 lists the dependencies and reverse dependencies
for the unreproducible Debian packages that we have selected for
our evaluation. Table 5 shows all individual durations from our
main evaluation. Tables 6–7 show all individual durations from the
job number experiments for XZ Utils and Verifier Client respec-
tively. Figure 12 is a larger version of Figure 4. Figure 11 shows the
stacked bar chart for the complex targets.
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Figure 12: A taller version of Figure 4. The duration of individual steps for the evaluated projects including the five unrepro-

ducible Debian packages and other artifacts. HS represents the baseline with a sandbox running directly on the host, ES (using

containerd) and ES+ (using gVisor) are variants of our A-B prototype executing a sandboxed runner within an enclave.
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Table 5: Build times for all targets and modes. Missing items indicate that they did not work out-of-the-box, e.g., because

Amazon Linux 2023 is missing some dependencies in H mode. All values in seconds and averaged over three iterations.

Target Mode Start EIF Boot Runner init Checkout Configure Build

Clang (18.1.3)

H 0.0s 0.1s 3.7s 145.0s 48.4s 2793.7s
HS 0.0s 0.1s 4.2s 148.0s 48.5s 3211.3s
E 71.0s 3.1s 4.1s 137.2s 36.7s 3270.9s
ES 46.4s 9.1s 4.1s 117.2s 35.6s 3784.1s
ES+ 46.4s 9.1s 5.5s 132.8s 115.1s 4748.5s

Kernel (6.8.0, gcc)

H 0.0s 0.1s 3.5s 86.5s 5.3s 238.2s
HS 0.0s 0.1s 4.1s 86.1s 5.6s 272.6s
E 70.8s 3.1s 3.9s 69.5s 4.8s 246.5s
ES 46.4s 9.1s 3.9s 68.9s 5.0s 279.4s
ES+ 46.4s 9.1s 5.7s 91.0s 9.6s 533.8s

Kernel (6.8.0, clang)

H 0.0s 0.1s 3.8s 80.1s 7.5s 410.2s
HS 0.0s 0.1s 4.1s 81.3s 7.4s 423.0s
E 71.1s 3.1s 4.2s 69.3s 5.5s 453.3s
ES 46.4s 9.1s 4.0s 68.6s 5.9s 447.3s
ES+ 46.3s 9.1s 5.6s 90.8s 11.6s 735.7s

GProlog (1.6.0)

H 0.0s 0.1s 3.8s 1.3s 3.7s 12.8s
HS 0.0s 0.1s 4.2s 1.3s 3.8s 14.9s
E 43.5s 3.1s 4.0s 1.3s 2.9s 13.5s
ES 29.5s 8.1s 3.7s 1.4s 2.8s 14.3s
ES+ 29.5s 8.1s 5.5s 2.4s 14.3s 27.4s

Hello (2.10)

H 0.0s 0.1s 3.6s 0.6s 14.5s 0.9s
HS 0.0s 0.1s 3.8s 0.6s 15.0s 1.1s
E 43.7s 3.1s 3.8s 0.6s 11.5s 0.9s
ES 29.7s 8.1s 4.3s 0.7s 11.0s 1.0s
ES+ 29.4s 8.1s 5.7s 1.4s 50.2s 4.5s

IPXE (1.21.1)

H 0.0s 0.1s 3.9s 0.6s 0.0s n/a
HS 0.0s 0.1s 3.7s 0.6s 0.0s 52.9s
E 43.5s 3.1s 4.0s 0.7s 0.0s 45.8s
ES 29.6s 8.1s 3.9s 0.7s 0.0s 48.6s
ES+ 29.5s 8.1s 5.5s 1.6s 0.0s 196.4s

Scheme48 (1.9.3)

H 0.0s 0.1s 3.7s 0.6s 3.5s 14.8s
HS 0.0s 0.1s 4.0s 0.7s 3.7s 15.9s
E 43.4s 3.1s 3.7s 0.7s 2.8s 15.2s
ES 29.5s 8.1s 3.9s 0.7s 2.7s 16.0s
ES+ 29.4s 8.1s 5.9s 1.6s 12.7s 20.0s

NeoVIM (0.11.0)

H 0.0s 0.1s 3.7s 0.9s 66.1s 255.9s
HS 0.1s 0.1s 3.7s 0.9s 75.9s 184.9s
E 43.5s 3.1s 3.8s 0.9s 65.3s 158.9s
ES 29.8s 8.1s 3.9s 0.9s 70.0s 167.3s
ES+ 29.4s 8.1s 5.7s 2.2s 130.7s 311.7s

LibSodium (1.0.20)

H 0.0s 0.1s 3.9s 1.1s 13.2s 20.2s
HS 0.0s 0.1s 3.8s 1.3s 15.1s 23.4s
E 43.8s 3.1s 3.7s 0.8s 10.6s 19.9s
ES 29.5s 8.1s 4.0s 0.8s 11.5s 22.1s
ES+ 29.6s 8.1s 5.9s 1.7s 46.1s 94.9s

TinyCC (0.9.28)

H 0.0s 0.1s 3.6s 0.7s 0.1s 4.5s
HS 0.0s 0.1s 4.5s 0.7s 0.1s 5.7s
E 43.5s 3.1s 3.9s 0.7s 0.1s 5.6s
ES 29.4s 8.1s 4.2s 0.7s 0.1s 5.8s
ES+ 29.5s 8.1s 5.6s 1.6s 0.4s 8.5s

Verifier Client

H 0.0s 0.1s 3.7s 0.8s 4.4s 69.4s
HS 0.0s 0.1s 4.0s 0.6s 4.4s 68.5s
E 43.4s 3.1s 3.9s 0.7s 3.2s 70.5s
ES 29.5s 8.1s 4.1s 0.6s 2.7s 70.4s
ES+ 29.4s 8.1s 5.6s 1.3s 7.3s 110.9s

XZ Utils (5.6.3)

H 0.0s 0.1s 3.7s 0.7s 9.7s 13.6s
HS 0.0s 0.1s 3.8s 0.7s 11.1s 16.1s
E 43.5s 3.1s 3.9s 0.6s 8.1s 14.1s
ES 29.4s 8.1s 3.8s 0.6s 8.2s 14.8s
ES+ 29.4s 8.1s 5.9s 1.5s 40.9s 69.0s
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Table 6: Build times for the C-based “XZ Utils across all modes and job number combinations. All values in seconds and averaged

over three iterations.

Target Mode Start EIF Boot Runner init Checkout Configure Build

XZ Utils (5.6.3) (j1)

H 0.1s 0.1s 3.6s 0.6s 9.7s 36.1s
HS 0.0s 0.1s 4.0s 0.6s 11.1s 43.3s
E 43.4s 3.1s 3.8s 0.7s 8.1s 36.3s
ES 29.5s 8.1s 4.1s 0.7s 8.2s 38.7s
ES+ 29.4s 8.1s 6.0s 1.5s 40.6s 86.3s

XZ Utils (5.6.3) (j2)

H 0.0s 0.1s 3.6s 0.7s 9.7s 19.4s
HS 0.0s 0.1s 4.0s 0.7s 11.2s 23.1s
E 43.5s 3.1s 3.6s 0.6s 8.1s 20.4s
ES 29.4s 8.1s 3.7s 0.6s 8.3s 21.5s
ES+ 29.4s 8.1s 6.0s 1.6s 41.1s 69.2s

XZ Utils (5.6.3) (j3)

H 0.0s 0.1s 3.9s 0.7s 9.7s 15.7s
HS 0.0s 0.1s 3.9s 0.7s 11.1s 18.6s
E 43.5s 3.1s 4.0s 0.6s 8.1s 16.3s
ES 29.4s 8.1s 3.9s 0.6s 8.3s 17.3s
ES+ 29.4s 8.1s 5.5s 1.5s 40.7s 66.9s

XZ Utils (5.6.3) (j4)

H 0.0s 0.1s 3.6s 0.7s 9.7s 13.6s
HS 0.0s 0.1s 4.1s 0.7s 11.2s 16.1s
E 43.5s 3.1s 4.2s 0.6s 8.2s 14.2s
ES 29.4s 8.1s 3.7s 0.7s 8.3s 14.9s
ES+ 29.4s 8.1s 5.5s 1.5s 40.7s 69.0s

XZ Utils (5.6.3) (j5)

H 0.0s 0.1s 3.5s 0.7s 9.7s 13.7s
HS 0.0s 0.1s 3.8s 0.7s 11.2s 16.2s
E 43.4s 3.1s 3.8s 0.7s 8.1s 14.3s
ES 29.4s 8.1s 3.8s 0.7s 8.2s 14.8s
ES+ 29.5s 8.1s 5.7s 1.6s 41.0s 70.5s

XZ Utils (5.6.3) (j6)

H 0.0s 0.1s 3.4s 0.7s 9.8s 13.8s
HS 0.0s 0.1s 3.9s 0.7s 11.2s 16.3s
E 43.8s 3.1s 3.9s 0.6s 8.2s 14.4s
ES 29.5s 8.1s 4.0s 0.6s 8.3s 15.2s
ES+ 29.8s 8.1s 5.9s 1.6s 41.3s 71.2s

XZ Utils (5.6.3) (j7)

H 0.0s 0.1s 3.4s 0.7s 9.7s 13.8s
HS 0.0s 0.1s 4.1s 0.7s 11.1s 16.4s
E 43.6s 3.1s 3.9s 0.7s 8.1s 14.5s
ES 29.4s 8.1s 3.9s 0.7s 8.3s 15.2s
ES+ 29.5s 8.1s 5.6s 1.5s 40.4s 71.2s

XZ Utils (5.6.3) (j8)

H 0.0s 0.1s 3.5s 0.7s 9.7s 13.7s
HS 0.0s 0.1s 3.9s 0.7s 11.2s 16.4s
E 43.5s 3.1s 3.7s 0.7s 8.1s 14.5s
ES 29.4s 8.1s 4.1s 0.6s 8.3s 15.2s
ES+ 29.4s 8.1s 5.6s 1.5s 41.1s 72.2s
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Table 7: Build times for the Rust-based “Verifier Client” across all modes and job number combinations. All values in seconds

and averaged over three iterations.

Target Mode Start EIF Boot Runner init Checkout Configure Build

Verifier Client (j1)

H 0.0s 0.1s 3.6s 0.6s 4.3s 186.5s
HS 0.0s 0.1s 3.9s 0.6s 4.6s 185.1s
E 43.4s 3.1s 3.9s 0.6s 3.5s 181.2s
ES 29.4s 8.1s 3.9s 0.6s 2.7s 181.2s
ES+ 29.5s 8.1s 5.8s 1.4s 7.3s 230.4s

Verifier Client (j2)

H 0.0s 0.1s 3.6s 0.6s 4.4s 100.0s
HS 0.0s 0.1s 4.1s 0.6s 4.2s 99.1s
E 43.4s 3.1s 3.9s 0.6s 3.1s 97.8s
ES 29.4s 8.1s 3.8s 0.6s 2.8s 98.3s
ES+ 29.4s 8.1s 5.9s 1.4s 7.3s 138.8s

Verifier Client (j3)

H 0.0s 0.1s 3.4s 0.6s 4.3s 80.2s
HS 0.0s 0.1s 3.9s 0.6s 4.2s 79.4s
E 43.4s 3.1s 7.1s 0.6s 3.2s 80.1s
ES 29.4s 8.1s 4.0s 0.6s 2.7s 80.6s
ES+ 29.4s 8.1s 5.9s 1.3s 7.3s 114.0s

Verifier Client (j4)

H 0.0s 0.1s 3.7s 0.7s 4.3s 69.2s
HS 0.0s 0.1s 4.1s 0.6s 4.7s 68.3s
E 43.4s 3.1s 3.6s 0.6s 3.2s 70.2s
ES 29.4s 8.1s 3.8s 0.7s 2.7s 70.4s
ES+ 29.4s 8.1s 5.6s 1.4s 7.5s 110.6s

Verifier Client (j5)

H 0.0s 0.1s 3.6s 0.6s 4.2s 69.5s
HS 0.0s 0.1s 3.8s 0.6s 4.4s 68.7s
E 43.5s 3.1s 3.8s 0.7s 3.4s 70.7s
ES 29.5s 8.1s 4.1s 0.6s 2.9s 71.7s
ES+ 29.7s 8.1s 5.6s 1.3s 7.5s 112.8s

Verifier Client (j6)

H 0.0s 0.1s 3.6s 1.0s 4.3s 70.8s
HS 0.0s 0.1s 3.8s 0.6s 4.4s 69.7s
E 43.8s 3.1s 3.8s 0.6s 4.2s 72.2s
ES 29.4s 8.1s 3.9s 0.7s 2.7s 72.1s
ES+ 29.7s 8.1s 5.8s 1.3s 7.3s 115.3s

Verifier Client (j7)

H 0.0s 0.1s 3.7s 0.6s 4.2s 70.4s
HS 0.0s 0.1s 4.2s 0.6s 4.6s 69.3s
E 43.4s 3.1s 3.8s 0.7s 3.8s 72.3s
ES 29.4s 8.1s 3.6s 0.6s 3.2s 72.1s
ES+ 29.5s 8.1s 5.7s 1.3s 7.5s 117.0s

Verifier Client (j8)

H 0.0s 0.1s 3.5s 0.6s 4.2s 71.3s
HS 0.0s 0.1s 3.9s 0.6s 4.2s 70.3s
E 43.4s 3.1s 3.8s 0.6s 3.1s 73.1s
ES 29.4s 8.1s 4.0s 0.6s 3.2s 73.3s
ES+ 29.4s 8.1s 5.9s 1.4s 7.4s 120.0s
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