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Abstract. As Deep Neural Networks (DNNs) continue to require larger
amounts of data and computational power, Mixture of Experts (MoE)
models have become a popular choice to reduce computational complex-
ity. This popularity increases the importance of considering the security
of MoE architectures. Unfortunately, the security of models using a MoE
architecture has not yet gained much attention compared to other DNN
models. In this work, we investigate the vulnerability of patch-based
MoE (pMoE) models for image classification against backdoor attacks.
We examine multiple trigger generation methods and Fine-Pruning as a
defense. To better understand a pMoE model’s vulnerability to backdoor
attacks, we investigate which factors affect the model’s patch selection.
Our work shows that pMoE models are highly susceptible to backdoor
attacks. More precisely, we achieve high attack success rates of up to
100% with visible triggers and a 2% poisoning rate, whilst only having
a clean accuracy drop of 1.0%. Additionally, we show that pruning itself
is ineffective as a defense but that fine-tuning can remove the backdoor
almost completely. Our results show that fine-tuning the model for five
epochs reduces the attack success rate to 2.1% whilst sacrificing 1.4%
accuracy.

Keywords: Backdoor Attack · Mixture of Experts · Image Classification
· Convolutional Neural Network · Data Poisoning

1 Introduction

Deep neural networks (DNNs) have become a popular choice for various tasks
in domains such as computer vision [24,40] or language processing [26]. As com-
putational resources require an increase with the continuously growing size of
models [18, 27, 28, 31], new model architectures have been proposed to improve
model efficiency. Mixture of Experts (MoE) architectures have emerged as a
powerful approach to improve model efficiency [1,9,32] by utilizing smaller, spe-
cialized models called experts, each trained to focus on a different task or subset
of data.

The Mixture of Experts architecture was introduced by Jacobs et al. [12] in
1990. Their proposed model consists of expert models and a single gate that com-
bines the expert outputs to generate the final model output. In this model, each

https://arxiv.org/abs/2505.01811v1


2 C. Chan et al.

input sample is routed to all experts. Shazeer et al. [32] expanded on the idea of
combining smaller expert models to reduce the computational cost of inference
with large models. The authors achieve this by reducing the number of param-
eters used during inference. The authors train multiple smaller experts to focus
on different tasks or subsets of data. In addition, a gating network is trained to
route input to specific experts. As a result, input is processed using fewer param-
eters than when the entire model processes it, while maintaining performance.
In addition to language models, vision models have also been shown to benefit
from the MoE architecture. Chowdhury et al. [6] proposed a Patch-level Rout-
ing mechanism which routes patches of input images to experts for processing.
Performing inference on patches of images rather than the entire image reduces
sample complexity, computational cost, and requires fewer training samples to
achieve performance comparable to a conventional CNN.

As MoE architectures gain traction in research and real-world applications [7,
35], the security considerations of these models [29,39] are becoming more impor-
tant. Several works have already shown that non-MoE architectures are vulner-
able to malicious attacks [2,10,25,29,36]. Gu et al. introduced the first backdoor
attack, called BadNet [10]. The authors showed that image classification models
could misclassify by adding a single pixel or a patch to images and changing the
labels to a target label during training. Their attack achieved a high Attack Suc-
cess Rate (ASR) without a large negative impact on the clean accuracy (CA).
Other work [5] proposed blending, or overlaying, an image with the original im-
age to create a trigger that achieves a very high ASR. Expanding on BadNet,
multiple works have proposed using stealthy triggers to make the attack less
detectable. Liao et al. [22] used a perturbation mask as the trigger that is al-
most imperceptible to humans when added to images. To create realistic yet
stealthy triggers, Nguyen and Tran proposed using altered image characteristics
with WaNet [25]. The authors slightly warp the image by shifting a few pixels
to create the trigger. Their warped trigger obtained a high ASR in the tested
setup and was unsusceptible to state-of-the-art defenses at that time.

However, currently, no prior work has investigated backdoor attacks against
MoE architectures. A few works explore the security and privacy considerations
of MoE architectures. Puigcerver et al. showed that MoE architectures enjoy
better robustness than their dense counterparts [29]. Zhang et al. investigated
the adversarial robustness of MoE-CNNs and proposed an adversarial train-
ing framework for MoE, AdvMoE, to increase the robustness of MoE architec-
tures [39]. Yona et al. explored the security and privacy of MoE architectures by
showing that an adversary can exploit an MoE, called Mixtral [13], and extract
a victim’s prompt [37]. A recent work by Zhang et al. [38] was one of the first to
explore adversarial attacks against MoE architectures. The authors showed that
Mixtral [13] can be caused to misclassify sentiment analysis via text instructions
on multiple levels: word-level, syntax-level, and semantic-level.

In this work, we further explore the vulnerabilities of MoE architectures,
specifically a Patch-based Mixture of Experts (pMoE) [6] model, by performing
backdoor attacks with different types of triggers. To investigate possible miti-
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gation strategies, we evaluate Fine-Pruning [23] as a defense against backdoors.
Additionally, we analyze the pMoE model’s patch selection to better understand
how different triggers influence the router and to which trigger types the pMoE
model is more vulnerable. By investigating why certain patches get routed to
certain experts, we can examine which factors can be exploited with a trigger to
influence the model’s patch selection. This enables more powerful attacks and
defenses in the future.1. Our main contributions are:
– To our knowledge, we are the first to investigate the security of MoE-based

CNNs with backdoor attacks and show that pMoE-based CNNs are vulnera-
ble to backdoor attacks. We achieve ASRs of up to 100% with visible triggers
and a poisoning rate of 2%. With stealthy triggers, we achieve 93.8% ASR
with a poisoning rate of 10%.

– We give insight into which image features are important to consider for back-
door attacks and defenses. We show that features such as shape, background,
and target object are primary factors in patch selection and that pixel value,
contrast intensity, and color have a smaller effect on patch selection.

– We investigate Fine-Pruning as a defense to mitigate backdoor attacks. We
find that pruning neurons is not enough to mitigate the backdoor, with the
attack success rate dropping by only ∼2%. However, with fine-tuning added,
we were able to drop the attack success rate from ∼97% to ∼2%.

2 Preliminaries

2.1 Mixture of Experts

Mixture of Experts is a type of DNN architecture that uses the output of a single
or several experts to produce the final model output. Each expert is a smaller
neural network and trained to process only certain input through the use of a gat-
ing mechanism. The gating mechanism, also called a router, is a network or layer
trained separately to determine which expert will process the input. The model’s
output is determined by the output of an expert or by combining the output of
multiple experts. Where other DNN architectures use all model parameters, MoE
architectures activate only a subset of parameters, which decreases the compu-
tational cost for inference. MoE architectures also offer improved scalability and
efficiency, making them attractive in Large Language Models (LLMs) [1,33] and
vision models [30]. For instance, DeepSeek leverages MoE to achieve remarkable
efficiency and performance [7]. Despite having 671 billion parameters, DeepSeek
activates only a small fraction (around 37 billion) for any given task.

2.2 Backdoor Attacks

Poisoning attacks assume that the adversary can access the training data of
the ML model. Instead of modifying input at inference time, the adversary in-
jects alterations during the training phase by poisoning the data or the model
1 Our code is available at https://github.com/geefmegeld/pMoE-backdoor

https://github.com/geefmegeld/pMoE-backdoor
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weights [16]. Poisoning attacks attempt to degrade the model by poisoning the
dataset so that the model misclassifies inputs. When poisoning the training data,
the adversary can make triggers and add them to inputs so that the model as-
sociates the triggers with the chosen target label of the adversary. This is called
a backdoor attack, which is a form of poisoning attack. In backdoor attacks,
the adversary still attempts to misclassify the inputs, but only when a trigger
is present in an input. While most works on backdoor attacks consider com-
puter vision, backdoor attacks also work for other domains such as text [4, 8]
and speech recognition [3, 14].

The adversary can choose the target label to misclassify samples when a
trigger is present. However, the adversary can make the backdoor attack more
specific by performing a source-specific attack. There, the adversary can not only
choose the target label but also add a source label. On the other hand, when
random samples are poisoned, all classes in the dataset could contain a trigger,
which is commonly called a source-agnostic attack.

3 Methodology

3.1 Threat Model

Attacker Goal The attacker’s objective is to cause the target model to mis-
classify images to the chosen target class at inference time. The backdoor should
be stealthy and remain undetected for as long as possible, so the target model
should still correctly classify images without the trigger to make the attack more
stealthy. Additionally, the trigger patterns should not be easily noticeable, and
the number of poisoned images should be low to keep the attack stealthy.

Attacker’s Knowledge & Capabilities We assume a gray-box setting where
the attacker has access to a part of the training data, for which they can alter
the labels and the image itself. The attacker does not need to know the model’s
architecture or parameters and does not need access to the training procedure.

Real-world Example Our described threat model can be applied to a real-
world scenario where training data is compromised and the adversary has gained
access to a part of the dataset. For example, the user uses datasets from untrusted
or unknown sources on the internet, obtained through web scraping [17], or
datasets that have been formed by crowd-sourcing. In such cases, the datasets
may contain malicious inputs that cause the model to behave unexpectedly.

3.2 Patch-level Routing in Mixture of Experts

In this work, we use the pMoE model designed by Chowdhury et al. [6] to evaluate
backdoor attacks against MoE architectures. This architecture is a 3-layer Wide
Residual Network (WRN) where the last layer of the WRN is replaced by a
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patch-level MoE (pMoE) layer. A pMoE layer consists of an expert and a router,
where each expert is a two-layer CNN with the same architecture. The router
in the pMoE model directs patches of images, rather than entire images, to an
expert. Each training image is divided into l patches of equal size. The routers
use the Top-K algorithm to route k patches to each of the n experts. The Top-K
patches with the highest activation values after a convolutional layer are routed.
A high activation value indicates the patch is influential in the final output of
the expert. In the final stage, the outputs from all experts are concatenated, and
a softmax activation is applied at the end to produce the final output of the
entire model.

Figure 1 illustrates an example pMoE model. In this example, images are di-
vided into l = 16 patches. The routers use the Top-K algorithm to assign k = 4
patches to the n = 2 experts. The same patch can be routed to multiple ex-
perts. Each expert is trained, and their outputs are concatenated before passing
through a dense layer for the final prediction.

Fig. 1. An illustration of pMoE. The image is divided into 16 patches, and the router
selects 4 patches for each expert.
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3.3 Trigger Generation Methods

For our experiments, we selected three different triggers to perform backdoor
attacks on the pMoE. The backdoor attacks we perform are dirty-label attacks,
where we change the original labels to a target label. Furthermore, all attacks
are performed in a source-agnostic way so that we can evaluate the effects of
triggers on a wider range of image features and multiple classes.

Square Trigger The square trigger we use is based on the trigger used in
Badnet [10]. The trigger is a small black square with a size of 4×4 pixels and
placed in a fixed position in the top-left corner of the image. Our pMoE processes
patches of the same 4×4 pixel size, enabling it to track which experts process
this trigger with the evaluation method discussed in Section 3.5.

Blend Trigger The second trigger we consider is the blend trigger [5]. This
trigger generation method involves blending the original image with a trigger
image of the same size. In all our experiments, we blend a Hello Kitty image
with the original images. The opacity of the trigger can be adjusted based on
the blend ratio α. Blending an image can be formally denoted as:

x′ = (1− α) · x+ α · i,

where x is our clean input image, i is the blend image, and α is the blend ratio.
We set α = 0.5 such that both the input image and the chosen blend image
contribute equally to the final backdoored image, x′. This means the poisoned
sample will be more distinguishable from clean samples, and we can analyze the
effects of a visible trigger present in all patches of an image.

Warped Trigger In contrast to the previous two trigger methods, we also
consider a stealthy backdoor attack using warping in images as a trigger. Warping
is an image processing technique that uses geometric transformations to subtly
deform images by shifting pixels to different locations. Since these slight pixel
movements are hard to perceive, warped images remain visually similar to the
originals. Unlike patch-based or blended triggers, which modify pixel colors,
warping introduces subtle distortions while preserving the overall appearance,
making it a stealthier trigger.

We generate the warping using the method proposed in Nguyen et al. [25].
A vector field is generated to guide the pixel movement in a predefined manner.
This process requires two parameters: k ∈ {2, 4, 6, 8}, which determines the
level of detail in the vector field, and s ∈ {0.25, 0.5, 0, 75, 1}, which controls the
warping strength. Higher values of these parameters result in more pronounced
warping, making poisoned images more distinguishable from clean samples. The
warping in all our experiments is generated with k = 2 and s = 0.25 to create the
least noticeable amount of warping. Unlike the black square trigger and blend
trigger, we want to focus on the stealthiness of the warped trigger to analyze
the effect of stealthy triggers on the pMoE model.
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Fig. 2. Different trigger generation methods shown visually, where the first row is from
CIFAR-10 and the 2nd row from GTSRB.

3.4 Evaluation

To evaluate the performance of the backdoor attacks, we utilize common metrics
in the field of poisoning attacks on ML models:

Attack Success Rate (ASR): ASR signals how well the backdoored model
predicts the modified test data with the trigger as the chosen target class of the
attacker. The modified test data contains test images except the target class,
where the trigger is applied to all test images. We calculate the ASR as:

ASR =
#total predictions of the targeted class

#total predictions
.

Benign Accuracy (BA): BA tells us how well the backdoor model is able to
correctly predict the class of the test data without triggers. The BA is calculated
as follows:

BA =
#correct predictions
#total predictions

.

Clean Accuracy Drop (CAD): The CAD indicates the difference in per-
formance between a clean model and a backdoored model on a set of clean images
and is represented by the accuracy drop between the two models. The CAD is
computed as follows:

CAD = Clean accuracy − Benign accuracy.

3.5 Patch Selection Analysis

The pMoE architecture segments an image into patches, which are then assigned
to different experts by routers. To better understand how pMoE distributes
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these patches, we can visualize which patches are assigned to which expert. By
looking at the output of the router in the pMoE layer, we can see which patch
indices of an input image are processed by which expert. Using the indices, we
create a patch map for every expert showing which patches were processed by
that expert. Comparing the maps of different experts and the original image
provides insights into the role of features such as shapes and contrast on patch
selection. This enables us to better understand which factors are important to
consider when choosing an effective type of trigger. Additionally, it allows for
model explainability by identifying whether specific experts, or combinations of
experts, contribute to misclassification, especially in backdoored models, where
certain experts may be responsible for steering images with a trigger toward the
target label.

In addition to visualizing the patch selection, we will also look at the pixel
values of patches to investigate the influence of pixel value and color. We perform
the patch selection analysis and patch value distribution analysis on a wide range
of clean and poisoned images from CIFAR-10. We make sure to consider different
classes, color distributions, target object size, and contrast where the background
is distinct from or similar to the target object.

The pixel values in an image can influence how patches are routed to experts
in the pMoE model. This is because the model utilizes the Top-K algorithm,
which selects the k highest values. Since the Top-K algorithm selects the high-
est activation values after a convolutional layer, the pixel intensities within a
patch could impact its selection, potentially affecting how patches are distributed
among experts based on their pixel values.

Our current method of investigating the influence of color is by making a
distribution of patch values for each expert. For each patch, we sum the pixel
values, creating a list of patch values for a given image. Theoretically, the max-
imum patch value occurs when the patch is entirely white. This means that all
RGB channels have their highest values, 255 per channel or 1 if normalized,
multiplied by the number of pixels per patch, which is 16.

With the patch map we created, we can trace which patches are assigned
to which expert and construct a distribution of patch values for each expert.
If experts have distinct distributions, where some experts frequently select low-
value (darker) patches while others predominantly choose high-value (lighter)
patches, it may suggest that the patch assignment to experts is influenced by
pixel intensity. This insight could mean that certain experts are biased toward
processing patches based on pixel intensity. This information can be exploited
by adversaries by developing a specific trigger, based on pixel values, that forces
the model to assign poisoned patches to specific experts, leading to controlled
misclassification.

3.6 Fine-Pruning Defense

In this work, we consider Fine-Pruning [23] as a defense because it is commonly
used to mitigate the effects of backdoor attacks on non-MoE architectures [11,19,
21,23,25]. Fine-pruning aims to remove the backdoor from the affected model [23]
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and is a combination of fine-tuning and pruning. The first step is pruning, where
the parameters of a layer are set to 0. After pruning, the model is re-trained for
a number of epochs, also referred to as fine-tuning.

4 Experiments

4.1 Data

We evaluate the backdoor attack on two datasets that are used in related work [6,
10, 22, 23, 25]: CIFAR-10 [15] and GTSRB [34]. The CIFAR-10 dataset consists
of 50 000 training images and 10 000 test images with 10 classes and input di-
mensions of 32×32×3. The GTSRB dataset contains 39 209 training images and
12 630 test images of real-world photos with 43 classes and input dimensions
that range from 15×15×3 to 250×250×3. Each class has balanced variations in
lighting, rotation, background, and scale. We resize all images to 32×32×3 to be
able to use the same model architecture and number of patches as CIFAR-10.

4.2 Baseline models

We consider two baseline models for our experiments to evaluate the effects
of our backdoor attack: a clean pMoE model trained on CIFAR-10 and a clean
pMoE model trained on GTSRB. For our experiments, we used the pMoE model
as described in [6] without modifying the architecture. In all our experiments,
we trained our pMoE model with n = 4 experts, each expert received k = 16
patches, and we divided the images into l = 64 patches. These hyperparameter
settings were chosen following the results presented [6], which shows these values
produce models with good accuracy. We trained and evaluated each baseline
model 10 times and report the average result to ensure consistency and avoid
outliers.

The clean and backdoored models were trained for 25 epochs using the SGD
optimizer with a learning rate of 0.1, no decay schedule, and a batch size of 128.
Although a learning rate of 0.1 may seem high, we followed the original pMoE
implementation’s parameter settings for training as these achieved good results.

Each experiment consists of a dataset, a trigger generation method, and a
poisoning rate. We consider the square, blend, and warped trigger described
in Section 3 with poisoning rate ∈ {0.1%, 0.5%, 2%, 6%, 10%}. Each experiment
is repeated five times, and we report the average to ensure consistent and reli-
able results. After each experiment, we apply the evaluation metrics described
in Section 3.4 to analyze the results.

4.3 Fine-Pruning Defense

We evaluate Fine-Pruning as a defense on a backdoored pMoE model trained
with CIFAR-10, a square trigger, and a 2% poisoning rate. Since our primary
focus is not on defending pMoE models, we limited the defense experiments to
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these specific parameters. We perform the defense with a pruning rate of 10%,
20%, 30% to evaluate how pruning affects the backdoored pMoE model and fine-
tune for 5 epochs. Fine-tuning for more epochs could make the defense expensive
and is less realistic in our threat model. To ensure reliable results, we run each
experiment three times and report the average results.

4.4 Environment Setup

The pMoE implementation is written in Python 3.9.6 using TensorFlow 2.18.0,
with Keras handling all model architectures. Our experiments were conducted
using Google Colab, utilizing T4 GPUs with 12.7GB system RAM, 15GB GPU
RAM, and 112GB disk space. Training times for a single model during our
experiments varied from 30 minutes to 45 minutes, depending on the dataset,
trigger generation method, and poisoning rate.

5 Experimental Results

5.1 Backdoor Attacks

Square Trigger In Tables 1 and 2, we show the results of the backdoor attacks
on CIFAR-10 and GTSRB, respectively. We observe that the square trigger
performs well on CIFAR-10 and GTSRB with a poisoning rate of 0.5% and
higher and achieves an ASR of 90.7% up to 99.8%. However, with a very low
poisoning rate of 0.1%, the square trigger does not achieve a good result with
an ASR of 30.1% and 41.0% on CIFAR-10 and GTSRB, respectively.

We hypothesize two possible reasons for the low ASR when the poisoning rate
is 0.1%. First, there are instances where the black square is not visible in the
input images because some clean images naturally contain dark or black pixels
in the top-left corner where the black square trigger is placed. Because of this
feature overlap with the black square trigger, the model may struggle to learn
the trigger pattern with a small number of poisoned samples. Second, the router
selects the patches based on the highest activation values. It is possible that the
router does not choose the patch containing the trigger to be evaluated by an
expert. This can make it difficult for the model to learn the trigger pattern when
there are only a small number of poisoned samples. This can be seen in Figure 4,
where none of the 4 experts would be routed the patch with a black square trigger
in the top left corner.

With a higher poisoning rate and thus more poisoned samples, the model is
exposed more to the black square trigger, allowing it to learn to better distin-
guish naturally dark pixels in the top-left corner and the trigger. Additionally,
with more poisoned samples during training, it is more likely that patches con-
taining the trigger will be selected by a router. Although a higher poisoning
rate increases the attack’s effectiveness, we can also see that for most trigger
generation methods and both datasets, the performance drop is larger when the
poisoning rate is higher. This can be undesirable as it makes the attack less
stealthy.
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Table 1. Experimental results of backdoor attacks with different types of triggers on
a pMoE model trained on CIFAR-10.

Poison rate Square Blend Warped

ASR BA CAD ASR BA CAD ASR BA CAD

0.1 30.1 83.8 1.2 98.3 83.5 1.5 3.5 83.9 1.1
0.5 90.7 83.5 1.5 99.6 83.3 1.7 8.2 83.8 1.6
2.0 96.6 83.2 1.8 99.9 83.5 1.5 24.5 83.0 2.0
6.0 97.4 83.1 1.9 99.9 83.2 1.8 54.9 82.1 3.0
10.0 99.1 82.7 2.3 100 82.1 1.9 93.8 82.7 2.9

Table 2. Experimental results of backdoor attacks with different types of triggers on
a pMoE model trained on GTSRB.

Poison rate Square Blend Warped

ASR BA CAD ASR BA CAD ASR BA CAD

0.1 41.0 97.8 0.2 94.7 97.1 0.9 0.3 97.0 1.0
0.5 98.2 97.5 0.5 99.2 97.2 0.8 20.1 97.2 0.8
2.0 99.7 97.4 0.6 100 97.0 1.0 45.5 97.1 0.9
6.0 99.8 97.5 0.5 100 97.0 1.0 77.4 97.0 1.0
10.0 99.8 96.9 1.1 100 96.5 1.5 91.6 96.6 1.4

Blend Trigger In Tables 1 and 2, we observe that the blend trigger performs
well with all poisoning rates and achieves an ASR of 94.7% up to 100%. Com-
pared to the square trigger, the blend trigger achieves a better ASR when the
poisoning rate is 0.1%, with 98.3% on CIFAR-10 and 94.7% on GTSRB. This
difference in performance between the square trigger and blend trigger might be
attributed to the blend trigger altering every part of the image rather than only
the top-left corner. This means that a part of the trigger will always be present
in the patches selected by a router. Additionally, the pixel values produced with
the blend trigger are likely not naturally present in clean images, as with the
black square trigger.

Warped Trigger From Tables 1 and 2, we see that the warped trigger performs
worse than the square and blend triggers with an ASR of 0.3% to 93.8%. The
warped trigger only achieves an ASR higher than 90% when the poisoning rate
is 10%, compared to a poisoning rate of 0.5% and 0.1% for the square and blend
trigger, respectively. This observation aligns with expectations based on previous
work [20,41] on stealthy triggers that show higher poisoning rates are needed to
achieve an ASR comparable to non-stealthy triggers.

For the warped trigger and poisoning rates of 0.5% to 6.0%, we observe a
consistently higher ASR for GTSRB compared to CIFAR-10. A possible reason
for this observation is that warping effects are more noticeable in GTSRB images
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than in CIFAR-10 images, as seen in Figure 2. As the warping effect visibly
changes more parts of the GTSRB image, splitting the image into patches might
be less disruptive to the trigger pattern than when the warping effect is weaker.

5.2 Patch Selection Analysis

Effects of Triggers on Patch Selection Figure 3 shows how the clean model
routes clean images and how poisoned models route the patches for their respec-
tive triggers. In Figure 3, we observe that triggers clearly alter patch selection
for all experts. In the case of the black square trigger, all experts get the top left
patch containing the black square routed. However, for the blend and warped
trigger, none of the experts got the top left patch routed. This shows that train-
ing the model on a poisoned data set directly affects patch selection to ensure
affected pixels get processed by the model.

Fig. 3. Differences in patch selection for the same image in differently poisoned models,
e.g., the first row shows how a clean model routes a clean image, and the second row
shows how a square trigger poisoned model routes a poisoned image.
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Clean Model Patch Selection Figure 4 displays which patches of an image
are routed to which expert for the pMoE model trained for 25 epochs. The first
two rows display a plane and a cat image from CIFAR-10, and the last two rows
show images from the GTSRB dataset. In Figure 4, we see that each expert gets
routed a different set of patches with varying degrees of overlap. Some experts
may receive more patches containing pixels affected by the trigger than others.
This means not every expert is equally influenced by triggers. For some trigger
patterns present in only certain patches of the image, e.g., the black square
trigger, it can happen that only one expert will process the trigger and still
cause misclassification.

Generally, we observe that for a specific class, some experts learn to focus
on parts of the background, while others learn to focus on the target object.
This behavior can be seen in the example images for GTSRB. For both GTSRB
example images, experts 1 and 2 focus on the central shape of the sign, while
experts 3 and 4 often focus on the outline and edges of objects in images. Similar
behavior is observed for some of the CIFAR-10 images. In the example image
of the cat, we see that only expert 1 has a strong focus on the central object,
i.e., the face of the cat. This behavior indicates that the shape of objects is
an important factor in patch selection. Triggers that visibly affect the shape of
objects in images will have a large influence on these experts.

Additionally, we observe in our experiments that the same expert can learn
to focus on the background or target object depending on the class rather than
having a fixed specialization for the location or shape of objects in images. In the
examples of Figure 4, it can be seen that expert 4 learns to focus on large parts
of the background for the cat, whilst in the plane image it focuses on the target
object. Similar observations are made for other classes and images, indicating
that another important factor in patch selection is whether the expert specializes
in the target object or background for that class. This means that if a trigger
only affects the target object, the trigger will only influence certain experts.

In Figure 5, we show the distributions of the average pixel value of the patches
per expert. In the distributions for the cat image in Figure 5a, we observe that
experts 1, 2, and 3 show peaks in frequency for certain average patch value bins.
For example, expert 1 has a high frequency of patches with an average patch
value of around 13. Additionally, there is a strong clustering of average values.
For example, expert 1 has 13 out of 16 patches with an average patch value
between 10 and 20. However, from Figures 5a and 5b we also see that the values
for which there are peaks and clusters in the distributions of experts are random
and differ per class and even per image. Moreover, in Figure 4 it can be seen
that an expert does not only choose patches that have the same color, i.e., pixel
values. This indicates that routers likely use pixel values to discern the shape of
objects in images. This results in clusters around certain values that dominate
an object in the image, but no strong bias for a patch selection pattern based
on a certain color.
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Fig. 4. Patch selection for each expert of the clean pMoE model. The first column
shows the input images, and subsequent columns show which expert was assigned
which patches. The first two rows show CIFAR-10 images, and the last two rows show
GTSRB images.

5.3 Fine-Pruning Defense

In Table 3, we display the results of the Fine-Pruning defense performed on a
backdoored pMoE model trained on CIFAR-10 with the square trigger and 2%
poisoning rate. It can be seen that the Fine-Pruning defense reduces the ASR to
1.9% to 2.2%, depending on the pruning rate. We observe that different pruning
rates result in nearly the same ASR reduction and that most ASR reduction
occurs after fine-tuning. This contradicts expectations based on the Fine-Pruning
defense proposed in [23], where pruning is intended to remove backdoor neurons,
while fine-tuning is mainly used to restore the classification accuracy on clean
samples. We hypothesize this behavior is because Fine-Pruning only prunes the
last convolutional layer in the model. It is possible that the backdoor is present in
a different layer or multiple layers of the pMoE model. In this case, pruning would
have no effect on the backdoor because we prune only the last convolutional layer.
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(a) Cat

(b) Blue sign

Fig. 5. Patch value distributions of images from Figure 4. On the x-axis are the average
pixel values of the patches that were routed to that expert. On the y-axis are the
frequencies of occurrence for the average pixel values.

In addition, the CA drops substantially when the pruning rate increases.
With a 30% pruning rate, the clean accuracy dropped from 85.2% to 72.2%
after pruning, and from 84.9% to 80.1% with a 10% pruning rate. The failure to
remove the backdoor and the reduction in performance show that pruning itself
is not an effective defense and that fine-tuning, or retraining, the model removes
the backdoor.

Table 3. Results of the Fine-Pruning defense on pMoE on the CIFAR-10 dataset with
a 2% poisoning rate averaged over three runs.

Pruning rate 10% 20% 30%

CA ASR CA ASR CA ASR

Before defense 84.9 96.5 84.8 96.3 85.2 97.4
After pruning 80.1 94.2 78.9 95.2 72.2 95.3

After fine-tuning 83.5 2.1 83.6 1.9 83.5 2.2

Figure 6 shows the effect of Fine-Pruning on patch selection. Before Fine-
Pruning, three out of four experts would process the black square trigger patch,
indicating it to be an influential patch for classification. However, after Fine-
Pruning, there is only one out of four experts who process the black square
patch, meaning the trigger patch has much less influence on the classification.
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This change in routing provides a visual explanation for the backdoor attack’s
reduced effectiveness after Fine-Pruning.

Fig. 6. CIFAR-10 image of a dog poisoned with the square trigger and the correspond-
ing patch selection for the four experts. The top row shows the patch selection before
Fine-Pruning, and the bottom row shows the patch selection after Fine-Pruning.

6 Conclusions and Future Work

In this paper, we investigate the vulnerability of MoE-based CNNs like pMoE
against backdoor attacks. We have demonstrated that pMoE architectures are
susceptible to backdoor attacks in different settings by using three different trig-
ger generation methods. Even with low poisoning rates, an adversary can achieve
a high ASR by utilizing a visible trigger. Additionally, an adversary can success-
fully attack a pMoE model with a stealthy trigger by increasing the poisoning
rate. For both visible and stealthy triggers, the CAD increases only marginally
with an increased poisoning rate, indicating that a higher poisoning rate does not
affect the performance of the model significantly. This makes MoE architectures
more vulnerable to backdoor attacks. In addition to evaluating backdoor attacks,
we investigated Fine-Pruning as a defense against backdoor attacks for pMoE
models. We found that Fine-Pruning could remove the backdoor successfully and
reduce ASR from ∼97% to ∼2%, whilst sacrificing 1.4% accuracy. However, the
majority of the backdoor removal happens in the fine-tuning stage. The pruning
stage of the defense does little to reduce ASR, but has a large negative impact on
the CA. Future works include analyzing different MoE architectures, such as V-
MoE, and datasets with different properties, such as larger images. Additionally,
as this work only considers MoE in the vision domain, an interesting direction is
investigating the vulnerabilities of MoE architectures in the text domain against
backdoor attacks or other adversarial attacks.
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