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Towards Trustworthy Federated Learning with Untrusted Participants

Youssef Allouah 1 Rachid Guerraoui 1 John Stephan 1

Abstract
Resilience against malicious participants and data
privacy are essential for trustworthy federated
learning, yet achieving both with good utility typ-
ically requires the strong assumption of a trusted
central server. This paper shows that a signifi-
cantly weaker assumption suffices: each pair of
participants shares a randomness seed unknown to
others. In a setting where malicious participants
may collude with an untrusted server, we propose
CAFCOR, an algorithm that integrates robust gra-
dient aggregation with correlated noise injection,
using shared randomness between participants.
We prove that CAFCOR achieves strong privacy-
utility trade-offs, significantly outperforming lo-
cal differential privacy (DP) methods, which do
not make any trust assumption, while approaching
central DP utility, where the server is fully trusted.
Empirical results on standard benchmarks vali-
date CAFCOR’s practicality, showing that privacy
and robustness can coexist in distributed systems
without sacrificing utility or trusting the server.

1. Introduction
The increasing complexity of machine learning (ML) mod-
els and the vast amounts of data required for training have
driven the widespread adoption of distributed ML (Dean
et al., 2012; Kairouz et al., 2021). By distributing the com-
putational workload across multiple machines, this approach
enables scalable and efficient model training. In the standard
server-based architecture, multiple workers collaboratively
optimize a shared model under the coordination of a central
server. This process is typically implemented using dis-
tributed stochastic gradient descent (DSGD) (Bertsekas &
Tsitsiklis, 2015), where workers compute gradients on local
mini-batches and transmit them to the server, which then
aggregates the updates to refine the global model. DSGD is
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especially valuable when privacy constraints prohibit data
sharing, such as in healthcare applications where institutions
hold sensitive patient records (Kaissis et al., 2020).

While DSGD inherently reduces data exposure by keeping
local datasets private, significant privacy risks remain. If
the trained model is publicly accessible, it becomes vul-
nerable to membership inference (Shokri et al., 2016) and
model inversion (Fredrikson et al., 2015; Hitaj et al., 2017;
Melis et al., 2019) attacks. Moreover, a curious server can
analyze gradients and intermediate model states during train-
ing to extract sensitive information about individual data
points (Phong et al., 2017; Wang et al., 2019; Zhu et al.,
2019). Besides, in practical distributed environments, it is
common for some workers to behave unpredictably due to
system failures, corrupted data, or adversarial interference.
These workers, also known as Byzantine (Lamport et al.,
1982), can arbitrarily manipulate their updates, compromis-
ing the integrity of the learning process (Baruch et al., 2019;
Xie et al., 2020). In DSGD, even a few malicious workers
can significantly degrade model performance by poisoning
gradients or models (Feng et al., 2015). This vulnerability
underscores the need for robust aggregation techniques to
mitigate the influence of malicious workers.

Threat models. Differential privacy (DP) (Choudhury
et al., 2019; Hu et al., 2020; Noble et al., 2022) and robust-
ness (Yin et al., 2018; Karimireddy et al., 2021; Allouah
et al., 2023b) have been extensively studied in isolation in
distributed machine learning. However, their intersection,
which is crucial for building trustworthy learning systems,
remains underexplored. Recent work shows that combining
local DP (LDP), which assumes no trust, with robustness in-
curs a fundamental utility cost (Allouah et al., 2023c). This
reinforces earlier findings that ensuring privacy under LDP,
even without malicious workers, is prohibitive in terms of
utility (Duchi et al., 2013). In contrast, the central DP (CDP)
model, where the server is fully trusted, enables significantly
better utility than LDP, particularly as the number of work-
ers increases (Liu et al., 2021; Hopkins et al., 2022). These
findings highlight the trade-offs between trust, privacy, and
robustness in distributed learning, underscoring the need for
alternative approaches that mitigate these limitations.
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1.1. Contributions

In this work, we analyze an intermediate threat model that
extends the privacy guarantees of LDP while achieving util-
ity comparable to CDP, which assumes a trusted server. This
model, referred to as secret-based local differential privacy
(SecLDP), was only studied in non-adversarial settings fo-
cused on privacy (Allouah et al., 2024) or without utility
guarantees in the presence of malicious workers (Sabater
et al., 2022). We present the first analysis of SecLDP in
adversarial distributed learning, considering an untrusted
server and malicious workers, who aim to disrupt the learn-
ing as well as to compromise the privacy of honest workers
by colluding with the server. Our results establish SecLDP
as a viable privacy model for trustworthy distributed learn-
ing, bridging the gap between the stringent trust assumptions
of LDP and the stronger utility guarantees of CDP.

Algorithm. We introduce CAFCOR, a privacy-preserving
and robust distributed learning algorithm under the SecLDP
model. CAFCOR employs a correlated noise injection mech-
anism inspired by secret sharing (Shamir, 1979), leveraging
workers’ access to shared randomness. This is efficiently
achieved through a one-time pairwise agreement on secret
randomness seeds using standard public-key infrastructure,
as commonly done in secure distributed systems (Bonawitz
et al., 2017). However, the added noise can obscure honest
contributions, reducing the effectiveness of existing aggre-
gations in filtering out malicious workers. To address this,
we design a novel robust aggregation method that efficiently
mitigates the impact of dimensionality on the mean estima-
tion error, relying only on an upper bound on the number of
corrupt workers.

Bridging the gap. We provide theoretical guarantees on
the privacy-utility trade-off of CAFCOR under SecLDP, as-
suming an untrusted server and colluding malicious work-
ers. Our analysis shows that CAFCOR achieves near-CDP
performance under limited corruption, significantly outper-
forming LDP-based methods. When shared randomness
is unavailable, CAFCOR seamlessly reverts to the standard
LDP model while maintaining state-of-the-art performance.
Extensive experiments on benchmark datasets (MNIST and
Fashion-MNIST) validate our findings, confirming CAF-
COR’s superior performance in adversarial settings.

1.2. Related Work

Most works combining DP and robustness focus on local
privacy models, often only achieving per-step privacy guar-
antees and suboptimal learning performance (Guerraoui
et al., 2021; Zhu & Ling, 2022; Xiang & Su, 2022; Ma et al.,
2022). Others reveal a three-way trade-off between pri-
vacy, robustness, and utility for discrete distribution estima-
tion in non-interactive settings (Cheu et al., 2021; Acharya
et al., 2021) and more general interactive learning tasks (Al-

louah et al., 2023c). In the CDP model where the server
is fully trusted, the privacy-utility trade-off is far superior
to the LDP setting (Duchi et al., 2013; 2018). Prior work
on centralized robust mean estimation with DP (Liu et al.,
2021; Hopkins et al., 2022; Alabi et al., 2023) achieves near-
optimal error bounds, disentangling the three-way trade-off
by matching the optimal sample complexity in both private
and robust settings. Empirical studies confirm this advan-
tage in standard federated learning tasks (Xie et al., 2023).

Intermediate threat models between local and central
DP, such as those leveraging cryptographic primitives or
anonymization via shuffling (Jayaraman et al., 2018; Er-
lingsson et al., 2019; Cheu et al., 2019), can approach the
privacy-utility trade-off of central DP but often incur high
computational costs, rely on trusted entities, or lack robust-
ness. Correlated noise schemes have also been explored
for privacy without a trusted server; early methods like se-
cret sharing (Shamir, 1979) ensure input security but do not
privatize the output, leaving it vulnerable to inference at-
tacks (Melis et al., 2019). More refined approaches (Imtiaz
et al., 2021) combine correlated and uncorrelated Gaussian
noise to protect averages, while decentralized extensions
remain limited to averaging tasks (Sabater et al., 2022) and
lack robustness (Allouah et al., 2024). We also note that
(Sabater et al., 2022) consider malicious workers but do
not provide utility guarantees in their presence, and only
use cryptographic checks, e.g., to verify boundedness of all
messages. On the other hand, they consider sparse topolo-
gies which induces lower communication costs, unlike our
quadratic communication complexity for seed exchange,
which we recall is negligible since it happens once before
training and only includes integers, compared to the large-
scale models exchanged iteratively during training. Re-
cently, Gu et al. (2023) considered malicious workers and
an untrusted server but relied on computationally intensive
tools like zero-knowledge proofs and secure aggregation,
whereas our method avoids these complexities. Moreover,
they do not quantify the utility cost of their solution.

Cryptographic primitives such as homomorphic encryption
and secure multi-party computation have been widely used
to enhance privacy in distributed learning (Bonawitz et al.,
2017; Zhang et al., 2020), offering efficient implementations.
Some works have explored integrating these techniques
with robustness (Corrigan-Gibbs & Boneh, 2017; Choffrut
et al., 2024), but they face limitations. While cryptographic
schemes efficiently support basic operations like averaging,
they often incur significant computations when coupled with
robust aggregation due to the non-linearity of key operations
such as median and nearest neighbors. This limits their
practicality in robust distributed learning.
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2. Problem Statement
We consider the classical server-based architecture com-
prising n workers and a central server. The workers hold
local datasets D1, . . . ,Dn, each composed of m data points
from an input space X , i.e., Di ∈ Xm, i ∈ [n]. For a
given parameter vector θ ∈ Rd, a data point x ∈ X has
a real-valued loss function ℓ(θ;x). The empirical loss
function for each i ∈ [n] is defined for all θ ∈ Rd as
Li(θ) := 1

m

∑
x∈Di

ℓ(θ;x). The goal of the server is to
minimize the global empirical loss function defined for all
θ ∈ Rd as L(θ) := 1

n

∑n
i=1 Li(θ). We assume that each

loss Li is differentiable, and that L is lower bounded.

2.1. Robustness

We consider a setting where at most f out of n workers may
be malicious. Such workers may send arbitrary messages
to the server, and need not follow the prescribed protocol.
The identity of malicious workers is a priori unknown to the
server. LetH ⊆ {1, . . . , n}, with |H| = n− f . We define
for all θ ∈ Rd, LH(θ) := 1

|H|
∑

i∈H Li(θ). IfH represents
the indices of honest workers, LH is referred to as the global
honest loss. An algorithm is robust if it enables the server to
approximately minimize the global honest loss, as follows.

Definition 2.1 ((f, ϱ)-Robustness). A distributed algo-
rithm A is (f, ϱ)-robust if it outputs θ̂ such that

E
[
LH(θ̂)− L⋆

]
≤ ϱ, where L⋆ := infθ∈Rd LH(θ), and

the expectation is over the randomness of the algorithm.

In other words, Algorithm A is (f, ϱ)-robust if it outputs in
every execution a ϱ-approximate minimizer of the global
honest loss function LH, despite f malicious workers.

2.2. Differential Privacy

Each honest worker i ∈ H aims to protect the privacy
of their dataset Di against the honest-but-curious (or un-
trusted) server. That is, the server follows the prescribed
protocol, but may attempt to violate the workers’ data pri-
vacy. Also, we assume that every pair of workers i, j ∈ [n]
shares a sequence of secrets Sij , which represent observa-
tions of random variables only known to the workers i, j. In
practice, these are generated locally via shared randomness
seeds exchanged after one round of encrypted communi-
cations (Bonawitz et al., 2017), and conceptually one can
consider the secrets to be the shared randomness seeds only.
We denote by S := {Sij : i, j ∈ [n]} the set of all secrets.

We recall that local DP (LDP) (Kasiviswanathan et al., 2011)
protects against an untrusted server without assuming the
existence of secrets, at the price of a poor privacy-utility
trade-off (Duchi et al., 2013). Instead, to achieve a better
trade-off, we consider the following relaxation of LDP into
secret-based local differential privacy (SecLDP), adapting

the formalism of Allouah et al. (2024), where two datasets
are adjacent if they differ by one worker’s local dataset.

Definition 2.2 (SecLDP). Let ε ≥ 0, δ ∈ [0, 1]. Consider
a randomized distributed algorithm AS : Xm×n → Y ,
which outputs the transcript of all communications, given
the full set of secrets S . AlgorithmAS satisfies (ε, δ,Sknown)-
SecLDP if it satisfies (ε, δ)-DP given that the subset of
secrets Sknown ⊆ S is revealed to the curious server. That is,
for all adjacent datasets D,D′ ∈ Xm×n,

P [AS(D) | Sknown] ≤ eε · P [AS(D′) | Sknown] + δ.

We simply say that AS satisfies (ε, δ)-SecLDP when Sknown

is clear from the context.

The above definition captures multiple levels of trust, always
considering the server to be honest-but-curious. First, the
least stringent setting is when no worker colludes with the
server, meaning that no secrets are disclosed to the server
(Sknown = ∅). Second, the most adversarial scenario arises
when all workers collude with the server (Sknown = S),
which corresponds to the standard LDP threat model. Fi-
nally, we consider an intermediate scenario where only ma-
licious workers may collude with the server to compromise
the privacy of honest workers by disclosing the secrets they
share with them (Sknown = {Sij : i ∈ [n] \ H, j ∈ [n]}).
However, even under this model, the server remains unaware
of the malicious identities. A malicious worker may collude
by revealing its secrets but has no incentive to disclose its
adversarial nature, as it also aims to disrupt the learning.

2.3. Assumptions

Our results are derived under standard assumptions. Data
heterogeneity is modeled via Assumption 2.1 (Allouah et al.,
2023c), which subsumes standard assumptions in federated
learning (Karimireddy et al., 2020) by bounding gradient
variance in all directions. To establish the convergence guar-
antees of CAFCOR, we adopt the standard Assumption 2.2
on the variance of stochastic gradients. Assumption 2.3
ensures bounded gradients at any data point, a common
requirement in differentially private optimization to avoid
complications due to clipping (Agarwal et al., 2018).

Assumption 2.1 (Bounded heterogeneity). There exists
Gcov > 0 such that ∀θ ∈ Rd,

1

|H|
∑
i∈H
⟨v,∇Li(θ)−∇LH(θ)⟩2 ≤ G2

cov.

Assumption 2.2 (Bounded variance). There exists σ > 0
such that for each honest worker wi, i ∈ H, and all θ ∈ Rd,

1

m

∑
x∈Di

∥∇ℓ(θ;x)−∇Li(θ)∥2 ≤ σ2.

Assumption 2.3 (Bounded gradients). There exists C > 0
such that ∀θ ∈ Rd, i ∈ H, and x ∈ Di, ∥∇ℓ(θ;x)∥ ≤ C.
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Algorithm 1 CAFCOR

Input: Initial model θ0; DP noise levels σind, σcor; batch
size b; clipping threshold C; learning rates {γt}; momentum
coefficients {βt}; number of iterations T .

1: for t = 0 . . . T − 1 do
2: Server broadcasts θt to all workers.
3: for every honest worker i ∈ H in parallel do
4: Sample a mini-batch S

(i)
t of size b at random from

Di without replacement.
5: Average the mini-batch gradients and clip: g(i)t =

Clip
(
1
b

∑
x∈S

(i)
t
∇ℓ(θt;x);C

)
(see (1)).

6: Inject DP noises to the gradient: g̃
(i)
t = g

(i)
t +

v
(i)
t +

∑
j∈[n]\i v

(ij)
t , where v

(i)
t ∼ N (0, σ2

indId)

and v
(ij)
t = −v(ji)t ∼ N (0, σ2

corId).
7: Send m

(i)
t = βt−1m

(i)
t−1+(1−βt−1)g̃

(i)
t if t ≥ 1,

else m
(i)
0 = 0.

8: end for
9: Server aggregates: Rt = CAF(m(1)

t , . . . ,m
(n)
t ),

where the CAF aggregation is given by Algorithm 2.
10: Server updates the model: θt+1 = θt − γtRt.
11: end for
12: return θ̂ uniformly sampled from {θ0, . . . , θT−1}.

3. Algorithm: CAFCOR

We now introduce CAFCOR, summarized in Algorithm 1.
CAFCOR extends distributed stochastic gradient descent
(DSGD) by incorporating a correlated noise scheme and
momentum-based updates at the worker level, and a novel
robust aggregation scheme, called CAF, at the server level.

The server sets an initial model θ0 and broadcasts θt to
workers at each iteration t ≥ 0. Each honest worker i ∈ H
then randomly samples a mini-batch S

(i)
t of size b ≤ m

from their local dataset Di without replacement. Worker
i ∈ H then computes per-example gradients ∇ℓ(θt;x) for
x ∈ S

(i)
t , averages them, and then applies gradient clipping

to bound the sensitivity, ensuring the gradient norm does not
exceed C: g(i)t = Clip

(
1
b

∑
x∈S

(i)
t
∇ℓ(θt;x);C

)
, where

Clip(g;C) := g ·min {1, C/ ∥g∥} . (1)

Each honest worker i ∈ H perturbs g
(i)
t with noise to

obtain g̃
(i)
t = g

(i)
t +

∑
j∈[n]\i v

(ij)
t + v

(i)
t , where v

(i)
t ∼

N (0, σ2
indId) is an independent Gaussian noise term and

{v(ij)t }j∈[n]\i are pairwise-canceling correlated Gaussian
noise terms, i.e., v(ij)t = −v(ji)t ∼ N (0, σ2

corId). These
noise terms are generated through a one-time pairwise agree-
ment protocol executed before CAFCOR. This is efficiently
achieved using a public-key infrastructure, where workers
establish shared randomness seeds in a single encrypted
communication round (Bonawitz et al., 2017). To ensure

Algorithm 2 CAF: Covariance bound-Agnostic Filter
Input: vectors x1, . . . , xn ∈ Rd; bound on number of
corrupt inputs 0 ≤ f < n

2 .
1: Initialize c1, . . . , cn = 1, µ⋆ = 1

n

∑n
i=1 xi, σ⋆ =∞.

2: while
∑n

i=1 ci ≥ n− 2f do
3: Compute µ̂c =

∑n
i=1 cixi/

∑n
i=1 ci.

4: Compute empirical covariance Σ̂c =
∑n

i=1 ci(xi −
µ̂c)(xi − µ̂c)

⊤/
∑n

i=1 ci.
5: Compute maximum eigenvalue σ̂2

c of Σ̂c and an as-
sociated eigenvector v̂c.

6: if σ̂c ≤ σ⋆ then
7: Update best guess: µ⋆ ← µ̂c, σ⋆ ← σ̂c.
8: end if
9: Compute τi = ⟨v̂c, xi − µ̂c⟩2, ∀i ∈ [n].

10: Update weight ci ← ci(1− τi
maxj∈[n] τj

), ∀i ∈ [n].
11: end while
12: return µ⋆

the correlated noise terms are pairwise-canceling, workers
with smaller indices add the generated noise, while their
paired counterparts subtract it.

Next, each honest worker i ∈ H updates their local momen-
tum for t ≥ 1: m(i)

t = βt−1m
(i)
t−1 + (1 − βt−1)g̃

(i)
t , with

m
(i)
0 = 0 and βt−1 ∈ [0, 1] is the momentum coefficient,

and then sends it to the server. If worker i is malicious,
i.e., not honest, then they may send an arbitrary value for
their momentum m

(i)
t . The server aggregates the momen-

tums using the CAF aggregation, detailed in Algorithm 2,
to obtain Rt = CAF(m(1)

t , . . . ,m
(n)
t ). It then updates the

model: θt+1 = θt− γtRt, where γt ≥ 0 is the learning rate.
After T iterations, the server outputs θ̂ sampled uniformly
from {θ0, . . . , θT−1}.

Covariance-bound Agnostic Filter (CAF).1 The CAF
aggregation, outlined in Algorithm 2, aggregates d-
dimensional vectors x1, . . . , xn ∈ Rd given only an up-
per bound 0 ≤ f < n

2 on the number of corrupt in-
puts. CAF operates without requiring any additional as-
sumptions on the distribution of honest inputs. The algo-
rithm iteratively decreases the weights ci ∈ [0, 1] of in-
put vectors, each initially assigned a unit weight, until the
total sum of weights falls below n − 2f . Weight reduc-
tions are determined based on each vector’s contribution
to variance along the worst-case direction. Specifically,
let µ̂c =

∑n
i=1 cixi/

∑n
i=1 ci denote the current weighted

mean and let Σ̂c =
∑n

i=1 ci(xi − µ̂c)(xi − µ̂c)
⊤/
∑n

i=1 ci
denote the corresponding empirical covariance matrix. The
largest eigenvalue of Σ̂c is denoted σ̂2

c , with associated
eigenvector v̂c ∈ Rd. Each vector’s weight is reduced in

1Named for being agnostic to any bound on the honest input
covariance, as discussed in Section 4.2.
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proportion to its influence on variance along the worst di-
rection, quantified by τi = ⟨v̂c, xi − µ̂c⟩2. CAF tracks the
weighted average corresponding to the covariance matrix
with the smallest top eigenvalue encountered across all iter-
ations. Once the sum of weights falls below n− 2f , CAF
outputs this tracked weighted average as its final result.

4. Theoretical Analysis
We now present the theoretical guarantees of CAFCOR in
terms of privacy and utility, as well as their trade-off.

4.1. Privacy Analysis

Theorem 4.1 establishes the privacy guarantee of CAFCOR
after T iterations, with the proof deferred to Appendix A.
As discussed in Section 4.2, the noise magnitudes σ2

ind and
σ2
cor are key factors in the privacy-utility trade-off. Our

objective is to minimize these terms while ensuring privacy.

Theorem 4.1. Let δ ∈ (0, 1), ε ∈ (0, log(1/δ)), q ≤ f <
n
2 . Algorithm 1 satisfies (ε, δ)-SecLDP against an honest-
but-curious server colluding with q malicious workers, if

(n− q)σ2
cor + σ2

ind

1 +
σ2
cor

(f−q)σ2
cor+σ2

ind

≥ 16C2T log(1/δ)

ε2
.

Theorem 4.1 guarantees SecLDP for any number of collud-
ing malicious workers q ≤ f < n

2 , if the noise scales as
σ2
ind = σ2

cor = Θ( 1
nε2 ), ignoring dependencies on other

parameters. Notably, if at least one malicious worker j does
not collude with the server (i.e., j retains its shared secrets
and q < f ), the independent noise term can be entirely
removed (σind = 0), while maintaining σ2

cor = Θ( 1
nε2 ) to

satisfy SecLDP. The key insight is that each honest worker
shares correlated noise with all other workers, including
non-colluding malicious worker j. As a result, the server
cannot cancel the correlated noise associated with worker
j’s hidden secrets. This effectively serves as an independent
noise source for honest workers, eliminating the need for an
explicit σind in the correlated noise scheme. Finally, if the
shared randomness assumption among workers is unavail-
able, CAFCOR naturally falls back to the LDP setting by
setting σcor = 0 in Algorithm 1. Conceptually, this corre-
sponds to a scenario where all secrets are revealed, allowing
the server to eliminate correlated noise and leaving only in-
dependent noise for privacy. Consequently, σ2

ind must scale
as Θ( 1

ε2 ), which is n times larger than under SecLDP.

The proof of Theorem 4.1, deferred to Appendix A, re-
lies upon computing the Rényi divergence induced by the
correlated noise scheme, before converting back to DP fol-
lowing standard conversion results (Mironov, 2017). In-
deed, we derive the exact expression of the aforementioned
Rényi divergence in Lemma A.4, which we use directly in
our Rényi-based privacy accountant for SecLDP in prac-

tice. This exact computation was not feasible in previous
related works, as they either considered different communi-
cation topologies (Sabater et al., 2022; Allouah et al., 2024).
The major difference with the aforementioned analyses is
granularity: we consider 0≤q≤f workers who may poison
training but are not curious, while prior works considered
one extreme or the other, i.e., q ∈ {0, f}. This granularity
induces improved empirical performance (Figure 1).

4.2. Utility Analysis

We first study the robustness of the CAF aggregation (Al-
gorithm 2) in Proposition 4.1, and then analyze the conver-
gence of CAFCOR (Algorithm 1) in Theorem 4.2. The proof
is deferred to Appendix B.

Proposition 4.1. Let 0 ≤ f < n
2 and κ :=

6f
n−f

(
1 + f

n−2f

)2
. Let x1, . . . , xn ∈ Rd, and S ⊆ [n]

be any subset of size n − f . Let xS := 1
|S|
∑

i∈S xi, and
λmax denote the maximum eigenvalue operator. The output
x̂ = CAF(x1, . . . , xn) satisfies:

∥x̂− xS∥2 ≤ κ · λmax

(
1

|S|
∑
i∈S

(xi − xS)(xi − xS)
⊤

)
.

Proposition 4.1 establishes an important property satisfied
by CAF. The above corresponds to the high-dimensional ro-
bustness criterion studied by Allouah et al. (2023c), shown
to be stronger than existing ones in the distributed learning
literature, e.g., that of Karimireddy et al. (2022). Further-
more, we recall from Allouah et al. (2023c) that standard
robust aggregations, such as the trimmed mean and me-
dian (Yin et al., 2018), can only achieve a weaker variant of
Proposition 4.1, where the right-hand side of the inequality
involves the trace instead of the maximum eigenvalue opera-
tor. Since the trace of a d× d matrix can be up to d times its
largest eigenvalue, standard robust aggregations only satisfy
Proposition 4.1 with an additional multiplicative factor of d
in κ (4.1), leading to a looser robustness bound.

Moreover, the so-called SMEA aggregation of Allouah et al.
(2023c) also satisfies Proposition 4.1 up to constants. How-
ever, SMEA is computationally impractical as its time com-
plexity grows exponentially with f . In contrast, CAF is effi-
cient, running in polynomial time O(f(nd2 + d3)). Indeed,
at each iteration, at least one input (i ∈ argmaxj∈[n] τj) is
assigned a weight of zero. Thus, CAF terminates within at
most 2f iterations, each requiring the computation of the top
eigenvector and the formation of the empirical covariance
matrix.To further improve efficiency, we implement a CAF
variant with reduced complexity O(fnd log d) by approxi-
mating the top eigenvector using the power method. This
approach avoids explicit covariance matrix formation and
instead relies on matrix-vector products. We adopt this more
efficient variant in our experiments in Section 5, as it can be
easily shown to satisfy Proposition 4.1 up to constants.
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CAF builds on recent algorithmic advances in robust statis-
tics (Diakonikolas et al., 2017). A major difference is that
CAF does not require a bound on the covariance of honest
inputs. In contrast, prior robust mean estimators have relied
on such bounds as a crucial design requirement (Diakoniko-
las et al., 2017; Steinhardt et al., 2018). CAF operates
instead under a more practical assumption, requiring only
a bound on the number of corrupt inputs f , a standard as-
sumption in robust ML (Yin et al., 2018; Karimireddy et al.,
2021; Farhadkhani et al., 2022). By eliminating covariance
constraints, CAF is more suited to our setting, where infor-
mation about honest inputs such as gradients or momentums
may not be available or could compromise privacy.

Next, Theorem 4.2 establishes the convergence rate of CAF-
COR, with the proof deferred to Appendix C.

Theorem 4.2. Suppose that Assumptions 2.1, 2.2, and 2.3
hold, and that LH is L-smooth. Recall κ from (4.1). Let

σ2 :=
σ2
b + d(fσ2

cor + σ2
ind)

n− f

+ 4κ

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)
(1 +

d

n− f
)

)
,

where σ2
b := 2(1 − b

m )σ
2

b . We also denote L⋆ :=
infθ∈Rd LH(θ),L0 := LH(θ0)−L⋆. Consider Algorithm 1
with T ≥ 1, the learning rates γt specified below, and mo-
mentum coefficients βt = 1− 24Lγt. The following holds:

1. LH is µ-strongly convex: If γt = 10
µ(t+240L

µ )
, then

E [LH(θT )− L∗] ≲
κG2

cov

µ
+

Lσ2

µ2T
+

L2L0

µ2T 2
,

2. LH is non-convex: If γt = min
{

1
24L ,

√
3L0

16σ
√
LT

}
, then

E∥∇LH(θ̂)∥2≲ κG2
cov +

σ
√
LL0√
T

+
LL0

T
,

where ≲ denotes inequality up to absolute constants and
the expectation is over the randomness of the algorithm.

Our result recovers the state-of-the-art convergence analysis
in robust optimization in the local privacy model (Allouah
et al., 2023c) when setting σcor = 0. The key difference
with the latter analysis is the role of the correlated noise
magnitude σcor, which appears in the dominating term in-
side σ, in both strongly convex and non-convex settings.
Moreover, our convergence rates exhibit the standard depen-
dence on the number of iterations in smooth stochastic op-
timization: O( 1

T ) for the strongly convex case and O( 1√
T
)

for the non-convex case. The presence of a non-vanishing
term in T is fundamental in robust optimization in heteroge-
neous data settings (Karimireddy et al., 2022). Finally, our
upper bound in the strongly convex case also applies to non-
convex loss functions that satisfy the Polyak-Lojasiewicz
inequality (Karimi et al., 2016).

4.3. Privacy-Utility Trade-off

Corollary 4.1 below, which quantifies the privacy-utility
trade-off of CAFCOR, follows directly from combining the
results of Theorems 4.1 and 4.2.

Corollary 4.1. Let δ ∈ (0, 1), ε ∈ (0, log(1/δ)) and
n ≥ (2 + η)f , for some absolute constant η > 0. Consider
Algorithm 1 in the strongly convex setting of Theorem 4.2.
If σ2

cor = σ2
ind = 32C2T log (1/δ)

ε2(n−f) , then Algorithm 1 is (ε, δ)-
SecLDP against an honest-but-curious server colluding
with all malicious workers, and (f, ϱ)-robust where ϱ =

O
(

(f+1)C2d log(1/δ)
n2ε2 + fC2 log(1/δ)

nε2 + f
nG

2
cov

)
, asymptoti-

cally in T and ignoring absolute constants.

To analyze the privacy-utility trade-off, we examine the
first term of ϱ from Corollary 4.1. This term dominates the
second whenever d ≥ n, a condition that is typically met
in practice, given that modern deep learning models have
dimensions in the order of millions (He et al., 2016), while
the number of clients in federated learning, particularly in
cross-silo settings, is often much smaller (Kairouz et al.,
2021). The final term in the error stems solely from data het-
erogeneity and becomes negligible when data is not highly
heterogeneous. Overall, CAFCOR achieves a privacy-utility
trade-off of Õ( (f+1)d

n2ε2 ). Notably, our analysis assumes the
worst case where all malicious workers collude with the
server to breach privacy (q = f in Theorem 4.1). If they
do not (i.e., q = 0), the trade-off still holds, but constants
improve with the choice of σind = 0, as discussed after
Theorem 4.1 and empirically validated in Section 5.

For comparison, recall that the minimax optimal privacy-
utility trade-off in LDP is Θ̃( d

nε2 ) (Duchi et al., 2018),
which is n times larger than the corresponding rate in CDP
given by Θ̃( d

n2ε2 ) (Bassily et al., 2014), both under user-
level dataset adjacency. Therefore, our rate of Õ( (f+1)d

n2ε2 )
derived under SecLDP naturally bridges these two extremes.
Notably, as the number of malicious workers f decreases,
our rate converges to CDP. Specifically, our rate matches
CDP when f = Õ(1) and remains strictly better than LDP
as long as f is sublinear in n. Furthermore, under the LDP
privacy model (σcor = 0), such as when shared random-
ness among workers is unavailable, CAFCOR recovers the
state-of-the-art privacy-utility trade-off of Θ̃( d

nε2 ).

CAF plays a crucial role in ensuring that Algorithm 1
achieves the derived trade-off. In contrast, employing stan-
dard robust aggregations, such as the trimmed mean or
median (Yin et al., 2018), significantly degrades theoretical
performance. Specifically, after replacing CAF with the
trimmed mean, the resulting convergence rate is Õ( fd

nε2 )
for f > 0 (see Appendix C.5). This rate is n times worse
than that achieved with CAF and only matches LDP when
f = Õ(1). For larger f , performance further degrades, with
a rate strictly worse than LDP.
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Figure 1: Comparison of CAFCOR and DSGD under four privacy threat models on (Fashion-)MNIST. There are n = 100
workers, including f = 5 and 10 malicious workers executing ALIE (Baruch et al., 2019). A homogeneous data distribution
is considered among honest workers. User-level DP is used and privacy budgets for MNIST are ε = 26.4 and 27.8 for
f = 10 and f = 5, respectively. For Fashion-MNIST, the privacy budget is ε = 39.6. Throughout, we set δ = 10−4.

5. Experimental Evaluation
We empirically evaluate the performance of CAFCOR in a
distributed environment under varying threat models. We
also compare CAFCOR to existing robust and private algo-
rithms, demonstrating its empirical advantages.

Datasets and models. We consider two widely used image
classification datasets: MNIST (LeCun & Cortes, 2010)
and Fashion-MNIST (Xiao et al., 2017). While these tasks
are relatively simple in standard, non-adversarial settings,
they become challenging with the introduction of malicious
workers (Karimireddy et al., 2021; Farhadkhani et al., 2022)
and the differential privacy constraint (Noble et al., 2022).
MNIST images are normalized using a mean of 0.1307 and
standard deviation of 0.3081, while Fashion-MNIST images
are horizontally flipped. To simulate data heterogeneity, we
sample data for honest workers using a Dirichlet distribution
of parameter α (Hsu et al., 2019). We consider α ∈ {0.1, 1},
a homogeneous distribution scenario, and an extreme het-
erogeneity scenario where data is sorted by label and evenly
assigned to honest workers. On both datasets, we train the
same convolutional neural network with a model size of
431,080 parameters, using the negative log-likelihood loss.

Attacks. We consider four state-of-the-art attacks: Fall
of Empires (FOE) (Xie et al., 2020), A Little is Enough
(ALIE) (Baruch et al., 2019), Label Flipping (LF) and Sign
Flipping (SF) (Allen-Zhu et al., 2020).

Reproducibility. To estimate the privacy budgets achieved

at the end of training, we use Opacus (Yousefpour et al.,
2021). Our experiments are conducted with five random
seeds (1-5) to ensure reproducibility. All reported results
include standard deviation across these seeds. To facilitate
reproducibility, we intend to publicly release our code.

5.1. Comparison of Threat Models

In Figure 1, we compare CAFCOR to the DSGD baseline
across four privacy regimes: LDP, CDP, SecLDP (assuming
no collusion), and a novel threat model we call ByzLDP
discussed in Section 2, where all malicious workers collude
with the server. We execute CAFCOR in a distributed system
with n = 100 workers among which f ∈ {5, 10} are mali-
cious. On MNIST, we use batch size b = 50, learning rate
γ = 0.075, momentum parameter β = 0.85, and clipping
parameter C = 2.25. For Fashion-MNIST, we use b = 100,
γ = 0.3, β = 0.9, and C = 1. For both datasets, we train
for T = 30 iterations and apply ℓ2-regularization at 10−4.
We adopt user-level DP across all threat models. On MNIST,
the privacy budgets reach ε = 26.4 and 27.8 for f = 10 and
f = 5, respectively. On Fashion-MNIST, the privacy budget
is ε = 39.6 for both values of f . In Figure 1, we consider
malicious workers executing the ALIE attack. Results for
the remaining attacks are deferred to Appendix D.1, where
similar trends are observed.

As illustrated in Figure 1, the performance of DSGD un-
der LDP is significantly lower than under CDP. Under
SecLDP, CAFCOR achieves performance closely match-

7



Towards Trustworthy Federated Learning with Untrusted Participants

0 100 200 300 400
Iteration

0

25

50

75

100
Te

st
 A

cc
ur

ac
y DSGD (f = 0)

CAFCOR
CWTM
GM
CWMED
MK
Meamed

(a) MNIST, Sign Flipping attack

0 100 200 300 400
Iteration

0

25

50

75

100

Te
st

 A
cc

ur
ac

y

(b) MNIST, Label Flipping attack

0 100 200 300 400
Iteration

0

25

50

75

100

Te
st

 A
cc

ur
ac

y

(c) Fashion-MNIST, Sign Flipping attack

0 100 200 300 400
Iteration

0

25

50

75

100

Te
st

 A
cc

ur
ac

y

(d) Fashion-MNIST, Label Flipping attack

Figure 2: Performance of CAFCOR versus standard robust algorithms.There are f = 5 malicious workers among n = 15 on
MNIST and α = 1, and f = 3 malicious workers among n = 13 on Fashion-MNIST and α = 0.1. The CDP privacy model
is considered under example-level DP, and the privacy budget is (ε, δ) = (13.7, 10−4) throughout.

ing CDP and substantially outperforming LDP on both
datasets. For f = 5, CAFCOR-SecLDP exhibits identi-
cal final accuracies to the adversary-free DSGD baseline
under CDP: 83% on MNIST and 72% on Fashion-MNIST.
When f = 10, CAFCOR-SecLDP has a slight decrease in
accuracy compared to DSGD-CDP but remains significantly
superior to DSGD-LDP. Under the stronger ByzLDP threat
model, CAFCOR maintains performance comparable to Se-
cLDP for f = 5. On Fashion-MNIST, the difference is
negligible, demonstrating effective mitigation of malicious
worker collusion. On MNIST, however, accuracy decreases
by 8% due to the more stringent privacy constraints. For
f = 10, the gap between CAFCOR-SecLDP and CAFCOR-
ByzLDP is more pronounced, particularly on MNIST (see
Figure 1b). Yet, CAFCOR-ByzLDP still significantly outper-
forms DSGD-LDP, where training struggles to exceed 30%
accuracy. These findings underscore the practical utility of
SecLDP and ByzLDP, and the robustness of CAFCOR under
stringent privacy constraints. For completeness, we also
evaluate CAFCOR under the CDP and LDP privacy models
in Appendix D.1, demonstrating that the performance of
CAFCOR matches the DSGD baseline under both models.

5.2. Comparison with Prior Robust Aggregations

To highlight the performance of our aggregation, we replace
CAF in Algorithm 1 with standard alternatives in robust dis-
tributed learning: coordinate-wise trimmed mean (CWTM)
and median (CWMED) (Yin et al., 2018), geometric median
(GM) (Chen et al., 2017), Multi-Krum (MK) (Blanchard
et al., 2017), and mean around median (Meamed) (Xie et al.,
2018). We consider a system with n − f = 10 honest

workers and f ∈ {1, 3, 5} malicious workers, with hetero-
geneous distributions with α ∈ {0.1, 1} and an extreme
distribution. Training is conducted with b = 100, C = 5,
and T = 400 iterations for both datasets. Figure 2 presents
results for LF and SF attacks with f = 5, α = 1 on MNIST,
and f = 3, α = 0.1 on Fashion-MNIST. Example-level DP
is applied under the CDP privacy model, yielding a privacy
budget of (ε, δ) = (13.7, 10−4) across all configurations.

Figure 2 demonstrates the clear superiority of CAFCOR (and
CAF) over competing aggregations across all configurations,
even under the least stringent privacy model (CDP). While
MK matches CAFCOR on Fashion-MNIST under the LF
attack, its performance significantly deteriorates under the
SF attack and on MNIST. Meamed performs relatively well
under LF on MNIST but struggles under LF and SF attacks
on Fashion-MNIST and under the SF attack on MNIST,
with CAFCOR outperforming it consistently. Other aggre-
gations, such as CWTM, CWMED, and GM, exhibit poor
performance across both datasets and attacks, particularly
under LF, where their utility drops significantly and the best
competing aggregation among them achieves an accuracy
just above 50%. In contrast, CAF achieves results nearly
indistinguishable from adversary-free DSGD under the LF
attack on both datasets (90% in accuracy) and delivers the
best performance under SF, reaching an accuracy close to
80%. This pattern holds consistently across the remaining
attacks, as detailed in Appendix D.2.
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6. Conclusion
Achieving good utility while simultaneously ensuring both
robustness against malicious parties and strong privacy in
distributed learning typically requires trusting the central
server, an often unrealistic assumption. We address this chal-
lenge with CAFCOR, a novel algorithm leveraging shared
randomness among workers to enable correlated noise in-
jection prior to robust gradient aggregation. Even under col-
lusion between malicious workers and an untrusted server,
CAFCOR achieves a strong privacy-utility trade-off, signif-
icantly outperforming local DP (where there are no trust
assumptions) while approaching the performance of central
DP (where the server is trusted). Our results show that pri-
vacy and robustness can coexist without sacrificing utility,
yet open questions remain. Notably, what is the optimal
utility under SecLDP, and does CAFCOR achieve it?

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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Organization of the Appendix
Appendix A presents the privacy analysis of CAFCOR. Appendix B contains the robustness analysis of Proposition 4.1.
Appendix C provides the convergence analysis of CAFCOR. Appendix D contains additional experimental results.

A. Privacy Analysis: Proof of Theorem 4.1
Definition A.1 (α-Rényi divergence). Let α > 0, α ̸= 1. The α-Rényi divergence between two probability distributions P
and Q is defined as

Dα(P ∥ Q) :=
1

α− 1
logEX∼Q

(
P (X)

Q(X)

)α

.

Lemma A.1 ((Gil et al., 2013)). Let α > 0, α ̸= 1, µ1, µ2 ∈ Rn, and Σ ∈ Rn×n. Assume that Σ is positive definite. The
α-Rényi divergence between the multivariate Gaussian distributions N (µ1,Σ) and N (µ2,Σ) is

Dα(N (µ1,Σ) ∥ N (µ2,Σ)) =
α

2
(µ1 − µ2)

⊤Σ−1(µ1 − µ2).

We now define secret-based local Rényi differential privacy (SecRDP), a strong variant of SecLDP based on Rényi DP,
paraphrasing Allouah et al. (2024).
Definition A.2 (SecRDP). Let ε ≥ 0, δ ∈ [0, 1], α > 1. Consider a randomized decentralized algorithm AS : Xm×n → Y ,
which outputs the transcript of all communications, given the full set of secrets S. Algorithm AS is said to satisfy
(α, ε,Sknown)-SecRDP if AS satisfies (α, ε)-RDP, given that the subset of secrets Sknown ⊆ S is revealed to the adversary.
That is, for every adjacent datasets D,D′ ∈ Xm×n, we have

Dα(AS(D) | Sknown ∥ AS(D′) | Sknown) ≤ ε,

where the left-hand side is the Rényi divergence (Definition A.2) between the probability distributions of A(D) and A(D′),
conditional on the secrets Sall revealed to the adversary. We simply say that AS satisfies (α, ε)-SecRDP if it satisfies
(α, ε,Sknown)-SecRDP and Sknown is clear from the context.

Both SecLDP and SecRDP preserve the properties of DP and RDP, respectively, since these relaxations only condition the
probability space of the considered distributions.
Lemma A.2 (RDP Adpative Composition, (Mironov, 2017)). IfM1 that takes the dataset as input is (α, ε1)-RDP, andM2

that takes the dataset and the output ofM1 as input is (α, ε2)-RDP, then their composition is (α, ε1 + ε2)-RDP.

Lemma A.3 (RDP to DP conversion, (Mironov, 2017)). If M is (α, ε)-RDP, then M is (ε + log (1/δ)
α−1 , δ)-DP for all

δ ∈ (0, 1).

We first prove a lemma analyzing a single iteration of Algorithm 1 within the SecRDP formalism.
Lemma A.4. Let α > 1 and q ≤ f . Each iteration of Algorithm 1 satisfies (α, αε)-SecRDP (Definition A.2) against the
honest-but-curious server, colluding with q malicious workers, where

ε =
2C2

(n− q)σ2
cor + σ2

ind

[
1 +

σ2
cor

(f − q)σ2
cor + σ2

ind

]
. (2)

Proof. Let α > 1, q > 1, and I ⊆ [n] \ H be an arbitrary group of |I| = q malicious workers. Recall that we denote by
SI := {sjk : j ∈ [n], k ∈ I} the set of secrets revealed by the malicious workers in I to the server. We will prove that
Algorithm 1 satisfies (α, ε,SI)-SecRDP, which protects against the honest-but-curious server, in addition to q colluding
malicious workers. For ease of exposition, we consider the one-dimensional case d = 1. Extending the proof to the general
case is straightforward.

Formally, at each iteration of Algorithm 1, users possess private inputs (gradients) in the form of vector x ∈ [−C,C]n,
given that gradients are clipped at threshold C. Each user i ∈ [n] shares the following privatized quantity:

x̃i := xi +

n∑
j=1
j ̸=i

vij + v̄i, (3)
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where vij = −vji ∼ N (0, σ2
cor) for all j ∈ [n], and v̄i ∼ N (0, σ2

ind).

Our goal is to show that the mechanism producing X̃H :=
[
x̃i

]
i∈H satisfies SecRDP when a single entry of X :=

[
xi

]
i∈H

is arbitrarily changed; i.e., one user’s input differs. To do so, we first rewrite (3) to discard the noise terms known to the
colluding curious users who can simply substract them to get for every i ∈ H:

x̃i = xi +

n∑
j=1

j /∈I∪{i}

vij + v̄i = xi +
∑
j∈H

vij +

n∑
j=1

j /∈H∪I

vij + v̄i = xi +
∑
j∈H

vij + ui, (4)

where ui :=
∑n

j=1
j /∈H∪I

vij + v̄i ∼ N (0, (f − q)σ2
cor + σ2

ind). We now rewrite the above in matrix form as:

X̃H = XH +KNH + N̄ , (5)

where K ∈ R(n−f)×
(n−f)(n−f−1)

2 is the oriented incidence matrix of the complete graph overH, NH = [vij ]1≤i<j≤n−f ∈

R
(n−f)(n−f−1)

2 is the vector of pairwise noises, and N̄ := [ui]i∈H. Now, consider two input vectors XA, XB ∈ [−C,C]n−f

which differ maximally in an arbitrary coordinate i ∈ [n− f ] without loss of generality:

XA −XB = 2Cei ∈ Rn−f , (6)

where ei is the vector of Rn−f where the only nonzero element is 1 in the i-th coordinate.

We will then show that the α-Rényi divergence between X̃A and X̃B , which are respectively produced by input vectors
XA and XB , is bounded. To do so, by looking at Equation (5), we can see that X̃A, X̃B follow a multivariate Gaussian
distribution of means XA, XB respectively and of variance

Σ := E(X̃A −XA)(X̃A −XA)
⊤ = E(X̃B −XB)(X̃B −XB)

⊤ = σ2
corL+

(
(f − q)σ2

cor + σ2
ind

)
In−q ∈ R(n−f)×(n−f),

(7)

where L = KK⊤ ∈ R(n−f)×(n−f) is the Laplacian matrix of the complete graph overH. Note that Σ is positive definite
when (f − q)σ2

cor + σ2
ind > 0, because L is positive semi-definite. Also, recalling the expression L := (n− f)In−f − 11⊤

of the Laplacian of the complete graph overH, we have

Σ = σ2
corL+

(
(f − q)σ2

cor + σ2
ind

)
In−f = σ2

cor

(
(n− f)In−f − 11⊤)+ ((f − q)σ2

cor + σ2
ind

)
In−f

=
(
(n− q)σ2

cor + σ2
ind

)
In−f − σ2

cor11
⊤. (8)

Moreover, recall the Sherman-Morrison formula, i.e., for any matrix A and vectors u, v such that v⊤A−1u ̸= −1, we have
(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1+v⊤A−1u
. Using this formula, we have

Σ−1 =
[(
(n− q)σ2

cor + σ2
ind

)
In−f − σ2

cor11
⊤]−1

=
1

(n− q)σ2
cor + σ2

ind

In−f +
1

[(n− q)σ2
cor + σ2

ind]
2

σ2
cor

1− (n−f)σ2
cor

(n−q)σ2
cor+σ2

ind

11⊤

=
1

(n− q)σ2
cor + σ2

ind

In−f +
1

(n− q)σ2
cor + σ2

ind

σ2
cor

(f − q)σ2
cor + σ2

ind

11⊤. (9)

Finally, following Lemma A.1, the α-Rényi divergence between the distributions of X̃A and X̃B is

Dα(X̃A ∥ X̃B) =
α

2
(XA −XB)

⊤Σ−1(XA −XB)

= 2αC2

[
1

(n− q)σ2
cor + σ2

ind

+
1

(n− q)σ2
cor + σ2

ind

σ2
cor

(f − q)σ2
cor + σ2

ind

]
=

2αC2

(n− q)σ2
cor + σ2

ind

[
1 +

σ2
cor

(f − q)σ2
cor + σ2

ind

]
. (10)
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We now prove the SecLDP property of the full Algorithm 1 by using the composition properties of RDP and converting to
DP (Mironov, 2017).

Theorem 4.1. Let δ ∈ (0, 1), ε ∈ (0, log(1/δ)), q ≤ f < n
2 . Algorithm 1 satisfies (ε, δ)-SecLDP against an honest-but-

curious server colluding with q malicious workers, if

(n− q)σ2
cor + σ2

ind

1 +
σ2
cor

(f−q)σ2
cor+σ2

ind

≥ 16C2T log(1/δ)

ε2
.

Proof. Recall from Lemma A.4 that each iteration of Algorithm 1 satisfies (α, αεstep)-SecRDP against collusion at level q
for every α > 1 where

εstep ≤
2C2

(n− q)σ2
cor + σ2

ind

[
1 +

σ2
cor

(f − q)σ2
cor + σ2

ind

]
. (11)

Thus, following the composition property of RDP from Lemma A.3, the full Algorithm 1 satisfies (α, Tαεstep)-SecRDP for
any α > 1. From Lemma A.3, we deduce that Algorithm 1 satisfies (ε′(α), δ)-SecLDP for any δ ∈ (0, 1) and any α > 1,
where

ε′(α) = Tαεstep +
log(1/δ)

α− 1
≤ αT

2C2

(n− q)σ2
cor + σ2

ind

[
1 +

σ2
cor

(f − q)σ2
cor + σ2

ind

]
+

log(1/δ)

α− 1
.

Optimizing the above bound over α > 1 yields the solution

α⋆ = 1 +

√
log(1/δ)((n−q)σ2

cor+σ2
ind)

C

√
2T

(
1+

σ2
cor

(f−q)σ2
cor+σ2

ind

) ,

which in turn leads to the following bound

ε⋆ = ε′(α⋆) ≤ T
2C2

(n− q)σ2
cor + σ2

ind

[
1 +

σ2
cor

(f − q)σ2
cor + σ2

ind

]
+ 2C

√√√√
2T log (1/δ)

1 +
σ2
cor

(f−q)σ2
cor+σ2

ind

(n− q)σ2
cor + σ2

ind

.

Now, recall that we assume

1

(n− q)σ2
cor + σ2

ind

[
1 +

σ2
cor

(f − q)σ2
cor + σ2

ind

]
≤ ε2

16C2T log(1/δ)
.

Therefore, using the assumption ε ≤ log (1/δ), Algorithm 1 satisfies (ε⋆, δ)-SecLDP where

ε⋆ ≤
ε2

8 log (1/δ)
+

ε√
2
≤ ε.

This concludes the proof.

15



Towards Trustworthy Federated Learning with Untrusted Participants

B. Robustness Analysis: Proof of Proposition 4.1

Proposition 4.1. Let 0 ≤ f < n
2 and κ := 6f

n−f

(
1 + f

n−2f

)2
. Let x1, . . . , xn ∈ Rd, and S ⊆ [n] be any subset of size

n − f . Let xS := 1
|S|
∑

i∈S xi, and λmax denote the maximum eigenvalue operator. The output x̂ = CAF(x1, . . . , xn)

satisfies:

∥x̂− xS∥2 ≤ κ · λmax

(
1

|S|
∑
i∈S

(xi − xS)(xi − xS)
⊤

)
.

Proof. Let n ≥ 1, 0 ≤ f < n/2, x1, . . . , xn ∈ Rn, and S ⊆ [n], |S| = n − f . Denote xS := 1
|S|
∑

i∈S xi and

σ2
S := λmax

(
1
|S|
∑

i∈S(xi − xS)(xi − xS)
⊤
)

.

First, we remark that Algorithm 2 terminates after at most 2f iterations. Indeed, at each iteration, at least one weight
ci, i ∈ [n], becomes zero—this is true for any i ∈ [n] such that i ∈ argmaxj∈[n] ⟨v̂c, xj − µ̂c⟩2—for the remaining
iterations. Therefore, since the weights ci, i ∈ [n], are all in [0, 1], it is guaranteed that

∑n
i=1 ci < n − 2f after 2f + 1

iterations.

Second, we show that there exists an iteration such that the maximum eigenvalue σ̂2
c is at most 2n(n−f)

(n−2f)2 σ
2
S . For the sake of

contradiction, assume that for every iteration we have σ̂2
c > 2n(n−f)

(n−2f)2 σ
2
S . It is well-known from the analysis of the original

Filter algorithm (Diakonikolas et al., 2017; Steinhardt et al., 2018) (see (Zhu et al., 2022, Appendix E.3) for details) that the
following invariant thus holds: ∑

i∈S

(1− ci) ≤
∑

i∈[n]\S

(1− ci). (12)

That is, the mass removed from the points in S is never greater than that removed from the points outside S. Importantly,
manipulating the bound above yields:

n∑
i=1

ci ≥ n− 2f + 2
∑

i∈[n]\S

ci ≥ n− 2f. (13)

This is exactly the opposite of the termination condition, i.e., the algorithm does not terminate. This is a contradiction, since
we have shown first that the algorithm terminates. Therefore, we have shown that there exists an iteration such that the
maximum eigenvalue σ̂2

c is at most 2n(n−f)
(n−2f)2 σ

2
S .

Finally, recall that the output µ⋆ is the weighted mean of the original inputs with respect to weights corresponding to σ2
⋆

the smallest maximum eigenvalue across the algorithm. Thus, thanks to the last shown result, we have σ2
⋆ ≤

2n(n−f)
(n−2f)2 σ

2
S .

Therefore, using (Zhu et al., 2022, Lemma 2.2), we have

∥µ⋆ − xS∥ ≤

√
f

n− f
(σ⋆ + σS) ≤

√
f

n− f

(
1 +

√
2n(n− f)

n− 2f

)
σS . (14)

We conclude by taking squares and using Jensen’s inequality.

CAF draws inspiration from recent algorithmic advances in robust statistics (Diakonikolas et al., 2017). However, a key
distinction is that CAF does not rely on knowing a bound on the covariance of honest inputs, which has been a crucial
requirement in the design of efficient robust mean estimators (Diakonikolas et al., 2017; Steinhardt et al., 2018). In the
aforementioned literature, knowing such a bound allows for an alternative termination condition in Algorithm 2, where
the algorithm halts once the weighted covariance is sufficiently small relative to the known bound, and the final output is
computed as the mean weighted by the last iteration’s computed weights (Diakonikolas et al., 2017).
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C. Utility Analysis: Proof of Theorem 4.2 and Corollary 4.1
C.1. Preliminaries

We recall that we assume the loss function to be differentiable everywhere, throughout the paper.

Definition C.1 (L-smoothness). A function L : Rd → R is L-smooth if, for all θ, θ′ ∈ Rd, we have

L(θ′)− L(θ)− ⟨∇L(θ), θ′ − θ⟩ ≤ L

2
∥θ′ − θ∥2 .

The above is equivalent to, for all θ, θ′ ∈ Rd, having ∥∇L(θ′)−∇L(θ)∥ ≤ L ∥θ′ − θ∥ (see, e.g., (Nesterov et al., 2018)).

Definition C.2 (µ-strong convexity). A function L : Rd → R is µ-stongly convex if, for all θ, θ′ ∈ Rd, we have

L(θ′)− L(θ)− ⟨∇L(θ), θ′ − θ⟩ ≥ µ

2
∥θ′ − θ∥2 .

Moreover, we recall that strong convexity implies the Polyak-Lojasiewicz (PL) inequality (Karimi et al., 2016)
2µ (L(θ)− L⋆) ≤ ∥∇L(θ)∥2. Note that a function satisfies L-smoothness and µ-strong convexity inequality simul-
taneously only if µ ≤ L.

C.2. Proof Outline

Our analysis of CAFCOR (Algorithm 1), is inspired from standard analyses in non-private robust distributed learning
(Karimireddy et al., 2021; Farhadkhani et al., 2022; Allouah et al., 2023c). We include all proofs for completeness.

Notation. Recall that for each step t, for each honest worker wi,

m
(i)
t = βt−1m

(i)
t−1 + (1− βt−1)g̃

(i)
t , (15)

g̃
(i)
t = g

(i)
t +

n∑
j=1
j ̸=i

v
(ij)
t + v

(i)
t ; v

(i)
t ∼ N (0, σ2

indId), v
(ij)
t = −v(ji)t ∼ N (0, σ2

corId), (16)

where we initialize m
(i)
0 = 0. Recall that we denote

Rt := CAF
(
m

(1)
t , . . . ,m

(n)
t

)
, (17)

θt+1 = θt − γtRt. (18)

Throughout, we denote byPt the history from steps 0 to t ∈ {0, . . . , T−1}: Pt :=
{
θ0, . . . , θt; m

(i)
1 , . . . , m

(i)
t−1; i ∈ [n]

}
.

By convention, P1 = {θ0}. We denote by Et [·] and E [·] the conditional expectation E [· Pt] and the total expectation,
respectively. Thus, E [·] = E1 [· · ·ET [·]].

Momentum drift. Along the trajectory θ0, . . . , θt, the honest workers’ local momentums may drift away from each other.
The drift has three distinct sources: (i) noise injected by the correlated noise scheme, (ii) gradient dissimilarity induced by
data heterogeneity, and (iii) stochasticity of the mini-batch gradients. The aforementioned drift of local momentums can be
exploited by the adversaries to maliciously bias the aggregation output. Formally, we will control the growth of the drift ∆t

between momentums, which we define as

∆t := λmax

(
1

|H|
∑
i∈H

(m
(i)
t −mt)(m

(i)
t −mt)

⊤

)
, (19)

where λmax denotes the maximum eigenvalue, and mt := 1
|H|
∑

i∈H m
(i)
t denotes the average honest momentum. We

show in Lemma C.1 below that the growth of the drift ∆t of the momentums can be controlled by tuning the momentum
coefficient βt. The full proof can be found in Appendix C.6.2.
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Lemma C.1. Suppose that assumptions 2.2 and 2.3 hold. Consider Algorithm 1. For every t ∈ {0, . . . , T − 1}, we have

E [∆t+1] ≤ βt E [∆t] + 2(1− βt)
2

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)
(1 +

d

n− f
)

)
+ (1− βt)G

2
cov,

where mt :=
1

|H|
∑

i∈H m
(i)
t , σ2

b := 2(1− b
m )σ

2

b , and G2
cov := supθ∈Rd sup∥v∥≤1

1
|H|
∑

i∈H ⟨v, ∇Li(θ)−∇LH(θ)⟩2.

The dimension factor d due to correlated and uncorrelated noises is divided by n− f , which would not have been possible
without leveraging the Gaussian nature of the noise. To do this, we use a concentration argument on the empirical
covariance matrix of Gaussian random variables, stated in Lemma C.6. Moreover, the correlated noise magnitude σ2

cor

has a multiplicative factor n, which essentially reflects the fact that a correlated noise term is added per worker, for each
worker. Finally, the remaining term G2

cov of the upper bound is only due to data heterogeneity, and also appears in Allouah
et al. (2023c). Similar to the aforementioned work, an important distinction from Karimireddy et al. (2022) is that G2

cov is a
tighter bound on heterogeneity, compared to G2 the bound on the average squared distance from Assumption 2.1. This is
because the drift ∆t is not an average squared distance, but rather a bound on average squared distances of every projection
on the unit ball. Controlling this quantity requires a covering argument (stated in Lemma C.4).

Momentum deviation. Next, we study the momentum deviation; i.e., the distance between the average honest momentum
mt and the true gradient∇LH(θt) in an arbitrary step t. Specifically, we define momentum deviation to be

δt := mt −∇LH (θt) . (20)

Also, we introduce the error between the aggregate Rt and mt :=
1

|H|
∑

i∈H m
(i)
t the average momentum of honest workers

for the case. Specifically, when defining the error

ϵt := Rt −mt, (21)

we get the following bound on the momentum deviation in Lemma C.2, proof of which can be found in Appendix C.6.3.

Lemma C.2. Suppose that assumptions 2.2 and 2.3 hold and that LH is L-smooth. Consider Algorithm 1. For all
t ∈ {0, . . . , T − 1}, we have

E
[
∥δt+1∥2

]
≤ β2

t (1 + γtL)(1 + 4γtL)E
[
∥δt∥2

]
+ 4γtL(1 + γtL)β

2
t E
[
∥∇LH(θt)∥

2
]

+ (1− βt)
2 σ2

DP

n− f
+ 2γtL(1 + γtL)β

2
t E
[
∥ϵt∥2

]
,

where σ2
DP :=

(
1− b

m

)
σ2

b + dfσ2
cor + dσ2

ind.

Above, the error due to the correlated noise scheme involves the noise magnitude σ2
cor but only multiplied by the number of

malicious workers f . This essentially reflects the fact that all correlated noise terms cancel out upon averaging, except those
shared with malicious workers, since the latter do not follow the protocol in the worst case.

Descent bound. Finally, we bound the progress made at each learning step in minimizing the loss LH using Algorithm 1, as
in previous work in robust distributed optimization. From (18) and (17), we obtain that, for each step t, θt+1 = θt − γtRt =
θt − γtmt − γt(Rt −mt), Furthermore, by (21), Rt − mt = ϵt. Thus, for all t,

θt+1 = θt − γtmt − γtϵt. (22)

This means that Algorithm 1 can actually be treated as distributed SGD with a momentum term that is subject to perturbation
proportional to ϵt at each step t. This perspective leads us to Lemma C.3, proof of which can be found in Appendix C.6.4.

Lemma C.3. Assume that LH is L-smooth. Consider Algorithm 1. For any t ∈ [T ], we have

E
[
LH(θt+1)− LH(θt)

]
≤− γt

2
(1− 4γtL)E

[
∥∇LH(θt)∥

2
]
+ γt (1 + 2γtL)E

[
∥δt∥2

]
+ γt (1 + γtL)E

[
∥ϵt∥2

]
.

Putting all of the previous lemmas together, we prove Theorem 4.2 in Section C.3.
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C.3. Proof of Theorem 4.2

We recall the theorem statement below for convenience. We denote

L⋆ = inf
θ∈Rd

LH(θ),L0 = LH(θ0)− L⋆, a1 = 240, a2 = 480, a3 = 5760, and a4 = 270.

Theorem 4.2. Suppose that Assumptions 2.1, 2.2, and 2.3 hold, and that LH is L-smooth. Recall κ from (4.1). Let

σ2 :=
σ2
b + d(fσ2

cor + σ2
ind)

n− f

+ 4κ

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)
(1 +

d

n− f
)

)
,

where σ2
b := 2(1− b

m )σ
2

b . We also denote L⋆ := infθ∈Rd LH(θ),L0 := LH(θ0)− L⋆. Consider Algorithm 1 with T ≥ 1,
the learning rates γt specified below, and momentum coefficients βt = 1− 24Lγt. The following holds:
1. LH is µ-strongly convex: If γt = 10

µ(t+240L
µ )

, then

E [LH(θT )− L∗] ≲
κG2

cov

µ
+

Lσ2

µ2T
+

L2L0

µ2T 2
,

2. LH is non-convex: If γt = min
{

1
24L ,

√
3L0

16σ
√
LT

}
, then

E∥∇LH(θ̂)∥2≲ κG2
cov +

σ
√
LL0√
T

+
LL0

T
,

where ≲ denotes inequality up to absolute constants and the expectation is over the randomness of the algorithm.

We prove Theorem 4.2 in the strongly convex case in Section C.3.1, and in the non-convex case in Section C.3.2. These
proofs follow along the lines of Allouah et al. (2023c), and we include them here for completeness.

C.3.1. STRONGLY CONVEX CASE

Proof. Let Assumption 2.2 hold and assume that LH is L-smooth and µ-strongly convex. Let t ∈ {0, . . . , T − 1}. We set
the learning rate and momentum schedules to be

γt =
10

µ(t+ a1
L
µ )

, βt = 1− 24Lγt, (23)

where a1 := 240. Note that we have

γt ≤ γ0 =
10

µ240L
µ

=
1

24L
. (24)

To obtain the convergence result we define the Lyapunov function to be

Vt :=

(
t+ a1

L

µ

)2

E
[
LH(θt)− L⋆ +

z1
L
∥δt∥2 + κ · z2

L
∆t

]
, (25)

where a1 = 240, z1 = 1
16 , and z2 = 2. Throughout the proof, we denote t̂ := t + a1

L
µ . Therefore, we have γt = 10

µt̂
.

Consider also the auxiliary sequence Wt defined as

Wt := E
[
LH(θt)− L⋆ +

z1
L
∥δt∥2 + κ · z2

L
∆t

]
. (26)

Therefore, we have

Vt+1 − Vt = (t̂+ 1)2Wt+1 − t̂2Wt = (t̂+ 1)2Wt+1 − (t̂2 + 2t̂+ 1)Wt + (2t̂+ 1)Wt

= (t̂+ 1)2(Wt+1 −Wt) + (2t̂+ 1)Wt. (27)

We now bound the quantity Wt+1 −Wt below.
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Invoking Lemma C.1. Upon substituting from Lemma C.1, we obtain

E
[
κ · z2

L
∆t+1 − κ · z2

L
∆t

]
≤ κ · z2

L
βt E [∆t] + 2κ · z2

L
(1− βt)

2

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)
(1 +

d

n− f
)

)
+ κ · z2

L
(1− βt)G

2
cov − κ · z2

L
E [∆t] . (28)

Invoking Lemma C.2. Upon substituting from Lemma C.2, we obtain

E
[z1
L
∥δt+1∥2 −

z1
L
∥δt∥2

]
≤ z1

L
β2
t ct E

[
∥δt∥2

]
+ 4z1γt(1 + γtL)β

2
t E
[
∥∇LH(θt)∥

2
]
+

z1
L
(1− βt)

2 σ2
DP

n− f

+ 2z1γt(1 + γtL)β
2
t E
[
∥ϵt∥2

]
− z1

L
E
[
∥δt∥2

]
, (29)

where we introduced the following quantity for simplicity

ct = (1 + γtL) (1 + 4γtL) = 1 + 5γtL+ 4γ2
tL

2. (30)

Invoking Lemma C.3. Substituting from Lemma C.3, we obtain

E
[
LH(θt+1)− LH(θt)

]
≤ −γt

2
(1− 4γtL)E

[
∥∇LH(θt)∥

2
]
+ γt (1 + 2γtL)E

[
∥δt∥2

]
+ γt (1 + γtL)E

[
∥ϵt∥2

]
.

(31)

Substituting from (28), (29) and (31) in (26), we obtain

Wt+1 −Wt = E
[
LH(θt+1)− LH(θt)

]
+ E

[z1
L
∥δt+1∥2 −

z1
L
∥δt∥2

]
+ E

[
κ · z2

L
∆t+1 − κ · z2

L
∆t

]
≤ −γt

2
(1− 4γtL)E

[
∥∇LH(θt)∥

2
]
+ γt (1 + 2γtL)E

[
∥δt∥2

]
+ γt (1 + γtL)E

[
∥ϵt∥2

]
+

z1
L
β2
t ct E

[
∥δt∥2

]
+ 4z1γt(1 + γtL)β

2
t E
[
∥∇LH(θt)∥

2
]
+

z1
L
(1− βt)

2 σ2
DP

n− f

+ 2z1γt(1 + γtL)β
2
t E
[
∥ϵt∥2

]
− z1

L
E
[
∥δt∥2

]
+ κ · z2

L
βt E [∆t] + 2κ · z2

L
(1− βt)

2

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)
(1 +

d

n− f
)

)
+ κ · z2

L
(1− βt)G

2
cov

− κ · z2
L

E [∆t] . (32)

Upon rearranging the R.H.S. in (32) we obtain that

Wt+1 −Wt ≤ −
γt
2

(
(1− 4γtL)− 8z1(1 + γtL)β

2
t

)
E
[
∥∇LH(θt)∥

2
]
+

z1
L
(1− βt)

2 σ2
DP

n− f

− z1γt

(
− 1

z1
(1 + 2γtL)−

1

γtL
β2
t ct +

1

γtL

)
E
[
∥δt∥2

]
+ γt

(
1 + γtL+ 2z1(1 + γtL)β

2
t

)
E
[
∥ϵt∥2

]
− κ · z2

L
(1− βt)E [∆t] + 2κ · z2

L
(1− βt)

2

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)
(1 +

d

n− f
)

)
+ κ · z2

L
(1− βt)G

2
cov.

(33)

By Proposition 4.1, we can bound E
[
∥ϵt∥2

]
as follows. Starting from the definition of ϵt, we have

∥ϵt∥2 = ∥Rt −mt∥2 =
∥∥∥CAF(m(1)

t , . . . ,m
(n)
t )−mt

∥∥∥2 ≤ κ · λmax

(
1

|H|
∑
i∈H

(m
(i)
t −mt)(m

(i)
t −mt)

⊤

)
= κ ·∆t.

Then taking total expectations above gives the bound

E
[
∥ϵt∥2

]
≤ κ · E [∆t] .
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Using the bound above in Equation (33), and then rearranging terms, yields

Wt+1 −Wt ≤ −
γt
2

(
(1− 4γtL)− 8z1(1 + γtL)β

2
t

)
E
[
∥∇LH(θt)∥

2
]
+

z1
L
(1− βt)

2 σ2
DP

n− f

− z1γt

(
− 1

z1
(1 + 2γtL)−

1

γtL
β2
t ct +

1

γtL

)
E
[
∥δt∥2

]
+ κγt

(
1 + γtL+ 2z1(1 + γtL)β

2
t

)
E [∆t]

− κ · z2
L
(1− βt)E [∆t] + 2κ · z2

L
(1− βt)

2

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)
(1 +

d

n− f
)

)
+ κ · z2

L
(1− βt)G

2
cov

= −γt
2

(
(1− 4γtL)− 8z1(1 + γtL)β

2
t

)
E
[
∥∇LH(θt)∥

2
]
+

z1
L
(1− βt)

2 σ2
DP

n− f

− z1γt

(
− 1

z1
(1 + 2γtL)−

1

γtL
β2
t ct +

1

γtL

)
E
[
∥δt∥2

]
− κz2γt

(
1

γtL
(1− βt)−

1

z2

(
1 + γtL+ 2z1(1 + γtL)β

2
t

))
E [∆t]

+ 2κ · z2
L
(1− βt)

2

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)
(1 +

d

n− f
)

)
+ κ · z2

L
(1− βt)G

2
cov.

For simplicity, we define

A :=
1

2
(1− 4γtL)− 8z1(1 + γtL)β

2
t , (34)

B := − 1

z1
(1 + 2γtL)−

1

γtL
β2
t ct +

1

γtL
, (35)

and

C :=
1

γtL
(1− βt)−

1

z2

(
1 + γtL+ 2z1(1 + γtL)β

2
t

)
, (36)

Denote also

σ2 :=
σ2
b + d(fσ2

cor + σ2
ind)

n− f
+ 4κ

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)
(1 +

d

n− f
)

)
.

Recall that, as z1 = 1
16 and z2 = 2, and σ2

DP = σ2
b + d(fσ2

cor + σ2
ind), we have

σ2 ≥ z1
σ2
DP

n− f
+ 2κ · z2

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)
(1 +

d

n− f
)

)
.

Thus, substituting the above variables, we obtain

Wt+1 −Wt ≤ −Aγt E
[
∥∇LH(θt)∥

2
]
− z1Bγt E

[
∥δt∥2

]
− κ · z2Cγt E [∆t]

+
1

L
(1− βt)

2σ2 + κ · z2
L
(1− βt)G

2
cov. (37)

We now analyze below the terms A, B and C on the RHS of (37).

Term A. Recall from (24) that γt ≤ 1
24L . Upon using this in (34), and the facts that z1 = 1

16 and β2
t ≤ 1, we obtain that

A ≥ 1

2
(1− 4γtL)− 8z1(1 + γtL) ≥

1

2
(1− 4× 1

24
)− 8

16
(1 +

1

24
) ≥ 1

10
. (38)

Term B. Substituting ct from (30) in (35) we obtain that

B = − 1

z1
(1 + 2γtL)−

1

γtL
β2
t

(
1 + 5γtL+ 4γ2

tL
2
)
+

1

γtL

=
1

γtL

(
1− β2

)
− 1

z1

(
1 + 2γtL+ 5z1β

2
t + 4z1β

2
t γtL

)
.
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Using the facts that βt ≤ 1 and γt ≤ 1
24L , and then substituting z1 = 1

16 we obtain

B ≥ 1

γtL
(1− β2

t )− 16

(
1 +

2

24
+

5

16
+

4

24× 16

)
≥ 1

γtL
(1− β2

t )− 23 ≥ 1

γtL
(1− βt)− 23 = 1. (39)

where the last equality follows from the fact that 1− βt = 24γtL.

Term C. Substituting z1 = 1
16 , z2 = 2 in (36), and then using the facts that βt ≤ 1 and γt ≤ 1

24L , we obtain

C =
1

γtL
(1− βt)−

1

2

(
1 + γtL+ (2× 16)(1 + γtL)β

2
t

)
≥ 1

γtL
(1− βt)−

1

2

(
1 +

1

24
+ 32(1 +

1

24
)

)
≥ 1

γtL
(1− βt)− 18 = 6, (40)

where the last equality follows from the fact that 1− βt = 24γtL.

Combining terms A, B, and C. Finally, substituting from (38), (39), and (40) in (37) (and recalling that z2 = 2) we obtain
that

Wt+1 −Wt ≤ −
γt
10

E
[
∥∇LH(θt)∥

2
]
− z1γt E

[
∥δt∥2

]
− 6κz2γt E [∆t]

+
1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov. (41)

Since LH is µ-strongly convex, we have (Karimi et al., 2016) for any θ ∈ Rd that

∥∇LH(θ)∥2 ≥ 2µ(L(θ)− L⋆). (42)

Plugging (42) in (41) above, and then recalling that L ≥ µ, yields

Wt+1 −Wt ≤ −
µγt
5

E [LH(θt)− L⋆]− z1γt E
[
∥δt∥2

]
− 6κz2γt E [∆t]

+
1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov

≤ −µγt
5

E
[
LH(θt)− L⋆ +

z1
µ
∥δt∥2 + κ · z2

µ
∆t

]
+

1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov

≤ −µγt
5

E
[
LH(θt)− L⋆ +

z1
L
∥δt∥2 + κ · z2

L
∆t

]
+

1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov

= −µγt
5

Wt +
1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov.

Upon plugging the above bound back in Equation (27), rearranging terms and substituting 1− βt = 24Lγt, we obtain

Vt+1 − Vt ≤ (t̂+ 1)2
[
−µγt

5
Wt +

1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov

]
+ (2t̂+ 1)Wt

= −
[
(t̂+ 1)2

µγt
5
− (2t̂+ 1)

]
Wt +

(t̂+ 1)2

L
(24Lγt)

2σ2 + κ · 2(t̂+ 1)2

L
(24Lγt)G

2
cov.

Recall however that γt = 10
µt̂

as t̂ = t+ a1
L
µ . Recall that we denote a1 = 24× 10 = 240. Substituting γt above yields

Vt+1 − Vt ≤ (t̂+ 1)2
[
−µγt

5
Wt +

1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov

]
+ (2t̂+ 1)Wt

= −
[
2
(t̂+ 1)2

t̂
− (2t̂+ 1)

]
Wt + a21L

(t̂+ 1)2

µ2t̂2
σ2 + 2a1κ ·

(t̂+ 1)2

µt̂
G2

cov.

Observe that 2 (t̂+1)2

t̂
≥ 2(t̂+ 1) > 2t̂+ 1, implying that the first term above is negative:

Vt+1 − Vt ≤ a21L
(t̂+ 1)2

µ2t̂2
σ2 + 2a1κ ·

(t̂+ 1)2

µt̂
G2

cov.
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Observe now that, as t̂ = t+ a1
L
µ ≥ a1 = 240 (because L ≥ µ), we have (t̂+ 1)2 ≤ (1 + 1

240 )
2t̂2 ≤ 2t̂2. Plugging this

bound in the inequality above gives

Vt+1 − Vt ≤
2a21L

µ2
σ2 + 4a1κ ·

t̂

µ
G2

cov.

Therefore, we have for every t ∈ {0, . . . , T − 1} that

Vt+1 − V0 =

t∑
k=0

(Vk+1 − Vk) ≤ (t+ 1)
2a21L

µ2
σ2 +

(
t∑

k=0

k̂

)
4a1κ

µ
G2

cov.

Since
∑t

k=0 k̂ =
∑t

k=0(k + a1
L
µ ) =

∑t
k=0 k + a1(t+ 1)Lµ = t(t+1)

2 + a1(t+ 1)Lµ , we obtain

Vt+1 − V0 =

t∑
k=0

(Vk+1 − Vk) ≤ (t+ 1)
2a21L

µ2
σ2 +

(
t(t+ 1)

2
+ a1(t+ 1)

L

µ

)
4a1κ

µ
G2

cov

= (t+ 1)
2a21L

µ2
σ2 + (t+ 1)

(
t

2
+ a1

L

µ

)
4a1κ

µ
G2

cov.

However, recalling the definition (25) of Vt, we obtain

(t+ 1 + a1
L

µ
)2 E [LH(θt+1)− L⋆] ≤ Vt+1 ≤ V0 + (t+ 1)

2a21L

µ2
σ2 + (t+ 1)

(
t

2
+ a1

L

µ

)
4a1κ

µ
G2

cov.

By rearranging terms, and using the fact that L
µ ≥ 1, we then get

E [LH(θt+1)− L⋆] ≤
V0

(t+ 1 + a1
L
µ )

2
+

t+ 1

(t+ 1 + a1
L
µ )

2

2a21Lσ
2

µ2
+

(t+ 1)
(

t
2 + a1

L
µ

)
(t+ 1 + a1

L
µ )

2

4a1κ

µ
G2

cov

≤ V0

(t+ 1 + a1
L
µ )

2
+

1

t+ 1 + a1
L
µ

2a21Lσ
2

µ2
+

4a1κ

µ
G2

cov. (43)

It remains to bound V0. By definition, we have

V0 =

(
a1

L

µ

)2 [
LH(θ0)− L⋆ +

z1
L
∥δ0∥2 +

z2
L
∆0

]
.

By definition of mt = 1
|H|
∑

i∈H m
(i)
t and the initializations m

(i)
0 = 0 for all i ∈ H, we have ∆0 =

λmax

(
1

|H|
∑

i∈H(m
(i)
0 −m0)(m

(i)
0 −m0)

⊤
)
= 0. Therefore, we have

V0 =

(
a1

L

µ

)2 [
LH(θ0)− L⋆ +

z1
L
∥δ0∥2

]
.

Moreover, by definition of δt in (20), we obtain that

∥δ0∥2 = ∥m0 −∇LH(θ0)∥
2
= ∥∇LH(θ0)∥

2
.

Recall that LH is L-smooth. Thus, ∥∇LH(θ0)∥
2 ≤ 2L(LH(θ0) − L∗) (see (Nesterov et al., 2018), Theorem 2.1.5).

Therefore, substituting z1 = 1
16 , we have

V0 ≤
(
a1

L

µ

)2 [
LH(θ0)− L⋆ +

2L

16L
(LH(θ0)− L⋆)

]
=≤

(
a1

L

µ

)2
9

8
(LH(θ0)− L⋆) ≤ 2

(
a1

L

µ

)2

(LH(θ0)− L⋆).
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Plugging the above bound back in Equation (43), rearranging terms, and then recalling that a1 L
µ ≥ 0, yields

E [LH(θt+1)− L⋆] ≤
4a1
µ

κG2
cov +

2a21Lσ
2

µ2(t+ 1 + a1
L
µ )

+
2a1L

2(LH(θ0)− L⋆)

µ2(t+ 1 + a1
L
µ )

2

≤ 4a1
µ

κG2
cov +

2a21Lσ
2

µ2(t+ 1)
+

2a1L
2(LH(θ0)− L⋆)

µ2(t+ 1)2
.

Specializing the inequality above for t = T − 1 and denoting L0 := LH(θ0)− L⋆ proves the theorem:

E [LH(θT )− L⋆] ≤
4a1
µ

κG2
cov +

2a21Lσ
2

µ2T
+

2a21L
2L0

µ2T 2
.

C.3.2. NON-CONVEX CASE

Proof. Let Assumption 2.2 hold and assume that LH is L-smooth. Let t ∈ {0, . . . , T − 1}. We set the learning rate and
momentum to constant as follows:

γt = γ := min

{
1

24L
,

√
a4L0

2σ
√
a3LT

}
, βt = β := 1− 24Lγ, (44)

where a1 := 240. Note that we have

γt = γ ≤ 1

24L
. (45)

To obtain the convergence result we define the Lyapunov function to be

Vt := E
[
LH(θt)− L⋆ +

z1
L
∥δt∥2 + κ · z2

L
∆t

]
, (46)

where z1 = 1
16 , and z2 = 2. Note that Vt corresponds to the sequence Wt defined in Equation (26), and analyzed in

Appendix C.3.1 under the assumption that γt ≤ 1
24L . Since the latter holds by Equation (45), we directly apply the bound

obtained in Equation (41):

Vt+1 − Vt ≤ −
γt
10

E
[
∥∇LH(θt)∥

2
]
− z1γt E

[
∥δt∥2

]
− 6κz2γt E [∆t]

+
1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov.

In turn, substituting γt = γ, βt = β and bounding the second and third terms on the RHS by zero, this implies that

Vt+1 − Vt ≤ −
γ

10
E
[
∥∇LH(θt)∥

2
]
+

1

L
(1− β)2σ2 + κ · 2

L
(1− β)G2

cov.

By rearranging terms and then averaging over t ∈ {0, . . . , T − 1}, we obtain

1

T

T−1∑
t=0

E
[
∥∇LH(θt)∥

2
]
≤ 10

γT

T−1∑
t=0

(Vt − Vt+1) +
10

γL
(1− β)2σ2 + κ · 20

γL
(1− β)G2

cov.

We now substitute β = 1− 24γL. Denoting a3 = 10× 242 = 5760, a2 = 20× 24 = 480, we obtain

1

T

T−1∑
t=0

E
[
∥∇LH(θt)∥

2
]
≤ 10

γT

T−1∑
t=0

(Vt − Vt+1) +
(10× 242)

γL
(γL)2σ2 + κ · (20× 24)

γL
(γL)G2

cov

=
10

γT
(V0 − VT ) + a3γLσ

2 + a2κG
2
cov. (47)
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We now bound V0 − VT . First recall that VT ≥ 0 as a sum of non-negative terms (see (46)). Therefore, we have

V0 − VT ≤ V0 = LH(θ0)− L⋆ +
z1
L
∥δ0∥2 +

z2
L
∆0.

By definition of mt = 1
|H|
∑

i∈H m
(i)
t and the initializations m

(i)
0 = 0 for all i ∈ H, we have ∆0 =

λmax

(
1

|H|
∑

i∈H(m
(i)
0 −m0)(m

(i)
0 −m0)

⊤
)
= 0. Therefore, we have

V0 = LH(θ0)− L⋆ +
z1
L
∥δ0∥2 .

Moreover, by definition of δt in (20), we obtain that

∥δ0∥2 = ∥m0 −∇LH(θ0)∥
2
= ∥∇LH(θ0)∥

2
.

Recall that LH is L-smooth. Thus, ∥∇LH(θ0)∥
2 ≤ 2L(LH(θ0) − L∗) (see (Nesterov et al., 2018), Theorem 2.1.5).

Therefore, substituting z1 = 1
16 , we have

V0 − VT ≤ V0 ≤ LH(θ0)− L⋆ +
2L

16L
(LH(θ0)− L⋆) =

9

8
(LH(θ0)− L⋆).

By plugging this bound back in (47), and denoting a4 := 24× 10× ( 98 ) = 270 and L0 := LH(θ0)− L⋆, we obtain

1

T

T−1∑
t=0

E
[
∥∇LH(θt)∥

2
]
≤

10× ( 98 )

γT
(LH(θ0)− L⋆) + a3γLσ

2 + a2κG
2
cov

=
a4L0

24γT
+ a3γLσ

2 + a2κG
2
cov. (48)

Recall that by definition

γ = min

{
1

24L
,

√
a4L0

2σ
√
a3LT

}
,

and thus 1
γ = max

{
24L, 2√

a4L0
σ
√
a3LT

}
≤ 24L+ 2√

a4L0
σ
√
a3LT . Therefore, we have

a4L0

24γT
≤ a4L0

24T

(
24L+

2√
a4L0

σ
√
a3LT

)
=

a4LL0

T
+

√
a3a4LL0σ

12
√
T

.

Upon using the above, and that γ ≤
√
a4L0

2σ
√
a3LT

, in (48), we obtain that

1

T

T−1∑
t=0

E
[
∥∇LH(θt)∥

2
]
≤ a4LL0

T
+

√
a3a4LL0σ

12
√
T

+

√
a3a4LL0σ

2
√
T

+ a2κG
2
cov ≤ a2κG

2
cov +

√
a3a4LL0σ√

T
+

a4LL0

T
.

Finally, recall from Algorithm 1 that θ̂ is chosen randomly from the set of parameter vectors
(
θ0, . . . , θT−1

)
. Thus,

E
[∥∥∥∇LH

(
θ̂
)∥∥∥2] = 1

T

∑T−1
t=0 E

[
∥∇LH(θt)∥

2
]
. Substituting this above proves the theorem.

C.4. Proof of Corollary 4.1

We now state the proof of Corollary 4.1 below.

Corollary 4.1. Let δ ∈ (0, 1), ε ∈ (0, log(1/δ)) and n ≥ (2 + η)f , for some absolute constant η > 0. Con-
sider Algorithm 1 in the strongly convex setting of Theorem 4.2. If σ2

cor = σ2
ind = 32C2T log (1/δ)

ε2(n−f) , then Algorithm 1
is (ε, δ)-SecLDP against an honest-but-curious server colluding with all malicious workers, and (f, ϱ)-robust where

ϱ = O
(

(f+1)C2d log(1/δ)
n2ε2 + fC2 log(1/δ)

nε2 + f
nG

2
cov

)
, asymptotically in T and ignoring absolute constants.
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Proof. The privacy claim follows directly from Theorem 4.1, given the choice of σ2
cor = σ2

ind = 32C2T log (1/δ)
ε2(n−f) .

We now prove the utility claim. First, we recall that n− f ≥ n/2 since f < n/2, and κ is bounded by f
n up to a constant

when n ≥ (2 + η)f, η > 0, by Proposition 4.1. Plugging the expressions of σ2
ind and σ2

cor in the strongly convex bound of
Theorem 4.2 and rearranging terms yields

E [LH(θT )− L⋆] = O(
κG2

cov

µ
+

Lσ2

µ2T
+

L2L0

µ2T 2
)

= O
(
κG2

cov

µ
+

L

µ2T

[
σ2
b + d(fσ2

cor + σ2
ind)

n− f
+ κ

(
σ2
b +

(
nσ2

cor + σ2
ind

)
(1 +

d

n− f
)

)]
+

L2L0

µ2T 2

)
= O

(
fG2

cov

nµ
+

C2d log(1/δ)

ε2n
· f + 1

n
+

C2 log(1/δ)

ε2
· f
n
+

σ2
b

T
· f + 1

n
+

L2L0

µ2T 2

)
.

We conclude by ignoring asymptotically vanishing terms in T .

C.5. Privacy-Utility Trade-off for Standard Aggregation Methods

We now analyze the privacy-utility trade-off of CAFCOR when using standard aggregation methods instead of CAF
and present the corresponding proof below. Specifically, under the same setting as Corollary 4.1, but replacing CAF in
Algorithm 1 with the coordinate-wise trimmed mean (proven order-optimal under the weaker robustness criterion of Allouah
et al. (2023a))), we obtain (f, ϱ)-robustness with

ϱ = O
(
f

n
· C

2d log(1/δ)

ε2
+

C2d log(1/δ)

n2ε2
+

f

n
dG2

cov

)
,

asymptotically in T and ignoring absolute constants.

Proof. When using coordinate-wise trimmed mean, we have a weaker robustness guarantee than Proposition 4.1. Essentially,
we can prove the latter but with the right-hand side of the inequality involving the trace instead of the maximum eigenvalue
(of the empirical covariance of honest inputs), as shown by Allouah et al. (2023a). Therefore, the only change in the
convergence analysis occurs in Lemma C.1, which would instead involve the trace operator instead of the maximum
eigenvalue operator. Formally, denoting

∆̃t := Tr

(
1

|H|
∑
i∈H

(m
(i)
t −mt)(m

(i)
t −mt)

⊤

)
=

1

|H|
∑
i∈H

∥∥∥m(i)
t −mt

∥∥∥2 , (49)

we would have

E
[
∆̃t+1

]
≤ βt E

[
∆̃t

]
+ 2(1− βt)

2
(
σ2
b + 3d

(
nσ2

cor + σ2
ind

))
+ (1− βt)G

2
cov,

reusing the same notation as Lemma C.1. Therefore, leaving all other lemmas unchanged for the proof of Theorem 4.2, we
would obtain the statement as the latter except that the expression of σ from Theorem 4.2 would become

σ2
b + d(fσ2

cor + σ2
ind)

n− f
+ 4κ

(
σ2
b + 3d

(
nσ2

cor + σ2
ind

))
.

We now follow the same steps as in the proof of Corollary 4.1. First, we recall that n ≥ (2 + η)f for some constant value η,
so that κ is bounded by f/n up to constants. Plugging the expressions of σ2

ind and σ2
cor in the strongly convex bound of

Theorem 4.2 and rearranging terms yields

E [LH(θT )− L⋆] = O(
κdG2

cov

µ
+

Lσ2

µ2T
+

L2L0

µ2T 2
)

= O
(
κdG2

cov

µ
+

L

µ2T

[
σ2
b + d(fσ2

cor + σ2
ind)

n− f
+ κ

(
σ2
b + d

(
nσ2

cor + σ2
ind

))]
+

L2L0

µ2T 2

)
= O

(
fdG2

cov

nµ
+

C2d log(1/δ)

ε2n
· f + 1

n
+

C2d log(1/δ)

ε2
· f
n
+

σ2
b

T
· f + 1

n
+

L2L0

µ2T 2

)
= O

(
fdG2

cov

nµ
+

C2d log(1/δ)

ε2n2
+

C2d log(1/δ)

ε2
· f
n
+

σ2
b

T
· f + 1

n
+

L2L0

µ2T 2

)
.
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We conclude by ignoring asymptotically vanishing terms in T and rearranging terms.

C.6. Proof of Supporting Lemmas

Before proving Lemmas C.1 to C.3 in Appendices C.6.2 to C.6.4, respectively, we first present some additional results
in Appendix C.6.1 below. Most of the proofs follow along the lines of Allouah et al. (2023c), and we include them here for
completeness.

C.6.1. TECHNICAL LEMMAS

Lemma C.4. Let M ∈ Rd×d be a random real symmetric matrix and g : R→ R an increasing function. It holds that

E

[
sup

∥v∥≤1

g(⟨v, Mv⟩)

]
≤ 9d · sup

∥v∥≤1

E [g(2 ⟨v, Mv⟩)] .

Proof. Let M ∈ Rd×d be a random real symmetric matrix and g : R→ R a increasing function.

The proof follows the construction of (Section 5.2, (Vershynin, 2010)). Recall from standard covering net results (Vershynin,
2010) that we can construct N1/4 a finite 1/4-net of the unit ball, i.e., for any vector v in the unit ball, there exists uv ∈ N1/4

such that ∥uv − v∥ ≤ 1/4. Moreover, we have the bound
∣∣N1/4

∣∣ ≤ (1+2/(1/4))d = 9d. Denote by ∥M∥ := sup∥v∥≤1 ∥Mv∥
the operator norm of M . By recalling that M is symmetric, we obtain for any v in the unit ball

|⟨v, Mv⟩ − ⟨uv, Muv⟩| = |⟨v + uv, M(v − uv)⟩| ≤ ∥v + uv∥ ∥M(v − uv)∥ ≤ (∥v∥+ ∥uv∥) ∥M(v − uv)∥
≤ 2 ∥M(v − uv)∥ ≤ 2 ∥M∥ ∥v − uv∥ ≤ 2 ∥M∥ /4 = ∥M∥ /2.

Therefore, we have ⟨v, Mv⟩ − ⟨uv, Muv⟩ ≤ ∥M∥ /2, and ⟨v, Mv⟩ − ∥M∥ /2 ≤ ⟨uv, Muv⟩ ≤ supu∈N1/4
⟨u, Mu⟩.

Recall that since M is symmetric, its operator norm coincides with its maximum eigenvalue: ∥M∥ = sup∥v∥≤1 ⟨v, Mv⟩.
We therefore deduce that

sup
∥v∥≤1

⟨v, Mv⟩ ≤ 2 · sup
v∈N1/4

⟨v, Mv⟩ .

Upon composing with g, which is increasing, we get

sup
∥v∥≤1

g(⟨v, Mv⟩) = g

(
sup

∥v∥≤1

⟨v, Mv⟩

)
≤ g

(
2 · sup

v∈N1/4

⟨v, Mv⟩

)
= sup

v∈N1/4

g(2 ⟨v, Mv⟩).

Upon taking expectations and applying union bound, we finally conclude

E

[
sup

∥v∥≤1

g(⟨v, Mv⟩)

]
≤ E

[
sup

v∈N1/4

g(2 ⟨v, Mv⟩)

]
≤
∣∣N1/4

∣∣ · sup
v∈N1/4

E [g(2 ⟨v, Mv⟩)] ≤ 9d · sup
∥v∥≤1

E [g(2 ⟨v, Mv⟩)] .

Lemma C.5. Suppose assumptions 2.2 and 2.3 hold. For any t ∈ {0, . . . , T − 1} and i ∈ H, we have

E
[∥∥∥g̃(i)t −∇Li(θt)

∥∥∥2] ≤ 2

(
1− b

m

)
σ2

b
+ d · σ2

DP.

Proof. Suppose assumptions 2.2 and 2.3 hold. Let i ∈ H and t ∈ {0, . . . , T − 1}.

First recall from (16) that, since g̃
(i)
t = g

(i)
t + ξ

(i)
t , ξ

(i)
t

i.i.d.∼ N (0, σ2
DPId), we have

E
ξ
(i)
t

[∥∥∥g̃(i)t − g
(i)
t

∥∥∥2] = E
[∥∥∥ξ(i)t

∥∥∥2] = d · σ2
DP.
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Next, we have∥∥∥g̃(i)t −∇Li(θt)
∥∥∥2 =

∥∥∥g̃(i)t − g
(i)
t + g

(i)
t −∇Li(θt)

∥∥∥2
=
∥∥∥g̃(i)t − g

(i)
t

∥∥∥2 + ∥∥∥g(i)t −∇Li(θt)
∥∥∥2 + 2

〈
g̃
(i)
t − g

(i)
t , g

(i)
t −∇Li(θt)

〉
.

Now taking expectation on the randomness of ξ(i)t (independent of all other random variables), and since E
[
ξ
(i)
t

]
= 0, we

get

E
ξ
(i)
t

[∥∥∥g̃(i)t −∇Li(θt)
∥∥∥2] = E

ξ
(i)
t

[∥∥∥g̃(i)t − g
(i)
t

∥∥∥2]+ ∥∥∥g(i)t −∇Li(θt)
∥∥∥2 + 2

〈
E
ξ
(i)
t

[
g̃
(i)
t − g

(i)
t

]
︸ ︷︷ ︸

=E
[
ξ
(i)
t

]
=0

, g
(i)
t −∇Li(θt)

〉

= E
ξ
(i)
t

[∥∥∥g̃(i)t − g
(i)
t

∥∥∥2]+ ∥∥∥g(i)t −∇Li(θt)
∥∥∥2 .

Upon taking total expectation, we obtain

E
[∥∥∥g̃(i)t −∇Li(θt)

∥∥∥2] = E
[∥∥∥g̃(i)t − g

(i)
t

∥∥∥2]+ E
[∥∥∥g(i)t −∇Li(θt)

∥∥∥2]
= E

[∥∥∥g(i)t −∇Li(θt)
∥∥∥2]+ d · σ2

DP. (50)

First observe that when m = 1, as b ∈ [m], we must have b = m. Thus, the gradient is deterministic, i.e., g(i)t = ∇Li(θt).
Thus, the first term in the equation above is zero, and the claimed bound holds.

Else, when m ≥ 2, recall that from Assumption 2.2, we have Ex∼U(Di)

[
∥∇θℓ(θt;x)−∇Li(θt)∥2

]
≤ σ2. From (Rice,

2006), the variance reduction due to subsampling without replacement gives

E
[∥∥∥g(i)t −∇Li(θt)

∥∥∥2] ≤ (1− b− 1

m− 1

)
σ2

b
.

Plugging this bound back in Equation (50) yields

E
[∥∥∥g̃(i)t −∇Li(θt)

∥∥∥2] ≤ (1− b− 1

m− 1

)
σ2

b
+ d · σ2

DP.

By observing, as m ≥ 2, that 1− b−1
m−1 = m−b

m−1 = m
m−1 ·

m−b
m = (1+ 1

m−1 )(1−
b
m ) ≤ 2(1− b

m ), we obtain the final result:

E
[∥∥∥g̃(i)t −∇Li(θt)

∥∥∥2] ≤ 2

(
1− b

m

)
σ2

b
+ d · σ2

DP.

Lemma C.6. Let σDP ≥ 0 and d, n ≥ 1. Consider ξ(1), . . . , ξ(n) to be i.i.d. random variables drawn from the Gaussian
distribution N (0, σ2

DPId). We have

E

[
sup

∥v∥≤1

1

n

n∑
i=1

〈
v, ξ(i)

〉2]
≤ 36σ2

DP

(
1 +

d

n

)
.

Proof. Let σDP ≥ 0 and d, n ≥ 1. Consider ξ(1), . . . , ξ(n) to be i.i.d. random variables drawn from the Gaussian distribution
N (0, σ2

DPId).

If σDP = 0, then ξ(i) = 0 almost surely for every i ∈ [n], and the remainder of the proof holds with σDP = 0. Else, we
assume σDP > 0 in the remaining.
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Thus, the law of the random variable ξ(i)/σDP is N (0, Id) for every i ∈ [n]. Thus, for every vector v in the unit ball, the
random variable

〈
v, ξ(i)/σDP

〉
is sub-Gaussian with variance equal to 1 (see Chapter 1, (Rigollet & Hütter, 2015)). Therefore,

for every i ∈ [n] and every vector v in the unit ball, applying Theorem 2.1.1 in (Pauwels, 2020)), we have

E
[
exp

(
1

8

〈
v, ξ(i)/σDP

〉2)] ≤ 2.

As a result, by the independence of ξ(i)’s, we obtain

sup
∥v∥≤1

E

[
exp

(
1

8σ2
DP

n∑
i=1

〈
v, ξ(i)

〉2)]
= sup

∥v∥≤1

n∏
i=1

E
[
exp

(
1

8

〈
v, ξ(i)/σDP

〉2)] ≤ 2n.

Now, observe that we can write
∑n

i=1

〈
v, ξ(i)

〉2
as the quadratic form ⟨v, Mv⟩, where M :=

∑n
i=1 ξ

(i) · ξ(i)⊤ is a random
real symmetric matrix. Thus, applying Lemma C.4 with the increasing function g(·) = exp ( 1

16σ2
DP
× ·), we have

E

[
sup

∥v∥≤1

exp

(
1

16σ2
DP

n∑
i=1

〈
v, ξ(i)

〉2)]
= E

[
sup

∥v∥≤1

g(⟨v, Mv⟩)

]
≤ 9d · sup

∥v∥≤1

E [g(2 ⟨v, Mv⟩)]

= 9d · sup
∥v∥≤1

E

[
exp

(
1

8σ2
DP

n∑
i=1

〈
v, ξ(i)

〉2)]
≤ 9d · 2n.

We can now use this inequality to bound the term of interest. We apply Jensen’s inequality thanks to exp being convex, and
we also interchange exp and sup thanks to the former being increasing:

exp

(
1

16σ2
DP

E

[
sup

∥v∥≤1

n∑
i=1

〈
v, ξ(i)

〉2])
≤ E

[
exp

(
1

16σ2
DP

sup
∥v∥≤1

n∑
i=1

〈
v, ξ(i)

〉2)]

= E

[
sup

∥v∥≤1

exp

(
1

16σ2
DP

n∑
i=1

〈
v, ξ(i)

〉2)]
≤ 9d · 2n.

Upon taking ln and multiplying by 16σ2
DP/n on both sides, we obtain that

E

[
sup

∥v∥≤1

1

n

n∑
i=1

〈
v, ξ(i)

〉2]
≤ 16

σ2
DP

n
(d ln 9 + n ln 2) ≤ 36

σ2
DP

n
(d+ n) = 36σ2

DP

(
1 +

d

n

)
.

The above concludes the lemma.

C.6.2. PROOF OF LEMMA C.1

Lemma C.1. Suppose that assumptions 2.2 and 2.3 hold. Consider Algorithm 1. For every t ∈ {0, . . . , T − 1}, we have

E [∆t+1] ≤ βt E [∆t] + 2(1− βt)
2

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)
(1 +

d

n− f
)

)
+ (1− βt)G

2
cov,

where mt :=
1

|H|
∑

i∈H m
(i)
t , σ2

b := 2(1− b
m )σ

2

b , and G2
cov := supθ∈Rd sup∥v∥≤1

1
|H|
∑

i∈H ⟨v, ∇Li(θ)−∇LH(θ)⟩2.

Proof. Let t ∈ {0, . . . , T − 1}. Suppose that Assumption 2.2 holds. Recall that the alternate definition of maximum
eigenvalue implies, following the definition of ∆t in Equation (19), that

∆t = λmax

(
1

|H|
∑
i∈H

(m
(i)
t −mt)(m

(i)
t −mt)

⊤

)
= sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2
.

We will use the latter expression above for ∆t throughout this lemma.
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For every i ∈ H, by definition of m(i)
t , given in Equation (15), we have

m
(i)
t+1 = βtm

(i)
t + (1− βt)g̃

(i)
t+1.

We also denote mt :=
1

|H|
∑

i∈H m
(i)
t and g̃t+1 := 1

|H|
∑

i∈H g̃
(i)
t+1. Therefore, we have mt+1 = βtmt + (1− βt)g̃t+1. As

a result, we can write for every i ∈ H

m
(i)
t+1 −mt+1 = βt(m

(i)
t −mt) + (1− βt)(g̃

(i)
t+1 − g̃t+1)

= βt(m
(i)
t −mt) + (1− βt)(∇Li(θt+1)−∇LH(θt+1))

+ (1− βt)(g̃
(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)).

By projecting the above expression on an arbitrary vector v and then taking squares, we obtain〈
v, m

(i)
t+1 −mt+1

〉2
=
[
βt

〈
v, m

(i)
t −mt

〉
+ (1− βt) ⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

+ (1− βt)
〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉 ]2
= β2

t

〈
v, m

(i)
t −mt

〉2
+ (1− βt)

2 ⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

+ (1− βt)
2
〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉2
+ 2βt(1− βt)

〈
v, m

(i)
t −mt

〉
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

+ 2βt(1− βt)
〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉
+ 2βt(1− βt) ⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉
.

Upon averaging over i ∈ H, taking the supremum over the unit ball, and then total expectations, we get

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t+1 −mt+1

〉2]
= β2

t E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2]

+ (1− βt)
2 E

[
sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]

+ (1− βt)
2 E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉2]

+ 2βt(1− βt)E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

]

+ 2βt(1− βt)E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]

+ 2βt(1− βt)E

[
sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]
.

(51)

We now show that the last two terms on the RHS of Equation (51) are non-positive. We show it for the first one, as the
second one can be shown to be non-positive in the same way.

First, note that we can write the inner expression as a quadratic form. Precisely, we have for any vector v and any i ∈ H that

2
∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉
= ⟨v, Mv⟩ ,
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where we have introduced the d × d matrix M := N + N⊤, such that N :=
∑

i∈H(m
(i)
t −mt)(g̃

(i)
t+1 − ∇Li(θt+1) −

g̃t+1 +∇LH(θt+1))
⊤. By observing that M is symmetric, we can apply Lemma C.4 with g being the identity mapping:

E

[
sup

∥v∥≤1

2
∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]
= E

[
sup

∥v∥≤1

⟨v, Mv⟩

]
≤ 9d · sup

∥v∥≤1

E [2 ⟨v, Mv⟩] . (52)

However, the last term is zero by the total law of expectation. Indeed, recall that stochastic gradients are unbiased
(Assumption 2.2) and that θt+1 and m

(i)
t are deterministic when given history Pt+1. This gives

E [⟨v, Mv⟩] = E

[
2
∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]

= E

[
Et+1

[
2
∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]]

= E

2∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, Et+1

[
g̃
(i)
t+1 −∇Li(θt+1)

]
︸ ︷︷ ︸

=0

−Et+1

[
g̃t+1 −∇LH(θt+1)

]
︸ ︷︷ ︸

=0

〉 = 0.

Moreover, going back to Equation (52), we obtain

E

[
sup

∥v∥≤1

2
∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]
≤ 9d · sup

∥v∥≤1

E [2 ⟨v, Mv⟩] = 0.

As mentioned previously, we can prove in the same way that

E

[
sup

∥v∥≤1

2
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]
≤ 0.

Plugging the two previous bounds back in Equation (51), we have thus proved that

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t+1 −mt+1

〉2]
= β2

t E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2]

+ (1− βt)
2 E

[
sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]

+ (1− βt)
2 E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉2]

+ 2βt(1− βt)E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

]
. (53)

We now bound the two last terms on the RHS of Equation (53).

First, by using the fact that 2ab ≤ a2 + b2, we have for any vector v that

2

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩ ≤

1

|H|
∑
i∈H

[〈
v, m

(i)
t −mt

〉2
+ ⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]
=

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2
+

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2 . (54)
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Taking the supremum over the unit ball and then total expectations on both sides yields

2E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

]

≤ E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2]
+ E

[
sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]
. (55)

Second, recall that g̃(i)t+1 = g
(i)
t+1 + ξ

(i)
t+1, where we denote ξ

(i)
t+1 :=

∑n
j=1
j ̸=i

v
(ij)
t+1 + v

(i)
t+1, where v

(i)
t+1 ∼ N (0, σ2

indId) and

v
(ij)
t+1 = −v(ji)t+1 ∼ N (0, σ2

corId). Denote ξt+1 := 1
|H|
∑

i∈H ξ
(i)
t+1. Therefore, by applying Jensen’s inequality, we have

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉2]

= E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, g

(i)
t+1 −∇Li(θt+1)− gt+1 +∇LH(θt+1) + ξ

(i)
t+1 − ξt+1

〉2]

≤ 2E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

[〈
v, g

(i)
t+1 −∇Li(θt+1)− gt+1 +∇LH(θt+1)

〉2
+
〈
v, ξ

(i)
t+1 − ξt+1

〉2]]

Recall the following bias-variance decomposition: for any x1, . . . , xn ∈ R, denoting x := 1
n

∑n
i=1 xi, we have 1

n

∑n
i=1(xi−

x)2 = 1
n

∑n
i=1 x

2
i − x2 ≤

∑n
i=1 x

2
i . Applying this fact above yields

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉2]

≤ 2E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

[〈
v, g

(i)
t+1 −∇Li(θt+1)

〉2
+
〈
v, ξ

(i)
t+1

〉2]]

≤ 2E

[
1

|H|
∑
i∈H

∥∥∥g(i)t+1 −∇Li(θt+1)
∥∥∥2]+ 2E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, ξ

(i)
t+1

〉2]
, (56)

where the last inequality is due to the Cauchy-Schwartz inequality. Recall that, by Assumption 2.2 and Lemma C.5 applied

with zero privacy noise, we have for every i ∈ H that E
[∥∥∥g(i)t+1 −∇Li(θt+1)

∥∥∥2] ≤ 2(1− b
m )σ

2

b =: σ2
b . Therefore, upon

averaging over i ∈ H, we have

E

[
1

|H|
∑
i∈H

∥∥∥g(i)t+1 −∇Li(θt+1)
∥∥∥2] ≤ σ2

b . (57)
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We now bound the remaining (last) term on the RHS of (56).

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, ξ

(i)
t+1

〉2]
= E sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v,

n∑
j=1
j ̸=i

v
(ij)
t+1 + v

(i)
t+1

〉2

= E sup
∥v∥≤1

1

|H|
∑
i∈H

 n∑
j=1
j ̸=i

〈
v, v

(ij)
t+1

〉
+
〈
v, v

(i)
t+1

〉
2

= E sup
∥v∥≤1

1

|H|
∑
i∈H

 n∑
j=1
j ̸=i

〈
v, v

(ij)
t+1

〉2
+
〈
v, v

(i)
t+1

〉2
+ 2

n∑
j=1
j ̸=i

〈
v, v

(ij)
t+1

〉〈
v, v

(i)
t+1

〉
+ 2

n∑
j=1

k<j ̸=i

〈
v, v

(ij)
t+1

〉〈
v, v

(ik)
t+1

〉

≤ E sup
∥v∥≤1

1

|H|
∑
i∈H

 n∑
j=1
j ̸=i

〈
v, v

(ij)
t+1

〉2
+
〈
v, v

(i)
t+1

〉2

+ 2E sup
∥v∥≤1

1

|H|
∑
i∈H

 n∑
j=1
j ̸=i

〈
v, v

(ij)
t+1

〉〈
v, v

(i)
t+1

〉
+

n∑
j=1

k<j ̸=i

〈
v, v

(ij)
t+1

〉〈
v, v

(ik)
t+1

〉

We observe that the second term above is non-positive as we have shown for (52) using Lemma C.4 and the fact that for a
fixed i ∈ H, all the noise terms in ξ

(i)
t+1 are statistically independent and are zero in expectation. Therefore, we have from

above that

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, ξ

(i)
t+1

〉2]
≤ E sup

∥v∥≤1

1

|H|
∑
i∈H

 n∑
j=1
j ̸=i

〈
v, v

(ij)
t+1

〉2
+
〈
v, v

(i)
t+1

〉2 .

We observe here, since v
(ij)
t+1 = −v(ji)t+1 for all i, j ∈ H, that

∑
i∈H

∑n
j=1
j ̸=i

〈
v, v

(ij)
t+1

〉2
=
∑

i∈H
∑

j∈H\{i}

〈
v, v

(ij)
t+1

〉2
+∑

i∈H
∑

j∈[n]\H

〈
v, v

(ij)
t+1

〉2
= 2

∑
i∈H

∑
j∈H,j<i

〈
v, v

(ij)
t+1

〉2
+
∑

i∈H
∑

j∈[n]\H

〈
v, v

(ij)
t+1

〉2
. Therefore, we have

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, ξ

(i)
t+1

〉2]
≤ E sup

∥v∥≤1

1

|H|
∑
i∈H

2
∑
j∈H
j<i

〈
v, v

(ij)
t+1

〉2
+

∑
j∈[n]\H

〈
v, v

(ij)
t+1

〉2
+
〈
v, v

(i)
t+1

〉2
≤ 2E sup

∥v∥≤1

1

|H|
∑
i∈H

∑
j∈H
j<i

〈
v, v

(ij)
t+1

〉2
+ E sup

∥v∥≤1

1

|H|
∑
i∈H

∑
j∈[n]\H

〈
v, v

(ij)
t+1

〉2

+ E sup
∥v∥≤1

1

|H|
∑
i∈H

〈
v, v

(i)
t+1

〉2
.

Now, for each of the three suprema in the right-hand side above, all random variables involved are independent Gaussians
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with respective variances, so that applying Lemma C.6 separately for each of the three suprema yields:

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, ξ

(i)
t+1

〉2]
≤ 2E sup

∥v∥≤1

1

|H|
∑
i∈H

∑
j∈H
j<i

〈
v, v

(ij)
t+1

〉2
+ E sup

∥v∥≤1

1

|H|
∑
i∈H

∑
j∈[n]\H

〈
v, v

(ij)
t+1

〉2

+ E sup
∥v∥≤1

1

|H|
∑
i∈H

〈
v, v

(i)
t+1

〉2
≤ 36

2

|H|
|H| (|H| − 1)

2
σ2
cor(1 +

2d

|H| (|H| − 1)
)

+ 36
1

|H|
|H| (n− |H|)

2
σ2
cor(1 +

2d

|H| (n− |H|)
) + 36σ2

ind(1 +
d

|H|
)

= 36(n− f

2
− 1)σ2

cor(1 +
3d

n− f
) + 36σ2

ind(1 +
d

n− f
)

≤ 108
(
nσ2

cor + σ2
ind

)
(1 +

d

n− f
). (58)

Plugging the bounds obtained in (57) and (58) back in (56), we get

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉2]
≤ 2

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)(
1 +

d

n− f

))
.

(59)

We use the above bounds in (55) and (59) to bound the RHS of (53), which yields

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t+1 −mt+1

〉2]
≤ β2

t E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2]

+ (1− βt)
2 E

[
sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]
+ 2(1− βt)

2

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)(
1 +

d

n− f
)

))

+ βt(1− βt)E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2
+ sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]
.

By rearranging terms, and noticing that β2
t + βt(1− βt) = βt and (1− βt)

2 + βt(1− βt) = 1− βt, we obtain

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t+1 −mt+1

〉2]
≤ βt E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2]

+ (1− βt)E

[
sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]
+ 2(1− βt)

2

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)(
1 +

d

n− f

))
.

Denote G2
cov := supθ∈Rd sup∥v∥≤1

1
|H|
∑

i∈H ⟨v, ∇Li(θ)−∇LH(θ)⟩2. Then, the above bound implies

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t+1 −mt+1

〉2]
≤ βt E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2]

+ 2(1− βt)
2

(
σ2
b + 108

(
nσ2

cor + σ2
ind

)(
1 +

d

n− f

))
+ (1− βt)G

2
cov.

The above inequality concludes the proof.
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C.6.3. PROOF OF LEMMA C.2

Lemma C.2. Suppose that assumptions 2.2 and 2.3 hold and that LH is L-smooth. Consider Algorithm 1. For all
t ∈ {0, . . . , T − 1}, we have

E
[
∥δt+1∥2

]
≤ β2

t (1 + γtL)(1 + 4γtL)E
[
∥δt∥2

]
+ 4γtL(1 + γtL)β

2
t E
[
∥∇LH(θt)∥

2
]

+ (1− βt)
2 σ2

DP

n− f
+ 2γtL(1 + γtL)β

2
t E
[
∥ϵt∥2

]
,

where σ2
DP :=

(
1− b

m

)
σ2

b + dfσ2
cor + dσ2

ind.

Proof. Let t ∈ {0, . . . , T − 1}. Suppose that assumptions 2.2 and 2.3 hold and that LH is L-smooth.

Recall from (20) that

δt+1 := mt+1 −∇LH
(
θt+1

)
.

Denote g̃t :=
1

|H|
∑

i∈H g̃
(i)
t . Substituting from (15) and recalling that mt =

1
|H|
∑

i∈H m
(i)
t , we obtain

δt+1 = βt mt + (1− βt) g̃t+1 −∇LH
(
θt+1

)
.

Upon adding and subtracting βt∇LH(θt) and βt∇LH(θt+1) on the R.H.S. above we obtain that

δt+1 = βt mt − βt∇LH(θt) + (1− βt) g̃t+1 −∇LH
(
θt+1

)
+ βt∇LH(θt+1) + βt∇LH(θt)− βt∇LH(θt+1)

= βt (mt −∇LH(θt)) + (1− βt) g̃t+1 − (1− βt)∇LH
(
θt+1

)
+ βt

(
∇LH(θt)−∇LH(θt+1)

)
.

As mt −∇LH(θt) = δt (by (20)), from above we obtain that

δt+1 = βtδt + (1− βt)
(
g̃t+1 −∇LH

(
θt+1

))
+ βt

(
∇LH(θt)−∇LH(θt+1)

)
.

Therefore,

∥δt+1∥2 =β2
t ∥δt∥

2
+ (1− βt)

2
∥∥∥g̃t+1 −∇LH

(
θt+1

)∥∥∥2
+ β2

t

∥∥∇LH(θt)−∇LH(θt+1)
∥∥2 + 2βt(1− βt)

〈
δt, g̃t+1 −∇LH

(
θt+1

)〉
+ 2β2

t

〈
δt, ∇LH(θt)−∇LH(θt+1)

〉
+ 2βt(1− βt)

〈
g̃t+1 −∇LH

(
θt+1

)
, ∇LH(θt)−∇LH(θt+1)

〉
.

By taking conditional expectation Et+1 [·] on both sides, and recalling that δt, θt+1 and θt are deterministic values when the
history Pt+1 is given, we obtain that

Et+1

[
∥δt+1∥2

]
=β2

t ∥δt∥
2
+ (1− βt)

2Et+1

[∥∥∥g̃t+1 −∇LH
(
θt+1

)∥∥∥2]+ β2
t

∥∥∇LH(θt)−∇LH(θt+1)
∥∥2 +

2βt(1− βt)
〈
δt, Et+1

[
g̃t+1

]
−∇LH

(
θt+1

)〉
+ 2β2

t

〈
δt, ∇LH(θt)−∇LH(θt+1)

〉
+ 2βt(1− βt)

〈
Et+1

[
g̃t+1

]
−∇LH

(
θt+1

)
, ∇LH(θt)−∇LH(θt+1)

〉
.

Recall that g̃t+1 := 1
(n−f)

∑
j∈H g̃

(i)
t+1. Thus, as we ignore clipping by Assumption 2.3, we have Et+1

[
g̃t+1

]
=

∇LH(θt+1). Using this above we obtain that

Et+1

[
∥δt+1∥2

]
=β2

t ∥δt∥
2
+ (1− βt)

2Et+1

[∥∥∥g̃t+1 −∇LH
(
θt+1

)∥∥∥2]+ β2
t

∥∥∇LH(θt)−∇LH(θt+1)
∥∥2

+ 2β2
t

〈
δt, ∇LH(θt)−∇LH(θt+1)

〉
.
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Also, we bound the expected distance between the average of full honest gradients and the average of mini-batch gradients
with additive correlated noise. We first write

g̃t+1 =
1

|H|
∑
i∈H

(
g
(i)
t+1 +

n∑
j=1
j ̸=i

v
(ij)
t+1 + v

(i)
t+1

)
=

1

|H|
∑
i∈H

g
(i)
t+1 +

1

|H|
∑
i∈H

n∑
j=1
j ̸=i

v
(ij)
t+1 +

1

|H|
∑
i∈H

v
(i)
t+1

=
1

|H|
∑
i∈H

g
(i)
t+1 +

1

|H|
∑
i,j∈H

v
(ij)
t+1 +

1

|H|
∑
i∈H

∑
j∈[n]\H

v
(ij)
t+1 +

1

|S|
∑
i∈H

v
(i)
t+1.

We remark that the second term is zero by construction of the correlated noise terms, while all remaining random variables
in the third and fourth terms are independently sampled from centered Gaussians with covariance σ2

corId or σ2
indId. We

directly deduce the following:

E
∥∥∥g̃t+1 −∇LH (θt+1)

∥∥∥2 = E

∥∥∥∥∥∥ 1

|H|
∑
i∈H

g
(i)
t+1 −∇LH (θt+1) +

1

|H|
∑
i∈H

∑
j∈[n]\H

v
(ij)
t+1 +

1

|H|
∑
i∈H

v
(i)
t+1

∥∥∥∥∥∥
= E

∥∥∥∥∥ 1

|H|
∑
i∈H

g
(i)
t+1 −∇LH (θt+1)

∥∥∥∥∥
2

+ E

∥∥∥∥∥∥ 1

|H|
∑
i∈H

∑
j∈[n]\H

v
(ij)
t+1 +

1

|S|
∑
i∈H

v
(i)
t+1

∥∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

|H|
∑
i∈H

g
(i)
t+1 −∇LH (θt+1)

∥∥∥∥∥
2

+
df(n− f)σ2

cor

(n− f)2
+

dσ2
ind

n− f

≤ 2

n− f

(
1− b

m

)
σ2

b
+

dfσ2
cor

n− f
+

dσ2
ind

n− f
,

where the last step is due to Lemma C.5 thanks to assumptions 2.2 and 2.3. Now, denote σ2
DP := 2

(
1− b

m

)
σ2

b + dfσ2
cor +

dσ2
ind. Thus, we have

Et+1

[
∥δt+1∥2

]
≤ β2

t ∥δt∥
2
+ (1− βt)

2 σ2
DP

(n− f)
+ β2

t

∥∥∇LH(θt)−∇LH(θt+1)
∥∥2 + 2β2

t

〈
δt, ∇LH(θt)−∇LH(θt+1)

〉
.

By the Cauchy-Schwartz inequality,
〈
δt, ∇LH(θt)−∇LH(θt+1)

〉
≤ ∥δt∥

∥∥∇LH(θt)−∇LH(θt+1)
∥∥. Since LH

is L-smooth, we have
∥∥∇LH(θt)−∇LH(θt+1)

∥∥ ≤ L
∥∥θt+1 − θt

∥∥. Recall from (18) that θt+1 = θt − γtRt.
Thus,

∥∥∇LH(θt)−∇LH(θt+1)
∥∥ ≤ γtL ∥Rt∥. Using this above we obtain that

Et+1

[
∥δt+1∥2

]
≤ β2

t ∥δt∥
2
+ (1− βt)

2 σ2
DP

(n− f)
+ γ2

t β
2
tL

2 ∥Rt∥2 + 2γtβ
2
tL ∥δt∥ ∥Rt∥ .

As 2ab ≤ a2 + b2, from above we obtain that

Et+1

[
∥δt+1∥2

]
≤ β2

t ∥δt∥
2
+ (1− βt)

2 σ2
DP

(n− f)
+ γ2

t β
2
tL

2 ∥Rt∥2 + γtLβ
2
t

(
∥δt∥2 + ∥Rt∥2

)
= (1 + γtL)β

2
t ∥δt∥

2
+ (1− βt)

2 σ2
DP

(n− f)
+ γtL(1 + γtL)β

2
t ∥Rt∥2 . (60)

By definition of ϵt in (21), we have Rt = ϵt +mt. Thus, owing to the triangle inequality and the fact that 2ab ≤ a2 + b2,
we have ∥Rt∥2 ≤ 2 ∥ϵt∥2 + 2 ∥mt∥2. Similarly, by definition of δt in (20), we have ∥mt∥2 ≤ 2 ∥δt∥2 + 2 ∥∇LH(θt)∥

2.
Thus, ∥Rt∥2 ≤ 2 ∥ϵt∥2 + 4 ∥δt∥2 + 4 ∥∇LH(θt)∥

2. Using this in (60) we obtain that

Et+1

[
∥δt+1∥2

]
≤ (1 + γtL)β

2
t ∥δt∥

2
+ (1− βt)

2 σ2
DP

(n− f)

+ 2γtL(1 + γtL)β
2
t

(
∥ϵt∥2 + 2 ∥δt∥2 + 2 ∥∇LH(θt)∥

2
)
.
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By rearranging the terms on the R.H.S., we get

Et+1

[
∥δt+1∥2

]
≤β2

t (1 + γtL) (1 + 4γtL) ∥δt∥2 + 4γtL(1 + γtL)β
2
t ∥∇LH(θt)∥

2
+ (1− βt)

2 σ2
DP

(n− f)

+ 2γtL(1 + γtL)β
2
t ∥ϵt∥

2
.

The proof concludes upon taking total expectation on both sides.

C.6.4. PROOF OF LEMMA C.3

Lemma C.3. Assume that LH is L-smooth. Consider Algorithm 1. For any t ∈ [T ], we have

E
[
LH(θt+1)− LH(θt)

]
≤− γt

2
(1− 4γtL)E

[
∥∇LH(θt)∥

2
]
+ γt (1 + 2γtL)E

[
∥δt∥2

]
+ γt (1 + γtL)E

[
∥ϵt∥2

]
.

Proof. Let t ∈ {0, . . . , T − 1}. Assuming LH is L-smooth, we have (see Lemma 1.2.3 (Nesterov et al., 2018))

LH(θt+1)− LH(θt) ≤
〈
θt+1 − θt, ∇LH(θt)

〉
+

L

2

∥∥θt+1 − θt
∥∥2 .

Substituting from (22), i.e., θt+1 = θt − γt mt − γtϵt, we obtain that

LH(θt+1)− LH(θt) ≤ −γt ⟨mt, ∇LH(θt)⟩ − γt ⟨ϵt, ∇LH(θt)⟩+ γ2
t

L

2
∥mt + ϵt∥2

= −γt ⟨mt −∇LH(θt) +∇LH(θt), ∇LH(θt)⟩ − γt ⟨ϵt, ∇LH(θt)⟩+ γ2
t

L

2
∥mt + ϵt∥2 .

By Definition (20), mt −∇LH(θt) = δt. Thus, from above we obtain

LH(θt+1)− LH(θt) ≤ −γt ∥∇LH(θt)∥
2 − γt ⟨δt, ∇LH(θt)⟩ − γt ⟨ϵt, ∇LH(θt)⟩+

1

2
γ2
tL ∥mt + ϵt∥2 . (61)

Now, we consider the last three terms on the R.H.S. separately. Using Cauchy-Schwartz inequality, and the fact that
2ab ≤ 1

ca
2 + cb2 for any c > 0, we obtain that (by substituting c = 2)

2 |⟨δt, ∇LH(θt)⟩| ≤ 2 ∥δt∥ ∥∇LH(θt)∥ ≤
2

1
∥δt∥2 +

1

2
∥∇LH(θt)∥

2
. (62)

Similarly,

2 |⟨ϵt, ∇LH(θt)⟩| ≤ 2 ∥ϵt∥ ∥∇LH(θt)∥ ≤
2

1
∥ϵt∥2 +

1

2
∥∇LH(θt)∥

2
. (63)

Finally, using triangle inequality and the fact that 2ab ≤ a2 + b2 we have

∥mt + ϵt∥2 ≤ 2 ∥mt∥2 + 2 ∥ϵt∥2 = 2
∥∥mt −∇LH(θt+1) +∇LH(θt)

∥∥2 + 2 ∥ϵt∥2

≤ 4 ∥δt∥2 + 4 ∥∇LH(θt)∥
2
+ 2 ∥ϵt∥2 . [since mt −∇LH(θt) = δt] (64)

Substituting from (62), (63) and (64) in (61) we obtain that

LH(θt+1)− LH(θt) ≤− γt ∥∇LH(θt)∥
2
+

1

2
γt

(
2 ∥δt∥2 +

1

2
∥∇LH(θt)∥

2

)
+

1

2
γt

(
2 ∥ϵt∥2 +

1

2
∥∇LH(θt)∥

2

)
+

1

2
γ2
tL
(
4 ∥δt∥2 + 4 ∥∇LH(θt)∥

2
+ 2 ∥ϵt∥2

)
.

Upon rearranging the terms in the R.H.S., we obtain that

LH(θt+1)− LH(θt) ≤ −
γt
2
(1− 4γtL) ∥∇LH(θt)∥

2
+ γt (1 + 2γtL) ∥δt∥2 + γt (1 + γtL) ∥ϵt∥2 .

This concludes the proof.
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D. Additional Experimental Results
In this section, we provide additional results that were not included in the main paper due to space constraints. Appendix D.1
contains the complete set of results for the evaluation of CAFCOR across the four privacy threat models, under all four attack
types, and for both values of f = 5, 10, on the MNIST and Fashion-MNIST datasets. Additionally, Appendix D.2 presents
the full results comparing CAF with other robust aggregation methods under all four attack types, across various values of f ,
data heterogeneity settings, and on both MNIST and Fashion-MNIST.

D.1. CAFCOR Under Three Privacy Threat Models
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Figure 3: Comparison of CAFCOR and DSGD under four privacy threat models on MNIST. There are n = 100 workers,
including f = 5 malicious workers executing four attacks. A homogeneous data distribution is considered among honest
workers. User-level DP is used and the aggregate privacy budget is (ϵ, δ) = (27.8, 10−4).
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Figure 4: Comparison of CAFCOR and DSGD under four privacy threat models on MNIST. There are n = 100 workers,
including f = 10 malicious workers executing four attacks. A homogeneous data distribution is considered among honest
workers. User-level DP is used and the aggregate privacy budget is (ϵ, δ) = (26.4, 10−4).
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Figure 5: Comparison of CAFCOR and DSGD under four privacy threat models on Fashion-MNIST. There are n = 100
workers, including f = 5 malicious workers executing four attacks. A homogeneous data distribution is considered among
honest workers. User-level DP is used and the aggregate privacy budget is (ϵ, δ) = (39.6, 10−4).
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Figure 6: Comparison of CAFCOR and DSGD under four privacy threat models on Fashion-MNIST. There are n = 100
workers, including f = 10 malicious workers executing four attacks. A homogeneous data distribution is considered among
honest workers. User-level DP is used and the aggregate privacy budget is (ϵ, δ) = (39.6, 10−4).
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D.2. CAF vs. Robust Aggregators
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Figure 7: Performance of CAFCOR versus standard robust algorithms on MNIST. There is f = 1 malicious worker among
n = 11 workers, and we consider extreme heterogeneity among honest workers. The CDP privacy model is considered
under example-level DP, and the privacy budget is (ε, δ) = (13.7, 10−4) throughout.
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Figure 8: Performance of CAFCOR versus standard robust algorithms on MNIST. There are f = 3 malicious workers
among n = 13 and α = 0.1. The CDP privacy model is considered under example-level DP, and the privacy budget is
(ε, δ) = (13.7, 10−4) throughout.
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Figure 9: Performance of CAFCOR versus standard robust algorithms on MNIST. There are f = 5 malicious workers
among n = 15 and α = 1. The CDP privacy model is considered under example-level DP, and the privacy budget is
(ε, δ) = (13.7, 10−4) throughout.

Comparison with SMEA (Allouah et al., 2023c) We also included in our experiments a comparison with the SMEA
robust aggregation method on the MNIST dataset (see Figures 7, 8, and 9). These results show that SMEA matches CAF’s
accuracy, significantly outperforming other standard robust methods, and even approaching the averaging baseline. This
observation aligns with our theoretical findings (see Proposition 4.1 and subsequent discussion).

However, we emphasize that SMEA incurs a substantial computational cost, which further supports the empirical advantage
of CAF, despite the two methods offering similarly strong robustness in practice. To highlight SMEA’s prohibitive
computational complexity, we report runtime ratios relative to simple averaging (lower is better), with n = 30 workers and
f = 3 malicious workers, on models of varying dimension d.

Dimension (d) SMEA CAF Meamed GM
0.25× 107 30,251 28 112 62
0.5× 107 61,142 51 197 78
1× 107 117,255 100 378 126

Table 1: Computation time (relative to simple averaging) across different dimensions for various aggregation methods.

As seen in Table 1, CAF dramatically outperforms SMEA in terms of runtime, and also maintains a clear advantage over
other robust aggregation baselines such as Meamed and GM. Combined with CAF’s superior performance on test accuracy,
these results underscore CAFCOR’s practical relevance for trustworthy federated learning.
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Figure 10: Performance of CAFCOR versus standard robust algorithms on Fashion-MNIST. There are f = 1 malicious
worker among n = 11, and we consider extreme heterogeneity among honest workers. The CDP privacy model is considered
under example-level DP, and the privacy budget is (ε, δ) = (13.7, 10−4) throughout.
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Figure 11: Performance of CAFCOR versus standard robust algorithms on Fashion-MNIST. There are f = 3 malicious
workers among n = 13 and α = 0.1. The CDP privacy model is considered under example-level DP, and the privacy budget
is (ε, δ) = (13.7, 10−4) throughout.
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Figure 12: Performance of CAFCOR versus standard robust algorithms on Fashion-MNIST. There are f = 5 malicious
workers among n = 15 and α = 1. The CDP privacy model is considered under example-level DP, and the privacy budget is
(ε, δ) = (13.7, 10−4) throughout.
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