
ar
X

iv
:2

50
5.

02
23

9v
2

 [
cs

.C
R

]
 1

2
Ju

n
20

25
1

Performance Analysis and Deployment
Considerations of Post-Quantum Cryptography for

Consumer Electronics
Daniel Commey, Benjamin Appiah, Griffith S. Klogo, Winful Bagyl-Bac, James D. Gadze, Yousef Alsenani,

and Garth V. Crosby

Abstract—Quantum computing threatens the security foun-
dations of consumer electronics (CE). Preparing the diverse
CE ecosystem, particularly resource-constrained devices, for
the post-quantum era requires quantitative understanding of
quantum-resistant cryptography (PQC) performance. This paper
presents a comprehensive cross-platform performance analysis of
leading PQC Key Encapsulation Mechanisms (KEMs) and digital
signatures (NIST standards/candidates) compared against classical
RSA/ECC. We evaluated execution time, communication costs
(key/signature sizes), and memory footprint indicators on high-
performance (macOS/M4, Ubuntu/x86) and constrained platforms
(Raspberry Pi 4/ARM). Our quantitative results reveal lattice-
based schemes, notably NIST standards ML-KEM (Kyber) and
ML-DSA (Dilithium), provide a strong balance of computational
efficiency and moderate communication/storage overhead, making
them highly suitable for many CE applications. In contrast, code-
based Classic McEliece imposes significant key size challenges,
while hash-based SPHINCS+ offers high security assurance but
demands large signature sizes impacting bandwidth and storage.
Based on empirical data across platforms and security levels,
we provide specific deployment recommendations tailored to
different CE scenarios (e.g., wearables, smart home hubs, mobile
devices), offering guidance for manufacturers navigating the PQC
transition.

Index Terms—Post-quantum cryptography (PQC), Consumer
Electronics, Cryptographic Performance, Key Encapsulation
Mechanisms (KEMs), Digital Signatures, Resource-Constrained
Devices, IoT Security, Quantum-Resistant Algorithms, Embedded
Systems Security.

I. INTRODUCTION

THE proliferation of connected consumer electronics (CE)
devices—smartphones, wearables, smart home assistants,

D. Commey is with the Department of Multidisciplinary Engineering, Texas
A&M University, College Station, TX, USA (e-mail: dcommey@tamu.edu).

B. Appiah is with the Department of Computer Science, Ho Technical
University, Ho, Volta Region, Ghana (e-mail: bappiah@htu.edu.gh).

G. S. Klogo is with the Department of Computer Engineering,
and J. D. Gadze is with the Department of Telecommunication En-
gineering, Kwame Nkrumah University of Science and Technology
(KNUST), Kumasi, Ghana (e-mail: gsklogo.coe@knust.edu.gh;
jdgadze.coe@knust.edu.gh).

W. Bagyl-Bac is with the Department of Computer Science,
George Washington University, Washington, DC, USA (e-mail:
winful.bagylbac@gwu.edu).

Y. Alsenani is with the Department of Information Systems, Faculty of
Computing and Information Technology, King Abdulaziz University, Jeddah,
Saudi Arabia, and also with EleeN LLC, Riyadh, Saudi Arabia (e-mail:
yalsenani@kau.edu.sa).

G. V. Crosby is with the Department of Engineering Technology & Industrial
Distribution, Texas A&M University, College Station, TX, USA (e-mail:
gvcrosby@tamu.edu).

connected vehicles, and countless Internet of Things (IoT) gad-
gets—has revolutionized daily life but also expanded the attack
surface for security threats [1], [2]. The security of these devices
heavily relies on classical public-key cryptography, primarily
RSA and Elliptic Curve Cryptography (ECC), for tasks like
secure communication, software updates, authentication, and
data protection [3]. However, the advent of practical quantum
computers poses an existential threat to these cryptographic
foundations. Shor’s algorithm, executable on a sufficiently
powerful quantum computer, can efficiently break RSA and
ECC, rendering vast amounts of currently secured CE data and
communication channels vulnerable [4].

While the exact timeline for fault-tolerant quantum comput-
ers remains debated [5], the "harvest now, decrypt later" threat
necessitates immediate action. Sensitive data transmitted or
stored by CE devices today could be captured and decrypted
retrospectively once quantum computers become available [6].
Furthermore, the long lifecycle of many CE products means
devices sold today must remain secure against future quantum
threats. This urgency has driven the development and stan-
dardization of post-quantum cryptography (PQC)—algorithms
designed to resist attacks from both classical and quantum
computers [7]. The U.S. National Institute of Standards and
Technology (NIST) has been leading a multi-year effort to select
and standardize PQC algorithms, recently announcing initial
standards [8], which have culminated in official publications
for schemes like the Module-Lattice-Based Digital Signature
Standard (ML-DSA) [9] and the Stateless Hash-Based Digital
Signature Standard (SLH-DSA) [10].

Migrating the diverse CE ecosystem to PQC presents unique
challenges. Many CE devices operate under strict resource
constraints, including limited processing power (CPU cycles),
memory (RAM), storage space, and battery life [1], [2]. PQC
algorithms generally exhibit different performance characteris-
tics compared to their classical counterparts, often involving
larger keys, signatures, or ciphertexts, and potentially higher
computational demands [11]. Understanding these trade-offs is
critical for selecting and deploying PQC solutions effectively in
CE environments without compromising usability, functionality,
or battery longevity. Fig. 1 provides a conceptual overview
of this landscape, illustrating the quantum threat, the major
PQC approaches, the varying computational environments
considered, and the inherent resource trade-offs involved.

While several studies have benchmarked PQC algorithms
[11]–[14], many focus on server/desktop environments or spe-

https://arxiv.org/abs/2505.02239v2

2

Post-Quantum Cryptography: Performance Across Computing Environments

Quantum Threat

Shor's Algorithm Compromises:

RSA
(Factoring)

ECC / ECDH / ECDSA
(Discrete Logarithm)

Post-Quantum Approaches
Algorithms resistant to quantum & classical attacks

Lattice-based
(ML-KEM, ML-DSA, Falcon)

Code-based
(McEliece, BIKE, HQC)

Hash-based
(SPHINCS+)

Multivariate
(MAYO)

Key Trade-offs:
• Performance vs. Security Margin
• Key/Sig Sizes vs. Speed
• Memory Usage vs. Bandwidth

NIST Standards: ML-KEM, ML-DSA, Falcon, SPHINCS+

Cross-Platform Performance

UBUNTU
(x86 Desktop)

MACOS
(ARM Desktop)

RASPBERRY PI
(ARM Constrained)

E
xe

cu
tio

n
Ti

m
e

Algorithm Family
Lattice Code Hash

MACOS
UBUNTU
RPI

Resource Requirements

Execution Time (log)
S

iz
e

/ M
em

or
y

(lo
g)

Lattice

McEliece

BIKE/HQC

SPHINCS+
Multivariate

Classical

IoT

Mobile

Deployment Considerations & Recommendations
Highly Constrained (Low Power/Mem/BW): Favor Lattice (ML-KEM-512, Falcon-512). Assess ML-DSA-44. Avoid large keys/sigs.

Moderately Constrained (e.g., RPi): Lattice (ML-KEM/DSA @ L1/L3), Falcon. Consider BIKE/HQC KEMs.

Less Constrained (Desktops/Servers): All NIST standards viable. Choice depends on security margin needs.

Figure 1: Conceptual overview of the post-quantum cryptog-
raphy landscape for consumer electronics. The emergence of
quantum computers threatens classical RSA/ECC cryptography
(left top). PQC offers solutions based on different mathematical
foundations (left middle), each with trade-offs involving perfor-
mance, security, and resource requirements (key/signature sizes,
memory). This paper evaluates leading PQC candidates across
diverse computing platforms, from high-performance desktops
to resource-constrained devices like the Raspberry Pi (right
top), analyzing their performance and resource demands (right
bottom) to provide deployment considerations for different CE
scenarios (bottom).

cific algorithm classes. Fewer studies provide a comprehensive
comparison of both standardized Key Encapsulation Mecha-
nisms (KEMs) and digital signature schemes across platforms
representative of the CE spectrum, from high-performance
laptops/smartphones to resource-constrained embedded systems.
Specifically, the impact on low-power devices typical in
wearables or smart home sensors needs thorough investigation
[15], [16].

This paper addresses this gap by presenting a comprehensive
performance analysis of leading PQC KEMs and digital
signature schemes, evaluated across multiple platforms relevant
to the CE landscape: macOS (representing modern consumer
laptops/desktops), Ubuntu (desktop/developer workstations),
and Raspberry Pi (proxying for resource-constrained CE
devices like smart home hubs, gateways, or higher-end IoT
components). We compare NIST-selected/evaluated PQC algo-
rithms against classical RSA and ECC, focusing on metrics
crucial for CE:

• Execution Time: Latency of key generation, encapsu-
lation/decapsulation (KEMs), signing/verification (signa-
tures), impacting user experience and energy consumption.

• Memory Usage: RAM footprint during operations, critical
for low-memory devices.

• Communication Costs: Sizes of public keys, ciphertexts,
and signatures, affecting bandwidth usage (e.g., OTA
updates, cloud communication) and storage requirements.

We analyze performance across different NIST security levels
and investigate the impact of message size on signature
schemes.

The main contributions of this paper, tailored for the CE
context, are:

1) A cross-platform performance benchmark of standardized
and candidate PQC algorithms, emphasizing implications
for resource-constrained CE devices.

2) Analysis of computational, memory, and communication
overheads critical for CE design decisions (e.g., hardware
selection, battery life estimation, network protocol design).

3) Evaluation of signature performance scaling with message
size, relevant for diverse CE applications from small sensor
readings to large firmware updates.

4) Specific PQC algorithm recommendations for different CE
deployment scenarios (e.g., low-power wearables, smart
home hubs, high-performance mobile devices) based on
empirical data.

Our findings provide CE manufacturers, software developers,
and system designers with practical data and insights needed
to navigate the transition to quantum-resistant security, ensur-
ing the long-term trustworthiness and security of consumer
electronic products.

The remainder of this paper is organized as follows. Sec-
tion II reviews existing literature on PQC benchmarking,
particularly focusing on studies relevant to consumer electronics
and resource-constrained environments. Section III provides
essential background on the quantum threat and the math-
ematical foundations of the PQC algorithm families under
evaluation. Section IV details our experimental setup, including
the hardware platforms, benchmarking framework, evaluated
algorithms, and performance metrics. Section V presents and
analyzes the comprehensive performance results, comparing
algorithms across platforms, security levels, and message sizes,
with a focus on execution time and communication overhead,
and culminates in Section V-I which synthesizes these findings
into specific deployment recommendations for different classes
of CE devices. Finally, Section VI concludes the paper by
summarizing our key findings and their implications, while
Section VII outlines directions for future research in this critical
area.

II. RELATED WORK

The need for post-quantum cryptography has spurred ex-
tensive research, including numerous performance evaluations.
However, studies specifically addressing the broad range of
CE constraints and use cases are less common.

Early benchmarking efforts, such as the SUPERCOP project
[17], provided foundational performance data but often focused
on high-performance computing. More recent work directly
evaluates NIST PQC candidates. Paquin et al. [11] used the
‘liboqs‘ library for benchmarking on x86 platforms, providing
valuable desktop performance data but limited insights for
ARM-based or heavily constrained CE devices. Sikeridis et
al. [12] focused on PQC integration into TLS 1.3, analyzing
handshake latency, relevant for connected CE devices, but
primarily from a server/desktop perspective.

Hardware-focused evaluations, like that by Basu et al. [13],
examined FPGA implementations, assessing area, performance,
and power. While relevant for custom silicon in CE, it doesn’t

3

fully capture software performance on general-purpose CPUs
common in many CE devices.

Studies targeting resource-constrained environments are more
directly related to our work. Septien-Hernandez et al. [15]
provided a comparative study for IoT applications, evaluating
lattice and code-based KEMs on platforms like ESP32 and
Raspberry Pi. Their work highlights the feasibility challenges
but didn’t cover the full suite of NIST-selected algorithms or
digital signatures comprehensively. Kumar et al. [16] discussed
securing IoT devices with PQC, emphasizing lightweight
solutions. Satrya et al. [18] evaluated PQC implementations for
energy systems monitoring, focusing on energy consumption on
devices like Raspberry Pi, relevant for battery-powered CE, but
with a limited set of algorithms. Prantl et al. [19] benchmarked
PQC KEMs on Cortex-M4 microcontrollers, offering insights
into very low-end devices, but didn’t cover signatures or higher-
end CE proxies like the Raspberry Pi 4 used here.

Regarding digital signatures, Lakhan [20] compared PQC
signature algorithms concerning network performance and
energy, but lacked a broad platform comparison including
both KEMs and signatures. Raavi et al. [14] analyzed PQC
signature performance for varying message sizes on desktop
platforms, which we extend to resource-constrained settings.
Studies on specific families, like lattice-based schemes for
embedded systems [21], [22], provide depth but not breadth
across different PQC approaches.

Our work distinguishes itself by:
• Providing a holistic evaluation of both NIST-

standardized/round-4 KEMs and digital signature
schemes.

• Conducting benchmarks across a spectrum of platforms
representing different tiers of CE devices, from powerful
(macOS, Ubuntu) to resource-constrained (Raspberry Pi
4).

• Analyzing a comprehensive set of metrics including
execution time, memory usage, and communication costs,
all critical for CE.

• Investigating performance scaling with security level and
message size across these platforms.

• Deriving explicit deployment recommendations tailored
to different CE scenarios based on empirical results.

This comprehensive approach aims to provide actionable
guidance for integrating PQC into the diverse and often
resource-limited world of consumer electronics.

III. BACKGROUND

This section provides an overview of quantum computing
threats to classical cryptography and introduces the math-
ematical foundations of major post-quantum cryptographic
approaches relevant to CE security.

A. Quantum Computing Threats

Classical public-key cryptography, securing countless CE
devices and services, primarily relies on two hard mathemat-
ical problems: integer factorization (underpinning RSA) and
the discrete logarithm problem (DLP) (underpinning Diffie-
Hellman key exchange and ECC/ECDSA signatures) [3]. Shor’s

algorithm, discovered in 1994 [4], provides a polynomial-time
quantum algorithm for both problems.

For RSA, Shor’s algorithm factors a large integer N = pq
in O((logN)3) time, a dramatic speedup over the best known
classical algorithms which are sub-exponential [23]. The core
quantum step involves finding the period r of the function
f(x) = ax mod N for a random a < N . If r is even and
ar/2 ̸≡ −1 (mod N), then gcd(ar/2 ± 1, N) yields factors
of N . This effectively breaks RSA encryption and signatures.
Similarly, for ECC, Shor’s algorithm solves the elliptic curve
discrete logarithm problem (ECDLP) P = kG (find k given
points P,G) in polynomial time [24], compromising ECDH
key exchange and ECDSA signatures widely used in mobile
devices and secure web connections (TLS).

Symmetric cryptography, like AES (Advanced Encryption
Standard) used for data encryption at rest and in transit within
CE ecosystems, is considered more resilient. Grover’s algorithm
offers a quadratic speedup for searching an unstructured space
of size N in O(

√
N) time [25]. Applied to key search, it

reduces the effective security of an n-bit key against quantum
attack to roughly n/2 bits. This threat can be mitigated by
doubling the key size (e.g., migrating from AES-128 to AES-
256) [26]. Consequently, the primary focus of PQC is on
replacing public-key algorithms.

B. Mathematical Foundations of Post-Quantum Cryptography

PQC algorithms derive their security from mathematical
problems believed to be hard for both classical and quantum
computers. Major families include:

1) Lattice-Based Cryptography: Relies on the presumed
hardness of problems defined on lattices. A lattice L is a
discrete additive subgroup of Rn, typically represented as the
set of all integer linear combinations of a set of basis vectors
B = {b1, . . . ,bk}:

L(B) =

{
k∑

i=1

zibi | zi ∈ Z

}
Two fundamental hard problems are:

• Shortest Vector Problem (SVP): Given a lattice L, find
the shortest non-zero vector v ∈ L. Finding an exact or
even approximate solution is believed hard.

• Learning With Errors (LWE): Introduced by Regev
[27]. Given a matrix A ∈ Zm×n

q , a secret vector s ∈
Zn
q , and a vector b = As + e (mod q), where e is a

"small" error vector sampled from a specific distribution
χ, distinguish samples (A,b) from uniformly random
pairs (A,u). Recovering s is the computational variant.
LWE is proven to be at least as hard as worst-case lattice
problems like GapSVP [27].

Structured variants like Ring-LWE (RLWE) and Module-
LWE (MLWE) operate over polynomial rings (e.g., Rq =
Zq[X]/⟨Φn(X)⟩) or modules over these rings, offering better
efficiency and smaller key sizes [28]. NIST selected ML-KEM
(based on Kyber [29], using MLWE) and ML-DSA (based
on Dilithium [30], using MLWE) as primary standards, with
ML-DSA now specified in FIPS 204 [9]. Falcon [31], another

4

standard, uses NTRU lattices [32]. For instance, a simplified
MLWE-based KEM (like Kyber) involves:

• KeyGen: Sample matrix A ∈ Rk×k
q , small vectors s, e ∈

Rk
q . Public key pk = (A, t = As+e). Private key sk = s.

• Encaps: Sample small r, e1 ∈ Rk
q , e2 ∈ Rq. Compute

u = A⊤r + e1 and v = t⊤r + e2 + ⌊ q
2⌋ ·m (where m

is the message bit). Ciphertext ct = (u, v). Shared secret
derived from r and pk.

• Decaps: Compute m′ = v − s⊤u. If m′ is close to ⌊ q
2⌋,

output m = 1, else m = 0. Shared secret derived from s
and ct.

The security relies on the MLWE assumption. These schemes
are attractive for CE due to their relatively good performance
and moderate key/ciphertext sizes.

2) Code-Based Cryptography: Based on the hardness of
decoding general linear error-correcting codes. Given a genera-
tor matrix G ∈ Fk×n

q or a parity-check matrix H ∈ F(n−k)×n
q

of a linear code C, and a received word y = c + e where
c ∈ C and e is an error vector of weight t, the core problem
is finding c (or e).

• Syndrome Decoding Problem: Given H, a syndrome
s = Hy⊤, and weight t, find e of weight t such that
He⊤ = s. This is NP-hard for random linear codes [33].

The McEliece cryptosystem [34] uses a class of codes (e.g.,
binary Goppa codes) with an efficient decoding algorithm D.

• KeyGen: Choose a Goppa code with (n, k, t) parameters
and generator matrix G. Choose a random non-singular
matrix S ∈ Fk×k

2 and permutation matrix P ∈ Fn×n
2 .

Public key pk = G′ = SGP. Private key sk = (S,G,P)
(or equivalent information allowing efficient decoding D).

• Encrypt: To encrypt message m ∈ Fk
2 , choose random

error vector e ∈ Fn
2 of weight t. Ciphertext c = mG′+e.

• Decrypt: Compute c′ = cP−1 = mSG + eP−1. Use
decoder D to correct errors e′ = eP−1 yielding mSG.
Compute mS = (mSG)G−1

right. Recover m = (mS)S−1.
Classic McEliece [35] is a NIST finalist known for strong
security confidence but suffers from very large public keys
(G′ is k× n, where k, n are thousands), posing challenges for
CE devices. Other schemes like BIKE [36] (using QC-MDPC
codes) and HQC [37] aim for smaller keys.

3) Hash-Based Signatures: Security relies solely on the cryp-
tographic properties of a hash function H : {0, 1}∗ → {0, 1}n,
primarily collision resistance and preimage resistance. Lam-
port’s one-time signature (OTS) scheme [38] is foundational.

• KeyGen (Lamport): For an m-bit message, generate
2m random secret values {xi,0, xi,1}i=1..m. Compute
public key components yi,j = H(xi,j). sk = {xi,j},
pk = {yi,j}.

• Sign (Lamport): For message M = (M1...Mm), the
signature is σ = (x1,M1

, x2,M2
, . . . , xm,Mm

).
• Verify (Lamport): Check if H(σi) = yi,Mi for all i =
1..m.

This is one-time secure. Schemes like Winternitz OTS
(WOTS+) [39] improve signature size. Stateful schemes like
XMSS [40] use Merkle trees to combine many OTS keys under
one public key, but require careful state management. Stateless

schemes like SPHINCS+ [41] use hypertrees and few-time
signatures (FORS [42]) to avoid state, simplifying deployment,
crucial for robust CE implementations. SPHINCS+ was chosen
by NIST as a standard, now specified as SLH-DSA in FIPS
205 [10]. Hash-based signatures offer strong security assurance
but often have large signature sizes (tens of KB) and can be
slower for signing compared to lattice-based schemes.

4) Multivariate Cryptography: Based on the hardness of
solving systems of m multivariate polynomial equations in n
variables over a finite field Fq: Find x = (x1, . . . , xn) such that
pi(x1, . . . , xn) = yi for i = 1..m, given polynomials pi and
target values yi. This MQ problem is NP-hard [43]. Signature
schemes typically use a trapdoor structure: an easily invertible
central map F : Fn

q → Fm
q (often quadratic) composed with

secret affine maps S : Fn
q → Fn

q and T : Fm
q → Fm

q .
• KeyGen: Choose S,F , T . Public key pk = P = T ◦F◦S .

Private key sk = (S,F , T).
• Sign: To sign a document hash h, compute target y =
T −1(h). Compute z = F−1(y) using the central map’s
trapdoor. Signature σ = S−1(z).

• Verify: Check if P(σ) = h.
Schemes like Rainbow [44] (broken [45]) and Multivariate
Algebraic Signatures Overfield (MAYO) [46] (based on Oil
and Vinegar) differ in their choice of F and transformations.
They can offer very short signatures, potentially attractive
for specific CE use cases, but history shows vulnerability to
algebraic attacks.

5) Isogeny-Based Cryptography: Uses the presumed hard-
ness of problems related to isogenies between elliptic curves
over finite fields. An isogeny ϕ : E → E′ is a non-
constant morphism between elliptic curves that is also a
group homomorphism. The core problem involves finding an
isogeny ϕ given E and E′ = ϕ(E), potentially with additional
information about ϕ (like its degree or action on torsion points).
SIKE (Supersingular Isogeny Key Encapsulation) [47] used
walks in the supersingular isogeny graph.

• Setup: Public curve E0/Fp2 .
• KeyGen (Alice): Choose secret isogeny ϕA : E0 → EA.

Public key pkA = EA.
• KeyGen (Bob): Choose secret isogeny ϕB : E0 → EB .

Public key pkB = EB .
• Shared Secret (Alice): Compute EBA = ϕA(EB). J-

invariant j(EBA) determines secret.
• Shared Secret (Bob): Compute EAB = ϕB(EA).

J-invariant j(EAB) determines secret. (j(EAB) =
j(EBA)).

SIKE offered very small key sizes but was broken by attacks
exploiting auxiliary torsion point information [48]. Research
into other potentially secure isogeny constructions continues.

C. Comparison of Post-Quantum Approaches

Table I summarizes key characteristics relevant to CE
deployment.

Lattice-based cryptography (ML-KEM, ML-DSA, Falcon)
emerges as a strong contender for general-purpose CE use
due to its balance of performance and size [29], [30]. Code-
based schemes like Classic McEliece face hurdles due to large

5

Table I: Comparison of Post-Quantum Cryptographic Approaches

Property Lattice-based Code-based Hash-based (Stateless) Multivariate

Mathematical Foun-
dation

LWE, SVP over lattices Syndrome Decoding Prob-
lem

Collision-resistant hash
functions

Solving multivariate equa-
tions

Hard Problem Stud-
ied Since

1996 (lattices), 2005
(LWE) [27]

1978 (McEliece) [34], [49] 1979 (Lamport sigs.) [38] 1988 (Matsumoto-Imai)
[50]

Key Size (Relative) Small-Medium Large (McEliece),
Medium (BIKE/HQC)

Small (public), Large (pri-
vate internal state represen-
tation)

Small-Medium

Sig./Ciphertext
Size (Relative)

Small-Medium Small (McEliece),
Medium (BIKE/HQC)

Large Small-Medium
(Signatures)

Comp. Efficiency Generally High Medium-High
(Encryption/Decryption),
Slow KeyGen (McEliece)

Medium/Slow (Signing),
Fast (Verification)

Fast (Verification), Medi-
um/Slow (Signing)

Quantum Security
Confidence

Medium-High (Active re-
search area)

High (Long history) Very High (Relies on hash
functions)

Medium (Subject to alge-
braic attacks)

CE Relevance Strong candidates due to
balance

Challenging (McEliece
keys), Potential
(BIKE/HQC)

Good for firmware sigs
(verify often), bandwidth
concern

Potential for short signa-
tures if security holds

NIST Standards/
Candidates

ML-KEM, ML-DSA, Fal-
con

Classic McEliece (Round
4), BIKE, HQC

SPHINCS+ (Standard) MAYO (Round 4)

Side-Channel Risk Potential in implementa-
tions [51]

Considered lower risk Considered lower risk Potential in implementa-
tions

keys [15]. Hash-based signatures (SPHINCS+) offer robust
security but large signatures impact bandwidth and potentially
storage on constrained devices [41]. Multivariate schemes
remain interesting for potentially small signatures but require
ongoing security scrutiny. Our experiments quantify these trade-
offs across relevant platforms.

IV. METHODOLOGY

A. Experimental Setup

Our performance evaluation was conducted across three
distinct hardware platforms chosen to represent a spectrum of
capabilities found in the consumer electronics ecosystem:

• macOS (High-End Consumer/Development): An Apple
Mac mini equipped with an M4 chip (10-core ARM-
based CPU, 10-core GPU), 16GB unified RAM, running
macOS Sequoia (15.4). This platform represents modern
high-performance consumer devices like laptops, powerful
tablets, or developer workstations.

• Ubuntu (Desktop/Development): A desktop system with
an 11th Gen Intel Core i7-11700 CPU (8 cores/16 threads
@ 2.50GHz base, x86-64 architecture), 32GB DDR4
RAM, running Ubuntu 22.04 LTS. This serves as a
common desktop/server environment and provides an x86-
64 performance comparison point.

• Raspberry Pi 4 Model B (Resource-Constrained CE
Proxy): Featuring a Broadcom BCM2711 SoC with
a quad-core ARM Cortex-A72 (ARMv8) 64-bit CPU
clocked at 1.5GHz, 4GB LPDDR4 RAM, running Rasp-
berry Pi OS (64-bit Debian Bullseye based). This platform
acts as a proxy for moderately resource-constrained CE
devices such as smart home hubs, advanced IoT gateways,
automotive infotainment units, or set-top boxes, offering

insights into performance on common embedded ARM
architectures under tighter resource budgets.

This platform selection allows us to analyze PQC performance
not just in ideal desktop conditions but also under limitations
more typical of deployed CE hardware.

B. Benchmarking Framework and Libraries

The benchmarking framework was implemented using
Python 3.1

• PQC Algorithms: We utilized the ‘liboqs‘ open-source C
library (version 0.8.0 via the ‘oqs-python‘ 0.8.0 wrapper)
[52], which provides implementations of numerous PQC
schemes submitted to the NIST standardization process.
‘liboqs‘ was compiled on each platform using standard
toolchains (GCC 11.4 on Ubuntu/Raspberry Pi, Apple
Clang 14.0.3 on macOS) with the ‘-O3‘ optimization
level enabled.

• Classical Algorithms: Baseline classical cryptography
performance was measured using the Python ‘cryptog-
raphy‘ library (version 41.0.7), which relies on the
underlying OpenSSL library (version 3.3.1) available on
each platform for optimized implementations of RSA,
ECDH, ECDSA, and Ed25519.

Execution times for cryptographic operations were measured
using high-resolution system timers available through Python.
To ensure statistical stability and minimize transient effects,
each operation was typically repeated 1000 times within the
benchmarking loop (fewer iterations were used for exception-
ally long operations, such as Classic McEliece key generation).
The initial runs were discarded as warm-up, and the mean and

1The source code for the benchmarking framework and analysis scripts
used in this study is publicly available at: https://github.com/dcommey/pqc_
evaluation

https://github.com/dcommey/pqc_evaluation
https://github.com/dcommey/pqc_evaluation

6

standard deviation were calculated from the subsequent, stable
measurements.

C. Data Consolidation and Naming Standardization

Raw performance results were collected independently from
each platform. For clarity and consistency with the evolving
cryptographic landscape and official NIST standards, a data
consolidation and naming standardization process was applied.
This process addressed instances where algorithms were poten-
tially benchmarked under different names but corresponded to
the same underlying NIST standard specification. Specifically:

• Both historical Kyber submission variants and official
ML-KEM standard variants were present in the raw re-
sults. The analysis script identified the standard ML-KEM
designation for each corresponding parameter set (e.g.,
identifying both Kyber512 and ML-KEM-512 as rep-
resenting the same standard, ML-KEM-512). To prevent
duplication, where results existed under both names for
the same platform and parameter set, the entry originating
from the historical Kyber name was excluded from the
final dataset.

• Similarly, both historical Dilithium submission vari-
ants and official ML-DSA standard variants were present.
The script identified the standard ML-DSA designation
corresponding to each historical Dilithium level (e.g.,
mapping Dilithium2 to ML-DSA-44, Dilithium3
to ML-DSA-65, Dilithium5 to ML-DSA-87). Where
results existed under both the historical Dilithium
name (after mapping to the corresponding ML-DSA level)
and the official ML-DSA name for the same platform and
effective parameter set, the entry originating from the
historical Dilithium name was excluded.

Through this consolidation process, the official NIST stan-
dard names (ML-KEM, ML-DSA) were preferentially retained,
ensuring that only one unique entry per standard algorithm
variant per platform was used in the subsequent analysis and
discussion. This approach allows for direct comparison based
on the final standardized algorithms. These standardized names
were then used to assign algorithms to families (e.g., Lattice,
Code, Hash) based on their underlying mathematical structure.

D. Evaluated Algorithms

We evaluated a comprehensive set of KEMs and digital
signature schemes, encompassing NIST standards, prominent
Round 4 candidates, and classical baselines for comparison.
The specific algorithms are listed below, using the consolidated
naming where applicable.

Key Encapsulation Mechanisms (KEMs):
• Lattice-based (MLWE): ML-KEM (512, 768, 1024) [NIST

Standard]
• Lattice-based (LWE): FrodoKEM (640-AES, 640-SHAKE,

976-AES, 976-SHAKE, 1344-AES, 1344-SHAKE)
• Lattice-based (NTRU-like): sntrup761 (NTRU Prime vari-

ant)
• Code-based: BIKE (L1, L3, L5), Classic McEliece

(348864f, 460896f, 6688128f, 6960119f, 8192128f) [f-
variants used], HQC (128, 192, 256)

• Classical: RSA (2048, 3072, 4096 bits), ECDH (P-256,
P-384, P-521)

Digital Signature Schemes:
• Lattice-based (MLWE): ML-DSA (44, 65, 87) [NIST

Standard [9]]
• Lattice-based (NTRU-like): Falcon (512, 1024) [NIST

Standard]
• Hash-based: SPHINCS+ (variants combining

SHA2/SHAKE, 128/192/256 security levels, and
f/s trade-offs) [NIST Standard [10]]

• Multivariate: MAYO (1, 2, 3, 5)
• Classical: RSA (2048, 3072, 4096 bits), ECDSA (P-256,

P-384, P-521), Ed25519
Parameter sets targeting NIST security levels 1, 3, and 5 were
included where available.

E. Performance Metrics

The evaluation focused on metrics most relevant to CE
deployment:

1) Execution Time: Wall-clock time (in milliseconds, ms)
for core cryptographic operations: Key Generation, En-
capsulation, Decapsulation for KEMs; Key Generation,
Signing, Verification for signatures. We report mean and
standard deviation across iterations.

2) Communication Costs: Sizes (in bytes) of cryptographic
artifacts that need to be stored or transmitted: Public Keys,
Ciphertexts (for KEMs), and Signatures (for signature
schemes). Shared secret sizes (KEMs) and secret key
sizes were also recorded for completeness.

3) Message Size Impact (Signatures): Execution times for
signing and verification were measured using varying mes-
sage sizes: 1 kB, 10 kB, 100 kB, and 1MB (1 048 576B).
This assesses how performance scales with data size for
applications like firmware updates or data logging.

4) Resource Requirement Trade-offs: We analyze the
relationship between computational cost (approximated by
total operation time) and communication/storage cost (ap-
proximated by combined key/ciphertext or key/signature
size) to visualize the resource trade-off space, particularly
on the constrained Raspberry Pi platform.

While peak memory usage (RAM footprint) is crucial for CE,
reliable and cross-platform measurement within the software
framework proved inconsistent across platforms and libraries.
Therefore, this analysis primarily focuses on execution time
and communication/storage size, using the latter as an indirect
indicator of memory pressure associated with cryptographic
object handling.

V. RESULTS AND ANALYSIS

This section presents the performance benchmark results
derived from the methodology described above, analyzing the
implications for deploying PQC in consumer electronics. We
focus on the consolidated data, prioritizing NIST standard
names (ML-KEM, ML-DSA). The macOS platform serves as
the REFERENCE_PLATFORM for general performance plots,
while the Raspberry Pi serves as the RESOURCE_PLATFORM
for constrained analysis, unless otherwise specified.

7

A. Performance Comparison Across Platforms

Comparing performance across macOS, Ubuntu, and Rasp-
berry Pi reveals the significant impact of hardware capabilities
on PQC execution.

Figure 2 illustrates the execution times for KEM operations.
As expected, the Raspberry Pi is considerably slower than
the desktop platforms (macOS, Ubuntu). macOS (M4 ARM)
and Ubuntu (Intel x86) exhibit closer performance, though
variations exist depending on the algorithm family and specific
operation.

MACOS RASPBERRY UBUNTU

Platform

10−2

10−1

100

101

102

103

T
im

e
(m

s,
lo

g
sc

a
le

)

KEM Performance Across Platforms

Operation
Key Generation (ms)

Encapsulation (ms)

Decapsulation (ms)

Figure 2: KEM Performance Across Platforms (Execution Time,
ms - Log Scale). Compares key generation, encapsulation, and
decapsulation times. Note the logarithmic scale accentuating
the significant performance gap on the Raspberry Pi.

Table II quantifies these differences, averaging across algo-
rithm types. On average, PQC KEM operations are roughly
45-50 times slower on the Raspberry Pi compared to macOS for
encapsulation/decapsulation, while key generation slowdown
varies more widely depending on the algorithm mix (including
very slow McEliece vs. fast lattices). Classical KEMs also slow
down, but PQC operations, particularly decapsulation, show a
larger relative penalty on the constrained platform.

Signature schemes show a similar trend. Figure 3 displays
performance for a 100 kB message size. Verification times
generally see the largest relative increase on the Raspberry Pi
compared to signing or key generation for many PQC schemes.

Detailed tables summarizing signature statistics for various
message sizes (1 kB, 10 kB, 100 kB, 1MB) are provided in
the Appendix. Table III shows the summary for the 100 kB
message case. These confirm substantial slowdowns for signa-
tures on the Raspberry Pi, often exceeding 20x compared to
macOS, particularly for computationally intensive operations or
specific algorithms like SPHINCS+ signing. This performance
differential is a primary consideration for selecting algorithms
for battery-powered or real-time sensitive CE applications.

B. Desktop Platform Comparison (macOS vs. Ubuntu)

Analyzing the performance ratios between the two desktop
platforms (Ubuntu/macOS) reveals nuances beyond raw speed.
Detailed ratio plots and summary tables are provided in the
Appendix.

MACOS RASPBERRY UBUNTU

Platform

10−2

10−1

100

101

102

T
im

e
(m

s,
lo

g
sc

a
le

)

Signature Performance Across Platforms (102,400 Bytes)

Operation
Key Generation (ms)

Signing (ms)

Verification (ms)

Figure 3: Signature Performance Across Platforms (100 kB
Message, ms - Log Scale). Demonstrates the performance
hierarchy across platforms for signature operations.

Generally, performance is comparable for many lattice-based
schemes (ML-KEM, ML-DSA), with ratios often close to
1.0. However, architecture-specific optimizations or library
differences can lead to variations. For instance, our Ubuntu/x86
platform showed an advantage for FrodoKEM and NTRU-
Prime, while macOS/ARM favoured ML-KEM and code-based
schemes. Signature ratios also showed some variability. This
implies that developers targeting cross-platform CE applications
(e.g., companion apps on desktops, different OS-based CE
devices) should consider potential performance variations even
between relatively powerful platforms.

C. Performance on Resource-Constrained Devices (Raspberry
Pi)

The performance impact on the Raspberry Pi is crucial for
understanding PQC feasibility in constrained CE. Slowdown
factors relative to macOS quantify this penalty (see Appendix
Figures 13b and 14b, and Appendix Table XII).

As highlighted in the Appendix KEM ratio summary table
(Table XII), KEMs exhibit significant slowdowns. Lattice
schemes (ML-KEM, NTRU-Prime) slow down by roughly
30-50x. Code-based schemes vary, typically 40x for key
generation/encapsulation but less for decapsulation. FrodoKEM
variants show substantial slowdowns, often exceeding 100x.

Signatures face similar challenges (see Appendix Signature
ratio summary table, Table XIII). Lattice signatures (ML-DSA,
Falcon) typically slow down by 15-25x. Hash-based SPHINCS+
signing is drastically slower (often >100x), while verification
slowdown is less severe (25x). Multivariate and Randomized
Subset Difference Problem (RSDP) schemes also see significant
slowdowns. Classical algorithms generally exhibit smaller
slowdown factors (10-25x) but are cryptographically insecure
long-term.

These slowdowns directly translate to increased latency and
energy consumption, potentially impacting CE usability and
battery life significantly.

D. Resource Requirement Trade-offs

Optimizing for CE often involves balancing computa-
tional cost (time) against memory/storage/communication

8

Table II: Average KEM Performance Statistics Across Platforms (ms)

Platform Type Key MEAN Key STD Encapsulation MEAN Encapsulation STD Decapsulation MEAN Decapsulation STD

MACOS Classical 102.18 156.54 0.22 0.20 2.25 2.69
MACOS Post-Quantum 54.52 87.35 0.71 1.03 15.04 18.07
RASPBERRY Classical 2533.90 4113.17 2.69 2.34 34.15 45.74
RASPBERRY Post-Quantum 2017.67 3679.47 36.28 57.31 245.85 237.86
UBUNTU Classical 91.26 149.63 0.16 0.11 0.74 0.78
UBUNTU Post-Quantum 40.09 57.59 1.37 3.30 1.99 4.96

Table III: Average Signature Performance Statistics Across Platforms (100 kB Message, ms)

Platform Type Key MEAN Key STD Signing MEAN Signing STD Verification MEAN Verification STD

MACOS Classical 89.98 154.00 1.98 2.67 0.29 0.25
MACOS Post-Quantum 9.35 21.25 86.85 204.78 0.80 0.63
RASPBERRY Classical 2286.47 4173.19 30.84 43.99 4.66 3.29
RASPBERRY Post-Quantum 180.00 403.26 1668.83 3851.65 15.10 11.00
UBUNTU Classical 78.60 141.72 0.72 0.78 0.23 0.16
UBUNTU Post-Quantum 5.34 11.22 44.23 105.62 0.83 0.66

cost (size). Figure 4 plots total KEM operation time
(KeyGen+Encaps+Decaps) against communication size (Pub-
Key+Ciphertext) on the Raspberry Pi.

100 101 102 103 104

Total Operation Time (ms, log scale)

103

104

105

106

C
o
m

m
./

S
to

ra
g
e

O
v
er

h
ea

d
(b

y
te

s,
lo

g
sc

a
le

)

Classic-McEliece-6960119

Classic-McEliece-6960119

FrodoKEM-1344-SHAKE

ML-KEM-1024

RSA-2048

RSA-3072

RSA-4096

ECDH-521

KEM Resource Requirements (RASPBERRY)

Family / Sec Level
Display Family

Code-based

FrodoKEM

ML-KEM

NTRU-Prime

RSA

ECDH

Security Level

1

2

3

5

Figure 4: KEM Resource Requirements (Time vs.
Comm./Storage Overhead) on Raspberry Pi (Log Scales).
Ideal algorithms are in the bottom-left. ML-KEM variants
offer excellent balance. Classic McEliece requires excessive
communication/storage size. ECDH is most compact and
relatively fast.

ML-KEM variants stand out, residing in the desirable bottom-
left quadrant (low time, low size). Classical ECDH is also
very efficient. NTRU Prime (sntrup761) is similar in size to
ML-KEM but slower. Code-based schemes and FrodoKEM
occupy the middle ground in both time and size. Classic
McEliece demonstrates the extreme trade-off: very large size
requirements but moderate operational time (dominated by
slow key generation, not shown in this combined operational
metric).

Figure 5 presents the trade-off for signatures (Total Time vs.
PubKey+Signature Size) on the Pi, using the 100 kB message
results.

101 102 103 104

Total Operation Time (ms, log scale)

102

103

104

105

C
o
m

m
./

S
to

ra
g
e

O
v
er

h
ea

d
(b

y
te

s,
lo

g
sc

a
le

)

Falcon-1024

Falcon-padded-1024

MAYO-5

ML-DSA-87
SPHINCS+

SPHINCS+

cross-rsdp-256-balanced

cross-rsdp-256-fast

cross-rsdp-256-small

cross-rsdpg-256-balanced

cross-rsdpg-256-fast

cross-rsdpg-256-small

RSA-2048

RSA-3072

RSA-4096

ECDSA-521

Signature Resource Requirements (102,400 Bytes, RASPBERRY)

Family / Sec Level
Display Family

Falcon

Falcon-padded

Multivariate

ML-DSA

Hash-based

RSDP

RSA

ECDSA

EdDSA

Security Level

0

1

2

3

5

Figure 5: Signature Resource Requirements (Time vs.
Comm./Storage Overhead) on Raspberry Pi (100 kB Message,
Log Scales). Falcon offers small sizes and moderate time. ML-
DSA is balanced. SPHINCS+ variants require large sizes and
have very slow total operational times (dominated by signing).
Classical ECC/EdDSA are highly efficient but insecure.

Falcon excels in compactness (small keys and signatures)
with moderate total time. ML-DSA offers a good balance
slightly larger than Falcon. Multivariate schemes (like MAYO)
have small signatures but require larger keys and significant
time. SPHINCS+ variants have very small public keys but
enormous signatures and slow total times (signing dominates).
RSDP signatures are also very large. Classical EdDSA and
ECDSA remain the most resource-efficient but are vulnerable.
These plots visually guide algorithm selection based on
which resource (time, size/memory/bandwidth) is the primary
constraint for a given CE device.

E. Communication Overhead

Focusing specifically on the size of transmitted data, Figure 6
plots public key size versus ciphertext size for KEMs (using
macOS data for clarity of labels).

9

102 103 104 105 106

Public Key Size (bytes, log scale)

102

103

104

C
ip

h
er

te
x
t

S
iz

e
(b

y
te

s,
lo

g
sc

a
le

)

Classic-McEliece-6960119

FrodoKEM-1344-SHAKE

ML-KEM-1024

RSA-2048

RSA-3072

RSA-4096

ECDH-521

KEM Communication Overhead

Family / Sec Level
Display Family

Code-based

FrodoKEM

ML-KEM

NTRU-Prime

RSA

ECDH

Security Level

1

2

3

5

Figure 6: KEM Communication Overhead (Public Key vs.
Ciphertext Size, Bytes - Log Scale, MACOS data). Highlights
the vast range from compact ECDH/ML-KEM to enormous
Classic McEliece public keys.

Table IV provides average sizes per family based on the
algorithms tested. Code-based schemes (dominated by Classic
McEliece in our tested set) show huge public keys but small
ciphertexts. ML-KEM offers sizes around 1 kB to 1.5 kB for
both, suitable for many network protocols. FrodoKEM requires
significantly larger sizes (tens of kilobytes combined).

Table IV: Average KEM communication costs by family (bytes)

Family / Type Public-key Cipher-text Shared secret

Mean Min Max Mean Min Max Mean Min Max

Code-based PQ 387 198 1 541 1 357 824 3 503 96 14 421 41 32 64
ECDH Classical 123 91 158 123 91 158 49 32 66
FrodoKEM PQ 15 589 9 616 21 520 15 699 9 720 21 632 24 16 32
ML-KEM PQ 1 184 800 1 568 1 141 768 1 568 32 32 32
NTRU-Prime PQ 1 158 1 158 1 158 1 039 1 039 1 039 32 32 32
RSA Classical 422 294 550 384 256 512 32 32 32

For signatures (Figure 7 and Table V), Hash-based
(SPHINCS+) and RSDP clearly dominate in signature size (tens
of kilobytes), while Falcon (<1 kB to 1.3 kB) and Multivariate
(MAYO) (<1 kB) are notably compact. ML-DSA (2.4 kB to
4.6 kB) represents a middle ground. Public key sizes are
generally smaller for signatures compared to KEMs, with
SPHINCS+ and RSDP having very small public keys.

These sizes directly impact CE applications. Large Hash-
based or RSDP signatures might strain low-bandwidth networks
(BLE, LoRaWAN) or consume excessive space in secure
boot partitions. Code-based KEM keys might require complex
key distribution mechanisms for constrained devices. Lattice
schemes offer a generally well-regarded balance for typical
CE network interactions and storage capabilities.

F. Performance Across Different Security Levels

Choosing the right security level involves trade-offs. Fig-
ures 8 and 9 (using 100 kB messages for signatures) illustrate
how average PQC performance scales compared to classical
options across NIST Levels 1, 3, and 5 on the reference macOS

102 103

Public Key Size (bytes, log scale)

102

103

104

105

A
v
g
.

S
ig

n
a
tu

re
S
iz

e
(b

y
te

s,
lo

g
sc

a
le

)

ECDSA-521

Falcon-1024

Falcon-padded-1024

MAYO-5

ML-DSA-87

RSA-2048

RSA-3072

RSA-4096

SPHINCS+

SPHINCS+-SHAKE-256f-simple

SPHINCS+-SHAKE-256s-simple

cross-rsdp-256-balanced

cross-rsdp-256-fast

cross-rsdp-256-small

cross-rsdpg-256-balanced

cross-rsdpg-256-fast

cross-rsdpg-256-small

Signature Communication Overhead

Family / Sec Level
Display Family

ECDSA

EdDSA

Falcon

Falcon-padded

Multivariate

ML-DSA

RSA

Hash-based

RSDP

Security Level

0

1

2

3

5

Figure 7: Signature Communication Overhead (Public Key
vs. Avg. Signature Size, Bytes - Log Scale, MACOS data).
Hash-based/RSDP variants have large signatures but small keys.
Falcon is compact in both dimensions. ML-DSA is moderate.

Table V: Average Signature Communication Costs by Family
(bytes)

Family / Type Public Key Size Signature Size

Mean Min Max Mean Min Max

ECDSA Classical 123 91 158 104 70 138
EdDSA Classical 44 44 44 64 64 64
Falcon Post-Quantum 1 345 897 1 793 964 656 1 273
Falcon-padded Post-Quantum 1 345 897 1 793 973 666 1 280
Hash-based Post-Quantum 48 32 64 26 080 7 856 49 856
ML-DSA Post-Quantum 1 952 1 312 2 592 3 452 2 420 4 627
Multivariate Post-Quantum 3 580 1 168 5 488 479 180 838
RSA Classical 422 294 550 384 256 512
RSDP Post-Quantum 98 54 153 29 338 7 956 76 298

platform. Table VI provides quantitative averages combining
performance and size metrics.

1 2 3 5

NIST Security Level

10−2

10−1

100

101

102

T
im

e
(m

s,
lo

g
sc

a
le

)

KEM Performance vs NIST Security Level (MACOS)

Operation
Key Generation (ms)

Encapsulation (ms)

Decapsulation (ms)

Figure 8: KEM Performance vs. NIST Security Level (MA-
COS). Shows average operation times for each security level.

Generally, higher security levels incur costs: longer execution
times and larger cryptographic objects.

10

0 1 2 3 5

NIST Security Level

10−2

10−1

100

101

T
im

e
(m

s,
lo

g
sc

a
le

)

Signature Performance vs NIST Security Level (102,400 Bytes, MACOS)

Operation
Key Generation (ms)

Signing (ms)

Verification (ms)

Figure 9: Signature Performance vs. NIST Security Level
(100 kB Message, MACOS). Illustrates scaling trends for
signature operations.

• Time Scaling: PQC operation times tend to increase
moderately with security level, often less dramatically
than RSA key generation. Lattice schemes scale relatively
well.

• Size Scaling: PQC public key and ciphertext/signature
sizes show more significant increases. As seen in Table VI,
average PQC signature sizes increase substantially from
Level 1 to Level 5, driven largely by Hash-based and
RSDP schemes. Average PQC KEM key/ciphertext sizes
also grow considerably, influenced by code-based and
FrodoKEM parameters at higher levels. Lattice schemes
exhibit more moderate size growth.

For CE devices with long expected lifetimes or handling sensi-
tive data, targeting Level 3 or 5 security is advisable. Designers
must weigh the increased computational and communication
costs against the required security margin.

G. Impact of Message Size on Signature Performance

The performance of signing and verification can depend
on the size of the message being processed. Figures 10a and
10b plot operation times against message size for selected
representative algorithms on macOS.

Key observations regarding scaling (relative to a 1KB
baseline):

• Hash-based Stability (SPHINCS+): Performance is
nearly independent of message size (scaling factors close
to 1.0), as the primary cost involves hashing the message
once initially. This makes it predictable for applications
involving large data blobs, like firmware updates.

• Lattice Scaling: ML-DSA and Falcon show noticeable
performance scaling, particularly for verification, as
message size increases. Verification times can increase
significantly when moving from 1 kB to 1MB messages.
Signing scales less dramatically. This is because the
message digest interacts with the core lattice operations.

• Classical Scaling: RSA and ECDSA verification also
scale with message size due to hashing, but the base times
are often lower for smaller messages. EdDSA (Ed25519)
shows noticeable scaling for signing large messages.

103 104 105 106

Message Size (bytes, log scale)

10−1

100

101

102

103

S
ig

n
in

g
T

im
e

(m
s,

lo
g

sc
a
le

)

Signing Time vs Message Size (MACOS)

Algorithm (Family)

ECDSA-384 (ECDSA)

ECDSA-521 (ECDSA)

EdDSA-256 (EdDSA)

Falcon-1024 (Falcon)

Falcon-512 (Falcon)

Falcon-padded-1024 (Falcon-padded)

Falcon-padded-512 (Falcon-padded)

MAYO-3 (Multivariate)

MAYO-5 (Multivariate)

ML-DSA-65 (ML-DSA)

ML-DSA-87 (ML-DSA)

RSA-2048 (RSA)

RSA-3072 (RSA)

SPHINCS+ (Hash-based)

SPHINCS+-SHAKE-256s-simple (Hash-based)

cross-rsdp-256-balanced (RSDP)

cross-rsdpg-256-small (RSDP)

a Signing time vs. message size on macOS

103 104 105 106

Message Size (bytes, log scale)

10−1

100

V
er

ifi
ca

ti
o
n

T
im

e
(m

s,
lo

g
sc

a
le

)

Verification Time vs Message Size (MACOS)

Algorithm (Family)

ECDSA-384 (ECDSA)

ECDSA-521 (ECDSA)

EdDSA-256 (EdDSA)

Falcon-1024 (Falcon)

Falcon-512 (Falcon)

Falcon-padded-1024 (Falcon-padded)

Falcon-padded-512 (Falcon-padded)

MAYO-3 (Multivariate)

MAYO-5 (Multivariate)

ML-DSA-65 (ML-DSA)

ML-DSA-87 (ML-DSA)

RSA-2048 (RSA)

RSA-3072 (RSA)

SPHINCS+ (Hash-based)

SPHINCS+-SHAKE-256s-simple (Hash-based)

cross-rsdp-256-balanced (RSDP)

cross-rsdpg-256-small (RSDP)

b Verification time vs. message size on macOS

Figure 10: Impact of message size on signature performance
(log scales). Selected algorithms across message sizes from 1
kB to 1 MB. SPHINCS+ stays almost flat because it hashes the
message only once, whereas lattice schemes, especially during
verification, grow with log (message size).

• Other PQC: Multivariate and RSDP schemes generally
show scaling similar to lattice schemes, as they also
involve hashing the message.

For CE applications frequently signing or verifying large data
blocks, the scaling behavior is a critical factor. Hash-based
schemes are advantageous here if their other overheads are
acceptable; otherwise, the scaling limits of other PQC schemes
must be considered.

H. Algorithm Family Comparisons

Aggregating results provides a high-level view of family
characteristics. Figure 11 compares KEM families based on
average performance and size on macOS (see also Table VII).

Figure 12 compares signature families (using 100 kB mes-
sages on macOS), with statistics summarized in Table VIII.
Lattice signatures (Falcon, ML-DSA) perform well overall.

11

Table VI: Impact of security level on average performance and size (macOS)

Ciphertext size (bytes) Decapsulation (ms) Encapsulation (ms) Key-generation (ms) Public-key size (bytes) Signature size (bytes) Signing (ms) Verification (ms)

Classical PQ Classical PQ Classical PQ Classical PQ Classical Classical PQ PQ Classical PQ Classical PQ Classical PQ
Security level KEM KEM KEM KEM KEM KEM KEM KEM KEM Sig KEM Sig Sig Sig Sig Sig Sig Sig

0 – – – – – – – – – 44.00 – – 64.00 – 0.38 – 0.31 –
1 91.00 3772.29 0.05 4.41 0.05 0.31 0.02 10.28 91.00 91.00 78008.86 687.62 70.00 8897.08 0.12 49.03 0.14 0.72
2 – 1039.00 – 0.07 – 0.04 – 1.40 – – 1158.00 1312.00 – 2420.00 – 0.45 – 0.33
3 120.00 6425.86 0.49 8.38 0.50 0.75 0.20 28.95 120.00 120.00 155481.86 486.00 103.00 23177.82 0.39 103.65 0.68 1.09
5 327.50 5966.09 3.25 27.41 0.20 1.00 153.22 103.77 356.00 356.00 632476.82 935.00 322.50 33098.62 3.37 81.80 0.33 1.19

Table VII: KEM family summary statistics (macOS)

Key-generation (ms) Encapsulation (ms) Decapsulation (ms) Public-key size (bytes) Cipher-text size (bytes)

Family mean std min max mean std min max mean std min max mean std min max mean std min max

Code-based 88.07 97.95 0.32 285.45 0.63 0.95 0.02 3.47 23.93 18.00 1.00 51.34 530 912.00 531 741.34 1 541 1 357 824 2 462.38 4 084.65 96 14 421
ECDH 0.14 0.11 0.02 0.21 0.34 0.25 0.05 0.50 0.33 0.25 0.05 0.49 123.00 33.60 91 158 123.00 33.60 91 158
FrodoKEM 1.16 1.18 0.16 3.25 1.39 1.28 0.25 3.68 1.36 1.28 0.24 3.66 15 589.33 5 323.73 9 616 21 520 15 698.67 5 327.32 9 720 21 632
ML-KEM 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.02 1 184.00 384.00 800 1 568 1 141.33 402.66 768 1 568
NTRU-Prime 1.40 – 1.40 1.40 0.04 – 0.04 0.04 0.07 – 0.07 0.07 1 158.00 – 1 158 1 158 1 039.00 – 1 039 1 039
RSA 204.22 173.27 56.84 395.10 0.11 0.06 0.06 0.17 4.17 2.63 1.73 6.96 422.00 128.00 294 550 384.00 128.00 256 512

10−2

10−1

100

101

102

T
im

e
(m

s,
lo

g
sc

a
le

)

Operation
Key Generation (ms)

Encapsulation (ms)

Decapsulation (ms)

Code-b
ased

FrodoKEM

ML-K
EM

NTRU-P
rim

e
RSA

ECDH

Algorithm Family

102

103

104

105

106

S
iz

e
(b

y
te

s,
lo

g
sc

a
le

)

Metric
Public Key Size (bytes)

Ciphertext Size (bytes)

KEM Family Comparison (MACOS)

Figure 11: KEM Family Comparison (MACOS). Top: Operation
Times (ms, Log Scale). Bottom: Communication Sizes (bytes,
Log Scale). ML-KEM shows excellent speed and moderate
size. Code-based schemes have large key sizes. FrodoKEM is
slower with larger sizes.

Hash-based SPHINCS+ stands out for its fast verification but
slow signing and large signature size. Multivariate MAYO has
competitive verification speed and small signatures but suffers
from slow signing. RSDP offers fast key generation but slow
signing/verification and very large signatures.

I. Deployment Recommendations for Consumer Electronics
Synthesizing these findings, we propose tailored PQC

recommendations for different CE categories in Table IX.
Key takeaways specifically for CE:
• Prioritize Lattice: For most common CE scenarios

needing a balance of speed, size, and security, the NIST-
standardized lattice schemes (ML-KEM, ML-DSA) and
finalists (Falcon) are currently the most practical PQC
choices.

• Constrained Bottlenecks: For very low-end devices,
execution time (especially on ARM Cortex-A or M series)
and communication/storage size are the primary PQC
adoption hurdles. ML-KEM-512 and Falcon-512 offer the
lowest overhead among robust PQC options. NTRU-Prime
is also efficient.

10−2

10−1

100

101

102

103

T
im

e
(m

s,
lo

g
sc

a
le

)

Operation
Key Generation (ms)

Signing (ms)

Verification (ms)

Falco
n

Falco
n-padded

Multi
va

ria
te

ML-D
SA

Hash
-based

RSDP
RSA

ECDSA

EdDSA

Algorithm Family

102

103

104

105

S
iz

e
(b

y
te

s,
lo

g
sc

a
le

)

Metric
Public Key Size (bytes)

Signature Size (bytes)

Signature Family Comparison (102,400 Bytes, MACOS)

Figure 12: Signature Family Comparison (100 kB Message,
MACOS). Top: Operation Times (ms, Log Scale). Bottom:
Communication Sizes (bytes, Log Scale). Falcon offers fast
verification and small signatures. ML-DSA provides balanced
performance and size. Hash-based has slow signing, fast
verification, and very large signatures. Multivariate shows slow
signing. RSDP has very large signatures.

• Firmware Signing Choice: For verifying large firmware
OTA updates where verification speed and security assur-
ance are key, but signing is done offline and signature size
is less critical than bandwidth during download, Hash-
based (SPHINCS+, especially ’f’ variants) is a strong
contender despite its signing slowness. Falcon is also
very good due to fast verification and smaller signatures.
ML-DSA offers a good balance.

• Avoid High Overheads Where Possible: Algorithms
like Code-based KEMs (Classic McEliece key size)
and FrodoKEM (software speed/size) present significant
integration challenges for typical CE unless specific
hardware support or system architectures mitigate these
issues. Large signature schemes (Hash-based, RSDP) may
be unsuitable for bandwidth-constrained applications.

The choice ultimately depends on a detailed analysis of the
specific CE device’s resources, use case requirements (latency
sensitivity, data volume, update frequency), and security

12

Table VIII: Signature family summary statistics (100 kB message, macOS)

Key-generation (ms) Signing (ms) Verification (ms) Public-key size (bytes) Signature size (bytes)

Family mean std min max mean std min max mean std min max mean std min max mean std min max

ECDSA 0.14 0.11 0.01 0.22 0.27 0.18 0.06 0.40 0.46 0.32 0.08 0.66 123.00 33.60 91 158 104.33 33.02 72 138
EdDSA 0.07 - 0.07 0.07 0.18 - 0.18 0.18 0.21 - 0.21 0.21 44.00 - 44 44 64.00 - 64 64
Falcon 6.79 4.97 3.28 10.31 0.27 0.07 0.22 0.32 0.13 0.01 0.12 0.14 1345.00 633.57 897 1793 963.50 436.28 655 1272
Falcon-padded 6.76 4.87 3.32 10.20 0.28 0.06 0.24 0.32 0.13 0.01 0.12 0.14 1345.00 633.57 897 1793 973.00 434.16 666 1280
Hash-based 29.58 31.50 0.64 88.63 293.90 293.88 15.45 799.04 1.16 0.54 0.50 2.07 48.00 13.64 32 64 26080.00 14653.83 7856 49856
ML-DSA 0.07 0.03 0.03 0.10 0.34 0.08 0.26 0.41 0.17 0.03 0.14 0.20 1952.00 640.00 1312 2592 3452.00 1110.43 2420 4627
Multivariate 0.24 0.23 0.05 0.57 0.73 0.62 0.27 1.61 0.22 0.12 0.13 0.38 3580.00 2029.05 1168 5488 479.00 290.32 180 838
RSA 209.79 182.93 54.97 411.65 4.30 2.68 1.83 7.16 0.14 0.05 0.09 0.20 422.00 128.00 294 550 384.00 128.00 256 512
RSDP 0.02 0.01 0.00 0.04 1.62 1.20 0.31 4.71 0.94 0.62 0.22 2.35 98.00 32.49 54 153 29338.11 18243.27 7956 76298

Table IX: Recommended post-quantum algorithms for common consumer-electronics classes

Class (typical devices) Recommended KEM(s) Recommended signature(s)

Low-power / highly constrained
(wearables, smart locks, BLE gad-
gets, MCUs)

ML-KEM-512 (primary); NTRU-Prime (sntrup761); hy-
brid ECDH-256 for backward compatibility

Falcon-512 (primary); ML-DSA-44 (if RAM allows);
Ed25519 (classical until full migration)

Moderately constrained (smart
speakers, TVs, home gateways)

ML-KEM-512/768 (primary); BIKE-L1/L3 or
HQC-128/192; ECDH-256/384 for hybrid roll-outs

ML-DSA-44/65; Falcon-512/1024; SPHINCS+ f ; MAYO;
Ed25519 / ECDSA-256/384

High-performance (smartphones,
laptops, game consoles)

ML-KEM-768/1024 (primary); BIKE-L3/L5,
HQC-192/256; FrodoKEM; Classic McEliece;
ECDH-384/521 (hybrid)

ML-DSA-65/87; Falcon-1024; SPHINCS+; MAYO;
Ed25519; ECDSA-384/521; RSDP

Notes. Bold items (ML-KEM, ML-DSA, Falcon, SPHINCS+) are NIST standards/finalists. Security-level mapping: L1 ≈ 512/44, L3 ≈ 768/65, L5 ≈ 1024/87.

Classical curves are listed only for transitional hybrid use.

lifetime needs.

VI. CONCLUSION

The impending threat of quantum computing necessitates
a proactive transition to post-quantum cryptography (PQC)
within the vast consumer electronics (CE) ecosystem. This
paper addressed this challenge by delivering a comprehensive
performance analysis of leading PQC algorithms across plat-
forms representative of diverse CE device capabilities, from
high-performance systems to resource-constrained proxies like
the Raspberry Pi 4.

Our quantitative evaluation confirmed that while PQC integra-
tion is feasible, it demands careful consideration of performance
trade-offs, which are significantly amplified on resource-limited
hardware typical in CE. The NIST-standardized lattice-based
schemes ML-KEM and ML-DSA, along with Falcon, emerged
as particularly compelling choices. They offer a practical
balance between computational efficiency and manageable
communication/storage overheads, crucial attributes for de-
ployment in a wide range of CE applications. Conversely, the
substantial key sizes of schemes like Classic McEliece and the
large signatures generated by hash-based SPHINCS+ present
tangible integration hurdles for bandwidth-sensitive or storage-
constrained CE devices, despite their respective security merits.
SPHINCS+ remains a strong option for specific use cases like
secure firmware verification where its slow signing and large
signature size are less critical than its high security assurance
and verification speed.

The primary contribution of this work lies in providing
empirical, cross-platform performance data and derived, spe-
cific deployment recommendations (summarized in Table IX)
tailored to different CE classes. These actionable insights
directly aid manufacturers, designers, and developers in se-
lecting appropriate PQC solutions based on concrete metrics
aligned with device constraints, security requirements, and
application contexts. By quantifying these critical performance

characteristics and trade-offs, this study provides a vital
foundation for navigating the complex migration towards
quantum-resistant security in consumer electronics, ensuring
the long-term trustworthiness of connected devices.

VII. FUTURE WORK

Building upon the analysis presented in this paper, several
avenues for future research are pertinent to advancing the
practical deployment of PQC in consumer electronics:

1) Microcontroller Benchmarking: Extending performance
evaluations to true microcontroller platforms (e.g., ARM
Cortex-M series) prevalent in low-power wearables and
IoT endpoints to assess feasibility and resource usage in
highly constrained environments.

2) Hardware Acceleration for CE: Investigating, designing,
and evaluating dedicated hardware accelerators for PQC
primitives (particularly lattice-based operations) suitable
for cost-effective integration into CE System-on-Chips
(SoCs) to mitigate performance overheads [53].

3) Energy Consumption Analysis: Conducting direct mea-
surements of energy consumption for PQC operations
on representative battery-powered CE hardware, moving
beyond execution time as a proxy to accurately model
battery life impact [54].

4) Hybrid Schemes in CE Contexts: Analyzing the per-
formance, overhead (code size, memory, latency), and
transitional complexities of deploying hybrid PQC/classi-
cal cryptographic schemes specifically within CE systems
and protocols [55].

5) Side-Channel Analysis and Mitigation for CE: Evalu-
ating the susceptibility of PQC implementations to side-
channel attacks (timing, power) on typical CE processors
and developing efficient, low-overhead countermeasures
appropriate for constrained devices [21].

6) Real-world CE Protocol Integration: Benchmarking
PQC algorithms integrated into actual CE communication

13

protocols (e.g., TLS 1.3 handshakes, Matter secure chan-
nel establishment, Bluetooth pairing) on representative
hardware to understand end-to-end performance impacts
and integration challenges.

7) Memory Footprint Investigation: Developing and apply-
ing reliable, cross-platform methodologies to accurately
measure and compare the static and dynamic RAM
footprint of different PQC implementations during crypto-
graphic operations on CE-relevant hardware and operating
systems.

Addressing these areas will further facilitate the secure and
efficient adoption of post-quantum cryptography across the
diverse landscape of consumer electronics.

REFERENCES

[1] V. Keränen, “Cryptographic algorithm benchmarking in mobile
devices,” Master’s thesis, V. Keränen, 2014. [Online]. Available:
https://oulurepo.oulu.fi/handle/10024/39404

[2] N. Bui and M. Zorzi, “Health care applications: a solution based on the
internet of things,” in Proceedings of the 4th International Symposium
on Applied Sciences in Biomedical and Communication Technologies.
Barcelona Spain: ACM, Oct. 2011, pp. 1–5.

[3] W. Stallings, Cryptography & Network Security GE. Pearson Australia
Pty Limited, 2017.

[4] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[5] M. Mosca and M. Piani, “Quantum threat timeline
report 2020,” Global Risk Insitute: https://globalriskinstitute.
org/publications/quantum-threat-timeline-report-2020, 2021. [On-
line]. Available: https://quantum-safe.ca/wp-content/uploads/2023/01/
2022-quantum-threat-timeline-report-dec.pdf

[6] E. Grumbling and M. Horowitz, Eds., Quantum Computing: Progress
and Prospects. Washington, D.C.: National Academies Press, Mar.
2019. [Online]. Available: https://www.nap.edu/catalog/25196

[7] D. Bernstein and T. Lange, “Post-quantum cryptography,” NATURE, vol.
549, no. 7671, pp. 188–194, Sep. 2017.

[8] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey,
J. Lichtinger, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson,
D. Smith-Tone, and Y.-K. Liu, “Status Report on the Third Round of the
NIST Post-Quantum Cryptography Standardization Process,” National
Institute of Standards and Technology, Tech. Rep. NIST Internal or
Interagency Report (NISTIR) 8413, Sep. 2022. [Online]. Available:
https://csrc.nist.gov/pubs/ir/8413/upd1/final

[9] National Institute of Standards and Technology (US), “Module-lattice-
based digital signature standard,” National Institute of Standards and
Technology (U.S.), Washington, D.C., Tech. Rep. NIST FIPS 204, Aug.
2024. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.204.pdf

[10] ——, “Stateless hash-based digital signature standard,” National
Institute of Standards and Technology (U.S.), Washington, D.C.,
Tech. Rep. NIST FIPS 205, Aug. 2024. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf

[11] C. Paquin, D. Stebila, and G. Tamvada, “Benchmarking Post-quantum
Cryptography in TLS,” in Post-Quantum Cryptography, J. Ding and J.-P.
Tillich, Eds. Cham: Springer International Publishing, 2020, vol. 12100,
pp. 72–91.

[12] D. Sikeridis, P. Kampanakis, and M. Devetsikiotis, “Post-quantum
authentication in TLS 1.3: a performance study,” Cryptology ePrint
Archive, 2020. [Online]. Available: https://eprint.iacr.org/2020/071

[13] K. Basu, D. Soni, M. Nabeel, and R. Karri, “Nist post-quantum
cryptography-a hardware evaluation study,” Cryptology ePrint Archive,
2019. [Online]. Available: https://eprint.iacr.org/2019/047

[14] M. Raavi, P. Chandramouli, S. Wuthier, X. Zhou, and S.-Y. Chang,
“Performance characterization of post-quantum digital certificates,” in
2021 International Conference on Computer Communications and
Networks (ICCCN). IEEE, 2021, pp. 1–9. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9522179/

[15] J.-A. Septien-Hernandez, M. Arellano-Vazquez, M. A. Contreras-Cruz,
and J.-P. Ramirez-Paredes, “A Comparative study of post-quantum
cryptosystems for Internet-of-Things applications,” Sensors, vol. 22,
no. 2, p. 489, 2022. [Online]. Available: https://www.mdpi.com/
1424-8220/22/2/489

[16] A. Kumar, C. Ottaviani, S. S. Gill, and R. Buyya, “Securing the future
internet of things with post-quantum cryptography,” SECURITY AND
PRIVACY, vol. 5, no. 2, p. e200, Mar. 2022, _eprint: 2206.10473.

[17] D. J. Bernstein, “Analyzing the complexity of reference post-quantum
software: the case of lattice-based KEMs,” Cryptology ePrint Archive,
2023. [Online]. Available: https://eprint.iacr.org/2023/1924

[18] G. B. Satrya, Y. M. Agus, and A. B. Mnaouer, “A comparative study of
post-quantum cryptographic algorithm implementations for secure and
efficient energy systems monitoring,” Electronics, vol. 12, no. 18, p. 3824,
2023. [Online]. Available: https://www.mdpi.com/2079-9292/12/18/3824

[19] T. Prantl, D. Prantl, L. Beierlieb, L. Iffländer, A. Dmitrienko, S. Kounev,
and C. Krupitzer, “Performance Evaluation for a Post-Quantum
Public-Key Cryptosystem,” in 2021 IEEE International Performance,
Computing, and Communications Conference (IPCCC). IEEE, 2021, pp.
1–7. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
9679412/

[20] A. S. Lakhan, “A Comparative Study on Post-Quantum Cryptographic
Digital Signature Algorithms: Network Performance, Key Robustness, and
Energy Consumption.” PhD Thesis, Carleton University, 2023. [Online].
Available: https://repository.library.carleton.ca/concern/etds/3197xn336

[21] G. Xin, J. Han, T. Yin, Y. Zhou, J. Yang, X. Cheng, and X. Zeng, “VPQC:
A domain-specific vector processor for post-quantum cryptography
based on RISC-V architecture,” IEEE transactions on circuits and
systems I: regular papers, vol. 67, no. 8, pp. 2672–2684, 2020. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9061149/

[22] T. Fritzmann, G. Sigl, and J. Sepúlveda, “RISQ-V: Tightly coupled
RISC-V accelerators for post-quantum cryptography,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, pp. 239–280, 2020.
[Online]. Available: https://tches.iacr.org/index.php/TCHES/article/view/
8683

[23] C. Pomerance, “A tale of two sieves,” Notices of the American
Mathematical Society, vol. 43, no. 12, pp. 1473–1485, 1996.

[24] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge university press, 2010.

[25] L. Grover, “A fast quantum mechanical algorithm for database search,”
in Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing - STOC ’96. ACM Press, 1996, pp. 212–219.

[26] M.-Z. Mina and E. Simion, “Information Security in the Quantum Era.
Threats to modern cryptography: Grover’s algorithm,” Cryptology ePrint
Archive, 2021. [Online]. Available: https://eprint.iacr.org/2021/1662

[27] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM, vol. 56, no. 6, pp. 1–40, Sep. 2009.

[28] V. Lyubashevsky, C. Peikert, and O. Regev, “A Toolkit for Ring-
LWE Cryptography,” in Advances in Cryptology – EUROCRYPT 2013,
D. Hutchison, T. Kanade, J. Kittler, T. Johansson, J. M. Kleinberg,
F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,
B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,
and P. Q. Nguyen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, vol. 7881, pp. 35–54.

[29] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-Kyber: a CCA-secure
module-lattice-based KEM,” in 2018 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 2018, pp. 353–367. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8406610/

[30] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehlé, “Crystals-dilithium: A lattice-based digital
signature scheme,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 238–268, 2018. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/839

[31] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang,
“Falcon: Fast-Fourier lattice-based compact signatures over NTRU,”
Submission to the NIST’s post-quantum cryptography standardization
process, vol. 36, no. 5, pp. 1–75, 2018. [Online]. Available:
https://www.di.ens.fr/~prest/Publications/falcon.pdf

[32] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and
C. Van Vredendaal, “NTRU Prime.” IACR Cryptol. ePrint
Arch., vol. 2016, p. 461, 2016. [Online]. Available:
http://hyperelliptic.org/tanja/vortraege/caen-ntruprime.pdf

[33] E. Berlekamp, R. McEliece, and H. Van Tilborg, “On the inherent
intractability of certain coding problems (corresp.),” IEEE Transactions

https://oulurepo.oulu.fi/handle/10024/39404
https://quantum-safe.ca/wp-content/uploads/2023/01/2022-quantum-threat-timeline-report-dec.pdf
https://quantum-safe.ca/wp-content/uploads/2023/01/2022-quantum-threat-timeline-report-dec.pdf
https://www.nap.edu/catalog/25196
https://csrc.nist.gov/pubs/ir/8413/upd1/final
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf
https://eprint.iacr.org/2020/071
https://eprint.iacr.org/2019/047
https://ieeexplore.ieee.org/abstract/document/9522179/
https://www.mdpi.com/1424-8220/22/2/489
https://www.mdpi.com/1424-8220/22/2/489
https://eprint.iacr.org/2023/1924
https://www.mdpi.com/2079-9292/12/18/3824
https://ieeexplore.ieee.org/abstract/document/9679412/
https://ieeexplore.ieee.org/abstract/document/9679412/
https://repository.library.carleton.ca/concern/etds/3197xn336
https://ieeexplore.ieee.org/abstract/document/9061149/
https://tches.iacr.org/index.php/TCHES/article/view/8683
https://tches.iacr.org/index.php/TCHES/article/view/8683
https://eprint.iacr.org/2021/1662
https://ieeexplore.ieee.org/abstract/document/8406610/
https://tches.iacr.org/index.php/TCHES/article/view/839
https://www.di.ens.fr/~prest/Publications/falcon.pdf
http://hyperelliptic.org/tanja/vortraege/caen-ntruprime.pdf

14

on Information theory, vol. 24, no. 3, pp. 384–386, 2003. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/1055873/

[34] R. J. McEliece, “A public-key cryptosystem based on algebraic,”
Coding Thv, vol. 4244, no. 1978, pp. 114–116, 1978. [Online].
Available: https://ntrs.nasa.gov/api/citations/19780016269/downloads/
19780016269.pdf#page=123

[35] M. Baldi, P. Santini, and G. Cancellieri, “Post-quantum cryptography
based on codes: State of the art and open challenges,” in 2017 AEIT
International Annual Conference. IEEE, 2017, pp. 1–6. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8240549/

[36] N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C.
Deneuville, P. Gaborit, S. Ghosh, S. Gueron, and T. Güneysu,
“BIKE: bit flipping key encapsulation,” 2022. [Online]. Available:
https://inria.hal.science/hal-04278509/document

[37] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C.
Deneuville, P. Gaborit, E. Persichetti, G. Zémor, and I. C. Bourges,
“Hamming quasi-cyclic (HQC),” NIST PQC Round, vol. 2, no. 4, p. 13,
2018. [Online]. Available: https://pqc-hqc.org/doc/hqc-specification_
2023-04-30.pdf

[38] L. Lamport, “Constructing digital signatures from a one way function,”
1979. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/constructing-digital-signatures-one-way-function/

[39] J. Buchmann, E. Dahmen, A. Hülsing, S. Ereth, and M. Rückert, “On
the Security of the Winternitz One-Time Signature Scheme,” in Progress
in Cryptology – AFRICACRYPT 2011, A. Nitaj and D. Pointcheval, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, vol. 6737, pp.
363–378.

[40] A. T. Hülsing, D. Butin, S.-L. Gazdag, J. Rijneveld, and A. Mohaisen,
“XMSS: extended hash-based signatures. RFC 8391,” Request for
Comments, 2018.

[41] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and
P. Schwabe, “The SPHINCS+ Signature framework,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security. London United Kingdom: ACM, Nov. 2019, pp. 2129–2146.

[42] M. Kudinov, A. Hülsing, E. Ronen, and E. Yogev, “SPHINCS+ C:
Compressing SPHINCS+ with (almost) no cost,” Cryptology ePrint
Archive, 2022. [Online]. Available: https://eprint.iacr.org/2022/778

[43] M. R. Garey and D. S. Johnson, Computers and intractability.
wh freeman New York, 2002, vol. 29. [Online]. Available: https:
//bohr.wlu.ca/hfan/cp412/references/ChapterOne.pdf

[44] J. Ding, J. E. Gower, and D. S. Schmidt, Multivariate public key
cryptosystems. Springer Science & Business Media, 2006, vol. 25.

[45] W. Beullens, “Breaking Rainbow Takes a Weekend on a Laptop,” in
Advances in Cryptology – CRYPTO 2022, Y. Dodis and T. Shrimpton, Eds.
Cham: Springer Nature Switzerland, 2022, vol. 13508, pp. 464–479.

[46] ——, “MAYO: Practical Post-quantum Signatures from Oil-and-Vinegar
Maps,” in Selected Areas in Cryptography, R. AlTawy and A. Hülsing,
Eds. Cham: Springer International Publishing, 2022, vol. 13203, pp.
355–376.

[47] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo,
B. Hess, A. Jalili, B. Koziel, B. LaMacchia, and P. Longa, “SIKE:
Supersingular isogeny key encapsulation,” 2017. [Online]. Available:
https://hal.science/hal-02171951/

[48] W. Castryck and T. Decru, “An Efficient Key Recovery Attack on SIDH,”
in Advances in Cryptology – EUROCRYPT 2023, C. Hazay and M. Stam,
Eds. Cham: Springer Nature Switzerland, 2023, vol. 14008, pp. 423–447.

[49] H. Singh, “Code based Cryptography: Classic McEliece,” May 2020,
arXiv: 1907.12754.

[50] J. Ding, “A New Variant of the Matsumoto-Imai Cryptosystem through
Perturbation,” in Public Key Cryptography – PKC 2004, G. Goos,
J. Hartmanis, J. Van Leeuwen, F. Bao, R. Deng, and J. Zhou, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, vol. 2947, pp.
305–318.

[51] F. Aydin, A. Aysu, M. Tiwari, A. Gerstlauer, and M. Orshansky, “Hori-
zontal Side-Channel Vulnerabilities of Post-Quantum Key Exchange and
Encapsulation Protocols,” ACM Transactions on Embedded Computing
Systems, vol. 20, no. 6, pp. 1–22, Nov. 2021.

[52] D. Stebila and M. Mosca, “Post-quantum Key Exchange for the Internet
and the Open Quantum Safe Project,” in Selected Areas in Cryptography
– SAC 2016, R. Avanzi and H. Heys, Eds. Cham: Springer International
Publishing, 2017, vol. 10532, pp. 14–37.

[53] U. Banerjee, S. Das, and A. P. Chandrakasan, “Accelerating
post-quantum cryptography using an energy-efficient TLS crypto-
processor,” in 2020 IEEE International Symposium on Circuits
and Systems (ISCAS). IEEE, 2020, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9180550/

[54] C. A. Roma, C.-E. A. Tai, and M. A. Hasan, “Energy efficiency analysis
of post-quantum cryptographic algorithms,” IEEE Access, vol. 9, pp.
71 295–71 317, 2021. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/9424003/

[55] D. Joseph, R. Misoczki, M. Manzano, J. Tricot, F. D.
Pinuaga, O. Lacombe, S. Leichenauer, J. Hidary, P. Venables,
and R. Hansen, “Transitioning organizations to post-quantum
cryptography,” Nature, vol. 605, no. 7909, pp. 237–243, 2022. [Online].
Available: https://idp.nature.com/authorize/casa?redirect_uri=https://www.
nature.com/articles/s41586-022-04623-2

https://ieeexplore.ieee.org/abstract/document/1055873/
https://ntrs.nasa.gov/api/citations/19780016269/downloads/19780016269.pdf#page=123
https://ntrs.nasa.gov/api/citations/19780016269/downloads/19780016269.pdf#page=123
https://ieeexplore.ieee.org/abstract/document/8240549/
https://inria.hal.science/hal-04278509/document
https://pqc-hqc.org/doc/hqc-specification_2023-04-30.pdf
https://pqc-hqc.org/doc/hqc-specification_2023-04-30.pdf
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://eprint.iacr.org/2022/778
https://bohr.wlu.ca/hfan/cp412/references/ChapterOne.pdf
https://bohr.wlu.ca/hfan/cp412/references/ChapterOne.pdf
https://hal.science/hal-02171951/
https://ieeexplore.ieee.org/abstract/document/9180550/
https://ieeexplore.ieee.org/abstract/document/9424003/
https://ieeexplore.ieee.org/abstract/document/9424003/
https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/s41586-022-04623-2
https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/s41586-022-04623-2

15

APPENDIX A
DETAILED PERFORMANCE AND RATIO ANALYSIS

This appendix provides supplementary data supporting the analysis presented in the main body of the paper. The goal
is to offer a granular view of individual algorithm performance and quantify the performance differences observed across
the evaluated hardware platforms. It includes detailed per-algorithm performance metrics measured on the macOS reference
platform, facilitating direct comparisons between specific parameter sets and algorithm variants. Furthermore, it presents platform
performance ratio comparisons, highlighting the relative speed differences between the Ubuntu desktop and Raspberry Pi
constrained platforms compared to the macOS reference.

A. Detailed Performance Tables (macOS Reference Platform)

The following tables detail the performance characteristics of each tested cryptographic algorithm on the macOS M4 reference
platform. This platform serves as a baseline representing a modern, relatively high-performance consumer device. Understanding
performance on this reference platform is crucial for comparing the inherent computational costs of different algorithms before
considering the impact of resource constraints.

Table X presents the detailed performance and size metrics for all evaluated Key Encapsulation Mechanisms (KEMs). This
includes mean execution times (in milliseconds) for the three core KEM operations: key generation, encapsulation (generating a
shared secret and its corresponding ciphertext), and decapsulation (recovering the shared secret from the ciphertext). It also lists
the associated communication and storage overheads: the size (in bytes) of the public key required by the encapsulator, the size
of the ciphertext transmitted, and the size of the resulting shared secret. These metrics allow for a fine-grained comparison of
KEM candidates based on both speed and size for various security levels (NIST security levels 1, 2, 3, 5 where applicable).
Note the inclusion of both standard (’f’) and alternative Classic McEliece implementations where available in the underlying
benchmark suite.

Table X: Detailed KEM performance and size metrics (macOS)

Algorithm Family Type Sec. Level Key-gen (ms) Encaps. (ms) Decaps. (ms) Pub-key (B) Ciphertext (B) Shared key (B)

BIKE-L1 Code-based PQ 1 4.19 0.22 3.22 1,541 1,573 32
Classic-McEliece-348864 Code-based PQ 1 44.75 0.02 12.81 261,120 96 32
Classic-McEliece-348864f Code-based PQ 1 21.71 0.02 12.71 261,120 96 32
HQC-128 Code-based PQ 1 0.32 0.65 1.00 2,249 4,433 64
BIKE-L3 Code-based PQ 3 12.90 0.67 10.04 3,083 3,115 32
Classic-McEliece-460896 Code-based PQ 3 125.59 0.05 21.64 524,160 156 32
Classic-McEliece-460896f Code-based PQ 3 61.03 0.05 21.57 524,160 156 32
HQC-192 Code-based PQ 3 0.96 1.92 2.90 4,522 8,978 64
BIKE-L5 Code-based PQ 5 32.26 1.67 25.04 5,122 5,154 32
Classic-McEliece-6688128 Code-based PQ 5 264.86 0.11 41.80 1,044,992 208 32
Classic-McEliece-6688128f Code-based PQ 5 99.29 0.11 41.57 1,044,992 208 32
Classic-McEliece-6960119 Code-based PQ 5 249.89 0.43 40.48 1,047,319 194 32
Classic-McEliece-6960119f Code-based PQ 5 98.21 0.42 40.37 1,047,319 194 32
Classic-McEliece-8192128 Code-based PQ 5 285.45 0.12 51.34 1,357,824 208 32
Classic-McEliece-8192128f Code-based PQ 5 105.91 0.11 51.09 1,357,824 208 32
HQC-256 Code-based PQ 5 1.76 3.47 5.28 7,245 14,421 64
FrodoKEM-640-AES FrodoKEM PQ 1 0.16 0.25 0.24 9,616 9,720 16
FrodoKEM-640-SHAKE FrodoKEM PQ 1 0.81 1.02 0.90 9,616 9,720 16
FrodoKEM-976-AES FrodoKEM PQ 3 0.33 0.49 0.48 15,632 15,744 24
FrodoKEM-976-SHAKE FrodoKEM PQ 3 1.81 2.04 2.02 15,632 15,744 24
FrodoKEM-1344-AES FrodoKEM PQ 5 0.57 0.85 0.83 21,520 21,632 32
FrodoKEM-1344-SHAKE FrodoKEM PQ 5 3.25 3.68 3.66 21,520 21,632 32
ML-KEM-512 ML-KEM PQ 1 0.01 0.01 0.01 800 768 32
ML-KEM-768 ML-KEM PQ 3 0.01 0.01 0.01 1,184 1,088 32
ML-KEM-1024 ML-KEM PQ 5 0.01 0.01 0.02 1,568 1,568 32
sntrup761 NTRU-Prime PQ 2 1.40 0.04 0.07 1,158 1,039 32
ECDH-256 ECDH Classical 1 0.02 0.05 0.05 91 91 32
ECDH-384 ECDH Classical 3 0.20 0.50 0.49 120 120 48
ECDH-521 ECDH Classical 5 0.21 0.46 0.46 158 158 66
RSA-2048 RSA Classical 1 56.84 0.06 1.73 294 256 32
RSA-3072 RSA Classical 3 160.74 0.11 3.84 422 384 32
RSA-4096 RSA Classical 5 395.10 0.17 6.96 550 512 32

Table XI provides similar detailed metrics for the evaluated digital signature schemes on the macOS platform. It shows the
mean key generation time and the public key size. Crucially, it breaks down performance for the core signature operations
(signing and verification) across different message sizes: 1 kB, 10 kB, 100 kB, and 1MB (1024 kB). This allows analysis of
how algorithm performance scales with the amount of data being signed or verified, a critical factor for applications like
secure boot or firmware updates. The table also includes the resulting signature size for each algorithm and message size
combination, although for many schemes (like ML-DSA, Falcon, SPHINCS+), the signature size is independent of the message
size after initial hashing. This comprehensive data allows for evaluating trade-offs between key size, signature size, signing
speed, verification speed, and their scaling behavior with message payload.

16

Table XI: Detailed signature performance and size metrics versus message size (macOS)

Alg. Family Type Sec. Key-gen Pub. Sig-1K Sig-10K Sig-100K Sig-1M Sign-1K Sign-10K Sign-100K Sign-1M Ver-1K Ver-10K Ver-100K Ver-1M

Falcon-512 Falcon PQ 1 3.28 897 655 658 655 656 0.11 0.12 0.22 1.23 0.02 0.03 0.12 1.08
Falcon-1024 Falcon PQ 5 10.31 1 793 1 273 1 272 1 272 1 274 0.21 0.22 0.32 1.27 0.04 0.05 0.14 1.09
Falcon-pad-512 Falcon-pad PQ 1 3.32 897 666 666 666 666 0.11 0.12 0.24 1.44 0.02 0.03 0.12 1.08
Falcon-pad-1024 Falcon-pad PQ 5 10.20 1 793 1 280 1 280 1 280 1 280 0.21 0.22 0.32 1.27 0.04 0.05 0.14 1.09
SPHINCS+-S2-128f Hash PQ 1 0.64 32 17 088 17 088 17 088 17 088 15.05 15.10 15.45 18.56 0.91 0.93 1.09 2.70
SPHINCS+-S2-128s Hash PQ 1 41.09 32 7 856 7 856 7 856 7 856 310.81 310.37 310.99 312.37 0.32 0.33 0.50 2.11
SPHINCS+-S2-192f Hash PQ 3 0.95 48 35 664 35 664 35 664 35 664 24.61 24.68 24.85 26.89 1.34 1.35 1.46 2.49
SPHINCS+-S2-192s Hash PQ 3 59.60 48 16 224 16 224 16 224 16 224 553.84 561.00 559.74 556.11 0.48 0.49 0.60 1.66
SPHINCS+-S2-256f Hash PQ 5 2.45 64 49 856 49 856 49 856 49 856 50.66 50.50 50.69 52.71 1.36 1.37 1.47 2.52
SPHINCS+-S2-256s Hash PQ 5 39.47 64 29 792 29 792 29 792 29 792 489.49 489.74 492.98 494.28 0.68 0.71 0.81 1.88
SPHINCS+-SK-128f Hash PQ 1 0.96 32 17 088 17 088 17 088 17 088 21.04 21.21 21.30 23.16 1.26 1.28 1.36 2.33
SPHINCS+-SK-128s Hash PQ 1 57.65 32 7 856 7 856 7 856 7 856 438.88 445.07 442.28 446.72 0.44 0.47 0.56 1.57
SPHINCS+-SK-192f Hash PQ 3 1.38 48 35 664 35 664 35 664 35 664 35.87 36.06 36.51 39.40 1.96 1.95 2.07 3.20
SPHINCS+-SK-192s Hash PQ 3 88.63 48 16 224 16 224 16 224 16 224 800.78 798.61 799.04 800.76 0.68 0.69 0.79 1.77
SPHINCS+-SK-256f Hash PQ 5 3.68 64 49 856 49 856 49 856 49 856 73.51 73.70 73.86 75.82 1.96 1.97 2.07 3.05
SPHINCS+-SK-256s Hash PQ 5 58.42 64 29 792 29 792 29 792 29 792 698.14 698.43 699.10 702.15 0.98 0.98 1.08 2.09
ML-DSA-44 ML-DSA PQ 2 0.03 1 312 2 420 2 420 2 420 2 420 0.16 0.16 0.26 1.21 0.04 0.05 0.14 1.10
ML-DSA-65 ML-DSA PQ 3 0.07 1 952 3 309 3 309 3 309 3 309 0.26 0.27 0.36 1.31 0.06 0.07 0.17 1.12
ML-DSA-87 ML-DSA PQ 5 0.10 2 592 4 627 4 627 4 627 4 627 0.31 0.31 0.41 1.41 0.10 0.11 0.20 1.21
MAYO-1 Multivar. PQ 1 0.05 1 168 321 321 321 321 0.17 0.18 0.27 1.23 0.04 0.05 0.14 1.10
MAYO-2 Multivar. PQ 1 0.15 5 488 180 180 180 180 0.24 0.25 0.34 1.28 0.03 0.04 0.13 1.08
MAYO-3 Multivar. PQ 3 0.20 2 656 577 577 577 577 0.60 0.60 0.70 1.64 0.12 0.13 0.23 1.17
MAYO-5 Multivar. PQ 5 0.57 5 008 838 838 838 838 1.51 1.52 1.61 2.56 0.28 0.29 0.38 1.33
c-rsdp-128-bal RSDP PQ 1 0.01 77 12 912 12 912 12 912 12 912 0.63 0.63 0.71 1.50 0.36 0.36 0.44 1.23
c-rsdp-128-fast RSDP PQ 1 0.01 77 19 152 19 152 19 152 19 152 0.35 0.35 0.44 1.22 0.20 0.20 0.29 1.06
c-rsdp-128-small RSDP PQ 1 0.01 77 10 080 10 080 10 080 10 080 2.32 2.34 2.40 3.21 1.32 1.34 1.41 2.20
c-rsdp-192-bal RSDP PQ 3 0.02 115 28 222 28 222 28 222 28 222 1.41 1.40 1.50 2.47 0.76 0.76 0.86 1.83
c-rsdp-192-fast RSDP PQ 3 0.02 115 42 682 42 682 42 682 42 682 0.78 0.79 0.91 1.84 0.44 0.45 0.56 1.51
c-rsdp-192-small RSDP PQ 3 0.02 115 23 642 23 642 23 642 23 642 3.29 3.29 3.38 4.36 1.73 1.74 1.83 2.81
c-rsdp-256-bal RSDP PQ 5 0.04 153 51 056 51 056 51 056 51 056 2.47 2.48 2.59 3.57 1.24 1.25 1.36 2.33
c-rsdp-256-fast RSDP PQ 5 0.04 153 76 298 76 298 76 298 76 298 1.52 1.51 1.62 2.59 0.86 0.86 0.96 1.94
c-rsdp-256-small RSDP PQ 5 0.04 153 43 592 43 592 43 592 43 592 4.64 4.78 4.71 5.66 2.26 2.33 2.35 3.31
c-rsdpg-128-bal RSDP-G PQ 1 0.00 54 9 236 9 236 9 236 9 236 0.45 0.45 0.53 1.34 0.26 0.26 0.34 1.14
c-rsdpg-128-fast RSDP-G PQ 1 0.00 54 12 472 12 472 12 472 12 472 0.23 0.24 0.31 1.10 0.13 0.14 0.22 1.01
c-rsdpg-128-small RSDP-G PQ 1 0.00 54 7 956 7 956 7 956 7 956 1.58 1.58 1.65 2.43 0.90 0.91 0.98 1.76
c-rsdpg-192-bal RSDP-G PQ 3 0.01 83 23 380 23 380 23 380 23 380 0.60 0.61 0.70 1.65 0.36 0.38 0.47 1.42
c-rsdpg-192-fast RSDP-G PQ 3 0.01 83 27 404 27 404 27 404 27 404 0.46 0.47 0.57 1.51 0.28 0.29 0.39 1.34
c-rsdpg-192-small RSDP-G PQ 3 0.01 83 18 188 18 188 18 188 18 188 2.17 2.17 2.26 3.22 1.37 1.38 1.47 2.42
c-rsdpg-256-bal RSDP-G PQ 5 0.01 106 40 134 40 134 40 134 40 134 1.01 1.03 1.11 2.07 0.61 0.62 0.71 1.68
c-rsdpg-256-fast RSDP-G PQ 5 0.01 106 48 938 48 938 48 938 48 938 0.77 0.78 0.87 1.85 0.48 0.49 0.58 1.55
c-rsdpg-256-small RSDP-G PQ 5 0.01 106 32 742 32 742 32 742 32 742 2.76 2.78 2.86 3.81 1.65 1.67 1.76 2.72
ECDSA-256 ECDSA C 1 0.01 91 70 70 72 70 0.06 0.03 0.06 0.34 0.05 0.06 0.08 0.36
ECDSA-384 ECDSA C 3 0.20 120 103 103 103 102 0.30 0.31 0.34 0.63 0.59 0.60 0.63 0.91
ECDSA-521 ECDSA C 5 0.22 158 138 139 138 138 0.36 0.36 0.40 0.71 0.61 0.61 0.66 0.96
Ed25519 EdDSA C 0 0.07 44 64 64 64 64 0.07 0.08 0.18 1.21 0.15 0.16 0.21 0.71
RSA-2048 RSA C 1 54.97 294 256 256 256 256 1.79 1.79 1.83 2.10 0.06 0.06 0.09 0.39
RSA-3072 RSA C 3 162.76 422 384 384 384 384 3.88 3.89 3.92 4.23 0.10 0.11 0.13 0.43
RSA-4096 RSA C 5 411.65 550 512 512 512 512 7.00 7.09 7.16 7.45 0.16 0.17 0.20 0.50

B. Platform Performance Ratios

To quantify the performance differences attributable to hardware and potentially underlying software library optimizations
between platforms, we calculated performance ratios relative to the macOS reference platform (macOS M4 ARM). A ratio
greater than 1 indicates that the comparison platform (Ubuntu Intel x86 or Raspberry Pi 4 ARM Cortex-A72) is slower than
macOS for that specific operation and algorithm family. Conversely, a ratio less than 1 indicates the comparison platform was
faster. These ratios help isolate the impact of the platform itself from the inherent cost of the cryptographic algorithm.

1) KEM Performance Ratios: Figures 13a and 13b visually represent the distribution of these performance ratios using
box plots for KEM operations (Key Generation, Encapsulation, Decapsulation). Figure 13a compares the Ubuntu desktop
performance to macOS, while Figure 13b compares the resource-constrained Raspberry Pi to macOS. The plots are grouped by
algorithm family to reveal potential family-specific sensitivities to platform changes. The logarithmic scale emphasizes the
magnitude of the slowdowns observed, particularly on the Raspberry Pi.

Table XII provides a statistical summary (mean, median, min, max) of these performance ratios for each algorithm family
and operation, complementing the visual representation in the figures. This allows for a more quantitative assessment of the
average, typical, and extreme performance differences observed between the platforms for each family.

Table XII: Summary of KEM performance ratios relative to macOS

Key-generation Encapsulation Decapsulation

Family Type Platform mean med min max mean med min max mean med min max

Code-based PQ Raspberry 39.94 34.90 10.14 139.27 36.98 40.24 15.96 49.73 18.81 12.41 12.23 47.67
Code-based PQ Ubuntu 1.23 0.95 0.03 4.34 1.75 1.89 0.08 4.37 0.50 0.00 0.00 4.33

ECDH C Raspberry 11.60 12.53 8.40 13.88 13.92 14.77 8.49 18.50 14.10 14.70 8.61 18.97
ECDH C Ubuntu 0.66 0.60 0.53 0.84 0.81 0.62 0.61 1.20 0.82 0.63 0.61 1.22

FrodoKEM PQ Raspberry 187.74 169.85 21.04 391.65 128.71 112.88 18.82 264.22 132.35 116.22 20.88 269.18
FrodoKEM PQ Ubuntu 1.19 1.17 0.90 1.52 1.06 1.05 0.84 1.30 1.07 1.08 0.84 1.28
ML-KEM PQ Raspberry 48.25 48.20 47.96 48.61 51.09 50.98 50.88 51.41 51.12 51.09 50.86 51.39
ML-KEM PQ Ubuntu 1.41 1.47 1.28 1.48 1.33 1.38 1.22 1.39 1.05 1.06 0.99 1.10

NTRU-Prime PQ Raspberry 27.63 27.63 27.63 27.63 34.99 34.99 34.99 34.99 37.75 37.75 37.75 37.75
NTRU-Prime PQ Ubuntu 0.14 0.14 0.14 0.14 0.36 0.36 0.36 0.36 0.22 0.22 0.22 0.22

RSA C Raspberry 23.00 22.70 19.93 26.37 12.90 12.65 11.30 14.76 14.26 14.29 11.48 17.00
RSA C Ubuntu 0.81 0.83 0.63 0.96 0.87 0.88 0.71 1.02 0.30 0.30 0.29 0.31

17

Code-b
ased

FrodoKEM

ML-K
EM

NTRU-P
rim

e
RSA

ECDH

Algorithm Family

10−2

10−1

100

R
a
ti

o
(U

B
U

N
T

U
T

im
e

/
M

A
C

O
S

T
im

e,
lo

g
sc

a
le

)
KEM Performance Ratio (UBUNTU / MACOS)

Operation
Key Generation Ratio

Encapsulation Ratio

Decapsulation Ratio

a Ubuntu / macOS

Code-b
ased

FrodoKEM

ML-K
EM

NTRU-P
rim

e
RSA

ECDH

Algorithm Family

100

101

102

R
a
ti

o
(R

A
S
P

B
E

R
R

Y
T

im
e

/
M

A
C

O
S

T
im

e,
lo

g
sc

a
le

)

KEM Performance Ratio (RASPBERRY / MACOS)

Operation
Key Generation Ratio

Encapsulation Ratio

Decapsulation Ratio

b Raspberry Pi / macOS

Figure 13: KEM performance ratios relative to the macOS reference platform (log scale). Ratios > 1 mean the comparison
platform is slower.

2) Signature Performance Ratios: Similarly, Figures 14a and 14b illustrate the performance ratios for signature operations
(Key Generation, Signing, Verification) relative to macOS. These plots use the 100 kB message size results as a representative
example to show the platform impact on signing and verification for a moderately sized payload. Again, the ratios highlight the
performance difference between Ubuntu/macOS and Raspberry Pi/macOS, grouped by signature algorithm family.

Table XIII provides the corresponding statistical summary of these signature performance ratios for the 100 kB message case.
This table quantifies the average, median, and range of slowdown factors observed on Ubuntu and Raspberry Pi compared to
macOS for key generation, signing, and verification across different signature families. Note that while these ratios are shown
for the 100 kB message size, similar analyses for other message sizes (available in the project repository) confirm the general
trends, although the exact ratio values may differ due to the message size scaling behavior discussed in the main text.

Falco
n

Falco
n-padded

Multi
va

ria
te

ML-D
SA

Hash
-based

RSDP
RSA

ECDSA

EdDSA

Algorithm Family

10−2

10−1

100

R
a
ti

o
(U

B
U

N
T

U
T

im
e

/
M

A
C

O
S

T
im

e,
lo

g
sc

a
le

)

Signature Performance Ratio (UBUNTU / MACOS, 102,400 Bytes)

Operation
Key Generation Ratio

Signing Ratio

Verification Ratio

a Ubuntu / macOS

Falco
n

Falco
n-padded

Multi
va

ria
te

ML-D
SA

Hash
-based

RSDP
RSA

ECDSA

EdDSA

Algorithm Family

100

101

102

R
a
ti

o
(R

A
S
P

B
E

R
R

Y
T

im
e

/
M

A
C

O
S

T
im

e,
lo

g
sc

a
le

)

Signature Performance Ratio (RASPBERRY / MACOS, 102,400 Bytes)

Operation
Key Generation Ratio

Signing Ratio

Verification Ratio

b Raspberry Pi / macOS

Figure 14: Signature performance ratios relative to the macOS reference platform for a 100 kB message (log scale). Ratios > 1
mean the comparison platform is slower.

18

Table XIII: Summary of signature performance ratios relative to macOS (100 kB message)

Key-generation Signing Verification

Family Type Platform mean med min max mean med min max mean med min max

ECDSA C Raspberry 13.68 12.35 8.56 20.13 23.21 17.39 13.78 38.46 21.28 16.73 11.51 35.59
ECDSA C Ubuntu 0.76 0.61 0.52 1.15 1.01 0.75 0.73 1.55 0.99 0.71 0.69 1.57
EdDSA C Raspberry 4.90 4.90 4.90 4.90 15.10 15.10 15.10 15.10 9.99 9.99 9.99 9.99
EdDSA C Ubuntu 0.42 0.42 0.42 0.42 1.52 1.52 1.52 1.52 1.04 1.04 1.04 1.04
Falcon PQ Raspberry 16.14 16.14 15.39 16.89 18.96 18.96 18.74 19.18 19.25 19.25 18.91 19.60
Falcon PQ Ubuntu 1.52 1.52 1.47 1.56 1.77 1.77 1.76 1.77 1.98 1.98 1.97 1.99

Falcon-padded PQ Raspberry 16.14 16.14 16.02 16.26 18.19 18.19 17.27 19.11 19.25 19.25 19.00 19.49
Falcon-padded PQ Ubuntu 1.51 1.51 1.48 1.53 1.70 1.70 1.63 1.78 1.98 1.98 1.97 2.00

Hash-based PQ Raspberry 263.84 23.74 0.26 2275.70 112.98 22.49 0.66 864.97 24.71 20.40 6.72 67.98
Hash-based PQ Ubuntu 4.59 0.44 0.00 39.64 2.10 0.48 0.01 15.93 0.77 0.70 0.19 1.91
ML-DSA PQ Raspberry 18.29 18.01 17.45 19.42 19.06 18.86 18.44 19.87 19.26 19.23 19.05 19.51
ML-DSA PQ Ubuntu 0.67 0.67 0.64 0.69 0.88 0.83 0.79 1.04 1.46 1.47 1.31 1.61

Multivariate PQ Raspberry 51.29 53.38 42.61 55.81 36.43 35.97 31.93 41.84 41.96 40.33 32.22 54.97
Multivariate PQ Ubuntu 0.22 0.22 0.18 0.25 0.67 0.68 0.35 0.96 1.34 1.39 0.85 1.73

RSA C Raspberry 23.00 23.02 18.73 27.27 14.43 14.52 11.97 16.81 23.19 22.88 18.89 27.80
RSA C Ubuntu 0.80 0.82 0.66 0.92 0.32 0.32 0.32 0.33 0.89 0.88 0.74 1.05

RSDP PQ Raspberry 21.23 20.30 17.94 27.78 17.54 17.83 15.33 19.75 17.91 18.07 16.48 19.89
RSDP PQ Ubuntu 1.48 1.45 1.17 1.85 1.13 1.13 0.93 1.38 1.29 1.31 1.14 1.47

	Introduction
	Related Work
	Background
	Quantum Computing Threats
	Mathematical Foundations of Post-Quantum Cryptography
	Lattice-Based Cryptography
	Code-Based Cryptography
	Hash-Based Signatures
	Multivariate Cryptography
	Isogeny-Based Cryptography

	Comparison of Post-Quantum Approaches

	Methodology
	Experimental Setup
	Benchmarking Framework and Libraries
	Data Consolidation and Naming Standardization
	Evaluated Algorithms
	Performance Metrics

	Results and Analysis
	Performance Comparison Across Platforms
	Desktop Platform Comparison (macOS vs. Ubuntu)
	Performance on Resource-Constrained Devices (Raspberry Pi)
	Resource Requirement Trade-offs
	Communication Overhead
	Performance Across Different Security Levels
	Impact of Message Size on Signature Performance
	Algorithm Family Comparisons
	Deployment Recommendations for Consumer Electronics

	Conclusion
	Future Work
	References
	Appendix A: Detailed Performance and Ratio Analysis
	Detailed Performance Tables (macOS Reference Platform)
	Platform Performance Ratios
	KEM Performance Ratios
	Signature Performance Ratios

