
An Approach for Handling Missing Attribute Values
in Attribute-Based Access Control Policy Mining⋆

Thang Bui, Elliot Shabram, and Anthony Matricia

School of Computing and Design, California State University, Monterey Bay, USA

Abstract. Attribute-Based Access Control (ABAC) enables highly expres-
sive and flexible access decisions by considering a wide range of contextual
attributes. ABAC policies use logical expressions that combine these at-
tributes, allowing for precise and context-aware control. Algorithms that mine
ABAC policies from legacy access control systems can significantly reduce
the costs associated with migrating to ABAC. However, a major challenge in
this process is handling incomplete entity information, where some attribute
values are missing.
This paper introduces an approach that enhances the policy mining process
by predicting or inferring missing attribute values. This is accomplished
by employing a contextual clustering technique that groups entities accord-
ing to their known attributes, which are then used to analyze and refine
authorization decisions. By effectively managing incomplete data, our ap-
proach provides security administrators with a valuable tool to improve their
attribute data and ensure a smoother, more efficient transition to ABAC.

1 Introduction

In attribute-based access control (ABAC), access control policies are expressed in
terms of a wide range of attributes related to users, resources, actions, and the
environment. This increases expressiveness and often allows more natural policies.
ABAC is becoming increasingly important, as policies become more dynamic and
complex. This is reflected in the widespread transition from access control lists (ACLs)
to role-based access control (RBAC), and more recently in the ongoing transition
from ACLs and RBAC to ABAC. ABAC policy models allow concise policies and
promise long-term cost savings through reduced management effort.

Developing ABAC policies can be costly, which can hinder adoption. However,
ABAC policy mining algorithms have the potential to significantly reduce this cost
by automatically generating draft ABAC policies from existing lower-level data, such
as access control lists (ACLs) or access logs. There is substantial research on ABAC
policy mining, as surveyed in [7].

The fundamental ABAC policy mining problem is: Given information about the at-
tributes of entities (users and resources) in the system and the currently granted permis-
sions, find an ABAC policy that grants the same permissions using concise, high-level
ABAC rules. Several papers consider a variant of this problem where the information

⋆ This material is based on work supported by FY24-25 CSU RSCA and COS DCI Grants.

ar
X

iv
:2

50
5.

01
87

3v
1 

 [
cs

.C
R

] 
 3

 M
ay

 2
02

5



2

about permissions is incomplete [3,6,9,10,12]. However, most existing works on ABAC
policymining assume that the attribute information is complete, i.e., all attributes of all
entities have known values. Unfortunately, in most real-world data, some attribute val-
ues are missing. Bui et al. [2] allow attributes to be unknown and address the challenge
by employing a three-valued logic learning formula to mine policies without attempt-
ing to replace the missing values. While this approach avoids the need for imputation,
it has limitations. It does not provide security administrators with potential values for
the missing attributes, which could be valuable for improving data quality. Addition-
ally, this method requires extensions to the policy language, which could complicate
the migration process and limit compatibility with other policy mining approaches.

This paper introduces an algorithm to address the challenge of missing attribute
values by predicting or inferring them. The motivation for our method is the observa-
tion that users and resources with similar characteristics often display correlations
in their authorizations or permissions. Specifically, users within the same functional
group tend to have similar access rights to certain resources, and this correlation can
be effectively leveraged to infer missing attribute values with greater accuracy.

Our algorithm employs a contextual clustering technique that groups entities
(users and resources) based on their known attributes. Once the clustering is complete,
a regression algorithm is then used to learn the correlations in authorizations among
these groups. By analyzing these correlations, we can make informed predictions
about the missing attribute values. This step leverages the assumption that entities
within the same cluster are likely to have similar access permissions, allowing us to
fill in the gaps in attribute data effectively.

This approach enhances the quality of the mined policies and supports security
administrators by providing insights into potential attribute values, facilitating better
decision-making. It also provides valuable insights for the policy mining process by
identifying important features learned through our analysis, which could be further
extended in future work to develop efficient ABAC policy mining algorithms based on
these features. This extension would allow our algorithm not only to predict missing
values but also to generate high-quality ABAC policies.

We evaluate our algorithm through two case studies, and the results demonstrate its
effectiveness in accurately predicting missing attribute values. Our method contributes
to a smoother and more efficient transition to ABAC, reducing the likelihood of errors
during the migration process and improving overall access control management.

2 Policy Language

We adopt Xu et al.’s [13] ABAC policy language, which is also utilized in Bui et al.’s
[2] work mentioned in Section 1. We chose this policy language because it is more
expressive than other policy languages that have been used in work on ABAC mining.
We describe the language briefly and refer the reader to [13] for details.

An ABAC policy is a tuple π = ⟨OM ,Act,Rules⟩, where OM is an object model,
Act is a set of actions, and Rules is a set of rules.

An object model is a collection of objects that represent both users and resources
within the system. Each object is defined by a set of attribute-value pairs, which



3

describe the properties of a user or resource. Attributes can be single-valued, holding
atomic values such as strings or Boolean values, or multi-valued, where the attribute
contains a set of atomic values. These attribute-value pairs form the basis for rep-
resenting and distinguishing between different users and resources in the model. For
example, in a healthcare policy, a doctor object (user) might be defined as follows:
⟨id = doc1024, specialties = {cardiology, electrophysiology}, isTrainee = False⟩. This
representation captures the doctor’s unique identifier, areas of specialization, and
trainee status, effectively modeling the relevant attributes within the system.

A condition is a set, interpreted as a conjunction, of atomic conditions. An
atomic condition is a tuple ⟨attr,op, val⟩, where attr is an attribute, op is an op-
erator, either “in” (∈) or “contains” (∋), and val is a constant value, either an
atomic value or a set of atomic values. For example, a doctor object o satisfies
⟨specialties, contains,dermatology⟩ (specialties ∋ dermatology) if the set of values
obtained from the attribute specialties of o contains dermatology.

A constraint is a set, interpreted as a conjunction, of atomic constraints. Informally,
an atomic constraint expresses a relationship between the requesting user and the
requested resource, by relating the values of specified attributes from each of them.
An atomic constraint is a tuple ⟨attru,op, attrr⟩, where attru and attrr are specified
user attribute and resource attribute, respectively, and op is one of the following
four operators: “equal” (=), “in” (∈), “contains” (∋), “supseteq” (⊇). For example,
a doctor (user) u and a consultant (resource) r satisfy ⟨specialties, supseteq, topics⟩
(specialties ⊇ topics) if the set u.specialties is a superset or equals the set r.topics.
This implies that the doctor specializes in all the topics relevant to the consultation.

A rule is a tuple ⟨userCondition, resourceCondition, constraint,actions⟩, where
userCondition and resourceCondition are conditions, constraint is a constraint, actions
is a set of actions. For a rule ρ = ⟨uc, rc, c,A⟩, let uc, rc, c, and A ⊆ Act be the user
condition, resource condition, constraint, and set of actions of ρ, respectively.

An entitlement is represented as a tuple ⟨u, r,a⟩, indicating that user u is autho-
rized to perform action a on resource r.

An object o satisfies an atomic condition c = ⟨attr,op, val⟩, denoted o |= c, if
(op = in ∧ o.attr ∈ val) ∨ (op = contains ∧ o.a ∋ val). Objects o1 and o2 satisfy an
atomic constraint c = ⟨attru,op, attrr⟩, denoted ⟨o1, o2⟩ |= c, is defined in a similar
way. An entitlement ⟨u, r, a⟩ satisfies a rule ρ = ⟨uc, rc, c,A⟩, denoted ⟨u, r, a⟩ |= ρ,
if u |= uc∧ r |= rc∧ ⟨u, r⟩ |= c∧ a ∈ A. The meaning of a rule ρ, denoted [[ρ]], is the
set of entitlements that satisfy it. The meaning of a ABAC policy π, denoted [[π]],
is the union of the meanings of its rules.

3 Problem Definition

We extend Bui et al.’s [2] policy mining problem with unknown attribute values by
shifting the focus from rule mining to predicting the values of these missing attributes.
Given a set E0 of entitlements and an object model OM , which may contain missing
attribute values, our goal is to predict the missing attribute values with one of three
confidence levels: High, Medium, or Not Enough Information (NEI). When there
is insufficient information to make a confident prediction, it may indicate that the



4

missing values do not significantly impact the entitlements or authorizations and that
these attributes might not be necessary for constructing rules in the policy mining
process. Note that the set of entitlements represents an ACL policy. Our problem
definition could also work with RBAC policies by deriving the set of entitlements
from the RBAC policy and using that entitlement set as input.

4 Algorithm

Our algorithm consists of two phases. In the first phase, we group users and resources
by applying a contextual clustering method that leverages their known attributes.
In the second phase, we employ a regression algorithm to learn the correlations
within the input entitlements across these user and resource groups. We formulate
the features as atomic conditions and constraints, allowing them to effectively capture
the attribute information relevant to each group. This process identifies and ranks
the most significant features influencing these correlations, which are then used to
infer the missing attribute values. Each inferred value is assigned a confidence level
based on the importance of the features involved.

4.1 Phase 1: Clustering Users and Resources

In this phase, we first group users and resources based on their sets of active attributes.
The set of active attributes of an object consists of those attributes that do not have
a NULL value. According to Bui et al. [2], NULL is a special value indicating that the
attribute is not applicable to the object. For instance, a Student object would have the
attribute isChair = NULL since isChair is only relevant for Faculty objects to specify
whether a faculty member is the chair of their department. This is distinct from a
missing value. This approach allows us to effectively identify and cluster objects with
common traits, as each distinct set of active attributes will form a unique group,
ensuring that objects with similar characteristics are grouped together.

To further refine the groups, we use an object similarity metric that measures
the overlap of attribute values between two objects based on Jaccard similarity. Each
categorical attribute value is treated as a singleton set. For two objects, a and b, the
similarity of the i-th attribute is defined as as Ji(a, b) = |Ai∩Bi|/ |Ai∪Bi|, where Ai

and Bi are the sets of values for the i-th attribute in objects a and b. When attribute
values are missing, we assign a default similarity of 0.5 to avoid bias and preserve
balance when hadnling incomplete data. Users can also specify the importance of
each attribute by assigning weights in the similarity measure between two objects,
a and b, defined as follows: sim(a, b) = (

∑n
i=1wi · Ji(a, b))/ (

∑n
i=1wi), where wi

represents the importance weight of the i-th attribute, and n is the total number of
attributes in the considered set of active attributes.

For each object within a group defined by a specific set of active attributes, we
compute its similarity with all other objects in the group and average the results. We in-
troduce a threshold parameter, ST (Similarity Threshold), to further refine the groups.
Objects with an average similarity below ST are separated into new groups, and this
process is iteratively applied to the newly created groups until no further divisions are
possible. The final refined groups are then utilized in the next phase of the algorithm.



5

function predictMissingUserAttr(u,attrm,E0,OM)
//Step 1: Retrieve relevant groups
groupsura = ∅ //set of (userGroup, resourceGroup, action) tuples
Eu = set containing entitlements which involves u
for each (ue, re, ae) ∈ Eu

groupsura.add((group(ue), group(re), ae))

//Step 2: Predict missing attribute value
prediction = ∅
for each gu, gr, a in groupsura
learningData consists of feature vectors that involve users in gu and resources in gr,
with labels determined by the permissions associated with action a in E0

//Use linear regression to learn the set of important features
importantFeatures = learnImportantFeatures(learningData)
predictions.add(predictMissingValues(importantFeatures, attrm, OM))

return combinePredictions(predictions)

Fig. 1. Algorithm for predicting a user missing attribute value.

4.2 Phase 2: Group Analyzing and Predicting Missing Values

A feature is an atomic condition (on a user or resource) or atomic constraint. We
define a mapping from feature vectors to Boolean labels: given a tuple ⟨u, r, a⟩, we
create a feature vector (i.e., a vector of the Boolean values of features evaluated for
subject u and resource r) and map it to true if the tuple is permitted (i.e., is in
E0) and to false otherwise. We represent Booleans as integers: 0 for false, and 1 for
true. We use linear regression to learn this classification (labeling) of feature vectors
corresponding to the relevant groups of users and resources.

The pseudocode for the algorithm to predict a missing value of an attribute attrm
for user u is shown in Figure 1. In the pseudocode, the function group(o) returns
the group of object o as determined in Phase 1. The algorithm can be similarly
applied to predict missing attribute values for resources, following the same procedure.
The algorithm consists of two main steps. In the first step, the algorithm iterates
over the set of entitlements that grant permissions to user u and retrieves a set of
tuples consisting of the user group, the resource group, and the action associated
with each entitlement. Note that the user group in all these tuples is the same, which
is group(u). This step is crucial for identifying the relevant resource groups that user
u has permissions for. It also aligns with the motivation discussed in Section 1 that
entities within the same cluster are likely to have similar access permissions.

In the second step, the algorithm examines the correlations in permissions among
entities within the identified user group, resource group, and action tuples to deter-
mine a set of important features. These features are then used to predict the missing
attribute values. The learning data consists of feature vectors associated with all users
and resources within the considered groups, where the label is set to true (permitted)
if the user is allowed to perform the considered action according to E0, and false
otherwise, as explained above. It is important to note that feature vectors for users
and resources with missing attribute values are excluded from the learning data to
ensure the accuracy of the feature extraction and prediction process.



6

Function learnImportantFeatures uses linear regression to learn the correlations
between attributes and permissions. The output is a ranked list of features based
on their learned coefficients. Linear regression is used because it provides a simple,
interpretable model that directly shows the relationship between attributes and
permissions, allowing us to easily identify and rank important features while being
computationally efficient for large datasets. Its straightforward outputs make it ideal
for understanding and justifying access decisions based on attribute correlations.

The function predictMissingValues predicts the missing values of attribute attrm
using the ranked list of features obtained from the previous step. We introduce a
parameter, NTCF (short for “number of top confident features”), to determine the
confidence level of our predictions. NTCF is defined as a tuple ⟨numHigh,numMed⟩.
A missing value predicted from a feature ranked within the top numHigh features is
assigned a high confidence level, while a prediction based on features ranked between
numHigh and numMed is assigned medium confidence. For each top-ranked feature
within numMed, denoted as f, the algorithm checks whether attrm is part of f,
noting that each feature is either an atomic condition or an atomic constraint. If f
is an atomic condition ⟨attrm,op, val⟩, we predict val as the missing value. If f is
an atomic constraint ⟨attrm,op, attrr⟩, we gather all values of attrr for resources in
the relevant resource group and, based on the constraint operator op, predict one
or multiple values for attrm from the retrieved set. No predictions are made if attrm
is not present in f, and features ranked lower than numMed are not considered.

After obtaining all predictions with their respective confidence levels for attrm from
the runs with different (user group, resource group, and action) tuples, the combinePre-
dictions function makes the final predictions by selecting the predicted value with the
highest confidence level for each distinct value, and it determines the number of values
to return based on whether attrm is a single-valued or set-valued attribute. It then
returns a set of final predictions along with their confidence levels. If no predictions
are made, the algorithm refrains from predicting any values for attrm and notifies the
administrator, advising them to proceed with caution. The absence of predictions may
indicate that the missing values do not significantly affect the entitlements or authoriza-
tions, as none of the features involving attrm were identified as important in the feature
learning step. Note that the identified important features offer valuable insights that
could be used in policy mining, suggesting a potential extension for future work to inte-
grate feature-driven policy generation and enhance the overall quality of mined policies.

4.3 Example

We illustrate the algorithm using a fragment of the University case study described in
Section 5.1. The policy, shown in Figure 2, involves six user objects (four representing
faculty members and two representing students) and seven resources (five grade books
and two transcripts). For user attributes, position specifies whether the user is
faculty or a student, department specifies their department, coursesTaught lists
the courses a faculty member teaches, and coursesTaken lists the courses a student
takes. For resource attributes, department specifies the department associated with
a grade book or transcript, course specifies the course a grade book belongs to,
student specifies the student linked to a transcript, and type indicates whether a



7

# Object model:

# Users:

u1:⟨id = csFac1,position = faculty,department=?,coursesTaught=?⟩
u2:⟨id = csFac2,position = faculty,department = cs,coursesTaught = {cs601}⟩
u3:⟨id = eeFac1,position = faculty,department = ee,coursesTaught = {ee101}⟩
u4:⟨id = eeFac2,position = faculty,department = ee,coursesTaught = {ee601}⟩
u5:⟨id = csStu1,position = student,department = cs,coursesTaken = {cs101}⟩
u6:⟨id = eeStu1,position = student,department = ee,coursesTaken = {ee602}⟩
# Resources:

r1:⟨id = cs101gb,department = cs,course = cs101,type = gradebook⟩
r2:⟨id = cs601gb,department = cs,course = cs601,type = gradebook⟩
r3:⟨id = ee101gb,department = ee,course = ee101,type = gradebook⟩
r4:⟨id = ee601gb,department = ee,course = ee601,type = gradebook⟩
r5:⟨id = ee602gb,department = ee,course = ee602,type = gradebook⟩
r6:⟨id = csStu1trans,department = cs,student = csStu1,type = transcript⟩
r7:⟨id = eeStu1trans,department = ee,student = eeStu1,type = transcript⟩

# Rules set:

# The instructor of a course can update grades in the course’s grade book.

ρ : ⟨position ∈ {faculty},type ∈ {gradebook},coursesTaught ∋ course,{modify}⟩

# Entitlements:

e1:⟨csFac1,cs101gb,modify⟩
e2:⟨csFac2,cs601gb,modify⟩
e3:⟨eeFac1,ee101gb,modify⟩
e4:⟨eeFac2,ee601gb,modify⟩

Fig. 2. Sample university policy.

resource is a grade book or a transcript. Attributes that do not apply to a particular
object are omitted, with their values set to NULL as explained in Section 4.1. In this
example, we need to infer two missing attribute values for user u1: the department,
which should be cs, and coursesTaught attributes , which should be{cs101}.

To keep this example concise, we consider only one rule ρ: the instructor of a
course can update grades in the course’s grade book. The set of entitlements defines
the meaning of ρ. As described in Section 3, it is important to clarify that the inputs
to our algorithm do not include a rule set. Our case studies involve a complete ABAC
policy, consisting of both an object model and a rule set. However, for evaluation
purposes, we only use the rule set to retrieve the set of input entitlements. A detailed
description of our evaluation methodology is provided in Section 5.2.

In phase 1, our algorithm clusters users into two groups based on their active
attribute sets: the first group, containing users u1, u2, u3, and u4, represents faculty
members, while the second group, containing users u5 and u6, represents students.
Similarly, for resources, the algorithm clusters grade book objects r1 through r5 into
one group and transcript objects r6 and r7 into another. With attribute weights wi

set to 1.0 and the threshold parameter ST set to 0.25, these groups remain as they
are, with no smaller subgroups formed.



8

In phase 2, since the missing attribute values in this example belong to the
same user, both values can be predicted simultaneously. The first step of function
predictMissingUserAttr identifies the relevant resource groups for which user u1 has
permissions. In this case, the algorithm considers only the grade book group identified
in the previous phase, since u1 (with ID csFac1) has a single entitlement to modify
grade book r1 (with ID cs101gb). Furthermore, the other entitlements also specify
that faculty members have permission to modify grade books for the courses they teach.

In the second step, the learning data involving these two groups is created. This
learning data consists of a set of features, including those corresponding to the two
atomic conditions and the atomic constraint in rule ρ. It is expected that these features,
position ∈{faculty}, type ∈{gradebook}, and coursesTaught ∋ course, will
also rank as the top three important features in the output of learnImportantFeautres.

Then, in predictMissingValues, the algorithm predicts the missing values for the
coursesTaught attribute using the important feature coursesTaught ∋ course.
Since csFac1 has the modify permission on cs101gb (given in the entitlement e1),
the coursesTaught attribute for csFac1 should contain the value of the course

attribute for cs101gb, which is cs101. With the NCTF set to ⟨3,5⟩, this prediction
achieves a High confidence level. The other features mentioned are not applicable for
predicting the missing value of coursesTaught, as they do not involve this attribute.
In this example, none of the other top five ranked features involve the coursesTaught

or department attributes. Therefore, the algorithm cannot make any prediction for
themissing department value, as no considered important features are associated with
it. As a result, the algorithm returns NEI (Not Enough Information) for this attribute.

If user csFac1 teaches more than one course, the algorithm would be able to
predict additional courses based on input entitlements for the new courses, and
function predictMissingValues would return multiple predictions. Since we have only
one prediction for coursesTaught in this example, combinePredictions has no effect
on the final result.

Overall, this example illustrates how our algorithm predicts missing attribute
values by leveraging the observation that users and resources within similar groups
often display correlated permissions. Since other faculty members have modifica-
tion access to the grade books for the courses they teach, a faculty member with
a missing coursesTaught attribute who shares similar permissions can have their
teaching courses inferred based on these permissions. Conversely, because there are
no entitlements based on the department of a faculty member, our algorithm refrains
from predicting a value for the missing department attribute due to insufficient
information. This case demonstrates how a missing attribute, when unrelated to
entitlements or authorizations, does not impact the overall permissions.

5 Evaluation

5.1 Dataset

We evaluate our algorithm on the University and Project Management case studies
outlined in [13]. The University case study is a policy that controls access by students,
instructors, teaching assistants, registrar officers, department chairs, and admissions



9

Object Model 
OM

Original Rules 
Rules

Actions Set
Act

Entitlements Set
E0

Entitlements 
Generator

Prediction 
Algorithm

Missing Attribute 
Values Generator

Modified OM with 
Missing Attribute 

Values

Predictions

Correct Values for 
the Missing 
Attributes

Results Comparison

LEGEND:

INPUTS

ALGORITHMS

OUTPUTS

12

3

4

Fig. 3. Evaluation methodology

officers to applications (for admission), gradebooks, transcripts, and course schedules.
The Project Management case study is a policy that controls access by department
managers, project leaders, employees, contractors, auditors, accountants, and planners
to budgets, schedules, and tasks associated with projects. More details about these
case studies are provided in [13].

5.2 Evaluation methodology

Our methodology for evaluating the algorithm is depicted in Figure 3. We start with an
ABAC policy π = ⟨OM ,Act,Rules⟩, compute the set [[π]] of granted entitlements from
the object model OM and the set of rules Rules, create from it a set of entitlements
E0. Then we remove small percentages of attribute values from OM . Next, we run
our algorithm on E0 and the modified OM to predict the missing attribute values and
compare the predictions with the original values before their removal. It is important
to emphasize that the set of input ABAC policy rules Rules is only used in the initial
step to generate the input entitlements, similar to those found in legacy access control
models. Our algorithm operates without access to the ABAC policy rules themselves.

While we use the same dataset as [13], our work addresses a different problem.
Their work focuses on mining ABAC rules from complete attribute data, whereas
our approach tries to infer missing attribute values in incomplete datasets. Therefore,
a direct comparison of the algorithms would not be meaningful, as their algorithm
produces a complete set of ABAC rules, while ours predicts missing attribute values.

5.3 Evaluation Results

We ran experiments with three different percentages of missing attribute values: 3%,
6%, and 9%, following the setup used in [2]. The attributes were randomly selected for



10

Dataset #objs #attrs |E0| Acc
Miss. %: 3% Miss. %: 6% Miss. %: 9%

Cov Time Cov Time Cov Time

university-1 290 797 1588 1.0 0.85 12 0.86 22 0.87 23

university-2 482 1316 3498 1.0 0.84 63 0.83 107 0.83 121

university-3 674 1843 6159 1.0 0.84 236 0.88 352 0.84 449

projmgmt-1 240 976 416 1.0 0.73 15 0.71 24 0.71 26

projmgmt-2 420 1708 728 1.0 0.69 110 0.7 160 0.69 200

projmgmt-3 540 2196 936 1.0 0.69 280 0.69 440 0.71 540

Fig. 4. Experimental results for our algorithm on datasets with different missing percentages
(Miss. %). “Acc” is the average accuracy achieved on each policy. “Acc” is the average
accuracy achieved on each policy.“Time” is the average running time for each policy, measured
in seconds. “#object” and “#attrs” are the average number of objects and the number of
attributes for each input policy, respectively.

removal until the desired missing percentage was reached. While [2] allows specifying a
set of required or important attributes that are excluded from removal, our approach
does not have this restriction. Our algorithm can predict any missing values as long
as there is sufficient information, offering better flexibility.

For the algorithm parameters in Phase 1, we set the attribute weights wi to 1.0
and ST to 0.25. Additional experiments were conducted with ST values of 0.1 and 0.5,
which yielded similar results, while setting ST values greater than 0.5 was found to
be unreasonable due to its restrictive nature. In Phase 2, we set the NTCF to ⟨3,5⟩.
The choice of setting numHigh = 3 was informed by observations from the policy
datasets, where rules typically contain no more than three atomic conditions and
constraints in total. We set numMed = 5 as a heuristic to balance capturing relevant
features for medium confidence predictions while avoiding less reliable lower-ranked
features. Our algorithm was implemented in Python, and the experiments were
conducted on an Apple MacBook Air with an M2 CPU and 8 GB memory.

Experiments were performed with varying policy sizes for each case study, using
policies generated from [13]. Figure 4 summarizes the size of the input entitlements
set (|E0|), the number of objects and attributes for each policy, as well as the results
of our experiments. Each data point represents the average outcome over five runs
with random missing attribute inputs for each policy size and missing attributes
level. We report two key metrics: coverage and accuracy. Coverage represents the
percentage of missing attributes for which our algorithm was able to make predictions.
Accuracy measures the correctness of the predictions by comparing them with the
original values. Both coverage and accuracy are reported as values between 0.0 and
1.0 instead of percentages. Although the algorithm is designed to predict with high
or medium confidence, our experiments only produced high-confidence predictions
or none. Therefore, we report a single accuracy value for high-confidence predictions.

The algorithm consistently achieves 100% accuracy across all policies and missing
attribute percentages, indicating that it made no incorrect predictions when it had
sufficient information to do so. This demonstrates the reliability of the algorithm in
predicting missing attribute values accurately.



11

The coverage results are acceptable, averaging 85% for the University policies
and 70% for the Project Management policies. While not perfect, these results reflect
the algorithm’s cautious approach, making predictions only when sufficient data is
available. Notably, the algorithm performs better on the University policies compared
to the Project Management policies. This outcome is expected because the Project
Management datasets have a smaller set of input entitlements and rules (5 compared
to 10 for the University datasets), increasing the likelihood that the randomly chosen
missing attributes do not affect any authorization decisions. Across different levels
of missing attribute percentages, the algorithm maintains reasonable performance.
The coverage remains stable even as the percentage of missing attributes increases,
indicating robustness in handling higher levels of missing data. The standard deviation
of the reported coverages ranges from 0.01 to 0.06, highlighting consistent performance
across multiple runs.

The algorithm’s running time scales with increasing missing attribute percentages.
On average, the running time increases by a factor of 1.61 when missing data rises from
3% to 6%, and by a factor of 1.17 from 6% to 9%. This suggests the algorithm manages
increased computational demands reasonably well, even with substantial missing data.

6 Related Work

The only prior work on mining of ABAC policies with missing attribute values is [2],
which is discussed in Section 1. The authors reduce the core aspect of the ABAC
policy mining problem to the problem of learning a formula in Kleene’s three-valued
logic. Three-valued logic allows three truth values: true (T), false (F), and unknown
(U). With three-valued logic, they can assign the truth value U to conditions and
constraints involving unknown attribute values, allowing them to handle these un-
certainties without the need to predict or impute the missing values. This approach
offers the advantage of avoiding potentially inaccurate imputation, which can simplify
the initial policy mining process. However, one significant drawback is that it requires
extensions to the existing policy language, introducing additional complexity to the
system. This can complicate the migration process from legacy systems to ABAC
and may reduce compatibility with other policy mining techniques that assume a
more traditional binary logic framework.

Related work on policy mining. We also discuss related work on policy mining,
as our approach could be integrated with existing algorithms to address missing
attribute values. Xu et al. introduced the first algorithm for ABAC policy mining
[14] and later a version for mining ABAC policies from logs [12]. Medvet et al.
developed the first evolutionary algorithm for ABAC policy mining [11], and Iyer
et al. introduced the first algorithm capable of mining policies with both deny and
permit rules [8]. Cotrini et al. reformulated ABAC mining from logs and presented
an algorithm using APRIORI-SD, a subgroup discovery technique [6]. They also
created a “universal” framework for mining policies across various languages, though
their results showed better quality with language-specific algorithms [5]. Law et al.
presented a scalable inductive logic programming algorithm for learning ABAC rules



12

from logs [10]. Bui et al. developed several Relationship-Base Access Control (ReBAC)
policy mining algorithms [3,4,1]. The ReBAC policy language they considered extends
the ABAC model by formulating ReBAC as an object-oriented extension of ABAC.
This approach integrates relationships between entities into the traditional ABAC
framework, enabling more expressive access control based on connections among users
and resources. Our algorithm could be readily adapted to support this ReBAC policy
language, as it builds on similar principles and structure.

References

1. Bui, T., Stoller, S.D.: A decision tree learning approach for mining relationship-based
access control policies. In: Proceedings of the 25th ACM Symposium on Access Control
Models and Technologies (SACMAT 2020). p. 167–178. ACM Press (2020)

2. Bui, T., Stoller, S.D.: Learning attribute-based and relationship-based access control
policies with unknown values. In: Proceedings of the 16th International Conference
on Information Systems Security (ICISS 2020). pp. 23–44 (2020)

3. Bui, T., Stoller, S.D., Li, J.: Mining relationship-based access control policies from
incomplete and noisy data. In: Proceedings of the 11th International Symposium on
Foundations & Practice of Security (FPS 2018). Springer-Verlag (2018)

4. Bui, T., Stoller, S.D., Li, J.: Greedy and evolutionary algorithms for mining
relationship-based access control policies. Computers & Security (2019)

5. Cotrini, C., Corinzia, L., Weghorn, T., Basin, D.: The next 700 policy miners: A
universal method for building policy miners. In: Proc. 2019 ACM Conference on
Computer and Communications Security (CCS 2019). pp. 95–112 (2019)

6. Cotrini, C., Weghorn, T., Basin, D.: Mining ABAC rules from sparse logs. In: Proc. 3rd
IEEE European Symposium on Security and Privacy (EuroS&P). pp. 2141–2148 (2018)

7. Das, S., Mitra, B., Atluri, V., Vaidya, J., Sural, S.: Policy engineering in RBAC and
ABAC. In: From Database to Cyber Security, Lecture Notes in Computer Science, vol.
11170, pp. 24–54. Springer Verlag (2018)

8. Iyer, P., Masoumzadeh, A.: Mining positive and negative attribute-based access control
policy rules. In: Proc. 23rd ACM on Symposium on Access Control Models and
Technologies (SACMAT). pp. 161–172. ACM (2018)

9. Iyer, P., Masoumzadeh, A.: Active learning of relationship-based access control policies.
In: Proceedings of the 25th ACM Symposium on Access Control Models and Technolo-
gies, SACMAT 2020, Barcelona, Spain, June 10-12, 2020. pp. 155–166. ACM (2020)

10. Law, M., Russo, A., Bertino, E., Broda, K., Lobo, J.: FastLAS: Scalable inductive logic
programming incorporating domain-specific optimisation criteria. In: Thirty-Fourth
AAAI Conference on Artificial Intelligence (AAAI 2020). pp. 2877–2885. AAAI Press
(2020)

11. Medvet, E., Bartoli, A., Carminati, B., Ferrari, E.: Evolutionary inference of attribute-
based access control policies. In: Proceedings of the 8th International Conference on
Evolutionary Multi-Criterion Optimization (EMO): Part I. Lecture Notes in Computer
Science, vol. 9018, pp. 351–365. Springer (2015)

12. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies from logs. In: Proc.
28th Annual IFIP WG 11.3 Working Conference on Data and Applications Security
and Privacy (DBSec). Springer (2014)

13. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies. IEEE Transactions
on Dependable and Secure Computing 12(5), 533–545 (Sep–Oct 2015)

14. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies. IEEE Transactions
on Dependable and Secure Computing 12(5), 533–545 (September–October 2015)


	An Approach for Handling Missing Attribute Values in Attribute-Based Access Control Policy Mining

