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Abstract

Efficient scalar multiplication is critical for enhancing the performance of
elliptic curve cryptography (ECC), especially in applications requiring large-
scale or real-time cryptographic operations. This paper proposes an M-ary
precomputation-based scalar multiplication algorithm, aiming to optimize
both computational efficiency and memory usage. The method reduces the

time complexity from Θ(Q log p) to Θ
(

Q log p
logQ

)
and achieves a memory com-

plexity of Θ
(

Q log p
log2 Q

)
. Experiments on ElGamal encryption and NS3-based

communication simulations validate its effectiveness. On secp256k1, the pro-
posed method achieves up to a 59% reduction in encryption time and 30%
memory savings. In network simulations, the binary-optimized variant re-
duces communication time by 22.1% on secp384r1 and simulation time by
25.4% on secp521r1. The results demonstrate the scalability, efficiency, and
practical applicability of the proposed algorithm. The source code will be
publicly released upon acceptance.
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1. Introduction

Information technology has become one of the fundamental pillars of mod-
ern society, enabling innovations such as distributed computing, databases,
and blockchain systems [1, 2]. As the value of information systems increases,
they have become prominent targets for cyberattacks. Cryptographic tech-
niques are essential to protect these systems, ensuring confidentiality, in-
tegrity, and availability. In particular, asymmetric cryptographic algorithms
are widely adopted due to their advantages in key management and security
strength [3]. Furthermore, they provide critical digital signature capabili-
ties [4], which are foundational to applications such as cryptocurrencies and
decentralized finance.

Elliptic curve cryptography (ECC) [5] is widely employed in informa-
tion system encryption because of its robust security, high efficiency, and
compact key size [6]. ECC has garnered attention for its effectiveness in
various applications, including financial transactions, network security, and
data protection[7]. In these applications, enhancing the efficiency of ECC is
crucial, particularly in scenarios that require quick responses and high secu-
rity. A key aspect of enhancing ECC efficiency is scalar multiplication [8],
a fundamental operation in ECC-based protocols [9]. Efficient scalar multi-
plication reduces latency and power consumption, thereby facilitating faster
and more secure data transmission.

One of the main challenges in Elliptic Curve Cryptography (ECC) lies
in the high computational cost of scalar multiplication. As the scale and
computational demands of modern information systems continue to grow [7],
the need for more efficient and secure scalar multiplication algorithms be-
comes increasingly critical [10]. Existing approaches often struggle to balance
computational speed and memory usage, particularly in resource-constrained
environments.

To address these challenges, this paper proposes an accelerated scalar
multiplication algorithm based on M-ary precomputation. The proposed

method reduces the time complexity from Θ(Q log p) to Θ
(

Q log p
logQ

)
while

achieving flexible memory efficiency through structured precomputation. This
work aims to enhance the performance and scalability of ECC operations
across a broad range of cryptographic applications.

The key contributions of this research are as follows:

1. Innovative Scalar Multiplication Algorithm: We propose a flexi-
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ble M-ary precomputation-based scalar multiplication algorithm for El-
liptic Curve Cryptography (ECC), achieving significant improvements
in both time and memory efficiency. Compared to conventional meth-
ods such as the sliding window and fixed-base comb algorithms, the
proposed method achieves linear memory scaling and better adapts to
arbitrary scalar sizes.

2. Theoretical Improvements in Time and Memory Complexity:

Our method reduces the time complexity from Θ(Q log p) to Θ
(

Q log p
logQ

)
and the memory complexity to Θ

(
Q log p
log2 Q

)
through structured precom-

putation and sparse storage. This provides an asymptotic advantage
over traditional precomputation techniques.

3. Significant Performance Gains: Experimental evaluations based on
ElGamal encryption and NS3 communication simulations demonstrate
the practical effectiveness of the proposed method. Specifically, the al-
gorithm achieves up to a 59% reduction in encryption time and a 30%
reduction in peak memory usage compared to baseline methods when
Q = 1000. Moreover, the binary-optimized variant achieves a 22.1%
reduction in total communication time on secp384r1 and a 25.4% reduc-
tion in overall simulation time on secp521r1, highlighting its scalability
across different elliptic curves and workloads.

2. Related work and preliminaries

2.1. Related Work

ECC has been extensively studied for its efficiency and security advan-
tages, particularly in resource-constrained settings. Existing research can
be broadly categorized into three areas: optimizations of ECC algorithms,
applications of ECC in resource-constrained settings, and lightweight cryp-
tographic techniques.

Scalar multiplication is the most computationally intensive operation in
elliptic curve cryptography (ECC) and has been the subject of extensive op-
timization research [8, 9]. Traditional methods such as Double-and-Add [11]
and NAF-based algorithms [12] focus on reducing the number of point addi-
tions. More advanced techniques, including 2k-ary methods [13], Sliding Win-
dow algorithms [14, 15], Montgomery Ladder [15, 16], Fixed-Base Comb [17],
and Window τ -NAF representations [18], further enhance computational ef-
ficiency or side-channel resistance. While these approaches significantly im-
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prove scalar multiplication performance, they often encounter scalability and
memory trade-offs when handling large numbers of scalar operations. This
paper addresses these limitations by proposing an M-ary precomputation-
based algorithm that simultaneously improves time complexity and memory
efficiency, providing a flexible and scalable solution for ECC applications.

Research Area Related Work Key Contributions

ECC Algorithm Optimization

Scalar Multiplica-
tion

Reduce the number of point addi-
tions and multiplications [11, 12]

Precomputation
Techniques

Improve performance but require
significant memory [14, 15]

Homomorphic En-
cryption

Focus on high-performance
computing[19]

GPU-Accelerated
Computations

Target high-performance comput-
ing rather than IoT [20]

ECC Applications
in Resource-constrained
Settings

Secure Communi-
cation

EEC’s Error Correction and Side-
Channel Attack Resistance [21]

Decentralized Fed-
erated Learning

Enhances security and scalability
in IoT [22]

Physical Layer Se-
curity

Improves data security in IoT [23]

Machine Learning
in ECC

Anomaly detection and authen-
tication enhance ECC’s robust-
ness [24, 25]

Lightweight Cryptography

Lightweight Proto-
cols

Optimize resource utilization
while maintaining strong encryp-
tion [7]

Tensor-Based Mod-
els

Enhance reliability and robust-
ness in hybrid IoT systems [26]

Standard ECC
Limitations

Standard ECC implementations
struggle with IoT constraints [5,
27]

Lightweight ECC
Protocols

Improve scalability and efficiency
for IoT applications [28]

Table 1: Summary of Related Work in ECC and IoT Applications

Recent advancements in ECC optimizations, including homomorphic en-
cryption [19] and GPU-accelerated computations [20], primarily focus on
high-performance computing. However, these methods demand additional re-
sources, making them less suitable for resource-constrained settings. Hardware-
level optimizations[29] lack portability, whereas algorithm-level optimizations
are more beneficial for practical applications.
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ECC is widely employed in communications in resource-constrained set-
tings because of its small key size and high computational efficiency [30].
High-impact applications include decentralized federated learning (DFL) [22],
physical layer security [23], and secure multimedia transmission techniques,
such as 3D scrambling [31].Machine learning methods, such as anomaly de-
tection and authentication [24, 25], have further enhanced the robustness of
ECC-based systems in resource-constrained settings.

Despite these advances, the computational limitations of resource-constrained
settings frequently result in performance bottlenecks [10, 32, 33]. Traditional
ECC implementations face challenges in balancing security and real-time
communication requirements in high-frequency IoT data exchanges [34, 27].

Lightweight cryptography has emerged as a promising solution to the
efficiency challenges in resource-constrained settings [7]. These protocols
optimize resource utilization while maintaining strong encryption, thereby
ensuring scalability and robustness [28]. Techniques such as tensor-based
models have been proposed to enhance network reliability and robustness in
hybrid resource-constrained systems [26].

However, existing lightweight cryptographic protocols typically rely on
standard ECC implementations, which are not optimized for the specific
constraints of resource-constrained devices [5, 27]. The need for fundamental
improvements in ECC algorithms remains largely unaddressed, resulting in
a significant gap in the literature.

Although ECC has undergone multiple optimizations, the computational
cost remains unacceptable when a large number of scalar multiplications are
required[35].No existing method can identify the path with the shortest step
length for a specific computational task while balancing computational and
space costs. Hardware-optimized scalar multiplication demonstrates scala-
bility and robustness in resource-constrained settings; however, its reliance
on traditional methods limits efficiency [10, 32, 36]. Memory-intensive ap-
proaches, such as Sliding Window techniques [14, 15], are unsuitable for IoT
devices with limited storage capacity. This study addresses these gaps by
introducing a novel M-ary Precomputation-Based Accelerated Scalar Multi-
plication algorithm. By reducing both time complexity and memory usage,
the proposed method offers a scalable and efficient solution for secure infor-
mation communication.
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2.2. Preliminaries

In this section, we present the core principles and operations related to
elliptic curves, as well as the scalar multiplication algorithm and its opti-
mization techniques.

2.2.1. Elliptic Curves [37]

An elliptic curve over a finite field Fp is of this form:

Ep(a, b) =

{
(x, y)|x, y ∈ Fp,

y2 ≡ x3 + ax+ b(mod p)

}
∪

{
O
}
. (1)

Where p is a prime number, and a, b ∈ Fp satisfy the condition 4a3 +
27b2 ̸≡ 0 (mod p), the point O is referred to as the point at infinity. When
there is no need to specify a and b, the elliptic curve Ep(a, b) can also be
denoted as E(Fp). The field Fp is called the base field of the elliptic curve
E(Fp).

The process of adding points on an elliptic curve is defined as follows.
Let P = (x1, y1) and Q = (x2, y2) be points in Ep(a, b) \ {O}. Then, the

addition of P and Q is defined as follows:

P +Q =

{
O, x1 = x2, y1 = −y2,

(x3, y3), otherwise.
(2)

where

x3 = λ2 − x1 − x2, (3)

y3 = λ (x1 − x3)− y1, (4)

λ =


y2−y1
x2−x1

, P ̸= Q,

3x2
1+a

2y1
, P = Q.

(5)

2.2.2. Scalar Multiplication Algorithms [16]

Let n ∈ N and P ∈ Ep(a, b). Then, the scalar multiplication of the
non-negative integer n with the point P is defined as follows:

nP =

{
O, n = 0,

(n− 1)P + P, n ≥ 1.
(6)
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Table 2: Comparative Analysis of Time and Space Complexities for Related Elliptic Curve
Scalar Multiplication Algorithms.

Algorithm Time Complexity Space Complexity

Double-and-add [11] Θ (Qlog p) Θ(1)
NAF-based [12] Θ (Qlog p) Θ(1)

2k-ary [13] Θ (Qlog p) Θ(1)

Sliding Window [14, 15] Θ
(
Qlog p

r

)
Θ(2r)

Montgomery Ladder [14, 15] Θ (Qlog p) Θ(1)

Fixed-Base Comb [17] Θ
(
Qlog p

r

)
Θ(2r)

Window τ -NAF [18] Θ
(
Qlog p

r

)
Θ(2r)

Next, we introduce seven widely adopted optimization algorithms for el-
liptic curve scalar multiplication: the double-and-add algorithm [11], the
NAF-based scalar multiplication algorithm [12], the 2k-ary method [13], the
Sliding Window algorithm [14, 15], the Montgomery Ladder technique [15,
16], the Fixed-Base Comb algorithm [17], and the Window τ -NAF precom-
putation scheme [18]. These algorithms have been extensively employed to
enhance the computational efficiency of scalar multiplication in elliptic curve
cryptography (ECC).

Among them, the Sliding Window algorithm [14, 15] significantly reduces
the number of point additions by leveraging a precomputed table of odd
multiples of the base point. The Montgomery Ladder algorithm [15, 16]
offers a constant-time implementation that is inherently resistant to side-
channel attacks, thus achieving a favorable trade-off between security and
efficiency. The Fixed-Base Comb algorithm [17] partitions the scalar into
multiple columns based on a fixed base, enabling parallel computation and
fast table lookups when the base point is constant. The Window τ -NAF
precomputation scheme [18] combines the efficiency of non-adjacent form
(NAF) representations with τ -adic expansions in Koblitz curves, further re-
ducing the number of required operations through strategic windowing and
precomputation.

These algorithms are widely utilized to improve the efficiency and security
of scalar multiplication in ECC. Table 2 summarizes the time and space
complexities of these algorithms.
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2.2.3. Methods

Double-and-add Algorithm [11]. The Double-and-Add Algorithm is a
fundamental method for scalar multiplication in elliptic curve cryptography
(ECC). Its simplicity has significantly contributed to the development of
scalar multiplication algorithms, with many subsequent algorithms being op-
timizations of this approach.

The core of Double-and-add Algorithm in elliptic curve cryptography is
the following identity:

k = 2

⌊
k

2

⌋
+ kmod 2. (7)

This transformation reduces the computation of kP to that of
⌊
k
2

⌋
P .

Consequently, the time complexity T (k) for computing the scalar multipli-
cation kP follows the recursive formula:

T (k) = T

(
k

2

)
+Θ(1). (8)

NAF Based Scalar Multiplication Algorithm [12]. The Double-and-
Add Algorithm [11] is a basic yet effective method for scalar multiplication;
however, its performance can often be improved. This has led to the devel-
opment of scalar multiplication algorithms based on the Non-Adjacent Form
(NAF) [12], which optimize the computation through a novel representation
of integers.

The NAF representation expresses the scalar k in a way that minimizes
the number of required point additions. Specifically, to compute the scalar
multiplication kP , we represent k in its NAF as:

k =
d−1∑
i=0

ai2
i. (9)

The scalar multiplication is then computed as:

kP =
d−1∑
i=0

ai(2
iP ). (10)

Denoting Ai = 2iP for i ≥ 0, the scalar multiplication can be rewritten
as:

kP =
d−1∑
i=0

aiAi. (11)
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The NAF representation typically results in fewer elliptic curve point
additions compared to the Double-and-Add method, leading to improved
practical efficiency in scalar multiplication.

2k-ary [13]. The 2k-ary algorithm [13] is used to compute scalar multi-
plication mP . The algorithm begins by selecting a positive integer k and
representing the scalar coefficient m as a base-2k number:

Where 0 ≤ ai < 2k and ad−1 > 0,the algorithm defines the intermediate
values Aj as follows:

Aj :=
d−1∑

i=d−j

ai2
k(i−(d−j))P, 0 ≤ j ≤ d. (12)

With A0 = O and Ad = mP . For 1 ≤ j ≤ d, we have:

Aj = 2kAj−1 + ad−jP. (13)

To simplify the computation, each coefficient ai can be expressed as:

ai = ui · 2si , (14)

where ui is an odd integer (i.e., ui is not divisible by 2), and si is a non-
negative integer that represents the power of 2 in the factorization of ai.

The steps involve doubling Aj−1 a total of k − sd−j times to compute
2k−sd−jAj−1, retrieving ud−jP from a precomputed table, and adding this to
the doubled result. The final result is then doubled sd−j times to obtain Aj.

The advantage of this method lies in reducing the number of point addi-
tions (excluding doublings) required on the elliptic curve, thereby enhancing
efficiency. In practice, setting k = 5 is often optimal for performance.

Sliding Window algorithm [14, 15]. The Sliding Window algorithm [14,
15] is an optimization technique in elliptic curve cryptography (ECC) de-
signed to enhance the efficiency of scalar multiplication, computing Q = kP ,
where k is the scalar and P is a point on the elliptic curve. This algorithm
partitions k into fixed-size windows of ω bits, with each window wi repre-
senting a segment of the scalar.

The algorithm processes k in ω-bit windows by precomputing and storing
each odd multiple (2j + 1)P in a table, which reduces redundant compu-
tations. During execution, for a given window wi, the algorithm combines
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point doubling and table lookups, performing the operation:

Q← 2ωQ+ Pwi
, (15)

where Pwi
is the precomputed value for the window wi, and 2ωQ represents

ω consecutive doublings. This approach significantly reduces the number of
point additions, balancing memory usage with computational complexity.

The Sliding Window algorithm [14, 15] requires O(2ω−1) storage for pre-
computed values and reduces the average number of point additions from
⌊log2 k⌋ (as seen in the Double-and-Add algorithm) to approximately ⌊log2 k⌋/ω.
By tuning ω, the algorithm can adapt to various performance and hardware
constraints, making it particularly effective for scalars with large bit lengths.

Montgomery Ladder algorithm [16]. The Montgomery Ladder algo-
rithm [16] is an efficient and secure method for scalar multiplication in ellip-
tic curve cryptography (ECC), particularly noted for its resistance to side-
channel attacks. This algorithm computes the scalar multiplication Q = kP
by maintaining a consistent operation flow, regardless of the scalar k, which
mitigates simple power analysis (SPA) vulnerabilities.

In the Montgomery Ladder, the scalar k is processed bit-by-bit from the
most significant to the least significant bit. At each iteration, two points, R0

and R1, are updated to satisfy the invariant R1−R0 = P . This ensures that
only differential point additions and doublings are used, enhancing security.

The algorithm is compatible with various elliptic curve coordinate sys-
tems, including Jacobian and projective coordinates, optimizing performance
based on specific hardware or software constraints. Its robustness against
side-channel attacks, along with its adaptability to different elliptic curve
forms, underscores its importance in modern ECC implementations.

The operational flow of Sliding Window algorithm and Montgomery Lad-
der algorithm is illustrated in Algorithm 1 and Algorithm 2, respectively.
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Algorithm 1 Sliding Window Algorithm

Input: P ∈ E(Fq), k =
∑l−1

i=0 ki2
i, window

size ω
Output: Q = kP
Precompute P2i+1, Q← O, i← l − 1
while i ≥ 0 do
if ki = 0 then
Q← 2Q, i← i− 1

else
Find max t s.t. i− t+ 1 ≤ ω, kt = 1
hi ← (ki . . . kt)2
Q← [2i−t+1]Q+ Phi

i← t− 1
end if

end while
Return: Q

Algorithm 2 Montgomery
Ladder Algorithm

Input: P ∈ E(Fq), scalar
k =

∑n−1
i=0 ki2

i

Output: Q = kP
R0 ← O, R1 ← P
for i = n− 1 downto 0 do
if ki = 0 then
R1 ← R0 +R1

R0 ← 2R0

else
R0 ← R0 +R1

R1 ← 2R1

end if
end for
Return: R0

Fixed-Base Comb algorithm [17]. The Fixed-Base Comb algorithm [17]
represents the scalar k in width-ω Non-Adjacent Form (NAF) and divides it
into ω × v blocks, processed from top to bottom and right to left.

First, the scalar k is divided into a = ⌈l/ω⌉ blocks of size ω, with padding
added if necessary. Each block Kd consists of ω bits, allowing k to be ex-
pressed as a series of these blocks. The scalar multiplication kP can thus be
computed as follows:

kP = Ka−1Ka−2 . . . K0P =
v−1∑
j=0

b−1∑
t=0

(Kjb+t2
tω)P, (16)

where Kjb+t represents the block in width-ω NAF representation.
To optimize performance, values G[j][sd] are precomputed for necessary

indices, allowing kP to be expressed in a more efficient form:

kP =
b−1∑
t=0

2tω(
v−1∑
j=0

G[j][Ij, t]). (17)

This algorithm effectively balances the average and worst-case densities of
non-zero digits in the width-ω NAF representation, contributing to its overall
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efficiency. By optimizing the representation and processing of the scalar k,
this approach significantly enhances the performance of scalar multiplication
in elliptic curve cryptography.
Pre-computation Scheme of Window τ NAF [18]. Yu and Xu revisit
the pre-computation scheme for the window τ NAF (non-adjacent form)
method, specifically designed for Koblitz curves. Their innovative approach
enhances the efficiency of scalar multiplication by introducing new algebraic
operations known as µτ̄ -operations [18], which utilize the complex conjugate
of the Frobenius map. This improvement surpasses traditional methods,
resulting in fewer field operations during the pre-computation phase and
facilitating faster scalar multiplication.

This algorithm uses a unified pre-computation scheme that maintains
efficiency across different configurations of Koblitz curves, particularly for
curves E0 and E1. Their results reveal time complexities of 6M +6S, 18M +
17S, and 44M + 32S for window widths of 4, 5, and 6, respectively, when
a = 0. These costs are approximately twice as efficient compared to existing
pre-computation techniques.

Overall, this innovative pre-computation method not only enhances com-
putational efficiency but also suggests the potential for further advancements
in elliptic curve cryptography, particularly for other types of curves defined
over Fm

3 or Fqm for primes q ≥ 5. Thus, their work significantly contributes
to both theoretical understanding and practical implementations in the field.

3. Our Proposed Algorithm

In this section, we present an optimized approach for scalar multiplication
based on M-ary precomputation. This method is designed to accelerate the
computation of multiple scalar multiplications on elliptic curves, significantly
improving performance over previous algorithms. We will outline the key
principles behind the algorithm, its time complexity, and the optimizations
that minimize computational overhead. Recent advances in the theoretical
understanding of time-space tradeoffs for function inversion [38] suggest that
careful balancing of precomputation storage and online computation cost is
crucial for achieving optimal performance. Motivated by these insights, our
M-ary precomputation-based method is designed to optimize both memory
consumption and computational efficiency in structured scalar multiplication
tasks.

12



Figure 1: Steps for M-ary Precomputation-Based Algorithm, illustrating the process
from input initialization, precomputation, scalar decomposition, scalar multiplication,

and the final result computation.

Algorithm 3 M-ary Precomputation-Based Scalar Multiplication

Input: Scalars k1, . . . , kQ ∈ N; base point P ∈ Ep(a, b)
Output: (k1P, k2P, . . . , kQP )

// Step 1: Determine parameters d and B

d←
⌈

ln p
W (Q/e)+1

⌉
B ← ⌈ d

√
n⌉

// Step 2: Precompute M [i][j] for i ∈ [0, d− 1], j ∈ [0, B]
for i = 0 to d− 1 do

for j = 0 to B do
Compute M [i][j]← j ·Bi · P
Verify M [i][j] satisfies the elliptic curve equation // FI protection

end for
end for
// Step 3: For each scalar k, compute kP
for each k ∈ {k1, . . . , kQ} do

Choose random r and shift k ← k + r ·Bd

Decompose k into base-B: k =
∑d−1

i=0 kiB
i

Compute S ←
∑d−1

i=0 M [i][ki]
Correct: S ← S − r · (Bd · P )
Store S

end for
return all computed kiP
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Figure 1 provides a visual breakdown of each phase in the M-ary precom-
putation based algorithm. Additionally, Algorithm 3 offers a comprehensive
explanation of the computational workflow for the M-ary precomputation-
based accelerated scalar multiplication algorithms.

3.1. Overview of the Problem

Scalar multiplication on elliptic curves is a fundamental operation in many
cryptographic protocols. Given a point P on an elliptic curve Ep(a, b), the
goal is to compute kP for a scalar k. Traditional methods for scalar mul-
tiplication suffer from time complexities proportional to Θ(Q log p), where
Q is the number of multiplications and p is the size of the finite field. This
motivates the search for algorithms that can achieve lower time complexities.

3.2. The M-ary Precomputation Method

Our method leverages the fixed nature of both the elliptic curve and
the base point G. Given that the same scalar multiplication is repeatedly
computed, we utilize the M-ary precomputation technique to precompute
and store multiples of the base point.

3.2.1. Scalar Representation

We represent the scalar k as a sum of powers of a base B:

k =
d−1∑
i=0

aiB
i, 0 ≤ ai ≤ B − 1. (18)

This allows the scalar multiplication to be expressed as:

kP =
d−1∑
i=0

ai
(
BiP

)
, (19)

where each term BiP is precomputed and stored in a table M , which signifi-
cantly reduces the computational overhead when performing scalar multipli-
cations.
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3.2.2. Precomputing the Table M

The table M is defined as:

Mi,j = j
(
BiP

)
, 0 ≤ i ≤ d− 1, 0 ≤ j ≤ B. (20)

This table can be precomputed with a time complexity of Θ(dB). By
using the recurrence relation:

Mi,j = Mi,j−1 +Mi,1, j ≥ 2, (21)

and the base case:
Mi,1 = BiP, (22)

we can efficiently fill the table for all values of i and j. Once precomputation
is done, the scalar multiplication kP can be quickly computed by summing
the appropriate values from the table M :

kP =
d−1∑
i=0

Mi,ai . (23)

Thus, the time complexity for computing a single scalar multiplication is
Θ(d), and for computing Q scalar multiplications, it becomes Θ(dQ).

3.3. Optimizing Time Complexity

To further optimize the algorithm, we seek to minimize the total compu-
tational cost by selecting the appropriate parameters for d and B. The rela-
tionship between B and d is derived from the requirement that Bd−1 ≥ n−1,
where n is the maximum possible value for the scalar k.

Since the time complexity of the algorithm is Θ(d(B + Q)), we aim to
minimize the expression by selecting B that balances both the base B and
the number of precomputed values. Through mathematical analysis (see
Appendix B for detailed proofs), the optimal value of B is found to be:

B∗ =
⌈

d
√
n
⌉
. (24)

Substituting this into the time complexity expression gives us:

Θ
(
d
(

d
√
n+Q

)
(25)
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3.4. Minimizing the Parameter d

To determine the optimal value of d, we seek the minimum of the function:

f(x) = x
(
p

1
x +Q

)
, x > 0. (26)

By differentiating f(x) and solving for the critical point, we find that the
optimal value of d occurs at:

x0 =
ln p

W
(
Q
e

)
+ 1

, (27)

where W (·) is the principal branch of the Lambert W function. This value
of d minimizes the overall time complexity, leading to an optimal trade-off
between the precomputation cost and the number of scalar multiplications.
Thus, Q = O(f(x0)). Since f(x0) ≤ f(d) < f(x0) + Θ(Q), we conclude:

f(d) = Θ (f(x0)) = Θ

(
Q ln p

W
(
Q
e

)) = Θ

(
Q log p

logQ

)
. (28)

3.5. Space Complexity

The spatial complexity arises from the precomputation of the table M ,
where Mi,j = j(BiP ), for 0 ≤ i ≤ d− 1 and 0 ≤ j ≤ B.

When B = ⌈ d
√
n⌉, x0 =

ln p

W(Q
e )+1

, and d = ⌈x0⌉, the spatial complexity is:

Θ(dB) = Θ

(
ln p

W
(
Q
e

)
+ 1
· p

W(Q
e )+1

ln p

)
. (29)

Simplifying the exponential term, we get:

Θ

(
ln p

W
(
Q
e

)
+ 1
· exp

(
W

(
Q

e

)
+ 1

))
. (30)

Since exp
(
W
(
Q
e

)
+ 1
)
= e · Q

W(Q
e )
, the spatial complexity becomes:

Θ

(
ln p

W
(
Q
e

)
+ 1
· Q

W
(
Q
e

)) . (31)

Thus, the final expression simplifies to:

Θ

(
Q log p

log2Q

)
. (32)
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3.6. The M-ary Precomputation Method with Less Space

When the number of input scalar multiplications Q is large, storing the

precomputed points in table M with Θ
(

Q log p
log2 Q

)
memory overhead incurs sig-

nificant memory costs, which may diminish the practical advantages of our
method. The challenge of managing precomputed data efficiently in scalar
multiplication has been emphasized in recent works like Elastic MSM [39],
which advocate elastic and modular preprocessing to adapt to memory con-
straints.

Building upon similar motivations, we design a binary sparse storage for-
mat for M-ary precomputation, significantly minimizing the number of stored
points without compromising computational efficiency. In this approach, the
points stored in each row are represented by a few ’indices’ that span between
powers of two. Specifically, we construct the storage format as follows:{

Mi,20 ,Mi,21 ,Mi,22 , ...,Mi,2log2 B

}
, 1 ≤ i ≤ d. (33)

This method allows us to perform binary decomposition for each Mi,j,
thus reducing the required storage space.

3.6.1. Bisection-Based Storage for Table M

We express ai as the sum of powers of 2:

ai =

⌊log2 B⌋∑
j=0

bj2
j, kP =

d−1∑
i=0

⌊log2 B⌋∑
j=0

bj2
j
(
BiP

)
. (34)

First, we compute the complete precomputation table M using the con-
ventional method, in which the total number of additions is approximately
O(d·B), generating all elements ofMi,j. Subsequently, we select the bisection
points from table M and store them in a compact table H:

Hi,j = Mi,2j , 1 ≤ i ≤ d, 1 ≤ j ≤ ⌊log2B⌋ . (35)

We propose storing only table H, which enables efficient computation
of kP by selectively retrieving and combining the appropriate precomputed
points from H during scalar multiplication:

kP =
d−1∑
i=0

⌊log2 B⌋∑
j=0

bjHi,j. (36)
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3.6.2. Determination of Parameter d

Since the complete table M must be computed during precomputation,
the time complexity is Θ(dB). After adopting bisection-based storage, each
digit ai requires log2B scalar additions, resulting in a time complexity of
Θ(d log2B) for Q scalar multiplications. The overall time complexity is as
follows:

Θ (d ( d
√
p+Q log d

√
p)) . (37)

By minimizing this time complexity, we can derive the optimal parameter
d for the bisection-based storage scheme as:

d = log2 p, B = d
√
p = e. (38)

3.6.3. Complexity Analysis

We analyze the algorithm’s complexity in terms of space and time re-
quirements. Let d denote the decomposition depth and B the base used in
the B-ary representation, with p being the bit-length of the field and Q the
number of scalars.

Space Complexity. The algorithm maintains a precomputed table M
of size d×B, resulting in a space complexity of:

Θ(dB) = Θ(e log p). (39)

Time Complexity. For each scalar multiplication, the algorithm per-
forms d additions, each involving a constant-time table lookup. For Q scalar
multiplications, the total time complexity becomes:

Θ(dQ logB) = Θ(Q log p+ e log p) = Θ(Q log p). (40)

Storage of Binary Elements. Each row stores a bounded number
of intermediate points, typically logarithmic in B, leading to an auxiliary
storage complexity of Θ(log p).

Overall, the algorithm achieves near-linear time scaling in Q and loga-
rithmic overhead in both precomputation and storage. Despite the reduced
storage overhead, the binary storage scheme introduces additional computa-
tional cost during scalar multiplication, as reconstructing the required values
from the compact table H involves more additive operations. Therefore, this
optimization is particularly suitable for deployment on resource-constrained
devices where memory is limited, but additional computation is acceptable
during runtime.
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3.7. Algorithm Security Analysis

This section analyzes the security properties of the proposed M-ary pre-
computation based scalar multiplication algorithm from a theoretical per-
spective, focusing on its resistance to side-channel threats, fault injection
vulnerabilities, and overall cryptographic soundness.

3.7.1. Side-Channel Resilience

To mitigate side-channel threats such as Simple Power Analysis (SPA)
and Differential Power Analysis (DPA), the proposed algorithm incorporates
several defensive mechanisms. First, all point additions are performed using
a constant-time addition subroutine to prevent information leakage through
timing variations. Second, a randomized scalar blinding technique is applied
by transforming the scalar k to k+ r ·Bd, introducing entropy across execu-
tions. Finally, table lookups during scalar decomposition follow a regular ac-
cess pattern without branching, thereby avoiding conditional data-dependent
operations.

These strategies collectively provide a baseline level of protection against
timing-based and power-based leakage [40, 21]. However, for deployment in
highly adversarial environments, further enhancements such as unified point
addition formulas or dummy table accesses may be required to strengthen
resistance against advanced power analysis.

3.7.2. Fault Injection Vulnerabilities

Fault injection (FI) attacks pose a different class of threats [41], where
adversaries may attempt to manipulate internal states or induce faults in in-
termediate computations, particularly during table precomputation or scalar
decomposition. To address this risk, the algorithm introduces a lightweight
consistency check during the precomputation phase, where each point M [i][j]
is verified to satisfy the elliptic curve equation y2 = x3 + ax+ b.

Despite this verification step, the algorithm currently lacks built-in re-
dundancy or self-correction mechanisms. If a fault alters the value of a pre-
computed point or disrupts scalar decomposition, the algorithm may output
incorrect results without detection. Future work could explore fault-resilient
enhancements such as result consistency checks, parity-based encoding, or
lightweight checksum techniques that preserve performance while improving
robustness against active attacks.
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Table 3: Comparative Security Features of Scalar Multiplication Algorithms

Algorithm SPA Resistance DPA Resistance FI Resistance

Double-and-Add × × ×
NAF-based △ × ×
2k-ary △ × ×
Sliding Window △ × ×
Montgomery Ladder ✓ △ ×
Fixed-Base Comb △ × ×
Pre-computation Scheme △ × ×
M-ary (ours) ✓ △ △

✓: Strong built-in resistance △: Partial mitigation ×: No inherent protection

3.7.3. Theoretical Soundness

From a theoretical standpoint, the algorithm ensures correctness in scalar
multiplication, preserving group law properties on elliptic curves. Under the
assumption that elliptic curve operations are implemented securely, the al-
gorithm maintains indistinguishability under chosen plaintext attacks (IND-
CPA), which is the foundational requirement for elliptic curve-based encryp-
tion schemes.

However, practical instantiations may still leak information through side
channels or fault manipulation unless complemented by secure hardware sup-
port or cryptographic protocol-level protections. For applications in digital
signatures, secure multiparty computation, or zero-knowledge settings, ad-
ditional safeguards such as verifiable computation or range proofs may be
necessary.

Table 3 summarizes the resistance of several representative scalar multi-
plication algorithms against common cryptographic attacks, including Simple
Power Analysis (SPA), Differential Power Analysis (DPA), and Fault Injec-
tion (FI). As shown, our proposed M-ary algorithm achieves strong SPA re-
sistance through constant-time computation and partial mitigation against
DPA and FI via scalar randomization and lightweight consistency checks.
Compared to classical methods such as double-and-add or sliding window,
the proposed design offers improved baseline protection while maintaining
lightweight efficiency.
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4. Evaluation

In this section, we present an in-depth evaluation of the proposed M-
ary precomputation-based accelerated scalar multiplication algorithm. The
evaluation is conducted in three main phases:

First, we compare the theoretical algorithmic efficiency of our method
against traditional scalar multiplication optimization algorithms, including
Double-and-Add, NAF-based, and 2k-ary algorithms. This comparison high-
lights the potential efficiency gains of the proposed method from a compu-
tational complexity perspective.

Second, we evaluate the performance of various scalar multiplication op-
timization algorithms within the ElGamal cryptosystem. By incorporating
each algorithm into the ElGamal encryption scheme and performing scalar
multiplications over elliptic curves secp256k1, secp384r1, and secp521r1, we
measure improvements in encryption and decryption times. The results
demonstrate that the M-ary precomputation-based algorithm significantly
accelerates cryptographic operations compared to other methods. This anal-
ysis underscores the practical applicability of our proposed algorithm in real-
world cryptographic systems, showcasing its effectiveness beyond theoretical
models.

Lastly, we conduct a series of NS3-based simulations to evaluate the prac-
tical performance impact of the proposed algorithm within a representative
communication network framework. The simulated environment consists of
five interconnected nodes, and the evaluation focuses on key metrics such
as total encryption time, entire communication time, and overall simula-
tion time. The results demonstrate that the M-ary precomputation-based
algorithm effectively reduces encryption time and improves communication
efficiency within the simulated network environment.

These evaluations encompass theoretical efficiency analysis, practical sim-
ulation experiments, and cryptographic performance testing. Together, they
provide a comprehensive validation of the advantages offered by the M-ary
precomputation-based algorithm in the context of elliptic curve cryptogra-
phy.

4.1. Evaluation on Theoretical Algorithmic Efficiency

In the previous section, we analyzed the complexities of various scalar
multiplication algorithms, including the Double-and-Add, NAF-based, 2k-
ary, SlidingWindow, Montgomery Ladder, Fixed-Base Comb, Fixed-Window,
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Table 4: Comparative Analysis of Time and Space Complexities for Elliptic Curve Scalar
Multiplication Algorithms.

Algorithm Time Complexity Space Complexity

Double-and-add Θ (Qlog p) Θ(1)
NAF-based Θ (Qlog p) Θ(1)

2k-ary Θ (Qlog p) Θ(1)

Sliding Window Θ
(

Qlog p
r

)
Θ(2r)

Montgomery Ladder Θ (Qlog p) Θ(1)

Fixed-Base Comb Θ
(

Qlog p
r

)
Θ(2r)

Window τ -NAF Θ
(

Qlog p
r

)
Θ(2r)

M-ary (ours) Θ
(

Q log p
logQ

)
Θ
(

Q log p
log2 Q

)
M-ary (binary) Θ(Q log p) Θ(logp)

and M-ary precomputation-based algorithms. As shown in Table 4, the M-
ary algorithm achieves superior time complexity compared to conventional
methods, which generally offer advantages in space complexity. In many
practical cryptographic applications, space complexity remains within ac-
ceptable bounds, making time efficiency the primary criterion for evaluating
the performance of scalar multiplication algorithms. Therefore, our M-ary
precomputation-based approach is theoretically more effective for real-world
deployment.

4.2. Evaluation on Quantitative Algorithmic Efficiency

4.2.1. Evaluation Setup

To investigate the performance comparison of the four scalar multipli-
cation algorithms mentioned above, we have selected three elliptic curves
(secp256k1, secp384r1, secp521r1) defined by the Standards for Efficient
Cryptography Group for testing purposes. The parameter quintuples T =
(p, a, b, G, n) for each elliptic curve are provided in the Appendix.

4.2.2. Evaluation on the Efficiency of Scalar Multiplication Algorithms

This evaluation investigates the impact of the number of computations
Q and base size p on the efficiency of four scalar multiplication algorithms
for points on the elliptic curve Ep(a, b). Quantitative results are presented
in Figure 2, where Figures Figure 2a, Figure 2b, and Figure 2c illustrate the
comparative efficiency across different base field sizes p.
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(a) (b) (c)

Figure 2: Evaluation on the time consumed by various optimized algorithms for scalar
multiplication with increasing number of computations Q. Specifically, Figure 2a,
Figure 2b, and Figure 2c represent the runtime for the elliptic curves secp256k1,

secp384r1, and secp521r1, respectively.

(a) (b) (c)

Figure 3: Evaluation on the proportion of time consumed by various optimized
algorithms for scalar multiplication relative to the double-and-add algorithm as the

number of computations Q increases. Specifically, Figure 3a, Figure 3b, and Figure 3c
represent the proportion for the elliptic curves secp256k1, secp384r1, and secp521r1,

respectively.

As Q increases, the efficiency advantage of our proposed algorithm over
other optimized algorithms becomes more pronounced. Figure 3 shows that
when Q is large, our algorithm consumes approximately 10% of the time
required by the Double-and-Add algorithm, while the NAF-based algorithm
takes about 90% and the 2k-ary algorithm about 79%. This improvement is
due to the time complexity of precomputation-based optimization algorithms,
which includes a factor of 1

logQ
; hence, as Q increases, the optimization effect

intensifies. These experimental results align with our theoretical analysis.
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(a) (b) (c)

Figure 4: Evaluation of the proportion of time consumed by ElGamal Encryption using
various optimized scalar multiplication algorithms compared to the double-and-add
algorithm, as the plaintext length L increases. Specifically, Figure 4a, Figure 4b, and

Figure 4c represent the respective proportions for the elliptic curves secp256k1,
secp384r1, and secp521r1.

4.2.3. Evaluation on the Performance of Different Scalar Multiplication Op-
timization Algorithms in ElGamal Cryptosystem

We evaluate our M-ary Precomputation-Based Accelerated Scalar Mul-
tiplication Algorithm within the ElGamal cryptosystem, comparing its per-
formance against traditional methods such as Double-and-Add, NAF-based,
and 2k-ary algorithms.

During encryption, User B computes C1 = kG and C2 = Pm+kPA, trans-
mitting the ciphertext Cm = (C1, C2) to User A. Since the base point G and
public key PA are fixed, our M-ary algorithm accelerates scalar multiplica-
tions for kG and kPA. The algorithm’s advantages increase with the number
of scalar multiplications Q.

To map a message m to a point on the elliptic curve E, we use a proba-
bilistic mapping algorithm that encodes m into Pm. Each message is divided
into groups of size k and represented as base-256 numbers mapped to points
on E. Our algorithm computes all scalar multiplications simultaneously,
significantly reducing encryption time.

Using elliptic curves secp256k1, secp384r1, and secp521r1, we compared
the time for ElGamal encryption across various plaintext lengths L. As shown
in Figure 4 and Table 5, our method outperforms traditional algorithms as
L increases. Specifically, when L is large, the NAF and 2k-ary algorithms
require 78% to 92% of the time of the Double-and-Add method, while our
approach only requires about 46%.

These results demonstrate the superior performance of our algorithm,
particularly as the scalar size L increases. This improvement stems from the
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Table 5: Comparative Analysis of Time Consumed by Different Scalar Multiplication
Algorithms used in ElGamal encryption when Length of Plaintext L = 100, 300, 360.

Algorithm Curve
Time Consumed (seconds)

L = 100 L = 300 L = 360

Double-and-add
secp256k1 0.18s 0.49s 0.79s
secp384r1 0.26s 0.71s 1.16s
secp521r1 0.36s 1.10s 1.83s

NAF-based
secp256k1 0.16s 0.44s 0.72s
secp384r1 0.24s 0.62s 0.95s
secp521r1 0.33s 0.96s 1.61s

2k-ary
secp256k1 0.14s 0.40s 0.68s
secp384r1 0.22s 0.59s 0.91s
secp521r1 0.30s 0.89s 1.51s

M-ary Precomputation (ours)
secp256k1 0.10s 0.24s 0.38s
secp384r1 0.15s 0.35s 0.54s
secp521r1 0.24s 0.57s 0.85s

time complexity factor 1
logQ

in our method, which ensures enhanced efficiency
as Q scales with L. The empirical findings validate the theoretical analysis
and highlight the strong scalability of our approach, making it well-suited for
high-performance cryptographic applications. These results provide a solid
foundation for further evaluation in broader communication and security
contexts.

4.3. Evaluation in Communication-Oriented Simulation Using NS3 Frame-
work

To further assess the practical performance of the proposed scalar mul-
tiplication algorithms, we conducted a series of simulations using the NS3
framework. These experiments were designed to evaluate the algorithms
within a representative communication network setting, focusing on key met-
rics such as encryption time, communication time, and overall simulation
time.

4.3.1. Simulation Setup

The simulation environment modeled a communication network with five
interconnected nodes, each representing a device performing secure data
transmission. As illustrated in Figure 5a, the nodes were connected using
point-to-point channels with a bandwidth of 5 Mbps and a delay of 2 ms,
reflecting typical parameters for lightweight communication systems.
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(a) Communication Network Topology:
Demonstrating point-to-point connections and the
associated communication parameters such as data

rates and delays.

(b) NS3 Simulation Network Architecture:
Illustrating the node components, protocol stack,

and point-to-point communication channels.

Figure 5: NS3 simulation communication model. Figure 5a demonstrates the overall network topology
with point-to-point links and their associated communication metrics, such as transmission delays and
data rates. Figure 5b illustrates the internal architecture of nodes in the NS3 simulation, showing the

application layer, protocol stack, and net device components.

To evaluate the performance of different scalar multiplication algorithms,
we encrypted a set of predefined text messages of varying sizes, simulat-
ing practical data transmission scenarios. The elliptic curve-based ElGamal
encryption scheme was employed, incorporating eight scalar multiplication
algorithms: Double-and-Add, NAF-based, 2k-ary, Sliding Window, Mont-
gomery Ladder, Fixed-Base Comb, Fixed-Window, and our proposed M-ary
precomputation-based algorithm, including both the standard and binary-
optimized versions.

Three primary performance indicators were recorded during the simula-
tions:

• Total Encryption Time (Enc. Time): The total time required to
encrypt all messages using the selected scalar multiplication algorithm.

• Total Communication Time (Com. Time): The overall duration
required to transmit all encrypted messages across the network.

• Total Simulation Time (Sim. Time): The end-to-end duration
of the complete simulation process, including encryption, transmission,
and protocol handling.

Messages were encrypted prior to transmission using the selected algo-
rithm, and the corresponding timing results were logged for comprehensive
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evaluation. Each node’s internal structure, depicted in Figure 5b, comprises
an application layer, a protocol stack, and network devices, reflecting a typ-
ical layered communication architecture.

4.3.2. Simulation Results

Table 6: Simulation Results for Different Scalar Multiplication Algorithms and Elliptic
Curves.

Elliptic Curve Algorithm Enc. Time (s) Com. Time (s) Sim. Time (s)

secp256k1

Double-and-add 6.8971 6.8978 6.9041
NAF-based 6.8802 6.8810 6.8909
2k-ary 6.8032 6.8039 6.8115
Sliding Window 6.6316 6.6324 6.6397
Montgomery Ladder 7.1261 7.1268 7.1360
Fixed-Base Comb 6.7629 6.7636 6.7729
Fixed-Window 6.8547 6.8554 6.8618
M-ary (ours) 6.3361 6.3369 6.3491
M-ary (binary) 6.61878 6.6197 6.6279

secp384r1

Double-and-add 8.5375 8.5382 8.5444
NAF-based 8.3399 8.3407 8.3483
2k-ary 7.7314 7.7321 7.7385
Sliding Window 7.9080 7.9087 7.9150
Montgomery Ladder 9.2238 9.2245 9.2338
Fixed-Base Comb 7.4359 7.4366 7.4431
Fixed-Window 8.2275 8.2282 8.2345
M-ary (ours) 7.0521 7.0528 7.0602
M-ary (binary) 7.2438 7.2445 7.25407

secp521r1

Double-and-add 10.9273 10.9281 10.9376
NAF-based 10.6670 10.6679 10.7002
2k-ary 9.7595 9.7603 9.7699
Sliding Window 9.6087 9.6094 9.6160
Montgomery Ladder 12.2517 12.2525 12.2626
Fixed-Base Comb 11.8115 11.8123 11.8227
Fixed-Window 10.4312 10.4319 10.4416
M-ary (ours) 8.3926 8.3934 8.4002
M-ary (binary) 8.5293 8.5300 8.5404

Time Efficiency Analysis. The NS3 simulation results demonstrate the
enhanced efficiency of our proposed M-ary precomputation-based algorithm
across different elliptic curve settings. Table 6 summarizes the encryption
time, communication time, and overall simulation time for each algorithm
across three elliptic curves: secp256k1, secp384r1, and secp521r1. Specifi-
cally, our method consistently achieves lower encryption times compared to
other algorithms, leading to reductions in overall communication and sim-
ulation times, and highlighting its scalability for large-scale cryptographic
applications.
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(a) (b) (c)

Figure 6: Performance Comparison of Scalar Multiplication Algorithms on Elliptic
Curves. Figure 6a shows the total simulation time across three elliptic curves
(secp256k1, secp384r1, secp521r1). Figure 6b depicts the total encryption time.

Figure 6c presents the total communication time.

Figures 6a, 6b, and 6c provide a visual comparison of the performance
metrics:

• Figure 6a shows the reduction in encryption time across multiple trans-
mission sessions, highlighting the computational efficiency of the pro-
posed method.

• Figure 6b depicts communication time savings, demonstrating the im-
proved transmission performance achieved by our approach.

• Figure 6c illustrates that our algorithm consistently outperforms others
in terms of total simulation time across all tested elliptic curves, show-
casing its strong scalability with increasing computational complexity.

These results underscore the superior performance and practicality of our
M-ary precomputation-based algorithm, making it highly suitable for high-
performance and large-scale cryptographic applications that require both
speed and computational efficiency.
Memory Consumption Analysis. Peak memory usage is one of the most
critical metrics for evaluating the deployability and scalability of scalar mul-
tiplication algorithms. Rather than only focusing on the theoretical size of
precomputation tables, we measure the peak memory usage during the entire
execution process, including temporary variables, intermediate buffers, and
any auxiliary structures used during computation. This better reflects the
algorithm’s actual memory footprint in practical systems.

To systematically compare the memory performance of different algo-
rithms, we selected three standard elliptic curves—secp256k1, secp384r1, and

28



secp521r1—and measured the peak memory usage for each of nine scalar
multiplication algorithms under four scalar counts Q ∈ {1, 10, 100, 1000}.
All measurements reflect the actual peak memory usage during execution,
not just theoretical memory requirements. A comprehensive summary of the
experimental results is provided in Table 7.

Table 7: Peak memory usage (in MB) of different scalar multiplication algorithms across
three curves and four scalar counts Q ∈ {1, 10, 100, 1000}. Values in bold represent the
two algorithms achieving the lowest peak memory consumption in each configuration.

Elliptic Curve Algorithm Q = 1 Q = 10 Q = 100 Q = 1000

secp256k1

Double-and-add 0.000969 0.002602 0.018410 0.177040
NAF-based 0.000931 0.002560 0.018368 0.177002

2k-ary 0.003941 0.005093 0.016094 0.126659
Sliding Window 0.032118 0.033269 0.044271 0.165089
Montgomery Ladder 0.001081 0.002232 0.013234 0.123797
Fixed-Base Comb 0.001528 0.003160 0.018969 0.161898
Fixed-Window 0.007359 0.008991 0.020153 0.130718
M-ary (ours) 0.000797 0.002430 0.018238 0.144852
M-ary (binary) 0.000690 0.001842 0.012844 0.123409

secp384r1

Double-and-add 0.001152 0.003059 0.021614 0.207710
NAF-based 0.001129 0.003036 0.021591 0.207687

2k-ary 0.004871 0.006298 0.020046 0.158077
Sliding Window 0.040190 0.041616 0.055364 0.201939
Montgomery Ladder 0.001370 0.002797 0.016544 0.154574
Fixed-Base Comb 0.001787 0.003695 0.022248 0.192642
Fixed-Window 0.009449 0.011356 0.025265 0.163296
M-ary (ours) 0.000950 0.002857 0.021412 0.186707
M-ary (binary) 0.000843 0.002270 0.016018 0.154049

secp521r1

Double-and-add 0.001377 0.003628 0.025616 0.246044
NAF-based 0.001389 0.003635 0.025627 0.246052

2k-ary 0.005772 0.007542 0.024723 0.197086
Sliding Window 0.050177 0.051948 0.069129 0.248326
Montgomery Ladder 0.001706 0.003477 0.020658 0.193020
Fixed-Base Comb 0.002146 0.004439 0.026430 0.231155
Fixed-Window 0.011677 0.014477 0.031818 0.203709
M-ary (ours) 0.001152 0.003403 0.025391 0.236874
M-ary (binary) 0.001041 0.002815 0.019997 0.192360

Traditional algorithms such as Double-and-Add and NAF-based exhibit
moderate memory usage overall. While they do not involve precomputation,
their peak memory is not necessarily minimal. For instance, on secp384r1
with Q = 100, NAF-based consumes 0.0216 MB—higher than both Mont-
gomery Ladder (0.0165 MB) and our M-ary (binary) method (0.0160 MB).

Fixed-Base Comb and Fixed-Window algorithms tend to show higher
memory consumption, especially in small-scale tasks. For example, on secp256k1
with Q = 10, Fixed-Window uses 0.0090 MB, whereas our M-ary (binary)
method requires only 0.0018 MB—almost 5 times smaller.

The SlidingWindow algorithm, despite being configured with the minimal
window size in our experiments, still incurs significant memory overhead
due to its exponential precomputation structure. On secp521r1 with Q =
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1, it reaches a peak of 0.0502 MB, while M-ary (binary) only uses 0.0010
MB—demonstrating a more than 50-fold reduction.

Montgomery Ladder, while not a precomputation-based method, achieves
consistently low memory usage due to its simple structure without extra
caching. However, it still falls short of our optimized binary method in most
settings. Our original M-ary algorithm demonstrates stable performance
across tasks, achieving lower memory usage than most traditional methods
while maintaining computational efficiency.

Our M-ary (binary) algorithm consistently achieves the best
memory efficiency. It ranks first in 9 out of 12 test cases, and top-two
in all remaining cases. For example, on secp256k1 with Q = 10, it uses
just 0.0018 MB—lower than all other compared methods. On secp384r1
with Q = 100, it consumes only 0.0160 MB (the lowest among all). On
secp521r1, it ranks among the lowest in every Q setting. This optimization
benefits from a sparse power representation, storing only 2j multiples in each
layer and reconstructing the target value through dynamic additions, thereby
significantly reducing memory redundancy.

5. Potential for Hardware Implementation

Although this paper mainly focuses on theoretical analysis, the proposed
M-ary precomputation-based scalar multiplication algorithm shows strong
potential for hardware acceleration on platforms such as GPUs and FPGAs.

Recent studies, such as the gECC framework proposed by Xiong et al. [42],
have demonstrated that optimizing batch scalar multiplications on GPUs can
significantly improve the throughput of elliptic curve cryptographic (ECC)
operations. Their framework, illustrated in Figure 7a, leverages Montgomery’s
trick and efficient scheduling strategies to reduce memory access overhead,
achieving high performance on NVIDIA A100 GPUs. Given the reduced time
and memory complexity of our M-ary method, it is well-suited for integration
into such parallel architectures, promising further improvements in latency
and throughput.

On FPGA platforms, Marzouqi et al. [43] presented a high-speed ECC
processor based on redundant signed digit (RSD) representations and pipelined
Karatsuba–Ofman multipliers. Their results highlight that optimized scalar
decompositions can effectively reduce scalar multiplication latency and area,
which aligns closely with the objectives of our M-ary method.
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Moreover, Jiang et al. [44] proposed low-latency and area-efficient point
multiplication architectures over Koblitz curves. Their overall hardware ar-
chitecture, shown in Figure 7b, optimizes scalar conversion and computation
scheduling within pipelined designs to achieve significant latency reductions.
Although their work specifically targets Koblitz curves, the core design prin-
ciples—precomputation strategies, pipelined scheduling, and area-time trade-
off optimization—are broadly applicable to general ECC scalar multiplication
problems.

(a) gECC Framework for GPU-based Batch ECC Acceleration

(b) FPGA Architecture for Koblitz Curve Point Multiplication

Figure 7: Hardware Deployment Potentials of the proposed M-ary scalar multiplication
method: (a) GPU-based high-throughput ECC framework; (b) FPGA-based scalar

conversion and point multiplication architecture.

Therefore, the proposed M-ary algorithm not only improves theoretical ef-
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ficiency but also exhibits strong potential for hardware compatibility. Future
work will explore implementing the algorithm on modern GPU and FPGA
platforms to validate its practical performance gains.

6. Conclusion

This paper presents an M-ary precomputation-based accelerated scalar
multiplication algorithm for elliptic curve cryptography (ECC), designed to
enhance computational efficiency and optimize memory usage. By leveraging
structured precomputation and scalar decomposition, the proposed method

reduces the time complexity from Θ(Q log p) to Θ
(

Q log p
logQ

)
and achieves a

flexible memory complexity of Θ
(

Q log p
log2 Q

)
, enabling efficient operation across

a wide range of computational scales.
Comprehensive evaluations validate the effectiveness of the proposed ap-

proach. Theoretical analysis confirms its superior asymptotic efficiency com-
pared to traditional scalar multiplication methods. In cryptographic experi-
ments using the ElGamal encryption scheme, the proposed method achieves
up to a 59% reduction in encryption time on the secp256k1 curve when
Q = 1000, compared to Double-and-Add, NAF-based, and 2k-ary algo-
rithms. In NS3-based simulations, the M-ary (binary) variant achieves a
22% reduction in total communication time on the secp384r1 curve and up
to a 25% reduction in overall simulation time on the secp521r1 curve. Mem-
ory performance is also significantly improved: for instance, on secp256k1
with Q = 1000, the M-ary (binary) method reduces peak memory usage by
approximately 25% compared to the Sliding Window algorithm.

These results collectively underscore the versatility, scalability, and prac-
tical applicability of the M-ary precomputation-based scalar multiplication
algorithm. The method not only enhances cryptographic performance but
also provides a promising foundation for deployment in secure communication
systems, large-scale cryptographic computations, and hardware-accelerated
cryptographic applications.

7. Future Work

This work primarily focuses on optimizing scalar multiplication in single-
scalar scenarios with a fixed base point. Several promising directions for
future research are identified:
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• Extension to Multi-Scalar Multiplication (MSM): Extending
the proposed M-ary precomputation method to multi-scalar multipli-
cation, which plays a critical role in applications such as pairing-based
cryptography and signature aggregation, is a natural progression. In-
vestigating dynamic parameter selection strategies for efficient multi-
scalar operations remains an open challenge.

• Parallelization and Batch Processing: Exploring parallel and batch
execution of the algorithm could further enhance its computational ef-
ficiency, particularly in settings where large volumes of scalar multipli-
cations must be processed simultaneously.

• Adaptation to Dynamic Curve Parameters and Base Points:
While this work assumes fixed elliptic curve parameters and base points,
many real-world cryptographic systems involve variable curves or chang-
ing base points. Future research may explore incremental table update
mechanisms to efficiently adapt precomputation structures without in-
curring significant recomputation overhead.

• Hardware-Optimized Implementations: Investigating optimized
deployments of the algorithm on diverse hardware architectures, such
as ARM, RISC-V, and GPU platforms, could further demonstrate its
practical scalability and performance across different computational en-
vironments.

These directions offer valuable opportunities to further enhance the ap-
plicability, efficiency, and robustness of the proposed M-ary precomputation-
based scalar multiplication method across a broad range of cryptographic
applications.
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Appendix A. Parameters of the Selected Elliptic Curves for Eval-
uation

We selected three elliptic curves defined by the Standards for Efficient
Cryptography Group (SECG) for evaluation: secp256k1, secp384r1, and
secp521r1. Each elliptic curve is defined by a quintuple T = (p, a, b, G, n).
The parameters are as follows (all represented in hexadecimal):

Appendix A.1. secp256k1

The finite field Fp of secp256k1 is defined by the prime p:

p = FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFC2F

= 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

The elliptic curve E over Fp is defined by the Weierstrass equation:

E : y2 = x3 + ax+ b,

where

a = 00000000 00000000 00000000

00000000 00000000 00000000

00000000 00000000

b = 00000000 00000000 00000000

00000000 00000000 00000000

00000000 00000007

The base point G = (x, y) on the curve is defined as:

x = 79BE667E F9DCBBAC 55A06295

CE870B07 029BFCDB 2DCE28D9

59F2815B 16F81798

y = 483ADA77 26A3C465 5DA4FBFC

0E1108A8 FD17B448 A6855419

9C47D08F FB10D4B8
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The order n of the base point G is:

n = FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF BAAEDCE6 AF48A03B

BFD25E8C D0364141

Appendix A.2. secp384r1

The finite field Fp of secp384r1 is defined as:

p = FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF

00000000 00000000 FFFFFFFF

= 2384 − 2128 − 296 + 232 − 1

The elliptic curve E over Fp is defined by the Weierstrass equation y2 =
x3 + ax+ b, where a and b are:

a = FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFE FFFFFFFF FFFFFFFF

FFFFFFFE FFFFFFFE FFFFFFFF

00000000 00000000 FFFFFFFC

b = B3312FA7 E23EE7E4 988E056B

E3F82D19 181D9C6E FE814112

0314088F 5013875A C656398D

8A2ED19D 2A85C8ED D3EC2AEF
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The base point G = (x, y) has coordinates:

x = AA87CA22 BE8B0537 8EB1C71E

F320AD74 6E1D3B62 8BA79B98

59F741E0 82542A38 5502F25D

BF55296C 3A545E38 72760AB7

y = 3617DE4A 96262C6F 5D9E98BF

9292DC29 F8F41DBD 289A147C

E9DA3113 B5F0B8C0 0A60B1CE

1D7E819D 7A431D7C 90EA0E5F

The order n of the base point G is:

n = FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF

C7634D81 F4372DDF 581A0DB2

48B0A77A ECEC196A CCC52973

Appendix A.3. secp521r1

The finite field Fp of secp521r1 is defined as:

p = 01FF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF

= 2521 − 1

The elliptic curve E over Fp is defined by the Weierstrass equation y2 =

36



x3 + ax+ b, where a and b are:

a = 01FF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFC

b = 0051 953EB961 8E1C9A1F

929A21A0 B68540EE A2DA725B

99B315F3 B8B48991 8EF109E1

56193951 EC7E937B 1652C0BD

3BB1BF07 3573DF88 3D2C34F1

EF451FD4 6B503F00

The base point G = (x, y) has coordinates:

x = 00C6 858E06B7 0404E9CD

9E3ECB66 2395B442 9C648139

053FB521 F828AF60 6B4D3DBA

A14B5E77 EFE75928 FE1DC127

A2FFA8DE 3348B3C1 856A429B

F97E7E31 C2E5BD66

y = 0118 39296A78 9A3BC004

5C8A5FB4 2C7D1BD9 98F54449

579B4468 17AFBD17 273E662C

97EE7299 5EF42640 C550B901

3FAD0761 353C7086 A272C240

88BE9476 9FD16650
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The order n of the base point G is:

n = 01FF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFA

51868783 BF2F966B 7FCC0148

F709A5D0 3BB5C9B8 899C47AE

BB6FB71E 91386409

Appendix B. Mathematical Proofs and Theorems

Appendix B.1. Proof of NAF Representation and Its Properties

This section presents theorems and proofs foundational to the NAF-based
scalar multiplication algorithm.

Theorem 1. An integer n can be represented in signed binary form
as a sequence ad−1, ad−2, . . . , a0, satisfying:

n =
d−1∑
i=0

ai · 2i, (B.1)

where ai ∈ {−1, 0, 1} and ad−1 ̸= 0.

Theorem 2. The number of non-zero elements in the signed binary
representation of n is the Hamming weight, denoted as:

d−1∑
i=0

[ai ̸= 0]. (B.2)

Theorem 3. The signed binary representation of n is called the Non-
Adjacent Form (NAF) if aiai+1 = 0 for all 0 ≤ i < d− 1. It is denoted
as (ad−1ad−2 . . . a1a0)NAF.

Theorem 4. The NAF of a non-negative integer n is unique and
denoted as NAF(n).
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Theorem 5. The Hamming weight of NAF(n) is the smallest among
all signed binary representations of n.

Theorem 6. The length ℓ(n) of the NAF of a positive integer n
satisfies:

⌊log2 n⌋+ 1 ≤ ℓ(n) ≤ ⌈log2 n⌉+ 1. (B.3)

These theorems form the mathematical basis for understanding the Non-
Adjacent Form and its application in scalar multiplication.

Appendix B.2. Theorem 7: Integer Representation in Base B

Theorem 7. For a positive integer B ≥ 2 and n ∈ N, there exist d ∈ N
and a0, a1, . . . , ad−1 ∈ [0, B − 1] such that:

n =
d−1∑
i=0

aiB
i. (B.4)

Proof: Let d := ⌈logB(n+ 1)⌉. Then d ∈ N, and for 0 ≤ i ≤ d − 1,
0 ≤ ai < B holds.

n =
d−1∑
i=0

aiB
i =

d−1∑
i=0

(⌊ n

Bi

⌋
mod B

)
Bi. (B.5)

This simplifies to:

n =
d−1∑
i=0

(⌊ n

Bi

⌋
−
⌊ n

Bi+1

⌋
B
)
Bi. (B.6)

Rearranging gives:

n =
⌊ n

B0

⌋
B0 −

⌊ n

Bd

⌋
Bd. (B.7)

Since Bd ≥ n+ 1 > n,
⌊

n
Bd

⌋
= 0, hence:

n =
⌊ n

B0

⌋
B0 = n. (B.8)
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Appendix B.3. Scalar Multiplication Using Theorem 7

To compute scalar multiplication kP , we represent k as:

k =
d−1∑
i=0

aiB
i, 0 ≤ ai < B. (B.9)

Thus, scalar multiplication can be expressed as:

kP =
d−1∑
i=0

ai
(
BiP

)
. (B.10)

We precompute an array M defined as:

Mi,j = j
(
BiP

)
, 0 ≤ i < d, 0 ≤ j < B. (B.11)

For j ≥ 2, the array M satisfies:

Mi,j = Mi,j−1 +Mi,1. (B.12)

For j = 1:

Mi,1 = BiP =

Mi−1,B, if i ≥ 1,

P, if i = 0.
(B.13)

For j = 0:
Mi,0 = O. (B.14)

The array M can be precomputed with a time complexity of Θ(dB).
After precomputing M , the scalar multiplication kP can be expressed as:

kP =
d−1∑
i=0

ai
(
BiP

)
=

d−1∑
i=0

Mi,ai . (B.15)

Thus, the time complexity for a single scalar multiplication is Θ(d), and
for Q scalar multiplications, it is Θ(dQ). Including the precomputation time,
the total complexity is:

Θ (d (B +Q)) . (B.16)

40



Appendix B.4. Minimization of Time Complexity

Since the coefficient k could be as high as n− 1, the parameters B and d
must satisfy:

Bd − 1 ≥ n− 1. (B.17)

To minimize d(B + Q) with respect to B, we choose B∗ := ⌈ d
√
n⌉. This

leads to the overall time complexity:

Θ (d (B +Q)) = Θ
(
d
(

d
√
n+Q

))
= Θ(d ( d

√
p+Q)) . (B.18)

The remaining variable is d. To minimize:

f(x) = x
(
p

1
x +Q

)
, x > 0, (B.19)

we find the derivative f ′(x) = 0:

x0 =
ln p

W
(
Q
e

)
+ 1

, (B.20)

where W (·) is the Lambert W function’s principal branch. This indicates
f(x) reaches its minimum at x = x0.

Since f ′ is strictly increasing on (0,+∞), f(x) is strictly decreasing on
(0, x0] and strictly increasing on [x0,+∞). Thus, f(x) attains its minimum
at x = x0.
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