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Abstract
Digital steganography is the practice of concealing for encrypted
data transmission. Typically, steganography methods embed secret
data into cover data to create stega data that incorporates hidden
secret data. However, steganography techniques often require de-
signing specific frameworks for each data type, which restricts their
generalizability. In this paper, we present U-INR, a novel method
for steganography via Implicit Neural Representation (INR). Rather
than using the specific framework for each data format, we directly
use the neurons of the INR network to represent the secret data and
cover data across different data types. To achieve this idea, a private
key is shared between the data sender and receivers. Such a private
key can be used to determine the position of secret data in INR
networks. To effectively leverage this key, we further introduce a
key-based selection strategy that can be used to determine the posi-
tion within the INRs for data storage. Comprehensive experiments
across multiple data types, including images, videos, audio, and
SDF and NeRF, demonstrate the generalizability and effectiveness
of U-INR, emphasizing its potential for improving data security and
privacy in various applications.
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1 Introduction
Digital steganography aims to hide information within digital data,
such as images, audio, or video, to achieve encrypted transmission
of information. Typically, steganographymethods [22, 26, 41, 61, 65]
embed secret data into cover data to create stega data that incor-
porates hidden secret information. Receivers can extract previously
hidden secret data from transmitted stega data.

However, these approaches are often tailored to a specific data
format, such as images [22, 29], audio [10], or video [20, 40, 58]
media. For each data type, current solutions [9, 22, 40, 65] have to
design specific encoders and extractors to process the data, which
lacks the flexibility to be universally applied across different data
types. For example, the frameworks [22, 29] designed for image
hiding cannot be used for audio or video steganography. This lim-
itation poses a significant challenge for users who want to hide
data across various media types without being restricted to specific
data formats. Besides, existing methods heavily rely on external
extractors to extract hidden information, which introduces critical
security vulnerabilities. Attackers could exploit these extractors to
corrupt [14, 66] or expose [34, 60] the secret data. Such inherent in-
security fundamentally undermines the reliability of conventional
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Figure 1: Illustration of our scenario. (a) Previous steganog-
raphy approaches require designing specific frameworks for
different data formats. Besides, malicious users could exploit
the steganography encoder/decoder to expose or corrupt the
secret data. (b) Our U-INR can work on various data formats
like image, video and others. Besides, U-INR bypasses the
need for external encoder/decoder architectures that could
expose attack surfaces, ensuring exclusive access to key hold-
ers.

steganography in practical deployments, where robustness against
malicious attacks is paramount.

We envision a new scenario where secret data can be embedded
into cover data without data-type constraints. As demonstrated
in Fig. 1, in our new scenario, the data hiding and extraction do
not rely on format-specific encoders and extractors, preventing
the limitations of specific data formats in previous steganography
methods. The data senders and receivers use a private key that
defines how secret data is embedded and extracted, eliminating the
reliance and the risks of attacks on the external components. This
scenario bypasses the need for external encoder/decoder architec-
tures that could expose attack surfaces, ensuring exclusive access
to key holders and preserving confidentiality and security.

We propose to overcome the challenges posed by various data
formats through representing different types of data in a unified
manner, thereby eliminating the need to manage different data
formats. Our approach employs Implicit Neural Representations
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(INRs) [51], which inherently satisfy this requirement by providing
a unified framework for encoding diverse multimedia data (e.g., im-
ages, audio, videos and others). Besides, prior works [13, 16] have
established that neural networks contain significant redundancy,
with certain neurons being removable without degrading model
performance. As INR naturally owns the network-based represen-
tation capability, it motivates us to use separate neurons in the INR
to store the cover data and the hiding data, which enables seamless
information embedding while preserving the perceptual quality of
the cover media.

INR’s distinctive capability has inspired serval works for data
hiding, yet existing methods [7, 11, 33] still remain limited to sin-
gle modalities, overlooking INRs’ across-modality representation
capability [38, 51]. Recent INRSteg [53] suggests combining INRs
for data steganography across different data modality. However,
this approach explicitly modifies the default network structure of
the INR, making it noticeable to attentive attackers. Besides, since
the user must know the details of modifications, such a strategy
is not conducive to the recipient’s retrieval. The above weakness
underscores a necessity for a novel method that is less detectable
by attentive attackers and a more appropriate way for receivers to
retrieve the hidden data.

To address the above problems, we propose a novel strategy in
which receivers and senders share a consensus. This consensus
establishes a pre-defined agreement between sender and receiver
that identifies specific neurons for encoding cover data versus those
allocated for secret data embedding. Then, the sender and receivers
can use such a consensus for data hiding and extraction, respec-
tively. In our design, the identified neurons within the INR are
utilized to represent the secret data, while the remaining neurons
are optimized to encode the cover data. We refer to this optimized
INR with the cover and secrete data as a stega representation.
During the extraction, this method minimizes detectability by vig-
ilant attackers and simplifies the retrieval process for receivers,
ensuring a more efficient and secure steganography.

We introduce an implicit consensus mechanism, which can
effectively identify the positions of the parameters storing the se-
cret data. In our design, the private shared key helps identify the
positions used for hiding secret data. We achieve this by using this
key to initialize the weights of the INR and then sorting and select-
ing the weights based on their values. The data sender and receiver
can use this key to achieve data hiding and retrieval. Unauthorized
users without the correct keys cannot obtain the secret data from
the stega representation. We call this strategyU-INR, which allows
users to conceal data within the parameters of INR and extract the
hidden data using a designated key. By leveraging INR’s inherent
flexibility and adaptability, our approach facilitates the seamless
integration of hidden data into the existing data structure, enabling
more secure communication and data transmission. In summary,
our contributions can be summarized as:

• We introduce a novel steganography framework, unifying
multimedia data representation for data hiding and retrieval.

• We develop a parameter-level embedding technique that
integrates secret data directly within INRs, enabling cross-
modal steganography without dedicated encoders or format-
specific extractors.

• We introduce an implicit consensus mechanism to securely
identify hidden data positions, enhancing data transmission
safety against unauthorized access.

Extensive experiments have been conducted across various INR-
based representations to demonstrate the generalizability and ef-
fectiveness of our method, resulting in an advanced improvement
compared to existing steganography methods.

2 Related work
2.1 Traditional steganography
Steganography [50, 56, 60, 62–64] involves concealing secret data
within a carriermedium, creating a covert information container [10,
39]. In image steganography, a cover image serves as the vessel
for embedding a secret image [2]. Traditional approaches, such as
spatial-based techniques [19, 21, 42, 45, 47], often employ strategies
like Least Significant Bits (LSB), pixel value differencing (PVD) [45],
and manipulation of multiple bit-planes [42] or color palettes [18,
19, 44]. However, these methods can introduce statistical anom-
alies that are detectable by steganalysis tools. To better prevent
detection, adaptive strategies [25, 46] have been developed. These
strategies focus on making the presence of secret data more invisi-
ble by minimizing embedding distortion and optimizing data coding
to maintain visual indistinguishability. Similarly, transform-based
methods [6, 23], including JSteg [47] and Discrete Cosine Transform
(DCT) steganography [5, 17], have struggled to achieve substantial
payload capacities. Recent advancements in steganographic tech-
niques, leveraging the power of deep learning [22, 26, 40, 41, 61, 65],
significantly enhance the capacity and security of data conceal-
ment. These methods employ neural networks [27, 28, 30, 36] to
intricately analyze and subtly modify complex data attributes, re-
sulting in more sophisticated and less detectable forms of data
steganography. Baluja [2] pioneers a deep-learning approach ca-
pable of embedding a full-sized image within another. GAN [49]
is used to create synthetic container images with probability map
techniques for minimal distortion embedding [46, 55]. U-Net gener-
ators [59] integrated with adversarial frameworks have also been in-
troduced, targeting distortionminimization[54]. Additionally, three-
player game models such as SteganoGAN [61] and HiDDeN [65]
employ auto-encoder architectures in an adversarial manner to
enhance resistance to steganalysis. PUSNet [29] proposes extract-
ing a steganography network from a common network, enabling
the covert transmission of the steganography network. However,
these methods overlook the potential of using neurons directly to
represent secret data for steganography. The type of data limits
these methods, as the corresponding pipeline must be designed
according to each data type.

2.2 INR-based steganography
Implicit Neural Representation (INR) utilizes neural networks to
learn continuous functions for data like images and shapes [38,
51]. It has advanced generative modeling, 3D reconstruction [31],
and compression, demonstrating high-quality results from limited
data [8, 12, 43, 51]. INR provides a groundbreaking approach to data
representation by enabling continuous functions across multiple
data modalities. Studies [4, 7, 11, 33, 53] explore the use of implicit
neural representations (INR) for steganography. Existing works
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Figure 2: Framework of U-INR. Our architecture establishes secure synchronization between multimedia sender and receiver
through an implicit consensus using a shared private key 𝑘𝑒 . This key precisely maps the weight positions distinguishing
secret payloads from cover data in the neural representation. Enforcing consensus-based parameter coordination through the
implicit neural network’s weight-sharing mechanism eliminates the need for external auxiliary modules.

[35, 52] attempt INR-based steganography, they still treat INR like
traditional data formats [39, 65], where secret data is extracted
from the outputs of INR [38, 51]. StegaNeRV [4] uses an additional
extractor to retrieve hidden information from the reconstructed re-
sults, ignoring the possibility of directly using neurons to represent
the hidden information. Using partial neuron weights to represent
the secret data is a straightforward idea [7, 11, 33, 53]. Methods
like [7, 11, 33] address data steganography within a single modal-
ity, overlooking the capability of INR methods [51] to represent
multiple data types. The recent INRSteg [53] proposes combining
several different INRs to achieve steganography, but this changes
the original network structure of the INR, making it easily notice-
able by attentive attackers. Moreover, this concatenation method is
not conducive to the recipient’s retrieval, as the user must know
which neurons were used to store the hidden information. This
highlights the need for a novel method that is more imperceptible
to attentive attackers and easier for recipients to retrieve.

3 Problem Formulation
3.0.1 Traditional steganography. Traditional steganography frame-
works are inherently constrained by data format dependencies,
requiring specialized encoders and extractors for each media type.
Given a cover data 𝐶 (e.g., an image, audio, or video) and a secret
data 𝑆 , the objective is to generate stega data𝐶∗ using an embedding
function tailored for the specific data format:

𝐶∗ = 𝐸 (𝐶, 𝑆) . (1)

Once the stega data𝐶∗ is received, the secret message 𝑆 is extracted
using a format-specific extractor:

𝑆 = 𝐷 (𝐶∗) . (2)

Traditional steganography methods are fundamentally limited
by their dependence on specific data formats. Developing a format-
specific framework requires significant effort as each media type
(e.g., images, audio, video) has unique characteristics to implement
steganography. This results in a lack of flexibility, preventing the
seamless application of steganography techniques across different
media types. Besides, the reliance on these specialized extractors
introduces critical vulnerabilities. Attackers can target these extrac-
tors to access or corrupt the hidden. This reliance on 𝐷 introduces
critical vulnerabilities, as attackers can exploit these extractors to

access or corrupt the secret data [14, 34, 60, 66]. Each tailored ex-
tractor 𝐷 represents a potential attack surface, increasing the risk
of security breaches. Consequently, the robustness of traditional
steganography methods is compromised, particularly in environ-
ments where security against malicious attacks is paramount.

3.0.2 Our proposed scenario. We propose a unified steganography
paradigm via Implicit Neural Representations (INRs) to transform
multimedia data from various modalities into a unified representa-
tion. Our approach operates directly on the INR’s parameter space,
eliminating the need for format-specific operations.

Consider an INR network parameterized by Θ, representing the
cover data𝐶 . The secret message 𝑆 is embedded directly within the
parameters of Θ:

Θ∗ = Θ(𝐶, 𝑆, 𝑘𝑒 ), (3)
where 𝑘𝑒 is a private key identifying the positions within the pa-
rameter space where the secret data is stored. The stega data 𝐶∗ is
represented by the INR network Θ∗:

𝐶∗ = Θ∗ (·). (4)

The secret data 𝑆 could be retrieved using the extraction function
from the stega INR Θ∗:

𝑆 = Θ∗ (𝑘𝑒 ). (5)

The private key 𝑘𝑒 ensures that only authorized users can access
the secret message, thereby enhancing security.

Our framework takes advantage of the unique representation ca-
pability of INR, offering a unified and efficient solution for steganog-
raphy across multiple media types. As the need for external extrac-
tors is eliminated, we also address the critical vulnerability [14, 34,
60, 66] in traditional steganography.

4 Proposed method
The overview framework of U-INR is depicted in Fig. 2. We utilize
Implicit Neural Representation (INR) to transform multimedia data
from various modalities into a unified representation. This enables a
unified steganography framework applicable to diverse data types.
Then, instead of depending on external modules for hiding and
extraction, we introduce an implicit consensus mechanism between
data senders and receivers. This mechanism supports both data
hiding and extraction, mitigating risks associated with external
components.
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4.1 Unified multimedia data representation
Traditional steganography methods are inherently constrained to
multimedia data types due to their reliance on format-specific frame-
works. These approaches struggle to generalize across modalities as
format-specific frameworks cannot harmonize heterogeneous data.
In contrast, our work leverages Implicit Neural Representations
(INRs) [38, 51] to dissolve such weakness. We propose encoding di-
verse multimedia data into a unified neural representation, adapting
to arbitrary data types like images, audio, and 3D scenes seamlessly.

INR employs continuous functions representing various data
formats, such as images, videos, audio, and 3D scenes. An INR
inputs spatial or temporal coordinates and outputs the correspond-
ing information at the coordinates, such as image pixel values or
amplitude for audio. Generally, an INR FΘ can be denoted as:

y = FΘ (u), (6)

where u represents the input coordinates, which can be either spa-
tial (for images and 3D scenes) or temporal (for audio), 𝜃 denotes
the learned parameters of the neural network, and y is the output
information such as pixel or amplitude values. This framework
allows a unified approach to modeling different data types using
a flexible neural network-based function FΘ. For instance, in the
context of image representation, an INR would receive a 2D coordi-
nate u ∈ R2 and output a pixel value c ∈ R3. Similarly, for audio
signals, a one-dimensional temporal coordinate 𝑡 ∈ R would be
mapped to an audio amplitude a ∈ R. INR has already demonstrated
strong representational capabilities across various modalities of
data. Given these unique advantages, we propose leveraging INR to
unify multimedia data format. Then, the data sender and receiver
are relieved from directly handling the format of steganographic
data. They only need to determine the position of the neurons
for secret data, thereby alleviating the threat caused by external
encoders/extractors.

4.2 Implicit consensus mechanism
The primary motivation behind our implicit consensus stems from a
critical vulnerability in traditional steganographic approaches: their
dependence on external explicit extractors [29, 65]. These external
explicit extractors present a significant security weakness—they
serve as a clear attack surface that adversaries can exploit to detect,
corrupt, or expose hidden information [14, 34, 60, 66]. We allevi-
ate such vulnerability by designing an implicit data hiding and
extraction mechanism. Our approach lets the sender and receiver
cryptographically agree on which parameters contain hidden data
using only a pre-shared private key 𝑘𝑒 without requiring any ex-
ternal extraction mechanism during transmission. This shift from
explicit extractors to implicit consensus significantly strengthens
security by removing a primary attack vector. Moreover, this ap-
proach inherently supports format-agnostic steganography, as the
implicit mechanism operates on neural parameters regardless of
the underlying data modality, addressing both the security and flex-
ibility limitations that have constrained traditional steganographic
methods. The whole process for making the implicit consensus is
as follows.

4.2.1 Obtaining private key. In this work, the private key replaces
the external extraction mechanism during the data distribution.

key
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Figure 3: Implicit Consensus. The initialized weight values of
the INR are used to identify and select the weights for secret
data based on the magnitudes.

This private key enables both the hiding and extraction of data
within our framework. Specifically, the private key determines the
locations for data hiding. Prior to distribution, data senders utilize
the private key to generate the stega representation. Subsequently,
the sender uses a designated method to securely share the private
key with the recipients. Upon receiving the steganographic data, the
recipients apply the pre-shared private key to retrieve the hidden
information. In our setup, we use a pre-arranged private key ke.
Rather than expli citly transmitting the secret data’s position along
with the cover representation, users can use pre-shared Arabic
numerals as the private key 𝑘𝑒 , and only receivers with the correct
key can access the secret data.

4.2.2 Creating stega mask M𝑒 . With the private key 𝑘𝑒 , we can
create a stega maskM𝑒 by determining the position of the secret
data. The stega mask maintains a binary matrix corresponding to
neuron positions, enabling selective neural modulation for secure
data embedding. The stega mask M𝑒 can be used to extract the
secret data as it records the position of the secret data. Compared to
the previous methods [7, 11, 33], our approach allows receivers to
directly obtain the location of secret data based on the pre-arranged
key ke, thereby avoiding potential risks during data transmission.
Once the stega data is received, these positions can be retrievable
to ensure the receiver can regain access to the secret data. This way,
the sender and receiver can reliably identify and extract the secret
information embedded within the model’s parameters using the
shared key.

With the private key ke, the data sender could effectively deter-
mine the position of secret data via our proposed implicit con-
sensus (Fig. 3). The algorithm details of implicit consensus are
depicted in algorithm 1. For an implicit neural network N[W] (·),
whereN[·] andW denote the architecture and weights respectively.
we have the secret representation N[W ⊙ M𝑒 ] (·). Here, ⊙ is the
element-wise product, and M𝑒 is a stega mask indicating secret
representation positions. We leverage initialized weights from the
seed key 𝑘𝑒 . This method selects significant weights by magnitude,
preserving network performance. Given a stega ratio S and total
weight count N , the algorithm initializes weightsW𝑒 using N[·]
and 𝑘𝑒 , ensuring reproducibility. Weights are sorted by absolute
value to identify significance. A threshold 𝑡S is set as the 𝑝-th
largest weight, where 𝑝 = ⌊S · N⌋ and ⌊⌋ is floor function, select-
ing the top S · 100% weights. The stega maskM𝑒 is generated by
marking weights exceeding 𝑡S as 1, others as 0. This binary mask
highlights significant weights, encoding the secret representation
effectively.

This approach serves multiple purposes. First, it ensures that
only the most impactful weights are retained, which helps maintain
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Algorithm 1 Creating stega maskM𝑒 via implicit consensus
Require: Neural network architecture N[·], seed key 𝑘𝑒 , stega

ratio S, total weight count N , initialization function I
Ensure: Stega maskM𝑒

1: Initialize Weights:
2: Initialize weightsW𝑒 using I(N[·], 𝑘𝑒 )
3: Sort Weights:
4: Sort theweightsW𝑒 in descending order based on their absolute

values.
5: Determine Threshold:
6: Calculate 𝑝 = ⌊S · N⌋
7: Identify the threshold 𝑡S as the value of the 𝑝-th largest weight

inW𝑒

8: Generate Stega Mask:
9: for each weight𝑤𝑖 inW𝑒 do
10: if |𝑤𝑖 | > 𝑡S then
11: SetM𝑒 [𝑖] = 1
12: else
13: SetM𝑒 [𝑖] = 0
14: end if
15: end for
16: Output the Stega Mask:
17: return M𝑒

the model’s performance while embedding the secret represen-
tation. Second, by focusing on weight magnitude, we avoid the
pitfalls of selecting arbitrary weights, which could lead to sub-
optimal performance or even model failure. Lastly, this method
provides a systematic and reproducible way to generate the stega
mask, making it easier to maintain consistency across different
model iterations and experiments. Overall, the implicit mechanism
enhances the robustness and reliability of the U-INR framework.

4.3 Encrypting stega representation
After obtaining the stega maskM𝑒 , users can construct the stega
representation using secret and cover data. To obtain the secret rep-
resentationN[W⊙M𝑒 ], we first optimize the representation for the
secret data based on the stegamaskM𝑒 . Next, we fix these optimized
secret weights and optimize the remaining weights N[W ⊙ M𝑒 ]
for the secrete data to create the final stage representation. The
following sections provide a detailed illustration of this process.

4.3.1 Fitting secret data. Our weight selection strategy gives a
choice to obtain the stega mask M𝑒 based on the private key 𝑘𝑒 .
Given secret data (e.g., image, video, or other types), its information
values y𝑠𝑒 and corresponding coordinate u, we can build the secret
representation by

ŷ𝑠𝑒 = N[W ⊙ M𝑒 ] (u), (7)

where ŷ𝑠𝑒 is the predicted secret data, and the secret weights deter-
mined by stage maskM𝑒 are optimized via eq. (9).

4.3.2 Fitting cover data. After optimizing the weights for the secret
data, we fix those weights and update the remaining weights to
store the cover data. The process can be denoted as

ŷ𝑠𝑡 = N[Wfix ⊙ M𝑒 ∪W ⊙ M𝑒 ] (u), (8)

where M𝑒 is a binary mask complementing M𝑒 , and y𝑠𝑡 refers to
the stega data at corresponding coordinate u.

The above process can be achieved via standard INR proce-
dure [38, 51], which can be formulate as

L =
1
𝑁

𝑁∑︁
𝑖=1

(𝑦 (𝑖 )𝑔𝑡 − 𝑦 (𝑖 ) )2, (9)

where 𝑁 is the number of samples, 𝑦 (𝑖 )𝑔𝑡 is the ground truth value
for the i-th sample, and 𝑦 (𝑖 ) is the predicted value for the i-th
sample. When the optimization settles down, we can get the stega
representation with both cover and secret data. The implementation
details of each data modality are provided in section 7.1.

4.4 Decrypting secret representation
After obtaining the stega representation, the ordinary users without
the correct key can only obtain the whole data stored in the stega
representation via standard INR inference eq. (6) as:

N[W] (u) → ŷ𝑠𝑡 , (10)

where ŷ𝑠𝑡 is the output values of stega data at coordinates u. Ordi-
nary users can only obtain stega data through standard inference
as secret data is stored in particular INR neurons. Even if attackers
suspect hidden data exists, searching the high-dimensional neuron
space becomes computationally prohibitive. Users with the correct
key 𝑘𝑒 can regain the stega maskM𝑒 locating the weights for secret
data via our implicit consensus (section 4.2). Thus, the secret data
can be obtained through:

N[W ⊙ M𝑒 ] (u) → ŷ𝑠𝑒 , (11)

where W ⊙ M𝑒 denotes the weights for secret representation. This
M𝑒 can be obtained with key 𝑘𝑒 via the implicit consensus mech-
anism strategy in section 4.2.

5 Experiments
5.1 Experimental settings
5.1.1 Evaluation. To demonstrate the effectiveness of our method,
we conduct experiments on different types of data, including images,
videos, audio, and 3D scenes. For images, following established
work [29], we evaluate the performance on three dataset, including
DIV2K [1], 1, 000 images randomly selected from ImageNet [48], and
COCO [32] dataset. For 3D scenes, we experiment with 4 classic
scenes from LLFF [37] and NeRF-blender [38], respectively. We
select the original test set in SIREN [51] for audio and video. We
adopt PSNR, SSIM [57], Averaged Pixel-wise Discrepancy (APD),
and RMSE to measure the visual quality. Higher PSNR and SSIM
values indicate better image embedding and recovery performance.
Lower RMSE and APD values suggest improved performance in
these tasks. We adopt the MSE mean and MSE standard deviation
for audio data to evaluate the quality of audio representation. We
test the representation quality to evaluate the impact of the stega
ratio S on the performance of the secret and stega representation
under different ratios. Besides this, we also test the robustness of
our method against network pruning [13, 24] to analyze potential
threats.
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Table 1: Performance comparisons on different datasets. “↑": the larger the better, “↓": the smaller the better. Stega ratio S
denotes the ratio of parameters used to represent secret data. The results of our U-INR are highlighted in cyan.

Methods
Cover/Stega-image pair

DIV2K COCO ImageNet
PSNR(dB)↑ SSIM↑ APD↓ RMSE↓ PSNR(dB)↑ SSIM↑ APD↓ RMSE↓ PSNR(dB)↑ SSIM↑ APD↓ RMSE↓

HiDDeN [65] 28.19 0.9287 8.01 11.00 29.16 0.9318 6.91 9.60 28.87 0.9234 7.43 10.21
Baluja [3] 28.42 0.9347 7.92 10.64 29.32 0.9374 7.04 9.36 28.82 0.9303 7.68 10.21
HiNet [22] 44.86 0.9922 1.00 1.53 46.47 0.9925 0.81 1.30 46.88 0.9920 0.81 1.26
PUSNet [29] 38.15 0.9792 2.30 3.33 39.09 0.9772 2.01 2.96 38.94 0.9756 2.21 3.06

U-INR (S = 0.3) 38.32 0.9890 2.17 2.72 39.70 0.9889 1.55 2.39 39.06 0.9813 1.61 2.45
U-INR (S = 0.5) 35.15 0.9740 3.59 4.70 35.50 0.9737 3.55 3.65 35.32 0.9770 2.51 3.63

Methods
Secret/Recovered image pair

DIV2K COCO ImageNet
PSNR(dB)↑ SSIM↑ APD↓ RMSE↓ PSNR(dB)↑ SSIM↑ APD↓ RMSE↓ PSNR(dB)↑ SSIM↑ APD↓ RMSE↓

HiDDeN [65] 28.42 0.8695 7.62 9.94 28.81 0.8576 7.20 9.54 28.23 0.8435 7.83 10.47
Baluja [3] 28.53 0.9036 7.53 10.66 29.13 0.9091 6.61 9.80 27.63 0.8909 8.33 12.26
HiNet [22] 28.66 0.8507 7.25 9.68 28.08 0.8181 7.80 10.49 27.94 0.8159 8.03 10.83
PUSNet [29] 26.88 0.8363 8.75 11.95 26.96 0.8211 8.71 12.14 26.28 0.8028 9.58 13.43

U-INR (S = 0.3) 34.50 0.9727 3.82 5.26 34.92 0.9802 3.53 4.86 34.03 0.9701 3.97 5.53
U-INR (S = 0.5) 37.11 0.9851 2.84 3.86 37.53 0.9873 2.73 3.41 36.82 0.9802 2.90 4.12

Ground truth

Baluja HiNet PUSNet U-INRHiDDeN

Cover/Secret image and its residual x5
Figure 4: Examples of the stega and recovered images generated using different schemes. The left is the original image, and the
right represents ×5magnified residuals. The cover/stega and secret/recovered images are given in the first and last rows. For
our U-INR, we use stega ratio S = 0.3 as it balances the quality of cover and secret representation.

5.1.2 Benchmarks. To evaluate the performance of our method,
we compare our U-INR against existing DNN-based steganographic
methods, including HiDDeN [65], Baluja [3], HiNet [22], and PUS-
Net [29]. We implement the aforementioned models on the DIV2K
training dataset for fair comparisons and evaluate their performance
under the same settings [29]. To illustrate the generalizability of
our U-INR, we evaluate our U-INR on other types of data, including
audio, video, 3D scene, and signed distance function.

5.2 Results on different data types
5.2.1 Results on 2D image. To compare the capabilities of our
method in steganography, we evaluate our U-INR and other image
steganographic methods on various 2D image datasets [1, 32, 48].
In Table 1, we provide two sets of experimental results with dif-
ferent stega ratios S = {0.3, 0.5}, denoting the ratios of the pa-
rameters for secret representation. Although these steganography
methods [2, 22, 29, 65] are specifically designed for 2D images,
our U-INR achieves a better quality of the recovered secret image
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(b) Bikes video

Ground truth

Neural representation (31.91)

Stega representation (29.23)

Secret representation (30.79)

(a) Cat video

Ground truth

Neural representation (33.80) 

Secret representation (32.50)

Stega representation (30.51)

Figure 5: Quantitative and qualitative results of our method when applying to video data. The bike video and cat video are
adopted as secret and stega representations. Compared to the normal neural representation, the quality of the stega and secret
representations only experiences a slight decrease.
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Figure 6: A case study on Signed distance function. Thai statue (Secret) is extracted from the representation of Room (Stega).

while keeping comparable results in the quality of the stega im-
age. Aligning with the visual samples in Fig. 4, our U-INR achieves
higher capacity steganographywith a less obvious residual map.We
successfully embed secret image representations into stega repre-
sentations within the INR parameters while preserving the original
image quality.

5.2.2 Results on video data. To demonstrate the generalizability
of our approach, we extend our U-INR to video data and present
the quantitative and qualitative results in Fig. 5. We implement our
U-INR on Cat and Bike videos from SiREN [51]. Comparing data as
secret/stega representationwith standard neural representation, our
method minimally impacts quality. Our results showcase the ability
to conceal and retrieve the hidden video content while maintaining
the visual fidelity of the original video. Users can obtain hidden
high-quality videos while ensuring invisibility.

5.2.3 Results on SDF data. We extend our U-INR to SignedDistance
Function (SDF) data and present the results in Fig. 6. We apply

our U-INR to the signed distance function and embed secret SDF
representations within the network parameters. Our experimental
results demonstrate the capability to conceal and retrieve the hidden
SDF content while maintaining the geometric fidelity of the original
structures. Users can obtain hidden high-quality SDF data while
ensuring invisibility.

5.2.4 Results on 3D scene. We implement our U-INR on 3D scene
representations with Neural Radiance Fields (NeRFs) [38]. We train
the 3D presentation with multi-view images and embed secret 3D
data within the parameters of NeRF models. Quantitative and quali-
tative results for each scene when used as stega and secret data are
reported in Table 2 and Fig. A.5. Compared to the original implicit
neural representation, the quality of the stega and secret repre-
sentations slightly declines, representing the 3D scene effectively.
Our experiments demonstrate that our approach can effectively
conceal and recover the hidden 3D content while preserving the
high-quality rendering of the original 3D scenes. This capability
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Table 2: We implement our U-INR on 3D scenes with neural
radiance field (NeRF) [38]. We report the metric results when
the scenes are adopted as stega representation and secret
representation. The visualized results are presented in the
appendix.

PSNR(dB) ↑ SSIM ↑ LPIPS ↓
Lego 26.30 0.9356 0.1256

Lego (Secret) 25.92 0.9284 0.1400

Blender
Lego (Stega) 25.62 0.9182 0.1511
Hotdog 32.86 0.9778 0.0671

Hotdog (Secret) 32.45 0.9751 0.0782
Hotdog (Stega) 32.40 0.9733 0.0830

Flower 27.50 0.8543 0.1641
Flower (Secret) 26.62 0.8202 0.2050

LLFF
Flower (Stega) 26.60 0.8146 0.2270

Room 30.64 0.9313 0.1674
Room (Secret) 29.92 0.9160 0.2059
Room (Stega) 29.74 0.9109 0.2265

opens up new avenues for secure data transmission and information
hiding in the context of steganography 3D models.

5.2.5 Results on audio data. To showcase the versatility of our ap-
proach, we extend our U-INR to audio data and present the results
in Table 3. The visualized results are presented in the appendix. We
implement our U-INR on Bach and Counting audio [51], embed-
ding secret audio messages within the network parameters. The
stega representations yielded enhanced performance, potentially
attributable to the inherently lower complexity of audio data rela-
tive to other data modalities. Our results demonstrate the ability to
conceal and retrieve the hidden audio content while preserving the
auditory fidelity of the original signals. Users can obtain hidden
high-quality audio while ensuring invisibility.

5.3 Impacts of stega ratio
Stega ratio S indicates the percentage of INR parameters used for
secret representation. Thus, selecting the right ratio depends on
whether the priority is to preserve “secret” information or maintain
broad coverage. We evaluate the impacts of selecting a suitable ratio
for U-INR to identify the suitable ratio that trades off the secret
and stega representation quality. We experiment across a range of
sparsity levels from 10% to 90% on DIV2K test-set [1]. As shown in
Fig. 7, a higher ratio will decrease stega quality and improve secret
representation quality. The experimental results reveal a trade-off
when adjusting the sparsity ratios, indicating the trade-off choice
in the intermediate range of 30% to 70%.

5.4 Threaten analysis
Pruning techniques are commonly used to compress and speed up
neural networks by removing redundant parameters, which may
impact the integrity of secret data. To test the resilience of our U-
INR method against potential threats, we simulate pruning attacks
on INR networks with stega representation. We evaluate the ro-
bustness of the stega representation against two pruning strategies,
including magnitude-based pruning [13] and random pruning [24].
For instance, we progressively prune increasing percentages of the
INR parameters for each method and measure the deterioration.

Table 3: The audios Bach and Counting [51] are representa-
tion with INRs. The Bach and Counting are adopted as secret
and stega representations, respectively. The experimental
results are evaluated 10 times.

MSE Mean ↓ MSE Standard Dev. ↓
Bach 1.980 × 10−4 5.527 × 10−4

Bach (Secret) 2.387 × 10−4 6.101 × 10−4
Bach (Stega) 2.236 × 10−5 6.024 × 10−5

Counting 8.834 × 10−4 5.374 × 10−3
Counting (Secret) 9.718 × 10−4 5.594 × 10−3
Counting (Stega) 5.728 × 10−4 3.915 × 10−3

Table 4: Results of pruning weights in INR. The secret* repre-
sentation has not been erased by the magnitude-based prun-
ing method, as its weights have larger weight values than the
stega representation. We further presented the analysis in
the appendix.

Pruning 0% 1% 5% 10% 20%strategy
INR 38.48 35.39 30.61 28.06 22.06

Random Stega 33.46 30.24 25.83 23.46 17.85
Secret 35.08 32.31 28.97 26.86 21.05
INR 38.48 37.99 35.42 29.63 22.45

Magnitude Stega 33.46 33.43 30.87 25.07 18.19
Secret* 35.08 33.86 33.86 33.86 33.86

a::: 
z 

PSNR vs. Stega ratio s 

35+-+------+----=---==--------:::�------+-------+-------i 

� 30 +-+---�--+------+----------=p...::------+-------i 

• Secret representation

25----- ■ Stega representation

10% 30% 50% 70% 90% 
Stega ratio s 

Figure 7: Representation performance under different stega
ratios.

As shown in Table 4, with higher attack strength, the quality of
the representation declines. However, the secret representation is
more robust against both pruning strategies than the stega repre-
sentation, indicating the resilience of the method against advanced
adversarial attacks.

6 Conclusion
This paper presents U-INR, a novel unified steganographic method
leveraging implicit neural representations (INRs) to embed covert
data across diverse media types. Our approach uniquely incorpo-
rates secret information within a portion parameter of the INR
network, facilitating secure and discreet data transmission. Com-
prehensive experiments across multiple data modalities demon-
strate U-INR’s exceptional capacity for embedding information
securely while preserving INR fidelity. These results underscore
the method’s robustness and its potential for broad applications in
enhancing data security and privacy.
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7 Appendix
7.1 Implementation details
In our experiment, we implement SIREN1 [51] for image, video,
audio, SDF data. We implement NeRF2 [38] for 3D scenes. All ex-
periments are conducted on Ubuntu 18.04 with one NVIDIA V100.
The weightsW of INR are initialized using Xavier algorithm [15].
Following the established works [29, 51], we conduct our exper-
iments using the same settings. For 2D images, the model pro-
cesses 2D feature vectors (𝑥,𝑦) with four hidden layers of 256 units
each, outputting a 3D RGB vector. It is trained on datasets like
the DIV2K-test, a 1, 000 subset of Imagenet-1𝑘 , and the COCO test
set using the Adam optimizer with a batch size of 1, a learning
rate of 1 × 10−4, over 5, 000 epochs. For videos, it processes 3D
feature vectors (𝑥,𝑦, 𝑡) with three hidden layers of 1, 024 units each,
outputting a 3D RGB vector trained on Cat and Bikes videos with
similar optimization parameters over 100, 000 epochs. For audio, the
model handles 1D feature vectors 𝑡 with three hidden layers of 256
units each and an initial frequency𝜔0 = 3, 000, trained on Counting
and Bach audio data [51] with a learning rate of 1×10−4 over 1, 000
steps. The SDF model processes 3D feature vectors (𝑥,𝑦, 𝑧) through
three hidden layers of 256 units, outputting a 1D distance value,
trained on data from TurboSquid and the Stanford 3D Scanning
Repository with a batch size of 1, 400 over 10, 000 steps. For 3D
scenes, NeRF uses a 5D input vector (𝑥,𝑦, 𝑧, 𝜃, 𝜙) with an 8-layer
MLP of 256 channels per layer, processing 4, 096 rays per batch,
trained on LLFF and NeRF-blender datasets with a learning rate of
5× 10−4 and a decay step of 500, 000, simplifying the original NeRF
strategy.

7.2 Additional experimental results
7.2.1 Impacts of stega ratios. We also provide visualized results
that showcase the ratioS, a critical parameter. As shown in Fig. A.2,
the sparsity patterns and their impact on the model’s performance
are depicted. The visuals aim to demonstrate how varying levels of
stega ratio S affect the representation performance of INR, eluci-
dating the role of the ratio.

7.2.2 Impacts of pruning attack. We also provide visualized results
that showcase the impacts of the pruning ratio S. As shown in
Fig. A.3. The results demonstrate how varying levels of pruning
ratio S affect the representation performance of stega and secret
representation.

7.2.3 Visualized audio data. Fig. A.4 presents the visualization
results of the audio data to complement the study. These visual-
izations illustrate the characteristics and patterns within the audio
samples. Representations of audio data are provided in Fig. A.4,
serving as a visual reference to understand our method for the
audio data better.

1https://github.com/vsitzmann/siren
2https://github.com/yenchenlin/nerf-pytorch
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Figure A.1: Distribution of weight’s values. The weights for
the stega representation are relatively small. Thus, during
magnitude-based pruning, there is a tendency to prune the
weights associated with the stega representation more. This
will have a greater impact on the stega representation and a
limited effect on the hidden secret representation.

7.3 Distribution of weight’s values
To better understand our method, we have provided the distribution
of weight values for “stega” and “secret representation”. A standard
SIREN [51] network for image representation has approximately
190, 000 parameters. We visualize the range of parameter aggre-
gation from −0.1 to 0.1 and provide the distribution of weight’s
values in Fig. A.1. We observe that within the stega representa-
tion, the weight values of the secret representation are relatively
high. Therefore, in magnitude-based pruning, the stega representa-
tion is more significantly affected. We present a series of results to
portray the effects of pruning attacks on the system Fig. A.3 and
illustrate the outcomes of these attacks, emphasizing the resilience
of the proposed method. The visuals document the robustness of
the approach, providing a breakdown of the system’s capability to
withstand pruning attacks and maintain performance integrity.
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Ground truth 10% 30% 50% 70% 90% Ground truth
Stega representation

10% 30% 50% 70% 90%
Secret representation

Figure A.2: Qualitative results of stega representation and secret representation with different stega ratios S. S denotes the
ratio of parameters used for representing secret data. The residual images (×5) are located beneath each picture.
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Figure A.3: Qualitative results of random pruning and magnitude-based pruning attack on INR, stega, and secret representation.
Each neural network for representation is randomly pruning 1%, 5%, 10%, and 20% parameters. The residual images (×5) are
located beneath each picture.
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Fig. 9. Qualitative results of stega representation and secret representation with different stega ratios S. S denotes the ratio of parameters used for
representing secret data. The residual images (→5) are located beneath each picture.

TABLE III
THE AUDIOS BACH AND COUNTING [13] ARE REPRESENTATION WITH

INRS. THE BACH AND COUNTING ARE ADOPTED AS SECRET AND STEGA
REPRESENTATIONS, RESPECTIVELY. THE EXPERIMENTAL RESULTS ARE

EVALUATED 10 TIMES.

MSE Mean ↑ MSE Standard Dev. ↑
Bach 1.980 → 10→4 5.527 → 10→4

Bach (Secret) 2.387 → 10→4 6.101 → 10→4

Bach (Stega) 2.236 → 10→5 6.024 → 10→5

Counting 8.834 → 10→4 5.374 → 10→3

Counting (Secret) 9.718 → 10→4 5.594 → 10→3

Counting (Stega) 5.728 → 10→4 3.915 → 10→3

As shown in Fig. 11, a higher ratio will lead to a decrease
in stega quality and an improvement in secret representation
quality. The experimental results reveal a trade-off when
adjusting the sparsity ratios, indicating the trade-off choice
in the intermediate range of 30% to 70%.

We provide detailed results that showcase the ratio S , a
critical parameter in this appendix. As shown in Fig. 9, the
sparsity patterns and their impact on the model’s performance
are depicted. The visuals aim to demonstrate how varying

levels of stega ratio S affect the representation performance
of INR, elucidating the role of the ratio.

D. Threaten analysis

Pruning techniques are commonly used to compress and
speed up neural networks by removing redundant parameters,
which may impact the integrity of secret data. To test the
resilience of our U-INR method against potential threats, we
conducted experiments simulating pruning attacks on INR
networks with embedded data.

a) Robustness against network pruning.: We assessed the
robustness of our embedded data against two pruning strate-
gies, including magnitude-based pruning [19] and random
pruning [58]. We progressively pruned increasing percentages
of the INR parameters for each method and measured the de-
terioration. As shown in Table IV, with higher attack strength,
the quality of the representation declines. However, the secret
representation is more robust against both pruning strategies
than the stega representation, indicating the resilience of the
method against advanced adversarial attacks.

Stega

Figure A.4: A case study on audio format data. Bach (secret) is obtained from the representation of Counting (stega). The audio
Counting (stega) is better than Counting (INR), which might be due to the audio data being simpler than other data formats.

(b) Stega representation (c) Secret representation

(a) Neural representation

Figure A.5: Visual results of our proposed method on 3D scene [38]. We embed a secret representation (lego) into the stega
representation (hotdog). (a) INR-based representation denotes the baseline results of NeRF when rendering both scenes. Scene
(c) secret representation is obtained from (b) stega representation.
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